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FOLIATIONS BY CURVES
WITH CURVES AS SINGULARITIES

by M. CORRÊA Jr, A. FERNÁNDEZ-PÉREZ,
G. NONATO COSTA & R. VIDAL MARTINS

Dedicated to Márcio Gomes Soares, for his 60th birthday.

Abstract. — Let F be a holomorphic one-dimensional foliation on Pn such
that the components of its singular locus Σ are curves Ci and points pj . We de-
termine the number of pj , counted with multiplicities, in terms of invariants of F
and Ci, assuming that F is special along the Ci. Allowing just one nonzero dimen-
sional component on Σ, we also prove results on when the foliation happens to be
determined by its singular locus.
Résumé. — Soit F un feuilletage holomorphe unidimensionnel sur Pn, dont les

composantes du lieu singulier Σ sont des courbes Ci et des points pj . On exprime le
nombre de tels points pj , comptés avec leurs multiplicités, en termes des invariants
de F et Ci, en supposant que F est spécial le long des courbes Ci. En supposant
qu’il n’y a qu’une seule composante de Σ de dimension non nulle, on obtient aussi
des résultats lorsque le feuilletage est déterminé par ses lieux singuliers.

1. Introduction

Let F be a foliation on a smooth projective scheme Y , and X a projective
subscheme of Y . Let Ỹ be the blowup of Y along X, and π : Ỹ → Y the
blowup morphism with exceptional divisor E := π−1(X). The foliation
F will be called special along X if the strict transform F̃ has E as an
invariant set, and Sing(F̃) meets E at isolated singularities at most. With
this in mind, we prove the following.

Theorem 1.1. — Let F be a holomorphic foliation by curves on Pn,
n > 3, of degree k, such that its singular locus is the disjoint union of
irreducible curves C1, . . . , Cr and points p1, . . . , ps. Assume each Ci is either

Keywords: holomorphic foliations, non-isolated singularities.
Math. classification: 32S65, 58K45.



1782 M. CORRÊA Jr. et al.

smooth, or a singular set theoretic complete intersection; assume also that
F is special along each Ci, for 1 6 i 6 r. Then

s∑
i=1

µ(F , pi) = 1 + k + k2 + . . .+ kn +
r∑
i=1

ν(F , Ci)

where µ(F , pi) is the multiplicity of F at pi, and where for any curve C ⊂ Pn
of arithmetic genus g, degree d, with singular points, if any, q1, . . . , ql, and
along which F is special, we set

ν(F , C) := (`+ 1)n−2
((

2g − 2−
l∑
i=1

(bi − 1)
)

(`2 + `+ 1) + (n+ 1)d`2 − (k − 1)d(n`+ 1)
)

with bi the number of branches of qi, and ` := mC(F) the multiplicity of
F at C.

The above result generalizes a formula by the third named author (cf. [7])
which counts the number of isolated singularities of a foliation by curves on
P3 admiting regular curves as singularities. We just relaxed the hypothesys
basically allowing singular curves on the singular locus, as long as complete
intersections, and consider the foliation on a generic projective space Pn.

Our second task concerns stablishing conditions for when the singular
locus happens to determine a foliation. In order to do so, we need another
definition. Let X be a projective subscheme of Pn given by an ideal sheaf
IX . We define the generating degree of X, denoted gd(X), as the least
integer d > 0 such that IX(d) is globally generated, i.e., for which X is a
set theoretic intersection of hypersurfaces of degree at most d.

Theorem 1.2. — Let F be a holomorphic foliation by curves on Pn, n >
3, of degree k, such that its singular locus has just one nonzero dimensional
component, which is an integral and smooth curve C. Assume also that F
is special along C. Let π : P̃n → Pn be the blowup of Pn along C and E
the exceptional divisor. If F ′ is another foliation of degree k on Pn, with
k > gd(C), and also Sing(F) ⊂ Sing(F ′) and Sing(F̃ |E) ⊂ Sing(F̃ ′|E),
then F ′ = F .

The above result can be compared to A. Campillo and J. Olivares’ [4,
Cor. 3.2], the proof of which, along with X. Gomez-Mont and G. Kempf’s
[5], motivated the one here. In the very case of three dimensional ambient
space, with additional requirements on the curve of singularities, a stronger
sentence can be proved.
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FOLIATIONS BY CURVES WITH CURVES AS SINGULARITIES 1783

Theorem 1.3. — If F and F ′ are holomorphic foliations by curves on
P3, of same degree, such that Sing(F ′) ⊃ Sing(F) = C∪{p1, . . . , ps}, where
C is a nondegenerated integral smooth set theoretic complete intersection
curve, and F is special along C, then F = F ′.

So in this case we have the desired statement on determination. This
unicity problem has been studied by many authors (see [1] and the ref-
erences therein) and, in this sense, the above result is a step forward on
dealing with the subject when the singular locus has unexpected codimen-
sion.

Acknowledgments. The second named author is partially supported by
Fapemig-Brasil and PRPq-UFMG; the fourth named author is partially
supported by the CNPq grant number 304919/2009-8.

2. Preliminaries

2.1. Multiplicities along subschemes

Let F be a foliation by curves on an n-dimensional smooth projective
variety Y over C. It is determined by an injective sheaf map ϕ : LF ↪→ TY ,
where LF is an invertible sheaf and TY is the tangent bundle, such that
TY /LF is torsion free. The singular locus of F is the closed subscheme Σ
of Y defined by the ideal sheaf

IΣ := Fn−1(TY /LF )

where Fn−1 stands for the fitting ideal. So one may denote and write

Sing(F) := Σ = SpecOY /IΣ.

Now let P ∈ Y be any point. The local ring OY,P may not be a dis-
crete valuation ring, but one can at least consider the mP -adic valuation,
which we denote by vP , where mP is the maximal ideal. So one defines the
multiplicity of F at P as

mP (F) := min
f∈IΣ,P

{vP (f)}

The multiplicity of F at an irreducible subscheme of Y will be the multi-
plicity of the foliation at its generic point. So multiplicities are well defined
for irreducible components of the singular locus as well.

TOME 64 (2014), FASCICULE 4



1784 M. CORRÊA Jr. et al.

If F is given by a vector field which, in a neighbourhood of P , is written
by

(2.1) DF = DF,P = f1
∂

∂z1
+ . . .+ fn

∂

∂zn

then we have
mP (F) := min{vP (f1), . . . , vP (fn)}.

