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EQUIDISTRIBUTION OF PREIMAGES
OVER NONARCHIMEDEAN FIELDS FOR MAPS

OF GOOD REDUCTION

by William GIGNAC

Abstract. — In this article we prove an analogue of the equidistribution
of preimages theorem from complex dynamics for maps of good reduction over
nonarchimedean fields. While in general our result is only a partial analogue of the
complex equidistribution theorem, for most maps of good reduction it is a com-
plete analogue. In the particular case when the nonarchimedean field in question
is equipped with the trivial absolute value, we are able to supply a strengthening
of the theorem, namely that the preimages of any tame valuation equidistribute to
a canonical measure.
Résumé. — Dans cet article, nous montrons un analogue du théorème d’équi-

distribution des préimages en dynamique complexe pour des applications définies
sur un corps non archimédien et ayant bonne réduction. Bien que, en général ce
théorème ne soit qu’un analogue partiel, nous montrons que pour la plupart des
applications ayant bonne réduction c’est un analogue exact. Dans le cas particu-
lier où le corps non archimédien est muni de la norme triviale, nous montrons un
résultat plus fort, à savoir que les préimages des valuations « modérées » sont
équidistribuées asymptotiquement par rapport à une mesure canonique.

1. Introduction

Ergodic methods play a central role in studying the dynamics of mor-
phisms f : X → X of complex projective varieties. At the heart of these
methods are equidistribution results, which allow one to construct dynam-
ically interesting f -invariant probability measures on X. The most impor-
tant of these is the equidistribution of preimages theorem, which will be
the focus of the present article.

Keywords: equidistribution, nonarchimedean dynamics, Berkovich spaces, maps of good
reduction, multiplicities, exceptional set.
Math. classification: 37P50, 37P55, 37P05.



1738 William GIGNAC

Theorem (Equidistribution of preimages over C). — Let X be an ir-
reducible complex projective variety, and let f : X → X be a polarized
dynamical system of degree d > 2. Then there is an f -invariant probability
measure µf on X and a proper Zariski closed subset Ef ⊂ X such that the
iterated preimages of any x ∈ X r Ef equidistribute to µf .

Polarized dynamical systems are, roughly speaking, those which arise
from endomorphisms of projective space. More precisely, f is polarized if
it is obtained by restricting a morphism F : Pr

C → Pr
C of degree d to an

invariant subvariety X ⊆ Pr
C. See §4 for further discussion.

Brolin was the first to observe this phenomenon; he proved the theorem
in the case where X = P1

C and f is a polynomial, using potential theoretic
methods [6]. Two decades later the result was extended independently by
Ljubich [31] and Freire-Lopes-Mañé [22] to rational maps on P1

C. Follow-
ing earlier work by Fornæss-Sibony [21], the theorem was proved for endo-
morphisms of Pr

C by Briend-Duval [5] and Dinh-Sibony [9]. In the above
generality, equidistribution was proved more recently by Dinh-Sibony [10].
Along the way, similar results regarding the equidistribution of pullbacks of
positive closed (1, 1)-currents have been shown, see for instance [38], [25],
[16], [10], and [35].
The equidistribution theorem does not carry over in any obvious way to

endomorphisms of varieties over nonarchimedean fields. Because of their
topological flaws, many of the analytic techniques used in the complex
setting are not available over these fields. In particular, the notion of Radon
measure does not make sense over nonarchimedean fields, so one cannot
speak of weak convergence of measures, making equidistribution problems
ill-posed.

To overcome these topological obstacles, one must eschew working on
projective varietiesX over a nonarchimedean fieldK, and instead work over
their Berkovich analytificationXan. The spacesXan are compact Hausdorff
and naturally contain X as a subspace. Moreover, any endomorphism f of
X extends to an endomorphism fan of Xan, allowing one to study the dy-
namics of f by working in Xan. Because Xan is compact Hausdorff, one has
the notion of Radon measure, making it possible to study equidistribution
problems.
A nonarchimedean analogue of the equidistribution theorem has recently

been proved for rational maps f : P1,an
K → P1,an

K by Favre and Rivera-
Letelier [19], see also [28, §5]. A quantitative strengthening of this the-
orem has recently been obtained by Okuyama [34], who has also studied
nonarchimedean equidistribution of repelling points [33]. Their methods are
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potential theoretic in nature, and, at least for the moment, do not extend
to endomorphisms of Pr,an

K for r > 1. In a separate result, Chambert-Loir
has constructed an f -invariant probability measure µf on Xan for polar-
ized dynamical systems f : Xan → Xan of a projective variety X over K
[7], and Yuan has used this construction to prove an equidistribution result
for points of small height for morphisms defined over number fields [43],
see also the related results in [40], [1], [18], [7], [24], and [14]. It is not clear
from these works, however, that one has equidistribution of preimages to
µf for such a map. Nonetheless, we conjecture the following.

Conjecture. — Let K be an algebraically closed complete nonarchi-
medean field, allowing the possibility of a trivial absolute value, and let X
be an irreducible projective variety over K. Suppose f : X → X is a flat
polarized dynamical system of degree d > 2. Let x ∈ Xan be any point,
and let Y ⊆ X be the smallest totally invariant Zariski closed set such
that x ∈ Y an ⊆ Xan. Let Y0 ⊆ Y be the unique component of Y such
that x ∈ Y an

0 , and let m > 1 be an integer such that f−m(Y0) = Y0. Then
the iterated fm-preimages of x equidistribute the Chambert-Loir measure
associated to the dynamical system fm : Y an

0 → Y an
0 .

Though we will use it several times in this article, it is possible that the
flatness assumption in the conjecture is unnecessary. It should be noted
that any polarized endomorphism of a smooth variety is automatically flat.
In general, the interaction between flatness and dynamics is not entirely
understood. This is the subject of the recent work [32], where it is proved
that f is flat at a superattracting periodic point x ∈ X if and only if X is
smooth that x.
The goal of this article is to study the validity of this conjecture in the

case where f is a map of good reduction. Our main result is the follow-
ing, which we state, for simplicity, only in the case of endomorphisms of
projective space.

Theorem A. — Let K be an algebraically closed complete nonarchi-
medean field, possibly with trivial absolute value, and let k be the residue
field of K. Let f : Pr

K → Pr
K be a morphism of degree d > 2 with good

reduction, and let f̃ : Pr
k → Pr

k be the reduction of f . Suppose that the
characteristic of k does not divide d. Then

1. there is a maximal proper Zariski closed subset E ⊂ Pr
k such that

f̃−1(E ) = E .

TOME 64 (2014), FASCICULE 4



1740 William GIGNAC

2. for every x ∈ Pr,an
K whose reduction does not lie in E , the iterated

preimages of x equidistribute to the Dirac probability measure sup-
ported at the Gauss point of Pr,an

K .
In particular, if E = ∅, the conjecture holds for f .

The case when K is equipped with the trivial absolute value deserves
special note here, for in this case all morphisms f : Pr

K → Pr
K have good

reduction. Moreover, we will prove (see Theorem 4.15) that generic mor-
phisms f satisfy the condition E = ∅. Thus Theorem A gives the full
equidistribution theorem for most endomorphisms f of Pr

K when K is triv-
ially valued. However, in the case when E 6= ∅, Theorem A is strictly
weaker than the conjecture, as there will be many points x ∈ Pr,an

K whose
reduction lies in E , but whose preimages still equidistribute to the Dirac
probability measure at the Gauss point. Our next main theorem illustrates
this.

Theorem B. — SupposeK is a trivially valued algebraically closed field
and f : Pr

K → Pr
K is a morphism of degree d > 2. Assume char(K) - d.

Then the preimages of any divisorial point x ∈ Pr,an
K equidistribute to the

Dirac mass at the Gauss point of Pr,an
K .

A divisorial point x ∈ Pr,an
K is a point corresponding to a valuation on

the function field of Pr
K which is proportional to the order of vanishing

along an exceptional prime divisor of some blowup X → Pr
K of Pr

K . Such
points are dense in Pr,an

K . We will actually prove the theorem holds for a
more general class of points x ∈ Pr,an

K , which we call tame points. See §9
for details.
We expect Theorem B to hold in the case when K is nontrivially valued,

as well, and it is even possible that our proof of the theorem can be carried
out in this case. However, a direct translation of the proof would require
intersection theory over the valuation ring K◦, a complication we mean to
avoid here.
Though we do not prove the conjecture for all morphisms f of good

reduction, we are able to give a simple argument for a slightly weaker
equidistribution result, which at the very least supplies some evidence for
the veracity of the conjecture when K is trivially valued.

Theorem C. — Let K be a trivially valued algebraically closed field,
and let f : Pr

K → Pr
K be a morphism of degree d > 2. Assume that

char(K) - d, and, moreover, that every totally invariant cycle for f is su-
perattracting. Let x ∈ Pr,an

K be such that x /∈ Y an for any proper totally
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invariant Zariski closed set Y ⊂ Pr
K . Then the Cesaro means

1
n

n−1∑
i=0

d−irf i∗δx

converge weakly to the Dirac mass at the Gauss point of Pr,an
K as n→∞.

The term superattracting here means the following. If V ⊆ Pr
K is an

irreducible subvariety which is periodic in the sense that fs(V ) = V for
some s > 1, then this periodic cycle is superattracting when there is an
n > 1 such that fns∗mV ⊆ m2

V , where mV is the maximal ideal of the local
ring OPr

K
,V . This generalizes the standard notion of a superattracting cycle

in dimension r = 1.
It should be noted that the proofs we give for Theorems A, B, and C use

heavily that the map f under consideration has good reduction. Proving
the conjecture for general f would require new tools.
The majority of this article will be spent proving Theorem A. The idea

behind the proof is simple: we will approximate the dynamics of f on Pr,an
K

by the dynamics of the reduced map f̃ on Pr
k. Specifically, we will prove

a version of Theorem A for f̃ : Pr
k → Pr

k, and then lift it to the Berkovich
setting via the reduction map. As a consequence, roughly the first half of
this article will be spent not in the Berkovich setting, but in the classical
algebro-geometric setting of varieties over k.
In §2 through §4 we develop the tools needed to prove the equidistri-

bution theorem in the classical algebro-geometric setting. In §2, we will
discuss two multiplicities associated to finite endomorphisms of projective
varieties. In §3, we briefly develop a language of Borel measures on projec-
tive varieties, and, crucially, the notion of a pull-back of such a measure via
a finite morphism. In §4 we adapt common techniques for detecting totally
invariant behavior from the setting of complex dynamics to dynamics over
the (arbitrary) algebraically closed field k. It is here that we prove state-
ment (1) in Theorem A, the existence of a finite exceptional set, and here
that the assumption char(k) - d comes into play. We will also show in §4
that generic morphisms f have empty exceptional set.
Finally, in §5, we prove the equidistribution theorem in the classical

algebro-geometric setting, namely, for noninvertible polarized endomor-
phisms of projective varieties over k. This theorem is the technical heart
of Theorem A, but is also interesting in its own right as a nearly complete
analogue of the complex equidistribution theorem in the purely algebraic
setting.

TOME 64 (2014), FASCICULE 4



1742 William GIGNAC

Beginning in §6, we move on to the Berkovich setting. In §6 we briefly
review the Berkovich analytification of varieties over nonarchimedean fields
K, discuss multiplicities associated to finite morphisms of analytic varieties,
and define the pull-back of Radon measures on these varieties. In §7 we will
discuss models of analytic spaces, the notion of reduction, and define pre-
cisely what we will mean by a map of good reduction. Finally, §8 is devoted
to the proof of Theorem A and §9 to the proofs of Theorems B and C.
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2. Multiplicities associated to finite morphisms

In this section we briefly review some basic algebro-geometric concepts we
will need later. The setup for the entirety of this section is as follows. Let k
be an algebraically closed field, and let f : X → Y be a finite surjective flat
morphism between two irreducible varieties over k. Many of the statements
in this section hold in greater generality, but for the sake of concreteness
we will stick to this very specific situation. The flatness assumption will be
needed throughout this article. We note, however, that in the case where X
and Y are both smooth, any finite surjective morphism f : X → Y is flat.
We will always regard X and Y as schemes, thus allowing for non-closed
points.
The goal of this section is to define two multiplicities associated to f ,

and to discuss their relationship. The first assigns to every point x ∈ X an
integer mf (x) that we will call the multiplicity of f at x. The multiplicity
function mf : X → N will be used in §3 to define the pull-back of measures
on varieties. The second assigns to each point x ∈ X an integer vf (x), which
will be called the generic multiplicity of f at x. The generic multiplicity
function vf : X → N will be used in §4 to detect totally invariant behavior
in dynamical systems.
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We begin by fixing notation. The structure sheaves of X and Y will be
denotedOX andOY . If x ∈ X is a point, then mx denotes the maximal ideal
of the local ring OX,x, and κ(x) denotes its residue field; similar notation
is used for points of Y . Recall that the degree of f is the degree of the
field extension k(X)/f∗k(Y ), where k(X) and k(Y ) are the function fields
of X and Y . This degree will be written [X :f Y ]. Similarly, [X :f Y ]s and
[X :f Y ]i will denote the separable and purely inseparable factors of this
degree.

The main definition of the section is the following.

Definition 2.1. — Let x ∈ X and y = f(x). The multiplicity of f at
x is the integer

mf (x) := dimκ(y)(OX,x/myOX,x),

where OX,x is viewed as an OY,y-module via f . Let E = {x} and F = {y}.
Then the generic multiplicity of f at x is the integer

vf (x) := [E :f F ]i × lengthOX,x(OX,x/myOX,x).

It will sometimes be convenient to writemf (E) and vf (E) in place ofmf (x)
and vf (x).

Lemma 2.2. — Let (A,m) and (B, n) be Noetherian local rings, with B
a finite flat A-module. Let a be an m-primary ideal of A. Then the following
identities hold:

1. lengthB(B/aB) = lengthA(A/a)lengthB(B/mB).
2. lengthA(B/aB) = lengthB(B/aB)[B/n : A/m].

Proof. — (1) Let A/a = I0 ) I1 ) · · · ) IN = 0 be a composition
series of A/a. Since A is local, the successive quotients Ii/Ii+1 are each
isomorphic to A/m. Because B is a flat over A, one obtains a filtration
B/aB = B⊗AI0 ⊇ B⊗AI1 ⊇ · · · ⊇ B⊗AIN = 0 of B/aB, whose successive
quotients are (B⊗AIi)/(B⊗AIi+1) ∼= B⊗A(Ii/Ii+1) ∼= B⊗AA/m ∼= B/mB.
Thus lengthB(B/aB) = N × lengthB(B/mB), as desired.
(2) Now fix a composition series B/aB = J0 ) J1 ) · · · ) JM = 0

of B/aB as a B-module. Since B is local, the quotients Ji/Ji+1 are all
isomorphic to B/n. Thus

lengthA(B/aB) = M × lengthA(B/n) = M × [B/n : A/m],

as desired. �

Proposition 2.3. — The multiplicity functions mf : X → N and
vf : X → N are related as follows. Let x ∈ X and y = f(x). Let E = {x}

TOME 64 (2014), FASCICULE 4



1744 William GIGNAC

and F = {y}. Then
mf (x) = vf (x)[E :f F ]s.

In particular, if x is a closed point, then mf (x) = vf (x).

Proof. — Applying Lemma 2.2(2) to the case where A = κ(y), a = 0,
and B = OX,x/myOX,x yields

dimκ(y)(OX,x/myOX,x) = lengthOX,x(OX,x/myOX,x)× [κ(x) : κ(y)],

which is exactly the desired identity mf (x) = vf (x)[E :f F ]s. If x and y

are closed points, then κ(x) = κ(y) = k, since k is algebraically closed.
Thus [E :f F ] = 1 in this case, so that mf (x) = vf (x). �

Theorem 2.4. — Every point y ∈ Y has exactly [X :f Y ] preim-
ages when counted according to their multiplicity. That is, [X :f Y ] =∑
f(x)=ymf (x).

Proof. — Since f is finite and flat, f∗OX is a locally free OY -module of
some rank r <∞. The fiber of f∗OX at a point y ∈ Y is

(f∗OX)y/my(f∗OX)y ∼=
⊕

f(x)=y

OX,x/myOX,x.

Comparing the κ(y)-dimension of both sides of this isomorphism, we see
r =

∑
f(x)=ymf (x). In the special case where y is the generic point of Y ,

this identity yields r = [X :f Y ]. �

Proposition 2.5. — Suppose that g : Y → Z is another finite surjec-
tive flat morphism between irreducible varieties. Let x ∈ X and y = f(x).
Then the multiplicity and generic multiplicity are multiplicative in the sense
that mg◦f (x) = mf (x)mg(y) and vg◦f (x) = vf (x)vg(y).

Proof. — By Proposition 2.3, it is enough to show that the generic mul-
tiplicity is multiplicative. Moreover, since degrees of inseparability for field
extensions are multiplicative, it suffices to show that

lengthOX,x(OX,x/mg(y)OX,x)
= lengthOX,x(OX,x/myOX,x)× lengthOY,y (OY,y/mg(y)OY,y).

This is exactly Lemma 2.2(1). �

Theorem 2.6 (Lejeune-Jalabert and Teissier). — There is a coherent
sheaf F onX whose fiber dimensions are given by vf . As a consequence, the
generic multiplicity function vf : X → N is Zariski upper semicontinuous.

ANNALES DE L’INSTITUT FOURIER
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Sketch. — The sheaf F is constructed as follows. Let Z = X ×f X, and
let I denote the ideal sheaf of the diagonal ∆ ⊆ Z. Let π : Z → X be the
projection onto the first coordinate. We then set F = π∗(OZ/In), where
n is a large enough integer (n > [X :f Y ] will suffice). The fiber dimension
of F at any (not necessarily closed) point x is computed in proposition 4.7
of [30] to be exactly vf (x). The upper semicontinuity statement is then a
consequence of Nakayama’s Lemma, see [26, Example III.12.7.2]. �

Theorem 2.6 gives the reason behind the name generic multiplicity of vf .
Indeed, if x ∈ X is any point, then the upper semicontinuity of vf implies
that vf (x) = vf (z) = mf (z) for a nonempty Zariski open subset of closed
points z specializing x. That is, vf (x) is given by the multiplicity of f at
general closed points specializing x.

Lemma 2.7. — There is a nonempty Zariski open set U ⊆ Y such that
any closed point y ∈ U has exactly [X :f Y ]s preimages in X.

Proof. — Without loss of generality, we may assume that X and Y are
both affine and smooth, with coordinate rings k[Y ] ⊆ k[X]. Let L be the
unique intermediate field k(Y ) ⊆ L ⊆ k(X) such that L is separable over
k(Y ) and k(X) is purely inseparable over L. Let A be the integral closure
of k[Y ] in L. Then A is the coordinate ring of some irreducible affine variety
Z (see [13, Corollary 13.13]), and the inclusions k[Y ] ⊆ A ⊆ k[X] induce
morphisms

X Z Y
g h

f

Since k(X) is purely inseparable over L, each maximal ideal of A has only
one maximal ideal in k[X] lying over it, so g is injective. It therefore suffices
to prove the theorem for h, i.e., we may assume without loss of generality
that [X :f Y ]i = 1. In this case, the lemma is proved in [37, §II.6.3]. �

Proposition 2.8. — Let E ⊆ X be an irreducible closed subvariety,
and set F = f(E). Let z denote the generic point of E. Then there is a
nonempty Zariski open subset U of F such that for all y ∈ U ,

mf (z) =
∑

x∈f−1(y)∩E

mf (x).

Proof. — Using Lemma 2.7 and the fact that vf is upper semicontinuous,
there is a nonempty open subset U of F with the following two properties:

TOME 64 (2014), FASCICULE 4
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1. If y ∈ U is a closed point, then y has exactly [E : F ]s preimages in
E.

2. If y ∈ U is a (not necessarily closed) point, then vf (x) = vf (z) for
all z ∈ f−1(y) ∩ E.

Suppose that y ∈ U , and let x1, . . . , xr be the preimages of y lying in E.
Set W = {y} and Vi = {xi} for each i. Again by Lemma 2.7, there is some
closed point w ∈W ∩U such that f−1(w)∩E ⊆ V1∪· · ·∪Vr and moreover
that w has exactly [Vi : W ]s preimages in Vi for each i. But then

r∑
i=1

mf (xi) =
r∑
i=1

vf (xi)[Vi : W ]s

= vf (z)
r∑
i=1

[Vi : W ]s = vf (z)×#f−1(w) ∩ E

= vf (z)[E : F ]s = mf (z).

This completes the proof. �

3. Measures on classical varieties

In order to state and prove an equidistribution theorem for classical
varieties, we need to have a language of measures and weak convergence of
measures on varieties. Such a language is developed in detail in [23]. In this
section we will review the relevant definitions and results, as well as define
a pull-pack operation for measures under certain morphisms. The setup
for this section is the same as in the previous, namely, we let f : X → Y

be a finite surjective flat morphism between irreducible varieties over an
algebraically closed field k. It is absolutely essential thatX and Y be viewed
as schemes, allowing for non-closed points; not all results in this section will
be true otherwise.
We denote byM(X) andM(Y ) the real vector space of all finite signed

Borel measures on X and Y with respect to their Zariski topology. We let
SC(X) denote the real vector space of all semicontinuous functions func-
tions on X, that is, all functions g : X → R of the form g = h1−h2, where
hi : X → R is a bounded upper semicontinuous function. Similarly we let
SC(Y ) denote the space of semicontinuous functions on Y . We equip both
SC(X) and SC(Y ) with the supremum norm, making them into normed
linear spaces. The following structure theorem is proved in [23].