If p ∈ Y is a closed point then

mp(F) = lengthOY,p

OY,p
(f1, . . . , fn)

which agrees with the classical Milnor number. So in this case we adopt
the standard notation

µ(F , p) = mp(F).
For later use, we now describe the multiplicity of F at an irreducible

curve C which is a component of Sing(F). By a holomorphic change of
coordinates, C can be locally given as z1 = . . . = zn−1 = 0. Therefore, one
may write the local sections in (2.1) as

(2.2) fi(z) =
∑
|a|=mi

za1
1 · · · z

an−1
n−1 fi,a(z)

where a := (a1, . . . , an−1) with |a| := a1 + . . . + an−1, and at least one
among the fi,a(z) does not vanish in the zn-axis. One rapidly sees that the
number mi in (2.2) agrees with vC(fi) so

(2.3) mC(F) = min{m1, . . . ,mn}.

We may change coordinates and assume for the remainder that

mn−1 6 . . . 6 m1.

Now we blowup Y along C and describe the behavior of F under this
transformation. Just in order to fix notation we recall the blowup procedure
in this specific case. If ∆ is an n-dimensional polydisc with holomorphic
coordinates z1, . . . , zn and Γ ⊂ ∆ is the locus z1 = . . . = zn−1 = 0, take
[y1, . . . , yn−1] to be homogeneous coordinates on Pn−2. The blowup of ∆
along Γ is the smooth variety

∆̃ = {(z, [y]) ∈ ∆× Pn−2 | ziyj = zjyi for 1 6 i, j 6 n− 1}.

The projection π : ∆̃→ ∆ on the first factor is an isomorphism away from
Γ, while the inverse image of a point z ∈ Γ is a projective space Pn−2. The
inverse image E = π−1(Γ) is the exceptional divisor of the blowup.

ANNALES DE L’INSTITUT FOURIER
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The standard open cover Uj = {[y1, . . . , yn−1] | yj 6= 0}, with 1 6 j 6

n− 1, of Pn−2 yields a cover of ∆̃ where each open set, for 1 6 j 6 n− 1,
is defined by

(2.4) Ũj = {(z, [y]) ∈ ∆̃ | [y] ∈ Uj}

with holomorphic coordinates σ(u1, . . . , un) = (z1, . . . , zn) given by

zi =
{
ui if i = j or i = n

uiuj if i = 1, . . . , ĵ, . . . , n− 1.

The coordinates u ∈ Cn are affine coordinates on each fiber π−1(p) ∼= Pn−2

of E.
Now consider the curve C ⊂ Y . Let {φλ, Uλ} be a collection of local

charts covering C and φλ : Uλ → ∆λ, where ∆λ is an n-dimensional poly-
disc. One may suppose that Γλ=φλ(C∩Uλ) is given by z1 = . . . = zn−1 =0.
Let πλ : ∆̃λ → ∆λ be the blowup of ∆λ along Γλ. One can patch the πλ
together and use the chart maps φλ to get a blowup Ỹ of Y along C and a
blowup morphism π : Ỹ → Y . The exceptional divisor E is a fibre bundle
over C with fiber Pn−2 which is naturally identified with the projectiviza-
tion P(NC/Y ) of the normal bundle NC/Y .
In the open set Ũ1, as in (2.4), we have

σ(u) = (u1, u1u2, . . . , u1un−1, un) = (z1, . . . , zn).

If i = 1 or i = n, since ui = zi we get

u̇i =
∑
|a|=mi

ua1
1 (u1u2)a2 · · · (u1un−1)an−1fi,a(σ(u))

= umi
1

∑
|a|=mi

ua2
2 · · ·u

an−1
n−1 fi,a(σ(u))

but we may write fi,a(σ(u)) = fi,a(0, . . . , 0, un) + u1f̃i,a(u) = pi,a(un) +
u1f̃i,a(u) and hence

(2.5) u̇i = umi
1

 ∑
|a|=mi

ua2
2 · · ·u

an−1
n−1 pi,a(un) + u1f̃i(u)


for some functions f̃i(u), with i = 1 or i = n.

TOME 64 (2014), FASCICULE 4



1786 M. CORRÊA Jr. et al.

If 2 6 i 6 n− 1, since zi = u1ui, we have that żi = u̇1ui +u1u̇i and thus

u̇i = umi−1
1

( ∑
|a|=mi

ua2
2 . . . u

an−1
n−1 pi,a(un)(2.6)

− um1−mi
1 ui

∑
|a|=m1

ua2
2 . . . u

an−1
n−1 p1,a(un) + u1f̃i(u)

)
for some functions f̃i(u), with 2 6 i 6 n− 1.

Combining (2.5) and (2.6) we have that π∗F is described by the vector
field

Dπ∗F = um1
1

(
g1(u) + u1f̃1(u)

)
∂

∂u1
+
n−1∑
i=2

umi−1
1

(
hi(u) + u1f̃i(u)

)
∂

∂ui

(2.7)

+ umn
1

(
gn(u) + u1f̃n(u)

)
∂

∂un

where

gi(u) :=
∑
|a|=mi

ua2
2 · · ·u

an−1
n−1 pi,a(un) and hi(u) := gi(u)−um1−mi

1 uig1(u).

Now all points of E, given by u1 = 0, are singularities of f∗F . We have
some ways of desingularizing, according to the possible values of mi. Fur-
thermore, if m1 = mi for some i, we must verify whether

(2.8) ri(u) := gi(u)− uig1(u)

is identically zero or not. In this way, we may divide it in two cases, dicritical
or nondicrital curves of singularities, according to if the exceptional divisor
is or is not invariant by the induced foliation F̃ .

• Non-dicritical curve of singularities.
(i) mn + 1 = mn−1 = . . . = m2 with ri 6≡ 0 for all 2 6 i 6 n − 1 if

mn−1 = m1.
Dividing (2.7) by umn

1 we get the vector field defining F̃ which is
(2.9)

DF̃ = um1−mn
1 (g1(u)+u1f̃1(u)) ∂

∂u1
+
n−1∑
i=2

h̃i(u) ∂

∂ui
+(gn(u)+u1f̃n(u)) ∂

∂un

where
h̃i(u) := gi(u)− um1−mi

1 uig1(u) + u1f̃i(u).
The singularities on E are given by the roots of the system

h̃2(u) = h̃3(u) = · · · = h̃n−1(u) = gn(u) = 0

ANNALES DE L’INSTITUT FOURIER
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and (i) implies that they should be isolated, i.e., F is special along C.
(ii) mn+1 6 mn−1 with ri0 ≡ 0 for some 2 6 i0 6 n−1 ifmn+1 = m1.