Theorem 3.1. — We have the following characterization of measures
on X.
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1. Any measure µ ∈ M(X) can be written uniquely as an absolutely
convergent sum µ =

∑
x∈X cxδx, where cx ∈ R for each x, and δx

denotes the Dirac probability measure at x.
2. Integration induces a duality M(X) ∼= SC(X)∗, analogous to the

duality between Radon measures and continuous functions on a
compact Hausdorff space.

The isomorphism M(X) ∼= SC(X)∗ allows one to pull back both the
weak topology (i.e., the topology of pointwise convergence) and the strong
topology (i.e., the topology of norm convergence) from SC(X)∗ toM(X).
A sequence µn ∈ M(X) converges in the weak topology to a measure
µ ∈ M(X) if and only if µn(E) → µ(E) for each closed set E ⊆ X.
The collection of Borel probability measures on X is both compact and
sequentially compact in the weak topology.

There is, of course, an analogous theorem for Y . We now use the results
of the previous section to define a pull-back operator f∗ : M(Y )→M(X).

Proposition 3.2. — There is a unique linear operator f∗ : M(Y ) →
M(X) which satisfies the following two conditions:

1. f∗ is continuous in both the weak and strong topologies.
2. If y ∈ Y , then f∗δy =

∑
f(x)=ymf (x)δx.

For any measure µ ∈M(Y ), one has f∗f∗µ = [X :f Y ]µ, where f∗ denotes
the ordinary push-forward operator on measures. If µ is positive and has
total mass R, then f∗µ is again positive, and has total mass [X :f Y ]R.

Proof. — First, assume that such an operator f∗ does exist. Let µ ∈
M(Y ), with µ =

∑
cyδy. Let y1, y2, . . . be an enumeration of the points

y ∈ Y for which cy 6= 0; there must be a countable number, as otherwise
the sum

∑
cyδy would not converge. Then the measures µN defined by

µN =
∑N
i=1 cyiδyi converge strongly to µ as N →∞, so by (1) and (2)

f∗µ = lim
N→∞

f∗µN = lim
N→∞

N∑
i=1

cyif
∗δyi

= lim
N→∞

N∑
i=1

∑
f(x)=yi

cyimf (x)δx =
∑
y∈Y

∑
f(x)=y

cymf (x)δx.

This derivation shows that f∗ is uniquely determined. Moreover, combin-
ing this equality with Theorem 2.4 yields the remaining statements in the
proposition. It then only remains to show the existence of f∗.
To prove existence, we will exploit the dualityM ∼= SC∗ and define f∗

to be the adjoint of a certain linear operator f∗ : SC(X)→ SC(Y ), where
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SC denotes the Banach space closure of SC, i.e., the space of all functions
which are uniform limits of semicontinuous functions. The operator f∗ is
given by

(f∗ϕ)(y) :=
∑

f(x)=y

mf (x)ϕ(x).

First we must check that f∗ actually maps SC(X) into SC(Y ). Since the
vector space span of all characteristic functions χE of closed sets E ⊆ X is
dense in SC(X) by [23, Lemma 3.4], it suffices to show that f∗χE ∈ SC(Y )
for any closed set E ⊆ X. We will prove this by contradiction. Let T denote
the (nonempty) set of closed sets E ⊆ X such that f∗χE /∈ SC(Y ). Since
X is Noetherian, we can find a minimal element E ∈ T . If E is reducible,
say E = E1 ∪ E2, then

f∗χE = f∗χE1 + f∗χE2 − f∗χE1∩E2

lies in SC(Y ) by the minimality of E, a contradiction. Therefore E must
be irreducible. Note that f∗χE is supported in F = f(E). Furthermore,
by Proposition 2.8, there is a nonempty open subset U ⊆ F such that
f∗χE ≡ mf (E) on U . Let V = F r U and W = f−1(V ) ∩ E. One then
has f∗(χE − χW ) = mf (E)χU ∈ SC(Y ). By the minimality of E, one
also has f∗χW ∈ SC(Y ). Thus f∗χE = f∗χW + mf (E)χU ∈ SC(Y ), a
contradiction. We conclude that χE ∈ SC(Y ) for all closed sets E ⊆ X.
We have therefore given a well-defined linear map f∗ : SC(X)→ SC(Y ).

We must show that it is bounded. This follows easily from Theorem 2.4,
since for all y ∈ Y

|(f∗ϕ)(y)| =
∣∣∣∣∑f(x)=y

mf (x)ϕ(x)
∣∣∣∣ 6 ‖ϕ‖∑f(x)=y

mf (x) = ‖ϕ‖[X :f Y ].

It is immediate that the adjoint f∗ : M(Y ) → M(X) of f∗ is weakly and
strongly continuous. It remains to show f∗ satisfies condition (2). Let y ∈ Y
and let E ⊆ X be closed. Then

(f∗δy)(E) =
∫
f∗χE dδy = (f∗χE)(y) =

∑
x∈f−1(y)∩E

mf (x)

=
∑

f(x)=y

mf (x)δx(E).

Therefore f∗δy agrees with
∑
f(x)=ymf (x)δx on closed sets. By [23, Lemma

2.7], this is enough to conclude that f∗δy =
∑
f(x)=ymf (x)δx. �
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4. Detecting total invariance

The goal of this section is to show how the generic multiplicity function
vf defined in §2 can be used to detect totally invariant behavior in certain
classes of dynamical systems. In the complex setting this has been done in
multiple ways (see, for instance, [5] and [8]). In this section we will gener-
alize the approach of [8] to dynamical systems over arbitrary algebraically
closed fields k. The dynamical systems we consider here are so-called po-
larized dynamical systems.

Definition 4.1. — Let X be an irreducible projective variety over k,
and let f : X → X be an endomorphism of X. A polarization of f is an
ample line bundle L on X such that f∗L ∼= Ld for some integer d > 1. If a
polarization L of f is specified, we will say that f is a polarized dynamical
system, and write f : (X,L)→ (X,L) to signify this. The integer d will be
called the algebraic degree of f . Not every f admits a polarization.

The reason for only considering polarized dynamical systems is that one
can, by the following theorem of Fakhruddin [15], always embed such a
system into projective space, making available certain tools we would not
have otherwise. Specifically, the polarization assumption will allow us to
make certain intersection theory arguments in Propositions 4.3 and 4.4
below.

Theorem 4.2 (Fakhruddin). — Let f : (X,L)→ (X,L) be a polarized
dynamical system of algebraic degree d. Then there is an embedding X ⊆
Pr
k and a morphism Φ: Pr

k → Pr
k with Φ∗O(1) = O(d) such that Φ(X) = X

and Φ|X = f .

For an overview of ample line bundles and intersection theory, we refer to
[11, Chapter VII]. Given a very ample line bundle L onX and an irreducible
dimension q subvariety E ⊆ X, the degree of E with respect to L is the
intersection degLE := (E · L · · · · · L), where here there are q factors of
L. If s1, . . . , sq are general enough divisors representing L, then degLE is
exactly the number of points in the intersection E∩Div(s1)∩· · ·∩Div(sq),
counted with multiplicity.

Proposition 4.3. — Suppose f : (X,L) → (X,L) is a polarized dy-
namical system of algebraic degree d. Let E ⊆ X be an irreducible closed
subvariety of dimension q such that fn(E) = E for some n > 1. Then
[E :fn E] = dnq. In particular, one has [X :f X] = ddimX .
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Proof. — The projection formula gives that

[E :fn E] degLE = degfn∗LE = degLdn E = dnq degLE.

Thus [E :fn E] = dnq. �

Proposition 4.4. — Suppose f : (X,L) → (X,L) is a polarized dy-
namical system of algebraic degree d. Let W ⊆ X be an irreducible subva-
riety of dimension q, and let F be an irreducible subvariety of fn(W ). Let
E1, . . . , Em be the components of f−n(F ) contained in W . Then there is a
C > 0 independent of n and F such that

m∑
i=1

[Ei :fn F ]s 6 Cdnq.

Proof. — Replacing L by a power Ls, we may assume with no loss of
generality that L is very ample. We first prove the inequality in the case
where F = x is a closed point of fn(W ). Let s1, . . . , sq be sections of L
such that fn(W ) ∩ Div(s1) ∩ · · · ∩ Div(sq) is finite and contains x. Then
one has

#f−n(x) ∩W 6 #W ∩ fn∗Div(s1) ∩ · · · ∩ fn∗Div(sq)
6 degfn∗LW = dnq degLW.

We may therefore take C = degLW . To prove the general case, we use
Lemma 2.7 to find a nonempty open subset U of F with the following
property: if x is a closed point of U , then every element of f−n(x)∩W lies
in exactly one Ei, and moreover #f−n(x) ∩ Ei = [Ei :fn F ]s. But then if
x ∈ U is a closed point,

∑
i[Ei :fn F ]s = #f−n(x) ∩W 6 dnq degLW by

what has been shown for closed points. �

Let us now fix a polarized dynamical system f : (X,L) → (X,L) of
algebraic degree d > 2. We will assume also that f is flat, so that we can
apply all the results of §2. Recall that a set A ⊆ X is said to be totally
invariant if f−1(A) = A. This condition is strictly stronger than ordinary
invariance f(A) = A. We will say that an irreducible closed set E ⊆ X is
part of a totally invariant cycle for f is E is totally invariant for some iterate
fn of f . In this case F := E∪f(E)∪· · ·∪fn−1(E) is totally invariant for f ,
and f permutes the irreducible components of F cyclically. As we shall see
shortly in Theorem 4.9, total invariance is something that in many cases
can be detected by the generic multiplicity function vf : X → N defined in
§2. The following functions were first defined and studied by Dinh in the
complex setting, see [8].
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Definition 4.5. — For each point y ∈ X and each n > 1, define

v−n(y) := max
fn(x)=y

vfn(x) and v−(y) = lim
n→∞

[v−n(y)]1/n.

The function v− : X → N will be called the reverse asymptotic multiplicity
function for f . It will be convenient to sometimes write v−(E) in place of
v−(x) when E = {x}. The following theorem shows that v− is indeed well-
defined.

Theorem 4.6 ([8], see also [23]). — For each y ∈ X, the limit v−(y)
exists. Moreover, the reverse asymptotic multiplicity function v− : X → R
is Zariski upper semicontinuous.

In order to proceed any further, we will need to make one additional
technical assumption about the morphism f to rule out complications re-
sulting from inseparable behavior that arise when working over fields k of
positive characteristic.

Assumption 4.7. — We assume that whenever E ⊆ X is an irreducible
closed set which is periodic for f , say with period n, one has [E :fn E]i = 1.

Proposition 4.8. — If char(k) = 0 or char(k) = p - d, then Assump-
tion 4.7 is automatically satisfied.

Proof. — The proposition is clear when char(k) = 0, so assume char(k) =
p > 0 and p - d. By Proposition 4.3, we have [E :fn E] = dn dim(E). Since p -
d, it follows that the field extension k(E)/fn∗k(E) must be separable. �

Theorem 4.9. — Let f : (X,L) → (X,L) be a polarized dynamical
system of algebraic degree d > 2 which is flat and satisfies Assumption 4.7.
Let E be an irreducible closed subset of codimension q in X. Then v−(E) 6
dq, with equality if and only if E is part of a totally invariant cycle for f .

Proof. — Let m := dim(X). For any n-periodic irreducible closed set
F ⊆ X, let

v+(F ) := vfn(F )1/n.

It is shown in [23] that v−(E) = max v+(F ), where the maximum is taken
over all periodic irreducible closed subsets F ⊆ X which contain E. Fix a
periodic irreducible closed set F containing E such that v−(E) = v+(F ).
Let n be the period of F . By Proposition 2.3,

v+(F ) = vfn(F )1/n =
(

mfn(F )
[F :fn F ]s

)1/n
6

(
dnm

[F :fn F ]s

)1/n
,

with equality if and only if mfn(F ) = dnm, i.e., if and only if F is totally
invariant for fn. By Assumption 4.7, we have [F :fn F ]s = [F :fn F ] =
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dn dimF , so that v+(F ) 6 dcodim(F ), with equality if and only if F is part of
a totally invariant cycle for f . Since E ⊆ F , we have that q > codim(F ),
with equality if and only if E = F . It follows that v−(E) = v+(F ) 6 dq,
with equality if and only if E = F is part of a totally invariant cycle for
f . �

Corollary 4.10. — There are finitely many irreducible closed subsets
E ⊆ X that are part of a totally invariant cycle for f .

Proof. — It is enough to prove there are only finitely many irreducible
closed sets E ⊆ X of a fixed codimension q that are part of totally invariant
cycles for f . Indeed, by Theorem 4.9, the codimension q irreducible closed
sets which are part of a totally invariant cycle are precisely the codimension
q components of the closed set {v− > dq}. �

Definition 4.11. — The exceptional set of f is the set E ⊆ X which is
the union of all totally invariant proper closed subsets E ( X. If f satisfies
Assumption 4.7, then by Corollary 4.10 this union is finite, so that E is
itself a totally invariant proper closed subset of X. It is thus the maximal
proper totally invariant closed subset.

It should be noted that Assumption 4.7 cannot be removed from The-
orem 4.9. Indeed, if we consider the Frobenius map f : P1

k → P1
k over

k = Fp, given by f(z) = zp, then one easily checks that every point of P1
k

is part of a totally invariant cycle for f . In particular, there is no maximal
proper Zariski closed subset of P1

k which is totally invariant. We there-
fore see that the techniques developed in the complex setting for detecting
total invariance can fail in characteristic p in the presence of inseparable
behavior.
In the complex setting, it was shown by Fornæss-Sibony [21] that generic

morphisms f : Pr
C → Pr

C of algebraic degree d > 2 have E = ∅. We
devote the rest of this section to proving that this remains true over any
algebraically closed field k. Such a statement is made precise as follows.
First, recall that endomorphisms f : Pr

k → Pr
k of algebraic degree d are

naturally parameterized by a certain irreducible affine varietyHd over k, see
for instance [39, Theorem 1.8]. We will show that Hd contains a nonempty
Zariski open subset of endomorphisms f which have E = ∅. The proof
we give is identical in spirit to that of [10, Theorem 1.3], even though the
details differ in places.

Proposition 4.12. — Let v : Hd × Pr
k → R be the map, defined on

closed points, that is given by v(f, x) = vf (x). Then v is Zariski upper
semicontinuous.
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Proof. — LetX ⊆ Hd×Pr
k×Pr

k be the subvarietyX = {(f, x, y) : f(x) =
f(y)}, and let I denote the ideal sheaf of ∆ = {(f, x, y) : x = y} ⊆ X.
We will denote by F the sheaf OX/IN , where N is any integer > dr. Let
π : X → Hd ×Pr

k denote the projection onto the first two coordinates. For
any fixed morphism f ∈ Hd, one obtains embeddings if : Pr

k ×f Pr
k → X

and jf : Pr
k → Hd × Pr

k, namely if (x, y) = (f, x, y) and jf (x) = (f, x).
Moreover, if η : Pr

k ×f Pr
k → Pr

k is the projection onto the first coordinate,
then π ◦ if = jf ◦ η. We saw in the proof of Theorem 2.6 that the fiber
dimension of η∗j∗fF = i∗fπ∗F at a point x ∈ Pr

k is exactly vf (x). On the
other hand, this fiber dimension is equal to the fiber dimension of π∗F at
if (x) = (f, x). Thus the fiber dimension of π∗F at (f, x) is exactly vf (x).
Since π∗F is a coherent sheaf on Hd × Pr

k, its fiber dimensions are upper
semicontinuous. �

Corollary 4.13. — For any a ∈ R, the set of endomorphisms f ∈ Hd
such that vf (x) < a for all x ∈ Pr

k is Zariski open.

Proof. — We will show that the set of f for which there exists a point
x ∈ Pr

k with vf (x) > a is Zariski closed. Indeed, this set is the image under
the projection map π : Hd×Pr

k → Hd of the closed set {(f, x) : v(f, x) > a}.
Since π is closed [37, Theorem I.5.3], the corollary follows. �

Proposition 4.14. — Let f ∈ Hd, and suppose there is an integer
N > 1 such that vfN (x) < dN for all closed points x ∈ Pr

k. Then E = ∅.

Proof. — Replacing f by an iterate if necessary, we may assume that
N = 1 and that all irreducible components of E are totally invariant. If
E is such a component, then v−(E) = vf (E) = dcodim(E)[E :f E]i > d,
and hence vf (x) > d for all closed points x ∈ X, a contradiction of our
assumption that vf (x) < d for all x. Thus E = ∅. �

Theorem 4.15. — There is an endomorphism f ∈ Hd and a B > 0
such that vfn(x) 6 B for all n > 1 and all x ∈ Pr

k. As a consequence,
there is a nonempty Zariski open subset of Hd consisting of morphisms
with empty exceptional set.

Proof. — We begin by proving the theorem in dimension r = 1. Suppose
first that d 6= pm, where p = char(k) > 0. Then there is an a ∈ k×, such that
(a+1)d = 1. The rational function h : P1

k → P1
k given by h(z) = (z+a)d/zd

then satisfies the condition of the theorem. Indeed, h has two critical points
of order d − 1, namely 0 and −a, and both are strictly preperiodic. It
follows that vhn(z) 6 d2 for all n > 1 and all z ∈ P1

k. In the case when
char(k) = p > 0 and d = pm, a similar argument holds for the rational
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map h(z) = (z + 1)d/zd−1. This map has two critical points z = 0,−1
of orders d − 2 and d − 1, respectively. Both are strictly preperiodic, so
vhn(z) 6 d(d− 1) for all n > 1 and z ∈ P1

k.
We will now use this 1-dimensional result to deduce the general case via

a construction of Ueda [42]. Choose a degree d rational map h : P1
k → P1

k

and B > 0 such that vhn(z) 6 B for all n > 1 and all z ∈ P1
k. Let H be the

endomorphism of the r-fold product P1
k×· · ·×P1

k given byH = h×· · ·×h. It
is easy to check that for z = (z1, . . . , zr) ∈ P1

k×· · ·×P1
k, one has vHn(z) =

vhn(z1) · · · vhn(zr) 6 Br. The symmetric group Sr acts on the product
P1
k×· · ·×P1

k by permuting coordinates, and the quotient (P1
k×· · ·×P1

k)/Sr
is isomorphic to the projective space Pr

k. Let π : P1
k×· · ·×P1

k → Pr
k be the

quotient morphism. Then π is finite of degree r!, and H descends through
π to an endomorphism f ∈ Hd, such that π ◦H = f ◦ π. For any x ∈ Pr

k

and any z ∈ π−1(x), it follows that

vfn(x) = vfn(x)vπ(z)
vπ(z) = vHn(z)vπ(Hn(z))

vπ(z) 6
Br · r!

1 = Brr!.

This proves the first statement of the theorem. The last statement is now
immediate from Corollary 4.13 and Proposition 4.14. �

5. Equidistribution for classical varieties

We are now in a position to prove an analogue of the equidistribution of
preimages theorem for classical varieties.

Theorem 5.1. — Let k be an algebraically closed field, and let X be an
irreducible projective variety of dimension m over k. Suppose f : (X,L)→
(X,L) is a flat polarized endomorphism of X with algebraic degree d > 2.
Assume, furthermore, that f satisfies Assumption 4.7. Let x ∈ X be any
point, and let V ⊆ X be the smallest totally invariant closed set containing
x. Assume that V is irreducible, with generic point y. Then the sequence
d−nmfn∗δx of Borel probability measures on X converges weakly to δy as
n→∞.

Note, the case when V is reducible will be considered in Corollary 5.3.
Proof. — Let µn := d−nmfn∗δx. From Theorem 3.1, we know that the

space of Borel probability measures on X is sequentially compact in the
weak topology. It therefore suffices to prove the following: any weakly
convergent subsequence µni of µn converges to δy. We therefore fix a
weakly convergent subsequence µni , converging to some measure µ. Let
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W ⊆ X be a minimal closed set with µ(W ) > 0. If W were reducible,
say W = W1 ∪W2, then by the minimality of W we would have µ(W ) 6
µ(W1) + µ(W2) = 0 + 0 = 0, a contradiction. Therefore W is irreducible.
One easily sees that µn(V ) = 1 for all n, and hence µ(V ) = 1. In particular,
µ(W ∩ V ) = µ(W ) > 0, so the minimality of W implies that W ⊆ V .

To prove the theorem, it will suffice to show that W is part of a totally
invariant cycle for f . Indeed, if we can do this, then the minimality of V
implies W = V . But then µ(V ) = 1 and µ(Z) = 0 for all closed Z ( V ,
implying that µ = δy, as desired. We will prove that W is part of a totally
invariant cycle for f by contradiction. Suppose W is not part of a totally
invariant cycle for f . Using Theorem 4.9, one then has v−(W ) < dq, where
q is the codimension of W in X. We need the following lemma to proceed.

Lemma 5.2. — There is an integer I > 0 and a preimage z ∈ f−nI (x)
such that

1. z ∈W and v−(z) < dq.
2. lim supi→∞ d−m(ni−nI)[f (ni−nI)∗δz](W ) > 0.