Dividing (2.7) by umn
1 we get

DF̃ = um1−mn
1

(
g1(u)+u1f̃1(u)

) ∂

∂u1
+
n−1∑
i=2

umi−mn−1
1

(
hi(u) + u1f̃i(u)

) ∂

∂ui

(2.10)

+
(
gn(u) + u1f̃n(u)

) ∂

∂un

and we see that the exceptional divisor is also invariant by the foliation
F̃ , but this turn, the singularities are always nonisolated. Furthermore, the
leaves of (2.10) when restricted to E are contained in the hyperplane given
by ui = ci for those i such that mi − 1 > mn or ri ≡ 0, where ci is a
constant.

(iii) mn > mn−1 with ri0 6≡ 0 for some 2 6 i0 6 n−1 ifmn=mn−1 =m1.
Dividing (2.7) by umn−1−1

1 we get

DF̃ = u
m1−mn−1+1
1

(
g1(u) + u1f̃1(u)

)
∂

∂u1
+
n−1∑
i=2

u
mi−mn−1
1 h̃i(u) ∂

∂ui

(2.11)

+ u
mn−mn−1+1
1

(
gn(u) + u1f̃n(u)

)
∂

∂un

and the exceptional divisor is also invariant by the foliation F̃ , but again
with nonisolated singularities on C̃. The leaves of F̃ on E are contained in
the hyperplane un = c for a constant c.

• Dicritical curve of singularities.
(i) m1 = · · · = mn and ri ≡ 0 for all 2 6 i 6 n− 1.

Dividing (2.7) by umn
1 we get

(2.12)

DF̃ =
(
g1(u) + u1f̃1(u)

)
∂

∂u1
+
n−1∑
i=2

f̃i(u) ∂

∂ui
+
(
gn(u) + u1f̃n(u)

)
∂

∂un
.

Combining this with the corresponding expression in the other coordinate
systems, we get defining equations for a foliation F̃ which coincides with
f∗F outside E but this time the exceptional divisor is not an invariant set.
The foliation F̃ is transverse to E except at the hypersurface locally given
by g1(u) = 0 which may or may not consist of singularities of F̃ .

(ii) mn−1 = . . . = m1 < mn and ri ≡ 0 for all 2 6 i 6 n− 1.

TOME 64 (2014), FASCICULE 4



1788 M. CORRÊA Jr. et al.

Dividing (2.7) by um1
1 we get

(2.13) DF̃ =
(
g1(u) + u1f̃1(u)

)
∂

∂u1
+
n−1∑
i=2

f̃i(u) ∂

∂ui

+ umn−m1
1

(
gn(u) + u1f̃n(u)

)
∂

∂un

and the exceptional divisor is not invariant by the foliation F̃ , but the last
component of the vector field (2.13) vanishes on it.
Keeping the notation above, for later use we sketch what we get as fol-

lows.

Lemma 2.1. — The following hold:
(i) mC(F) = min{m1, . . . ,mn};
(ii) if ` is the integer such that

LF̃
∼= π∗LF ⊗OỸ (`E)

then

` =
{

min{m1,m2 − 1, . . . ,mn−1 − 1,mn} if C is nondicritical
min{m1, . . . ,mn} if C is dicritical

(iii) F is special along C if and only if mn + 1 = mn−1 = . . . = m2 with
ri 6≡ 0 for all 2 6 i 6 n−1 if mn−1 = m1. In particular, ` = mC(F)
in this case.

2.2. Chern classes

Now we relate cohomology groups of schemes and blowups. Let π : P̃n →
Pn, n > 3, be the blowup of Pn along a regular curve C, with exceptional
divisor E. Set N := NC/Pn and ρ := π|E . Since E ∼= P(N ), recall that
A(E) is generated as an A(C)-algebra by the Chern class

ζ := c1(ON (−1))

with the single relation
(2.14)
ζn−1−ρ∗c1(N )ζn−2 + . . .+(−1)n−1ρ∗cn−2(N )ζ+(−1)n−1ρ∗cn−1(N ) = 0.

The normal bundle N
E/̃Pn agrees with the tautological bundle ON (−1),

and hence

(2.15) ζ = c1(N
E/̃Pn).

ANNALES DE L’INSTITUT FOURIER
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If ι : E ↪→ P̃n is the inclusion map, we also get

(2.16) ι∗(ζi) = (−1)iEi+1.

Given that ∫
E

ρ∗ci(N )ζn−i−1 = (−1)n−i−1
∫
C

ci(N ) = 0

for i > 2, we have

∫
E

ζn−1 =
∫
E

ρ∗c1(N )ζn−2 = (−1)n
∫
C

c1(N )

(2.17)

= (−1)n
∫
C

c1(TPn ⊗OC)− c1(C) = (−1)n
(
(n+ 1)d− 2 + 2g

)
where g is the genus and d is the degree of Cred.
From Porteous Theorem (see [8]), it holds that

(2.18) c(P̃n)− π∗c(Pn) = ι∗(ρ∗c(C)α)

where

(2.19) α = 1
ζ

n−1∑
i=0

(
1− (1− ζ)(1 + ζ)i

)
ρ∗cn−1−i(N ).

We may rewrite (2.19) taking (1+ζ)i =
∑i
l=0
(
i
l

)
ζl and setting j := n−1−i

as

(2.20) α =
n−1∑
j=0

n−1−j∑
l=0

((
n− 1− j

l

)
−
(
n− 1− j
l + 1

))
ζlρ∗cj(N )

with the convention, also for the remainder, that
(
p
q

)
:= 0 whenever q > p.

Since i does not appear in (2.20) we reset i := j + l and write

α =
n−1∑
i=0

αi

where

αi =
i∑

j=0

((
n− 1− j
i− j

)
−
(
n− 1− j
i− j + 1

))
ζi−jρ∗cj(N ).

Consequently

c(P̃n)− π∗c(Pn) = ι∗(ρ∗c(C)α) = ι∗

( n−1∑
i=0

βi

)

TOME 64 (2014), FASCICULE 4



1790 M. CORRÊA Jr. et al.

where

βi =
i∑

j=0
αjρ
∗ci−j(C).