Proof. — Recall from Theorem 4.6 that the reverse asymptotic multi-
plicity function v− is upper semicontinuous. Since v−(W ) < dq, there is a
nonempty open subset U of W such that v− < dq on U . By the minimality
of W , one has µ(W ) = µ(U) = limi→∞ µni(U). We will prove the lemma
by contradiction, so suppose no such z and I exist. To simply notation, set

R(z, I) := lim sup
i→∞

d−m(ni−nI)[f (ni−nI)∗δz](U)

whenever I > 0 is an integer and z ∈ f−nI (x). Note that R(z, I) 6 1, and
by our contradiction assumption R(z, I) = 0 whenever z ∈ U .
Claim: If I > 0 and z ∈ f−nI (x) are such that R(z, I) > c > 0,

then there is an integer J > I and a preimage z′ ∈ f−(nJ−nI)(z) such
that R(z, I) 6 (1 − c/2)R(z′, J). To prove the claim, let J > I be any
integer large enough that d−m(nJ−nI)[f (nJ−nI)∗δz](U) > c/2. Suppose that
z1, . . . , zs are the elements of f−(nJ−nI)(z) ∩ U , and that zs+1, . . . , zt are
the elements of f−(nJ−nI)(z) lying outside U . Then

R(z, I) 6
t∑
i=1

mfnJ−nI (zi)
dm(nJ−nI) R(zi, J) =

t∑
i=s+1

mfnJ−nI (zi)
dm(nJ−nI) R(zi, J)
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since R(zi, J) = 0 for all i 6 s. One then has the easy upper bound

R(z, I) 6 max{R(zs+1, J), . . . , R(zt, J)}
t∑

i=s+1

mfnJ−nI (zi)
dm(nJ−nI)

= max{R(zs+1, J), . . . , R(zt, J)}d−m(nJ−nI)[f (nJ−nI)∗δz](X r U).

By our choice of J , it follows that

R(z, I) 6 (1− c/2) max{R(zs+1, J), . . . , R(zt, J)},

proving the claim.
Let c = µ(W ). By definition, R(x, 0) = c, so the claim yields an integer

I1 > 0 and a preimage z1 ∈ f−nI1 (x) such that µ(W ) = c = R(x, 0) 6
(1− c/2)R(z1, I1). In particular,

R(z1, I1) > c

1− c/2 > c.

We can thus apply the claim again to find an integer I2 > I1 and a z2 ∈
f−(nI2−nI1 )(z1) such that R(z1, I1) 6 (1 − c/2)R(z2, I2). Thus µ(W ) =
R(x, 0) 6 (1 − c/2)2R(z2, I2). Continuing in this fashion, we construct
sequences Ij and zj such that

µ(W ) 6 (1− c/2)jR(zj , Ij) 6 (1− c/2)j → 0.

This contradicts the assumption that µ(W ) > 0, and completes the proof.
�

We now continue with the proof of Theorem 5.1. Let I and z be as in
the statement of Lemma 5.2. Let ∆ ∈ R be such that v−(z) < ∆ < dq.
Passing to a subsequence if necessary, we may assume that the limit

(∗) c := lim
i→∞

d−m(ni−nI)[f (ni−nI)∗δz](W )

exists and is positive. For each i > I, let zi1, . . . , zisi denote the elements of
f−(ni−nI)(z) which lie in W . Then the right hand side of (∗) is

lim
i→∞

d−m(ni−nI)
si∑
j=1

mfni−nI (zij)

= lim
i→∞

d−m(ni−nI)
si∑
j=1

vfni−nI (zij)[Eij :fni−nI E]s,

where Eij = {zij} and E = {z}. Since v−(z) < ∆, we have vfni−nI (zij) 6
∆ni−nI for every j whenever i is sufficiently large. Also, by Proposition 4.4,
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we have
s∑
j=1

[Eij :fni−nI E]s 6 Cd(ni−nI) dim(W )

for some C > 0 independent of i. Combining these inequalities, we see that

c 6 lim sup
i→∞

d−m(ni−nI)∆ni−nICd(ni−nI) dim(W )

= C lim sup
i→∞

(d−q∆)ni−nI = 0,

where here the last equality results from the fact that ∆ < dq. This is
a contradiction of the fact that c > 0. Therefore W is totally invariant,
completing the proof. �

From this equidistribution theorem we derive a couple of easy variants.

Corollary 5.3. — Let f : X → X be as in Theorem 5.1. Let x ∈ X
be any point, and let V be the smallest totally invariant closed subset of X
containing x. Let V = V0∪· · ·∪Vs−1 be the irreducible decomposition of V ,
and let yi be the generic point of Vi for each i. Then, after relabeling the Vi
if necessary, one has for each i = 0, . . . , s−1 that d−m(i+sn)f (i+sn)∗δx → δyi
weakly as n→∞.

Proof. — Without loss of generality, we may assume that x ∈ V0, and
that f(Vi) = Vi−1, the indices taken modulo s. Note, in particular, that
d−mf∗δyi = δyi+1 . The set V0 is totally invariant for the composition fs,
and is in fact the minimal fs-totally invariant closed set containing x.
Thus by Theorem 5.1, d−msnfsn∗δx → δy0 weakly as n → ∞. We know
that the pull-back operator f∗ : M(X) →M(X) is weakly continuous by
Proposition 3.2, and thus for any i = 0, . . . , s− 1 we see that

d−m(i+sn)f (i+sn)∗δx = d−mif i∗[d−msnfsn∗δx]→ d−mif i∗δy0 = δyi ,

as desired. �

Corollary 5.4. — Let f : X → X be as in Theorem 5.1. Let µ be a
Borel probability measure on X that gives no mass to the exceptional set
E of f . Then d−mnfn∗µ → δy weakly as n → ∞, where y is the generic
point of X.

Proof. — Let µ =
∑
x∈X cxδx. For each x ∈ X such that cx 6= 0, one has

x /∈ E , as otherwise µ(E ) 6= 0. For such x, it follows from Theorem 5.1 that
the preimages of x equidistribute to δy. Let x1, x2, . . . be an enumeration
of those x ∈ X with cx 6= 0. For each N > 1, let µN =

∑N
i=1 cxiδxi and
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νN =
∑
i>N cxiδxi . Let ε > 0 be given, and choose N large enough so that

νN (X) < ε. Then for any closed set E ⊆ X, one has

|d−mn(fn∗µ)(E)− δy(E)| 6 |d−mn(fn∗µN )(E)− δy(E)|+ ε

for every n > 1. When n is sufficiently large, however, Theorem 5.1 gives
that

|d−mn(fn∗µN )(E)− µN (X)δy(E)| 6 ε.

Combining this with the previous inequality yields

|d−mn(fn∗µ)(E)− δy(E)| 6 (1− µN (X))δy(E) + 2ε 6 3ε.

Therefore d−mnfn∗µ→ δy as n→∞. �

6. Berkovich analytic spaces

Having proved the equidistribution theorem for classical varieties, we
now move on to the nonarchimedean setting. Fix an algebraically closed
complete nonarchimedean field K. We do not assume that the absolute
value on K is nontrivial. In this section we briefly review the Berkovich
analytification of varieties over K, and discuss multiplicities for finite mor-
phisms between analytic varieties. The main references for the material in
this section are the works of Berkovich [2] and [3].
We begin by discussing the Berkovich analytification of a variety X over

K. Suppose first that X is affine, with coordinate ring K[X]. Then the
Berkovich analytification of X is, as a set, defined to be the collection
Xan of all multiplicative seminorms K[X] → R which extend the given
absolute value on K. We will denote points in Xan by letters such as x and
y. By definition these are seminorms on K[X]; the value of x on a function
ϕ ∈ K[X] is typically denoted |ϕ(x)|. We equip Xan with the weakest
topology for which each of the evaluation maps x 7→ |ϕ(x)| for ϕ ∈ K[X]
are continuous. In this topology, Xan is locally compact, Hausdorff, and
locally path connected.
The closed points of X naturally embed into Xan in the following way. If

x ∈ X is a closed point, we define a seminorm K[X]→ R associated to x
by ϕ ∈ K[X] 7→ |ϕ(x)|, where the absolute value here is the given absolute
value on K. If the absolute value on K is trivial, then the scheme-theoretic
points of X also embed into Xan. Indeed, if x is any scheme theoretic
point of X corresponding to the prime ideal p of K[X], we can define a
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corresponding seminorm K[X]→ R by

ϕ ∈ K[X] 7→
{

1 ϕ /∈ p.

0 ϕ ∈ p.

In either the trivially or non-trivially valued case, we will call seminorms
of this form classical points. Classical points are dense in Xan when the
absolute value on K is nontrivial.
There is a natural map π : Xan → X, whereX here is viewed as a scheme,

allowing for non-closed points. The map π sends a seminorm x ∈ Xan to
its kernel

π(x) := {ϕ ∈ K[X] : |ϕ(x)| = 0},

which is easily seen to be a prime ideal. If x is a classical point of Xan

corresponding to x ∈ X, then π(x) = x. The map π is continuous when X
is given its Zariski topology.
Suppose now that f : X → Y is a morphism of affine varieties, with

corresponding homomorphism f∗ : K[Y ] → K[X] of coordinate rings. We
can define a map fan : Xan → Y an by sending a seminorm x ∈ Xan to the
seminorm fan(x) defined by |ϕ(fan(x))| = |(f∗ϕ)(x)| for all ϕ ∈ K[Y ]. The
map fan is continuous, and agrees with the map f : X → Y on classical
points. For this reason, we will abuse notation and denote fan simply by
f .
Now assume that X is any variety over K, not necessarily affine. One

defines the Berkovich analytification Xan of X as follows. Choose a finite
open cover of X by affines U1, . . . , Ur. One obtains the space Xan by gluing
together the analytifications πi : Uan

i → Ui. Namely, we identify seminorms
x ∈ Uan

i and y ∈ Uan
j if πi(x) ∈ Ui ∩ Uj and πj(y) ∈ Ui ∩ Uj and if x and

y give the same seminorm on OUi(Ui ∩ Uj) ∼= OUj (Ui ∩ Uj). The space
Xan constructed in this fashion is locally compact, Hausdorff, and locally
path connected. Moreover, if X is an irreducible projective variety, then
Xan is compact and connected. The πi : Uan

i → Ui glue together to a map
π : Xan → X, which is continuous when X is given its Zariski topology.
As before, closed points of X naturally embed into Xan, and if K is

equipped with the trivial absolute value, so do the scheme-theoretic points
of X. These points in Xan are the classical points. If f : X → Y is a mor-
phism of varieties over K, there is an induced continuous map f : Xan →
Y an, which agrees with f : X → Y on classical points.
While we do not go into details here (see [2]), one can define a sheaf

of rings on Xan, called the structure sheaf of Xan. We will denote this
sheaf by OX to distinguish it from the classical structure sheaf OX on the
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variety X. Equipped with this sheaf OX , the analytification Xan is a locally
ringed space, and π : Xan → X is a morphism of locally ringed spaces. The
Berkovich analytification π : Xan → X enjoys GAGA results analogous to
those in the classical complex setting (see [2, §§3.4-3.5]). We will now use
these GAGA results to discuss multiplicities associated to finite morphisms
of analytic varieties, as in §2.

Definition 6.1. — Let X and Y be irreducible varieties over K, and
let f : X → Y be a finite surjective morphism. Let x ∈ Xan and y = f(x).
Then the multiplicity of f at x is

mf (x) := dimκ(y)(OX,x/myOX,x),

where as usual OX,x is viewed as an OY,y-module via f .

We now want to compare these multiplicities with those previously de-
fined for the classical morphism f : X → Y . To do this comparison, we use
the commutative diagram

Xan Y an

X Y

f

f
πX πY

Specifically, we note that if y ∈ Y an and y = πY (y), then for any x ∈ f−1(y)
we must have that πX(x) ∈ f−1(y).

Proposition 6.2. — Let X and Y be irreducible varieties over K, and
suppose f : X → Y is a finite surjective morphism. Let x ∈ X and f(x) = y.
Let y ∈ Y an be such that πY (y) = y, and let x1, . . . , xr be those f -preimages
of y such that πX(xi) = x. Then

mf (x) =
r∑
i=1

mf (xi).

In particular, if x is a classical point of Xan corresponding to x ∈ X, then
mf (x) = mf (x).

Proof. — As the statement is local, we may assume with no loss of gen-
erality that X and Y are affine. Let xr+1, . . . , xs be those preimages of y
with πX(xi) 6= x. Using Proposition 2.6.10 of [3], one has the isomorphism

OY,y ⊗OY,y OX,x ∼=
r∏
i=1

OX,xi ×
s∏

i=r+1
(OX,xi)px ,
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where px is the prime ideal in the coordinate ring K[X] of X which cor-
responds to x. If we then tensor this expression over OY,y with the residue
field κ(y), we see that

κ(y)⊗κ(y) (OX,x/myOX,x) ∼=
r∏
i=1

(OX,xi/myOX,xi).

The κ(y)-dimension of the left hand side of this expression is mf (x), while
the κ(y)-dimension of the right hand side is

∑r
i=1 mf (xi). This completes

the proof. �

Corollary 6.3. — Suppose f : X → Y is a finite surjective flat mor-
phism between irreducible varieties over K. Then every point y ∈ Y an has
[X :f Y ] preimages when counted according to their multiplicity. That is,
[X :f Y ] =

∑
f(x)=y mf (x).

Proof. — Let y = πY (y). From Proposition 6.2 we know that∑
f(x)=y

mf (x) =
∑

f(x)=y

mf (x).

The corollary then follows from Theorem 2.4. �

Proposition 6.4. — Suppose f : X → Y is a finite surjective flat mor-
phism between irreducible varieties over K. Let V be an affinoid domain
in Y an, and let U = f−1(V ). Suppose that U has connected components
U1, . . . , Us. Then there exist integers n1, . . . , ns > 1 such that every point
y ∈ V has exactly ni preimages in Ui, counted according to their multiplic-
ity.

Proof. — This statement is a higher dimensional analogue of [19, Propo-
sition 2.1]. First note that U is itself an affinoid domain by [2, Proposition
3.1.7], as are the Ui by [2, Corollary 2.2.7]. If AV → AU ∼= AU1 ×· · ·×AUs
is the corresponding map of affinoid algebras, then AU is a finite Banach
AV -module since f is finite. It follows immediately that each AUi is a fi-
nite Banach AV -module via the composite AV → AU → AUi . Therefore
f |Ui : Ui → V is a finite map of K-analytic spaces. Since f is flat, so is
its analytification fan by the GAGA principles in §3.4 and §3.5 of [2]. It
follows that f |Ui is flat for each i. Thus f∗(OX |Ui) is a coherent, locally
free OY |V -module of some rank ni. If y ∈ V , then

f∗(OX |Ui)y ∼=
⊕

x∈f−1(y)∩Ui

OX,x,
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and therefore

ni = dimκ(y)(κ(y)⊗OY,y f∗(OX |Ui)y) =
∑

x∈f−1(y)∩Ui

dimκ(y)(OX,x/myOX,x)

=
∑

x∈f−1(y)∩Ui

mf (x).

This completes the proof. �

Using these results, we are now able to define a pull-back operator on
Radon measures, analogous to the pull-back defined in §3. As was done
in that section, we will define the pull-back operator as the adjoint of a
push-forward operator on functions.

Definition 6.5. — Suppose f : X → Y is a finite surjective flat mor-
phism between irreducible varieties over K. If ϕ ∈ C0(Xan), we define
f∗ϕ : Y an → R by

(f∗ϕ)(y) :=
∑
f(x)=y

mf (x)ϕ(x).

Proposition 6.6. — Suppose f : X → Y is a finite surjective flat mor-
phism between irreducible varieties over K. Then the push-forward f∗ de-
fines a linear map C0(Xan) → C0(Y an). If we assume, in addition, that
X and Y are projective, so that Xan and Y an are compact, then f∗ is a
bounded linear operator between Banach spaces.

Proof. — Let ϕ ∈ C0(Xan), and let y ∈ Y an. Let V be a small enough
affinoid neighborhood of y such that f−1(V ) is a disjoint union of compo-
nents U1, . . . , Us, each containing exactly one preimage xi ∈ Ui of y. By
shrinking V if necessary, we may assume that the variation of ϕ on Ui is at
most ε for each i. According to Proposition 6.4, if y′ ∈ V , then y′ has ex-
actly mf (xi) preimages in Ui when counted according to their multiplicity.
Thus

|(f∗ϕ)(y′)− (f∗ϕ)(y)| 6
s∑
i=1

∣∣∣∣mf (xi)ϕ(xi)−
∑

x∈f−1(y′)∩Ui
mf (x)ϕ(x)

∣∣∣∣
6

s∑
i=1

εmf (xi) = [X :f Y ]ε.

This proves that f∗ϕ is continuous. In the case where Xan and Y an are
compact, and thus that C0(Xan) and C0(Y an) are Banach spaces, the
fact that f∗ is bounded is immediate from the easy estimate |(f∗ϕ)(y)| 6
‖ϕ‖

∑
f(x)=y mf (x) = [X :f Y ]‖ϕ‖. �
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Definition 6.7. — Let f : X → Y be a finite surjective flat morphism
between irreducible projective varieties over K. LetM(Xan) andM(Y an)
denote the space of Radon measures on Xan and Y an, respectively. We
define the pull-back operator f∗ : M(Y an)→M(Xan) to be the adjoint of
f∗ : C0(Xan)→ C0(Y an).

The following properties of the pull-back f∗ : M(Y an) → M(Xan) are
now obvious from the definitions:

1. If µ is a positive Radon measure on Y an, then f∗µ is positive as
well. Moreover, if the total mass of µ is R, then f∗µ has total mass
[X :f Y ]R.

2. If µ is any Radon measure on Y an, then f∗f∗µ = [X :f Y ]µ, where
f∗ denotes the usual push-forward operation on measures.

3. If y ∈ Y an and δy is the Dirac probability measure at y, then f∗δy =∑
f(x)=y mf (x)δx.

7. Maps of good reduction

Before being able to prove the equidistribution theorem for maps of good
reduction, we first must say what we mean by a map of good reduction. In
this section we discuss the notion of reduction for analytic varieties. Recall
that we are working with analytic varieties over an algebraically closed
complete nonarchimedean field K, possibly with trivial absolute value. We
denote by K◦ the valuation ring of K, by mK the maximal ideal in K◦,
and by k the residue field of K.

Definition 7.1. — Let X be an irreducible projective variety over K.
A model of X is a flat, projective scheme X over SpecK◦ with a specified
isomorphism between X and the generic fiber XK of X .

In the case whenK is equipped with the trivial absolute value, any model
X of X is simply a variety over K that is isomorphic to X, and thus we
lose no generality by taking X = X. When K is equipped with a nontrivial
absolute value, there is in general no canonical model of X, but some model
X always exists.

Given a model X of X, we are able to define a reduction map red : Xan →
Xk, where here Xk denotes the special fiber of X . The special fiber Xk is
a projective variety over k, all of whose components have the same dimen-
sion as X. Let x ∈ Xan, and let x := π(x) ∈ X = XK . Then x defines
an absolute value on the residue field κ(x) of XK at x. Since X is projec-
tive and hence proper over SpecK◦, the valuative criterion of properness
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gives that the K-morphism Specκ(x) → XK extends uniquely to a K◦-
morphism Specκ(x)◦ → X . The special fiber of this morphism is a mor-
phism Spec κ̃(x)→ Xk, corresponding to a point ξ of Xk. The reduction of
x is defined to be red(x) = ξ. It should be noted that the point ξ is also
sometimes called the center of the valuation associated to x; we will not
use this terminology here.
The reduction map red : Xan → Xk is anticontinuous in the sense that

the inverse image of a Zariski open set of Xk is closed in Xan. It is always
surjective, and every generic point of Xk has exactly one preimage under
red.

If K is equipped with the trivial absolute value, then Xk = X, so
one obtains a canonical reduction map red : Xan → X. The two maps
π, red : Xan → X are different; indeed, red(x) specializes π(x) for every
x ∈ Xan, and one has red(x) = π(x) if and only if x is a classical point of
Xan. The unique point x ∈ Xan whose reduction is the generic point of X
is called the Gauss point of Xan. It is the classical point corresponding to
the trivial absolute value on K(X).
Suppose X and Y are irreducible projective varieties over K, and let X

and Y be models of X and Y , respectively. Suppose that F : X → Y is a
finite flat K◦-morphism. Then the generic and special fibers FK : X → Y

and Fk : Xk → Yk are finite flat morphisms which are compatible with
reduction in the sense that the following diagram commutes.

Xan Y an

Xk Yk

FK

Fk

red red

If Xk and Yk are irreducible, then [Xk :Fk Yk] = [X :FK Y ]. This compati-
bility with reduction is the spirit of what we wish to call “good reduction.”

Definition 7.2. — Let X be an irreducible projective variety over K,
and let f : X → X be a finite surjective flat morphism. Suppose that there
exists a model X of X with irreducible special fiber, and a finite flat K◦-
morphism F : X → X such that f = FK . Then we say that f has good
reduction with respect to F . The map Fk is called the reduction of f .