Then β0 = α0 = −(n − 2) and βi = αi + αi−1ρ
∗c1(C) for i > 1. Now, in

order to calculate the Chern class c(P̃n) we have to compare the terms of
(2.18) of same degree. Therefore

ci(P̃n)− π∗ci(Pn) = ι∗(βi−1)

which yields

(2.21) c1(P̃n)− π∗c1(Pn) = ι∗(β0) = −(n− 2)E

and for i > 2,

ci(P̃n) = π∗ci(Pn)+
i−1∑
j=0

((
n−1− j
i− 1− j

)
−
(
n− 1− j
i− j

))
(−1)i−1−jρ∗cj(N )Ei−j

(2.22)

+
i−2∑
j=0

((
n− 1− j
i− 2− j

)
−
(
n−1− j
i− j − 1

))
(−1)i−2−jρ∗cj(N )ρ∗c1(C)Ei−1−j .

3. Special Foliations along Regular Curves

In this section, F is always a holomorphic foliation by curves on Pn,
n > 3, with

(3.1) Sing(F) = C ∪ {p1, . . . , ps},

where the union is disjoint, C is an irreducible smooth projective curve, the
pi are isolated closed points, and F is special along C. This means that for
the blowup π : P̃n → Pn along C, we obtain a foliation F̃ on P̃n which has
only isolated singularities, and the exceptional divisor E is an invariant set
of F̃ .

Our goal is to compute the number of isolated singularities of F , counted
with multiplicities. We assume (5.1) for simplicity, but the general case
where Sing(F) has more than one curve as a component is straight for-
ward from this one. The case where C is a singular set theoretic complete
intersection is left to the following section.
We start by calculating the Chern class of the invertible sheaf LF̃ , the

tangent bundle of the foliation F̃ . From Lemma 2.1, it follows that

LF̃
∼= π∗LF ⊗OP̃n(`E)

ANNALES DE L’INSTITUT FOURIER
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where ` = mC(F). Therefore

(3.2) c1(LF̃ ) = π∗c1(LF ) + `E.

The result below is the first step to get Theorem 1.1, announced in the
Introduction.

Theorem 3.1. — Let F has degree k, and multiplicity ` at C; let C
has genus g and degree d; and let Sing(F̃ |E) = {q̃1, . . . , q̃t}. Then

t∑
i=1

µ(F̃ |E , q̃i) = (2− 2g)
(

1 + (`+ 1) + (`+ 1)2 + . . .+ (`+ 1)n−3
)

+ (`+ 1)n−2
(

(2− 2g)(`+ 1)− (n+ 1)d`+ (k − 1)d(n− 1)
)
.

Proof. — By Baum-Bott’s formula [2], we have that
t∑
i=1

µ(F̃ |E , q̃i) =
∫
E

cn−1(TE ⊗ L∗F̃ )

with

cn−1(TE ⊗ L∗F̃ ) =
n−1∑
i=0

ci(E) · c1(L∗
F̃

)n−i−1.

On the one hand,

(3.3) ci(E) = ci(TP̃n ⊗OE)− ci−1(E)ζ

and reaplying (3.3) recursively we obtain

ci(E) =
i∑

j=0
(−1)jci−j(TP̃n ⊗OE)ζj .

Set ρ := π|E and N := NC/Pn . Then, using also (2.22), for i > 1 we get

ci(E) =
i−1∑
j=0

(−1)jπ∗ci−j(Pn)ζj + (−1)i
(
n− 1
i

)
ζi

+
i−1∑
j=1

(−1)i−j−1
(

1−
(
n− j − 1
i− j

))
ρ∗cj(N )ζi−j

+
i−2∑
j=0

(−1)i−j
(

1−
(
n− j − 1
i− j − 1

))
ρ∗cj(N )ρ∗c1(C)ζi−j−1.

On the other hand, as c1(L∗
F̃

) = π∗c1(L∗F )− `E, we have

c1(L∗
F̃

)n−i−1 =
n−i−1∑
l=0

(
n− i− 1

l

)
π∗c1(L∗F )l(−`E)n−i−l−1.
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Passing from E to C one rapidly sees that

∫
E

π∗ci−j(Pn)π∗c1(L∗F )lζn−i+j−l−1 = 0 for j 6 i− 2 or l > 1∫
E

π∗c1(L∗F )lζn−l−1 = 0 for l > 2∫
E

ρ∗cj(N )π∗c1(L∗F )lζn−j−l−1 = 0 for j > 2 or l > 1∫
E

ρ∗cj(N )ρ∗c1(C)π∗c1(L∗F )lζn−j−l−2 = 0 for j > 1 or l > 1

and we obtain for i > 1,

∫
E

ci(E) · c1(L∗
F̃

)n−i−1 = (−1)n`n−i−1
∫
E

π∗c1(Pn)ζn−2

+ (−1)n−1`n−i−1
(
n− 1
i

)∫
E

ζn−1

+ (−1)n`n−i−2
(
n−1
i

)(
n−i−1

1

)∫
E

π∗c1(L∗F )ζn−2

+ (−1)n−1`n−i−1
(

1−
(
n− 2
i− 1

))∫
E

ρ∗c1(N )ζn−2

+ (−1)n−1`n−i−1
(

1−
(
n− 1
i− 1

))∫
E

ρ∗c1(C)ζn−2.

Finally,

∫
E

c1(L∗
F̃

)n−1 =(−1)n−1`n−1
∫
E

ζn−1+(−1)n`n−2
(
n−1

1

)∫
E

π∗c1(L∗F )ζn−2.

Using (2.17), it follows that
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t∑
i=1

µ(F̃ |E , q̃i) = (n+1)d
n−1∑
i=1

`n−i−1−((n+ 1)d−2+2g)
n−1∑
i=0

`n−i−1
(
n− 1
i

)

+ (k − 1)d
n−1∑
i=0

`n−i−2
(
n− i− 1

1

)(
n− 1
i

)

+ ((n+ 1)d− 2 + 2g)
n−1∑
i=1

`n−i−1
((

n− 2
i− 1

)
− 1
)

+ (2− 2g)
n−1∑
i=1

`n−i−1
((

n− 1
i− 1

)
− 1
)

= −((n+ 1)d− 2 + 2g)
n−1∑
i=0

`n−i−1
(
n− 1
i

)

+ (k − 1)d
n−1∑
i=0

`n−i−2
(
n− i− 1

1

)(
n− 1
i

)

+ ((n+ 1)d− 2 + 2g)
n−1∑
i=1

`n−i−1
(
n− 2
i− 1

)

+ (2− 2g)
n−1∑
i=1

`n−i−1
(
n− 1
i− 1

)
= −((n+1)d−2+2g)(`+1)n−1+(k − 1)d(n− 1)(`+ 1)n−2

+ ((n+1)d−2+2g)(`+1)n−2 + (2− 2g)
n−2∑
i=0

(`+ 1)i

and it is straight forward obtaining the formula stated in the theorem. �

Example 3.2. — Let F be a holomorphic foliation by curves of degree
k > 2 on Pn, induced on the affine open set U0 = {[x0, . . . , xn] ∈ Pn |x0 6=
0} by the vector field

DF =
n−1∑
i=1

( ∑
|a|=k

ci,az
a1
1 · · · z

an−1
n−1

)
∂

∂zi
+
( ∑
|a|=k−1

za1
1 · · · z

an−1
n−1 ha(z)

)
∂

∂zn

where zi = xi/x0, a = (a1, . . . , an−1) is a multi-index with |a| =
∑n−1
i=1 ai,

ai > 0, ci,a are constants and ha(z) = c′0,a + c′1,az1 + . . . + c′n,azn a linear
function. We also consider the fi(z) =

∑
|a|=k ci,az

a linearly independent
over C.
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Let C be the curve defined by xi = 0 for i = 1, . . . , n − 1. It is a curve
of singularities of F and we blowup Pn along it. In the open set Ũ1 with
coordinates u ∈ Cn, we have the relations

σ(u) = (u1, u1u2, . . . , u1un−1, un) = z ∈ Cn.

Therefore, π∗F is generated by the vector field

Dπ∗F = uk1
∑
|a|=k

c1,au
a2
2 · · ·u

an−1
n−1

∂

∂u1
+
n−1∑
i=2

uk−1
1 gi,a(u) ∂

∂ui

+ uk−1
1

∑
|a|=k−1

ha(σ(u))ua2
2 · · ·u

an−1
n−1

∂

∂un
,

where

gi,a(u) =
∑
|a|=k

ci,au
a2
2 · · ·u

an−1
n−1 − ui

∑
|a|=k

c1,au
a2
2 · · ·u

an−1
n−1 .

Since mC(fi) = mC(fn) + 1 = k, for i = 1, . . . , n − 1, we have that the
multiplicity ` := mC(F) = tang(π∗F , E) = k− 1. In this way, the foliation
F̃ induced via π is given in Ũ1 by the vector field

DF̃ = u1
∑
|a|=k

c1,au
a2
2 · · ·u

an−1
n−1

∂

∂u1
+
n−1∑
i=2

gi,a(u) ∂

∂ui

+
∑
|a|=k−1

ha(σ(z))ua2
2 · · ·u

an−1
n−1

∂

∂un
.

It is easily seeing that on the affine open set, un ∈ C, the foliation F̃ ,
when restricted to the exceptional divisor E, which is given by u1 = 0,
defines a holomorphic foliation on Pn−2 of degree k and with infinite hy-
perplane noninvariant. Consequently, there are

∑n−2
i=0 k

i isolated singular-
ities on E because for each (u2, . . . , un−1) vanishing the n − 2 first terms
of DF̃|E there is a unique un vanishing the last term of DF̃ , namely,∑
|a|=k−1 c

′
0,au

a2
2 . . . u

an−1
n−1 +un

∑
|a|=k−1 c

′
n,au

a2
2 . . . u

an−1
n−1 . Furthermore, at

the fiber π−1[0 : 0 : · · · : 0 : 1] the foliation F̃ has
∑n−2
i=0 k

i additional sin-
gularities. Therefore, F̃ when restricted to E has 2

∑n−2
i=0 k

i singularities,
which agrees with the number obtained by Theorem 3.1 taking ` = k − 1,
g = 0 and d = 1.
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Theorem 3.3. — Let F has degree k, and multiplicity ` at C; let C
has genus g and degree d; and let Sing(F̃) = {p̃1, . . . , p̃r}. Then

r∑
i=1

µ(F̃ , p̃i) = 1+k+k2 +. . .+kn+(2−2g)
(

1+(`+1)+ . . .+(`+1)n−3
)

+ (`+ 1)n−2
(

(n+ 1)d(`2 − `)− (2− 2g)`2 − (k − 1)d(n`− n+ 2)
)
.

Proof. — By Baum-Bott’s formula, we have that
r∑
i=1

µ(F̃ , p̃i) =
∫
P̃n

cn(TP̃n ⊗ L∗F̃ )

with

cn(TP̃n ⊗ L∗F̃ ) =
n∑
i=0

ci(P̃n) · c1(L∗
F̃

)n−i.

If i > 2, the factor ci(P̃n) is expressed by (2.22). And from (3.2) we get

c1(L∗
F̃

)n−i =
n−i∑
l=0

(
n− i
l

)
π∗c1(L∗F )l(−`E)n−i−l.

Passing from P̃n to E and then to C, one sees that∫
P̃n

π∗ci(Pn)π∗c1(L∗F )lEn−i−l = 0 for l 6= n− i∫
P̃n

ρ∗cj(N )π∗c1(L∗F )lEn−j−l = 0 for j > 2 or l > 2∫
P̃n

ρ∗cj(N )ρ∗c1(C)π∗c1(L∗F )lEn−j−l−1 = 0 for j > 1 or l > 1

hence∫
P̃n

ci(P̃n)c1(L∗
F̃

)n−i

=
∫
P̃n

π∗ci(Pn)π∗c1(L∗F )n−i+(−1)n−1`n−i
((

n− 1
i− 1

)
−
(
n− 1
i

))∫
P̃n

En

+ (−1)n`n−i−1
(
n− i

1

)((
n− 1
i− 1

)
−
(
n− 1
i

))∫
P̃n

π∗c1(L∗F )En−1

+ (−1)n`n−i
((

n− 2
i− 2

)
−
(
n− 2
i− 1

))∫
P̃n

ρ∗c1(N )En−1

+ (−1)n`n−i
((

n− 1
i− 2

)
−
(
n− 1
i− 1

))∫
P̃n

ρ∗c1(C)En−1
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which yields∫
P̃n

ci(P̃n)c1(L∗
F̃

)n−i

=
∫
Pn

ci(Pn)c1(L∗F )n−i

+ (−1)n−1`n−i
((

n− 1
i− 1

)
−
(
n− 1
i

))∫
E

ζn−1

+ (−1)n`n−i−1
(
n− i

1

)((
n− 1
i− 1

)
−
(
n− 1
i

))∫
E

π∗c1(L∗F )ζn−2

+ (−1)n`n−i
((

n− 2
i− 2

)
−
(
n− 2
i− 1

))∫
E

ρ∗c1(N )ζn−2

+ (−1)n`n−i
((

n− 1
i− 2

)
−
(
n− 1
i− 1

))∫
E

ρ∗c1(C)ζn−2

and thus∫
P̃n

ci(P̃n)c1(L∗
F̃

)n−i = (k − 1)n−i
(
n+ 1
i

)
− `n−i((n+ 1)d− 2 + 2g)

((
n− 1
i− 1

)
−
(
n− 1
i

))
+ `n−i−1(k − 1)d

(
n− i

1

)((
n− 1
i− 1

)
−
(
n− 1
i

))
+ `n−i((n+ 1)d− 2 + 2g)

((
n− 2
i− 2

)
−
(
n− 2
i− 1

))
+ `n−i(2− 2g)

((
n− 1
i− 2

)
−
(
n− 1
i− 1

))
.