If K is equipped with the trivial absolute value, then every finite surjec-
tive flat morphism f : X → X has good reduction simply by taking F = f .
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On the other hand, if K is equipped with a nontrivial absolute value, the
notion of good reduction is quite restrictive.
In the case when X = Pr

K , one sometimes says that a morphism f : Pr
K→

Pr
K has good reduction without making mention of any specific model,

as we did in the introduction. Here it is implied that f is induced by a
morphism F : X → X , where X is the model Pr

K◦ of Pr
K . When X = P1

K

the situation is rather simpler, in that every morphism f : P1
K → P1

K

of good reduction with respect to some morphism X → X is, possibly
after conjugating f by an automorphism of P1

K , induced from a morphism
P1
K◦ → P1

K◦ . One sometimes calls f : P1
K → P1

K a map of potentially good
reduction if it is induced by some morphism X → X , and a map of good
reduction if it is induced by a morphism P1

K◦ → P1
K◦ .

Before moving on to the proof of the equidistribution theorem for maps
of good reduction, we need a proposition relating the multiplicities of a
morphism f : X → X of good reduction to the multiplicities of its reduc-
tion.

Proposition 7.3. — Let X be an irreducible projective variety over K,
and let f : X → X be a morphism which has good reduction with respect
to a morphism F : X → X . Let y ∈ Xan, and let y = red(y). Fix any
x ∈ Xk with Fk(x) = y, and let x1, . . . , xr be those f -preimages of y with
red(xi) = x. Then

mFk(x) =
r∑
i=1

mf (xi).

Proof. — Let ÔX ,y and ÔX ,x be the completions of OX ,y and OX ,x with
respect to their maximal ideals. Then ÔX ,x is a finite free ÔX ,y-module via
F , say of rank R. Because y = red(y), we have a naturalK◦-homomorphism
ÔX ,y → H (y)◦, where H (y) is the completed residue field at y. This
homomorphism allows us to consider the tensor products

ÔX ,x ⊗ÔX ,y H̃ (y) and ÔX ,x ⊗ÔX ,η H (y),

which are then vector spaces of dimension R over H̃ (y) and H (y), respec-
tively. Since

ÔX ,x ⊗ÔX ,y H̃ (y) ∼= (OXk,x/myOXk,x)⊗κ(y) H̃ (y),

one has mFk(x) = R. On the other hand,

ÔX ,x ⊗ÔX ,y H (y) ∼=
r⊕
i=1

(OX,xi/myOX,xi)⊗κ(y) H (y),

so R =
∑r
i=1 mf (xi). This completes the proof. �
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8. Equidistribution for maps with good reduction

In this section we will prove the equidistribution theorem for maps with
good reduction. The setup for this section is as follows. We fix an irreducible
projective variety X over K, and a polarized morphism f : (X,L)→ (X,L)
of algebraic degree d > 2, which has good reduction with respect to a given
polarized morphism F : (X ,L)→ (X ,L) which models f . We denote by f̃
the reduction f̃ : (Xk,Lk) → (Xk,Lk) of f . When K is equipped with the
trivial absolute value, one has (Xk,Lk) = (X,L) and f̃ = f , but in the
interest of keeping notation uniform we will still write f̃ and (Xk,Lk).

The idea of the proof of the equidistribution theorem is to apply the
results of §5 to f̃ , and then lift these results to f via the reduction semi-
conjugacy:

Xan Xan

Xk Xk

f

f̃
red red

In order to make use of the results of §5, we will additionally need to assume
that the reduced map f̃ : (Xk,Lk)→ (Xk,Lk) satisfies Assumption 4.7.
We begin by using the maps π : Xan → X and red : Xan → Xk to relate

the measure theory of Xan to the measure theory of X and Xk. Recall
that π and red are continuous and anticontinuous, respectively, so both
of these maps are Borel measurable. If µ is a Radon measure on Xan, we
are therefore able to consider the push-forward measures π∗µ and red∗µ.
Our first goal is to prove that the push-forward operations π∗ and red∗ are
compatible with pull-backs in the sense that π∗f∗ = f∗π∗ and red∗f∗ =
f̃∗red∗.

Lemma 8.1. —
1. Let V ⊂ Xk be a nonempty proper irreducible closed subset, and

let U = red−1(V ). There is an increasing sequence of nonnegative
continuous functions ϕn : Xan → R which converge pointwise to
the characteristic function χU .

2. Let V ⊆ X be a nonempty proper irreducible Zariski closed set,
and let E = π−1(V ). There is a decreasing sequence of nonnegative
continuous functions ψn : Xan → R which converge pointwise to
the characteristic function χE .
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Proof. — (1) Let {Wα} be a finite affine open cover of X , say Wα =
SpecAα. For each index α, the set Wα := red−1(Wα,k) is a closed subset of
Xan (it is, in fact, an affinoid domain). Fix an α such that Wα,k intersects
V , and let a1, . . . , ar ∈ Aα be elements whose images a1, . . . , ar in the
reduction A = A ⊗K◦ k generate the prime ideal pV of V in Wα,k. Then
x ∈ Wα lies in U if and only if |ai(x)| < 1 for each i. Define hα : Wα → R by
hα(x) := maxi |ai(x)|. This hα is continuous, and satisfies hα(x) 6 1, with
equality if and only if x /∈ U . Moreover, hα is independent of the choice
of the ai. In this way we define hα for each index α. One has hα = hβ
on Wα ∩Wβ , and hence the hα can be glued together to give a continuous
function h : Xan → R with the property that 0 6 h(x) 6 1 for all x, with
h(x) < 1 if and only if x ∈ U . We can then define ϕn := (1− h)1/n.

(2) Let {Uα} be a finite affine open cover of X, say with Uα = SpecAα.
For each index α, the set Uan

α = π−1(Uα) is an open subset of Xan. Fix
an α such that Uα intersects V , and let a1, . . . , ar ∈ Aα be generators
of the prime ideal pV of V in Uα. Then x ∈ Uan

α belongs to E if and
only if |ai(x)| = 0 for each i. Let hα : Uan

α → R be the function hα(x) :=
min{1,maxi |ai(x)|}. This hα is continuous, and satisfies hα(x) > 0, with
equality if and only if x ∈ E. Moreover, hα is independent of the choice
of the ai. In this way we define hα for each index α. One has hα = hβ on
Uan
α ∩ Uan

β , and hence the hα can be glued together to give a continuous
function h : Xan → R with the property that 0 6 h(x) 6 1 for all x, with
h(x) = 0 if and only if x ∈ E. We can then define ψn = 1− h1/n. �

Proposition 8.2. — Let µ be a Radon measure on Xan. Then π∗ and
red∗ are compatible with pull-backs in the sense that

1. red∗f∗µ = f̃∗red∗µ, and
2. π∗f∗µ = f∗π∗µ.

Proof. — (1) It suffices to check that (red∗f∗µ)(V ) = (f̃∗red∗µ)(V ) for
every irreducible closed set V ⊂ Xk by [23, Lemma 2.7]. Choose an increas-
ing sequence ϕn : Xan → R of non-negative continuous functions converg-
ing pointwise to χred−1(V ). Then

(red∗f∗µ)(V ) = (f∗µ)(red−1(V )) = lim
n→∞

∫
ϕn df

∗µ

= lim
n→∞

∫
f∗ϕn dµ =

∫
f∗red∗χV dµ.

On the other hand, we have

(f̃∗red∗µ)(V ) =
∫
f̃∗χV dred∗µ =

∫
red∗f̃∗χV dµ.
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Thus it suffices to show that f∗red∗χV = red∗f̃∗χV . If y ∈ Xan, then

(f∗red∗χV )(y) =
∑
f(x)=y

mf (x)χV (red(x)) =
∑

f̃(x)=red(y)

mf̃ (x)χV (x)

= (red∗f̃∗χV )(y),

where the second equality is a consequence of Proposition 7.3. This proves
(1). The proof of (2) is similar, except one uses Proposition 6.2 instead of
Proposition 7.3. �

Unfortunately, the push-forward operations π∗ and red∗ on Radon mea-
sures are not weakly continuous. Specifically, if µn is a sequence of Radon
measures on Xan which converge weakly to a measure µ, then it is not
necessarily the case that π∗µn converges weakly to π∗µ, or that red∗µn
converges weakly to red∗µ. Indeed, it is not even necessarily the case that
π∗µn and red∗µn converge weakly to anything. The reason for this difficulty
is that the weak topology for measures on X and Xk is defined in terms of
semicontinuous functions, whereas the weak topology for Radon measures
on Xan is defined in terms of continuous functions. The next proposition
explores this phenomenon.

Proposition 8.3. — Let µn be a sequence of Radon probability mea-
sures on Xan which converges weakly to a measure µ.

1. Suppose the measures νn := red∗µn converge weakly to a measure
ν. Then one has the inequality ν(V ) > (red∗µ)(V ) for all irreducible
closed subsets V ⊆ Xk.

2. Suppose the measures νn := π∗µn converge weakly to a measure
ν. Then one has the inequality ν(V ) 6 (π∗µ)(V ) for all irreducible
closed subsets V ⊆ X.

Proof. — (1) Fix an irreducible closed subset V ⊆ Xk, and let ϕn : Xan →
R be an increasing sequence of nonnegative continuous functions converg-
ing pointwise to χred−1(V ). Given an ε > 0 and an index N = N(ε) large
enough, one then has

(red∗µ)(V ) = lim
n→∞

∫
ϕn dµ 6 ε+

∫
ϕN dµ = ε+ lim

m→∞

∫
ϕN dµm

6 ε+ lim inf
m→∞

∫
χred−1(V ) dµm = ε+ lim inf

m→∞
νm(V ) = ε+ ν(V ).

Letting ε → 0 gives (red∗µ)(V ) 6 ν(V ), as desired. The proof of (2) is
similar. �
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We are now in a position to prove our main equidistribution of preimages
theorem for maps of good reduction. Theorem A is a special case of the
following.

Theorem 8.4 (Equidistribution). — Let X be an irreducible projective
variety over K of dimension m, and let f : (X,L)→ (X,L) be a polarized
morphism of algebraic degree d > 2. Suppose that f has good reduction
with respect to a morphism F : (X ,L)→ (X ,L). Finally, assume that the
reduction f̃ : (Xk,Lk) → (Xk,Lk) of f satisfies Assumption 4.7. Let E be
the exceptional set of f̃ . If µ is a Radon probability measure on Xan which
gives no mass to red−1(E ), then the normalized pull-backs d−mnfn∗µ con-
verge weakly to the Dirac probability measure δx supported at the unique
point x ∈ Xan whose reduction is the generic point of Xk.

Proof. — Let µn = d−mnfn∗µ for each n > 1. It suffices to show that
every weakly convergent subsequence of {µn} converges to δx. We therefore
fix a weakly convergent subsequence µni , converging to some measure α. Let
ν = red∗µ and νn = red∗µn for each n. We then know from Proposition 8.2
that νn = d−mnf̃n∗ν for each n. The assumption that µ does not give
mass to red−1(E ) is equivalent ν not giving mass to E . It then follows
from Corollary 5.4 that the sequence νn converges weakly to the Dirac
probability measure at the generic point of Xk. From Proposition 8.3(1) we
see that (red∗α)(V ) = 0 for all proper closed subsets V ( Xk. We will use
this property of α to conclude that α = δx.