From (2.21) and (3.2) we have that∫
P̃n

c1(P̃n)c1(L∗
F̃

)n−1

=
∫
P̃n

π∗c1(Pn)π∗c1(L∗F )n−1 + (−`)n−1
∫
P̃n

π∗c1(Pn)En−1

+ (−1)n−1`n(n− 1)(n− 2)
∫
P̃n

π∗c1(L∗F )En−1

+ (−1)n`n−1(n− 2)
∫
P̃n

En

= (n+ 1)(k − 1)n−1 + `n−1(n− 2)((n+ 1)d− 2 + 2g)

− `n−2(n− 1)(n− 2)(k − 1)d− `n−1(n+ 1)d.
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Finally, from (3.2) we get∫
P̃n

c1(L∗
F̃

)n = (k − 1)n + `n((n+ 1)d− 2 + 2g)− `n−1(k − 1)nd.

Summing up the cases i = 0, i = 1 and i > 2, we obtain

r∑
i=1

µ(F̃ , p̃i) =
n∑
i=0

(k − 1)n−i
(
n+ 1
i

)
− `n−1(n+ 1)d

− ((n+ 1)d− 2 + 2g)
n∑
i=0

`n−i
((

n− 1
i− 1

)
−
(
n− 1
i

))

+ (k − 1)d
n∑
i=0

`n−i−1
(
n− i

1

)((
n− 1
i− 1

)
−
(
n− 1
i

))

+ ((n+ 1)d− 2 + 2g)
n∑
i=2

`n−i
((

n− 2
i− 2

)
−
(
n− 2
i− 1

))

+ (2− 2g)
n∑
i=2

`n−i
((

n− 1
i− 2

)
−
(
n− 1
i− 1

))

=
n∑
i=0

ki − `n−1(n+ 1)d

+ (2− 2g)
( n−2∑
i=0

(`+ 1)i − (`+ 1)n−1 + `n−1
)

− ((n+ 1)d− 2 + 2g)(`+ 1)n−2(`2 − 1)

− (k − 1)d(`+ 1)n−2(n`− n+ 2)

+ ((n+ 1)d− 2 + 2g)((`+ 1)n−2(1− `) + `n−1)

and the desired formula is straight forward. �

As a consequence we get Theorem 1.1 in the case we are dealing with
here.

Corollary 3.4. — Let F has degree k, and multiplicity ` at C; let C
has genus g and degree d. Then

s∑
i=1

µ(F , pi) = 1 + k + k2 + . . .+ kn

+ (`+ 1)n−2
(

(2g − 2)(`2 + `+ 1) + (n+ 1)d`2 − (k − 1)d(n`+ 1)
)
.
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Proof. — Just note that
s∑
i=1

µ(F , pi) =
r∑
i=1

µ(F̃ , p̃i)−
t∑
i=1

µ(F̃ |E , q̃i)

and recall Theorems 3.1 and 3.3. �

Let F be as in the Example 3.2. It has no singularities in U0 but the
ones in C ∩ U0. The hyperplane H0 := Pn \ U0 is isomorphic to Pn−1 as
well as invariant by F . As the degree of F|H0 remains k, the number of
isolated singularities, counted with multiplicities, of F on H0 is

∑n−1
i=0 k

i.
Given that the singularity q = [0 : 0 : · · · 0 : 1] ∈ C has Milnor number
µ(F|H0 , q) = kn−1, it follows that F has

∑n−2
i=0 k

i isolated singularities in
Pn, counted with multiplicities, which agrees with the number obtained by
Corolarry 3.4 taking ` = k − 1, g = 0 and d = 1.

4. Special Foliations along Complete Intersections

The aim of this section is proving Theorem 1.1 on its full generality. In or-
der to do so we need a result on foliations admiting a complete intersection
curve in its singular locus.

Lemma 4.1. — Let F be a holomorphic foliation by curves on Pn, n > 3,
with

Sing(F) = C ∪ {p1, . . . , ps},
where the union is disjoint, C is an irreducible singular projective curve,
the pi are isolated closed points, and F is special along C. Then there exists
a one-parameter family of holomorphic foliations by curves on Pn, given by
{Ft}t∈D where D = {t ∈ C | |t| < ε} such that:

(i) F0 = F ;
(ii) deg(Ft) = deg(F);
(iii) Sing(Ft) = Ct∪{pt1, . . . , ptst

}, where Ct is a regular irreducible pro-
jective curve with deg(Ct) = deg(C), and the pti are closed points;

(iv) Ft is special along Ct and mCt(Ft) = mC(F);
(v)

∑st

i=1 µ(Ft, pti) =
∑s
i=1 µ(F , pi).

Proof. — Assume C is given, in an affine standard chart of Pn, by the
zeros of the polynomials f1, . . . , fn−1. Take polynomials h1, . . . , hn−1 and
consider the holomorphic function
Ft : Cn −→ Cn

z = (z1, . . . , zn) 7−→
(
f1(z)+th1(z), . . . , fn−1(z)+thn−1(z), zn

)
.
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For each t ∈ C and any z ∈ Cn, set Mt(z) to be the first (n− 1)× (n− 1)-
minor of the jacobian matrix DzFt. Define Ut := Cn \ {detMt = 0} and
let Ct be the projective closure of the common zeros locus of the fi + thi.
Note that Ft|Ut

is a local biholomorphism onto an open set Vt ⊂ Cn and
the image of Ct ∩ Ut by Ft is the wn-axis restricted to Vt so one may fix
coordinates w = Ft(z). In particular, we may describe the pushforward
(F0)∗F in V0, as in (2.2), by the vector field

D(F0)∗F = P1
∂

∂w1
+ . . .+ Pn

∂

∂wn

where

(4.1) Pi(w) =
∑
|a|=mi

wa1
1 · · ·w

an−1
n−1 Pi,a(w)

with at least one Pi,a(z) not vanishing in the wn-axis.
For each t ∈ C, we define Ft by the vector field

DFt = Qt1
∂

∂z1
+ . . .+Qtn

∂

∂zn

where the Qti are obtained by the system

(4.2)

P1 ◦ Ft
...

Pn ◦ Ft

 = DFt ·

Q
t
1
...
Qtn


and DFt is the Jacobian matrix

∂(f1+th1)/∂z1 . . . ∂(f1+th1)/∂zn−1 ∂(f1+th1)/∂zn
...

. . .
...

...
∂(fn−1+thn−1)/∂z1 . . . ∂(fn−1+thn−1)/∂zn−1 ∂(fn−1+thn−1)/∂zn

0 . . . 0 1

.
Solving the system by Cramer’s rule, we have

Qti = detAti
detMt

where one gets Ati replacing the ith column of DFt by the column vector
at the left hand side of the equality (4.2). In particular,

Qtn = Pn ◦ Ft · detMt

detMt
= Pn ◦ Ft.

Therefore, normalizing by the factor detMt, one may describe F in Ut by

(4.3) DFt
= detAt1

∂

∂z1
+ . . .+ detAtn−1

∂

∂zn−1
+ Pn ◦ Ft

∂

∂zn
.
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As the components of DFt
are polynomials, using Hartogs Extension The-

orem, we can consider DFt
defined in Cn.

It is immediate that F0 = F . Besides, the Ft were built targeting prop-
erty (iv) above. In fact, the pushforwards (Ft)∗Ft agree with (F0)∗F no
matter is t ∈ C, hence, by (4.1) and Lemma 2.1.(i),(iii), it follows that
mCt

(Ft) = mC(F) and Ft special along Ct for every t ∈ C, because F is
so. By construction, Ft is a local biholomorphism, so Sing(Ft) must be the
disjoint union of Ct and points, with Ct irreducible since its image by Ft
is a line. Assuming deg(hi) 6 deg(fi) for 1 6 i 6 n − 1, one assures that
deg(Ct) = deg(C), and also, by (4.3), that deg(Ft) = deg(F).
Now set Cn+1 = {(z, t) ∈ Cn×C}. Note that the family S := ∪t∈C (Ct ∩

Cn) is an algebraic surface in Cn+1. On the other hand, singularity imposes
n conditions by the vanishing of the (n−1)×(n−1)-minors of the jacobian
matrix DFt(z) and generically determines an algebraic curve in Cn+1. If
these two varieties happen to meet, which is the case since C is singular,
they do generically at isolated closed points, so one may adjust the hi and
find ε > 0 sufficiently small such that Ct ∩ Cn is regular for 0 < |t| < ε.
The whole family surface S := ∪t∈C Ct intersects H := (Pn \ Cn)× C at a
curve. Change coordinates (a priori) and assume C has no singular points
at H. Since singularity is a closed algebraic condition, either finitely many
points of S ∩ H are singular points of their curves, or all of them are so.
But this contradicts our assumption, so one may take ε smaller if necessary
to get the whole Ct regular if 0 < t < ε. And one may shrink ε even more
in order to have

st∑
i=1

µ(Ft, pti) =
s∑
i=1

µ(F , pi)

as well. �

Now Theorem 1.1 is straight forward. Suppose Sing(F) has a unique
nonzero dimensional component C. Use Lemma 4.1 to pick up any F ′
among the {Ft}t∈D\0. Apply Corollary 3.4 to F ′ and get a formula for∑s′

i=1 µ(F ′, p′i). By Lemma 4.1, this formula holds for
∑s
i=1 µ(F , pi) with

same d, `, k up to the factor 2g − 2. So let g′ be the genus of C ′ and let
g and δ be respectively the geometric genus and the cogenus of C. Since
there is a continuos deformation from C to C ′, and C is a set theoretic
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complete intersection, we have

2g′ − 2 = −χ(C ′) = −χ(C) +
l∑
i=1

µ(C, qi)

= 2g − 2 + 2δ −
l∑
i=1

(bi − 1)

= 2(g + δ)− 2−
l∑
i=1

(bi − 1)

= 2g − 2−
l∑
i=1

(bi − 1)

and one gets Theorem 1.1 for F in the case there is just one C. If there
are many, say, C1, . . . , Cr, set Y0 = Pn and take a sequence of blowups
πi : Yi → Yi−1 centered at Ci with exceptional divisor Ei. Then it is just
a matter of slightly adjusting succesively the proof of Theorem 3.3 just
noticing that Ei ·Ej = 0 if i 6= j because the curves Ci and Cj are disjoint.

5. The Unicity Problem

In this section we prove Theorems 1.2 and 1.3. For the remainder, F is
a foliation by curves on Pn, n > 3, with

(5.1) Sing(F) = C ∪ {p1, . . . , ps}

where the union is disjoint, C is an integral and smooth projective curve,
the pi are closed points, F is special along C, and π : P̃n → Pn is the
blowup of Pn along C with exceptional divisor E.
We also recall from the Introduction that gd(C) is the generating degree

of C, the least integer d > 0 such that IC(d) is globally generated.

Theorem 5.1. — Let F ′ be a holomorphic foliation by curves on Pn
for which we have deg(F ′) = deg(F) > gd(C), and such that Sing(F) ⊂
Sing(F ′), and also Sing(F̃ |E) ⊂ Sing(F̃ ′|E). Then F ′ = F .

Proof. — Set deg(F) = deg(F ′) = k. Then F and F ′ are induced by
sections

sF , sF ′ ∈ H0(TPn ⊗OPn(k − 1)).
Similarly, F̃ and F̃ ′ are induced by

sF̃ , sF̃ ′ ∈ H
0(π∗TPn ⊗OP̃n(k − 1)⊗OP̃n(−E))
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because L∗
F̃

= L∗
F̃ ′

= OP̃n(k− 1)⊗OP̃n(−`E) and ` = 1 since C is integral
and F is special along C.

We will prove that

(5.2) sF̃ = λ · sF̃ ′ iff Sing(F̃) ⊂ Sing(F̃ ′)

for some λ ∈ C∗ and k > gd(C). If so, we get the statement of the the-
orem since Sing(F) ⊂ Sing(F ′) and Sing(F̃ |E) ⊂ Sing(F̃ ′|E) imply that
Sing(F̃) ⊂ Sing(F̃ ′), and, by projection, sF̃ = λ · sF̃ ′ implies sF = λ · sF ′ ,
and the latter yields F ′ = F .

In order to get (5.2), adjusting the proofs of [4, Thm. 2.2, Cor. 3.2],
with OP̃n(1) playing the role of an ample bundle, it suffices checking that
π∗TPn ⊗OP̃n(−E) is simple and that

(5.3) Hp(π∗ΩqPn ⊗ π∗TPn ⊗ π∗OPn((1− q)(k − 1))⊗OP̃n((q − 1)E)) = 0

for 2 6 q 6 n and p = q − 2, q − 1.
Simplicity immediately follows from projection formula

H0(π∗Ω1
Pn ⊗ π∗TPn) ' H0(Ω1

Pn ⊗ TPn) ' C

while (5.3), within the desired range, deserves more care.
From [3, Lem. 1.4] we know that if 0 6 t 6 n− 2, then

(5.4) Hi(π∗F ⊗OP̃n(tE)) ' Hi(F )

for all i ∈ N and any locally free sheaf F . On the other hand, from [5],

(5.5) Hp(ΩqPn ⊗ TPn((1− q)(k − 1))) = 0

for k > 0 and p < q, 2 6 q 6 n.
Therefore, from (5.4) and (5.5), we have for 2 6 q 6 n− 1

Hp(π∗ΩqPn ⊗ π∗TPn ⊗ π∗OPn((1− q)(k − 1))⊗OP̃n((q − 1)E))
= Hp(ΩqPn ⊗ TPn((1− q)(k − 1))) = 0.

Now we analyze the case q = n, that is, the vanishing of

Hp(π∗ΩnPn ⊗ π∗TPn ⊗ π∗OPn((1− n)(k − 1))⊗OP̃n((n− 1)E))

for p = n− 2, n− 1. Observe that above groups are

Hp(π∗TPn ⊗ π∗OPn((1− n)(k − 1))⊗OP̃n(E)⊗ ωP̃n)

since the dualizing sheaf on P̃n is ωP̃n = π∗ΩnPn⊗OP̃n((n−2)E). By Serre’s
duality

Hn−i(π∗TPn ⊗ π∗OPn((1− n)(k − 1))⊗OP̃n(E)⊗ ωP̃n)

' Hi(π∗Ω1
Pn ⊗ π∗OPn((n− 1)(k − 1))⊗OP̃n(−E)).
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Then, we must have to prove that

Hi(π∗Ω1
Pn ⊗ π∗OPn((n− 1)(k − 1))⊗OP̃n(−E)) = 0

for i = 1, 2.
Since π∗OP̃n(−E) = IC and Riπ∗OP̃n(−E) = 0, it follows from the

projection formula and Leray’s spectral sequence that

Hi(π∗Ω1
Pn ⊗ π∗OPn((n− 1)(k − 1))⊗OP̃n(−E)) '

(5.6) Hi(Ω1
Pn ⊗ IC((n− 1)(k − 1)))

so we just have to check the vanishing of (5.6) for i = 1, 2. In order to get
this, by Mumford’s regularity theorem, it suffices to show that (n− 1)(k−
1) > m− 1 if Ω1

Pn ⊗ IC is m-regular.
From Bott’s formulae, Ω1

Pn is 2-regular, while IC is ((n−1)gd(C)−n+2)-
regular by [3]. Hence Ω1

Pn ⊗ IC is ((n− 1)gd(C)− n+ 4)-regular owing to
[6, Prp. 1.8.9].
But, by hypothesis,

(n− 1)(k − 1) > (n− 1)gd(C) > (n− 1)gd(C)− n+ 3

for n > 3 and we are done. �

In the case of three dimensional projective space, we can also get the
following.

Theorem 5.2. — Let F ′ be a foliation on P3 with deg(F ′) = deg(F),
such that Sing(F) ⊂ Sing(F ′). If C is also nondegenerated and a set theo-
retic complete intersection in P3, then F ′ = F .

Proof. — Set deg(F) = deg(F ′) = k. According to the prior result, we
just have to prove that, in P3, we always have k > gd(C); and Sing(F̃ |E) ⊂
Sing(F̃ ′|E) always holds as well.
For the first, under the hypothesis on C, assume it is given by the inter-

section of surfaces of degree d1 and d2, with d2 > d1 > 2. It follows from
[7, Lem. 3.6] deg(F) > (mC(F) + 1)d2 + d1 − 2. Since F is special along
C, which is integral, we have

k > 2d2 + d1 − 2 > 2d2 > d2 + 1 > gd(C) + 1

because, by definition, d2 > gd(C).
For the second, just recall that E is naturally identified with the pro-

jectivization P(NC/P3) of the normal bundle NC/P3 . Thus, since the vector
fields inducing the foliations F and F ′ vanish identically along C, the lifts
F̃ |E and F̃ ′|E must be tangent to the the fibers of NC/P3 , and hence coin-
cide. �
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Now we show that the assumption on the curve to be nondegenerated
is necessary. In fact, we build a family of foliations by curves on P3 with
same singular locus consisting of a degenerated smooth curve and isolated
points, and all of them special along this curve.
Let Ft be a holomorphic foliation by curves on P3, with t ∈ C, induced

on the affine open set U0 = {[x0, x1, x2, x3] ∈ P3 |x0 6= 0} by the vector
field

DFt
=
(
a0z

2
1 + a1z1z2 + a2z

2
2
) ∂

∂z1
+
(
b0z

2
1 + b1z1z2 + b2z

2
2
) ∂

∂z2

+
(
z1
(
α0+α1z1+(α2 − t)z2+α3z3

)
+z2

(
β0+tz1+β2z2+β3z3

)) ∂

∂z3

with zi = xi/x0.
Assume the polynomials

∑2
j=0 ajλ

j and
∑2
j=0 bjλ

j have no common
roots and let λi, for i = 1, 2, 3, be the roots of

2∑
j=0

bjλ
j − λ

2∑
j=0

ajλ
j .

One can check that Sing(Ft) is the union of the curve C := {x1 = x2 = 0}
and the points

[0 : ui : λiui : 1] ∈ P3

where
ui = a0 + a1λi + a2λ

2
i − α3 − β3λi

α1 + α2λi + β2λ2
i

so Sing(Ft) does not depend on t. Note also that the foliation F̃t induced
by Ft via the blowup of P3 along C, has the same singular locus.
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