Let A ⊆ C0(Xan) be the subalgebra consisting of functions which are
constant away from a set of the form red−1(V ) for some proper closed set
V ( Xk. The functions which were constructed in the proof of Lemma 8.1
show that A separates points. Clearly A contains all constant functions.
Thus, by the Stone-Weierstrass theorem, A is dense in C0(Xan). Let ϕ ∈ A,
with say ϕ ≡ c away from a set red−1(V ) with V ( Xk closed. Then∫

ϕdα = c[1− α(red−1(V ))] +
∫

red−1(V )
ϕdα = c,

since α(red−1(V )) = 0. Since x /∈ red−1(V ), one has ϕ(x) = c. We have
thus shown that α agrees with δx on A. Since A is dense in C0(Xan), we
conclude that α = δx. �

In the special case where K is equipped with the trivial absolute value,
one can use the canonical map π : Xan → X to obtain a more precise
result about what happens to preimages of points x ∈ Xan which do lie in
red−1(E ).
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Theorem 8.5. — SupposeK is equipped with the trivial absolute value.
Let X be an irreducible projective variety of dimension m over K, and
f : (X,L) → (X,L) a flat polarized morphism of algebraic degree d > 2.
Suppose that f satisfies Assumption 4.7. Let x ∈ Xan be any point, and
assume that the smallest totally invariant closed set of X containing π(x)
is the same as the smallest totally invariant closed set of X containing
red(x). Let this set V have irreducible decomposition V = V0∪· · ·∪Vs. Let
yi denote the classical point of Xan corresponding to Vi for each i. Then,
up to relabeling the Vi if necessary, one has for each i = 0, . . . , s − 1 that
d−m(i+sn)f (i+sn)∗δx → δyi weakly as n→∞.

Proof. — We argue in a similar fashion to the proof of Theorem 8.4.
Specifically, we set µn = d−m(i+sn)f (i+sn)∗δx, and let α be a weak limit of a
subsequence of the µni . Now by applying Corollary 5.3 we know that the se-
quences π∗µn and red∗µn both converge weakly to δyi . Thus Proposition 8.3
tells us that α(A) = 0 for all sets A of the form A = π−1(U) ∪ red−1(W )
where U ⊆ X is an open set disjoint from Vi and W is a proper closed sub-
set of Vi. Let A denote the subalgebra of C0(Xan) consisting of all functions
which are constant away from a set A = π−1(U)∪ red−1(W ), where U ⊆ X
is an open set disjoint from Vi and W is a proper closed subset of Vi.
From the functions constructed in the proof of Lemma 8.1 we see that A
separates points, and hence is dense in C0(Xan) by the Stone-Weierstrass
theorem. If ϕ ∈ A is such that ϕ ≡ c outside of A = π−1(U) ∪ red−1(W ),
then ∫

ϕdα = c[1− α(A)] +
∫
A

ϕdα = c = ϕ(yi),

and hence α agrees with δyi on the dense subalgebra A. We conclude that
α = δyi . �

9. Equidistribution for tame points

In this last section, we assume K is an algebraically closed field equipped
with the trivial absolute value. Let X be an irreducible projective variety
of dimension m over K, and let f : (X,L) → (X,L) be a flat polarized
dynamical system of algebraic degree d > 2, i.e., a map of good reduction.
The goal of this section is to show that the preimages of a large class of
points x ∈ Xan equidistribute to the Dirac mass at the Gauss point of Xan,
even when red(x) lies in the exceptional set E of f .
In the setting where K is trivially valued, it is common to work not with

seminorms but with semivaluations. A point x ∈ Xan is a seminorm on the
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coordinate ring K[U ] of some affine open subset U ⊆ X. One may then
associate to x a semivaluationK[U ]→ R∪{+∞} given by ϕ 7→ − log |ϕ(x)|.
Conversely, from a semivaluation v : K[U ] → R ∪ {+∞}, one obtains a
seminorm x ∈ Xan by |ϕ(x)| = e−v(ϕ) for all ϕ ∈ K[U ]. Via this equivalence,
we will view points in Xan as being semivaluations rather than seminorms.
The reduction red(v) of a semivaluation v ∈ Xan is then the unique point
ξ ∈ X such that v > 0 on OX,ξ with v > 0 on mξ.

Definition 9.1. — Let v ∈ Xan be a semivaluation with red(v) = ξ ∈
X. For any ideal a ⊆ OX,ξ we define v(a) = infϕ∈a v(ϕ). Equivalently, if
ϕ1, . . . , ϕr generate a, then v(a) = mini v(ϕi).

We begin with a proof of Theorem C, which proves that a weaker form
of equidistribution of preimages holds for f whenever all totally invariant
cycles are superattracting.

Definition 9.2. — Suppose V ( X is an f -invariant irreducible subva-
riety. We say that V is superattracting for f if there is an integer n > 1 such
that fn∗mV ⊆ m2

V , where here fn∗ is the induced local ring homomorphism
fn∗ : OX,V → OX,V . More generally, if V is part of an s-periodic cycle for
f , we say that the cycle is superattracting for f if V is superattracting for
fs.

This notion of superattracting cycle generalizes the standard notion of
superattracting cycles for rational maps f : P1

K → P1
K . For instance, when

V = x is a fixed closed point of X, then x is superattracting if and only if
the derivative Df(x) of f at x is nilpotent. In dimension 1, it is automatic
that any totally invariant point is superattracting, but this is no longer true
in higher dimensions, as was first noted by Fornæss-Sibony [20, p. 212]. As
an example, the point [0 : 0 : 1] is totally invariant for the morphism
f : P2

K → P2
K given by f [x : y : z] = [xz + y2 : x2 : z2], but it is not

superattracting.

Theorem 9.3. — Let f : (X,L)→ (X,L) be a flat polarized morphism
of algebraic degree d > 2. Suppose that f satisfies Assumption 4.7, and that
all totally invariant cycles for f are superattracting. Let v ∈ Xan, and let
V ⊆ X be the smallest totally invariant closed set containing π(v). Suppose
V has irreducible decomposition V = V1∪· · ·∪Vr, and let w1, . . . , wr ∈ Xan

be the classical points corresponding to the generic points of the Vi. Then
one has weak convergence of the Cesaro means

µn := n−1
n−1∑
i=0

d−mif i∗δv → r−1(δw1 + · · ·+ δwr )
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as n → ∞. In the special case where π(v) /∈ E , this gives that the µn
converge weakly to the Dirac mass at the Gauss point.

Proof. — It suffices to show that any weak limit µ of a subsequence of
the µn is the measure r−1(δw1 + · · ·+δwr ). Suppose then that µ is the weak
limit of a subsequence µni . The measure µ is necessarily totally invariant,
that is, d−mf∗µ = µ. Indeed

d−mf∗µ = lim
i→∞

d−mf∗µni = lim
i→∞

[µni + n−1
i (d−mnifni∗δv − δv)]

= lim
i→∞

µni = µ.

Since π−1(V ) is a totally invariant closed subset ofXan and δv(π−1(V )) = 1,
the measure µ is supported within π−1(V ). If we can show that
µ(red−1(W )) = 0 for all proper totally invariant closed sets W ( V , then
an easy variant of Corollary 5.4 shows d−mnfn∗µ→ r−1(δw1 + · · ·+ δwr ).
However, d−mnfn∗µ = µ for all n, so in fact µ = r−1(δw1 + · · ·+ δwr ). We
have therefore reduced the problem to showing that µ(red−1(W )) = 0 for
all irreducible closed setsW ( V which are part of a totally invariant cycle
for f .
Fix W ( V an irreducible closed set with f−s(W ) = W . Let mW be the

maximal ideal of W in the local ring OX,W . Let ϕ : Xan → R ∪ {+∞} be
the continuous function

ϕ(w) :=
{
w(mW ) red(w) ∈W.
0 red(w) /∈W.

Since ϕ is strictly positive on red−1(W ) and zero everywhere else, one has
µ(red−1(W )) = 0 if and only if

∫
ϕdµ = 0. By assumption W is superat-

tracting, i.e., fns∗mW ⊆ m2
W for large enough n. If w /∈ red−1(W ), then all

fns-preimages of w also do not lie in red−1(W ), so d−mns(fns∗ ϕ)(w) = 0.
On the other hand, if red(w) ∈W and fns(w′) = w, then

w(mW ) = w′(fns∗mW ) > 2w′(mW )

when n is large enough. It follows that d−mns(fns∗ ϕ)(w) 6 ϕ(w)/2. Com-
bining these two derivations yields d−mnsfns∗ ϕ 6 ϕ/2 when n is large.
Therefore

0 6
∫
ϕdµ = d−mns

∫
fns∗ ϕdµ 6

1
2

∫
ϕdµ.

This is only possible if
∫
ϕdµ = 0 or +∞. The latter case cannot happen,

however, since by assumption π(v) /∈W . �

To prove Theorem B, we need to restrict ourselves to the case when X
is smooth. In this case, any finite surjective morphism f : X → X is flat,
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and hence any polarized morphism f : (X,L)→ (X,L) has good reduction.
The motivation for assuming X is smooth is that we are able to make the
following definition.

Definition 9.4. — Let ξ ∈ X. Because X is smooth, the local ring
OX,ξ is regular, and hence the map ordξ : OX,ξ → N ∪ {+∞} given by
ordξ(ϕ) := max{n : ϕ ∈ mnξ } is a valuation on the ring OX,ξ.

We will prove equidistribution of preimages for valuations v ∈ Xan that
are tame, that is, valuations which satisfy the following boundedness con-
dition.

Definition 9.5. — Let v ∈ Xan with ξ = red(v). We say that v is
tame if there is a C > 0 such that v(ϕ) 6 Cordξ(ϕ) for all ϕ ∈ OX,ξ.
Note, in particular, that such a v is necessarily a valuation instead of just
a semivaluation, i.e., π(v) is the generic point of X.

Example 9.6. — Tame valuations make up much of the space Xan, as
the following examples illustrate.

1. The set of tame valuations of P1,an
K is the hyperbolic space H :=

P1,an
K r P1

K .
2. All monomial valuations are tame. Recall that a valuation v ∈ Xan

with ξ = red(v) is amonomial valuation if it is of the following form:
for some system of parameters t1, . . . , tr of the completed local ring
ÔX,ξ ∼= κ(ξ)Jt1, . . . , trK and some real numbers α1, . . . , αr > 0, one
has

v
(∑

β∈Nr
λβt

β
)

= min{β1α1 + · · ·+ βrαr : λβ 6= 0}.

It is easy to check that such a valuation is tame.
3. Divisorial valuations are tame. A valuation v ∈ Xan is divisorial if

there is a blowup p : X ′ → X, an exceptional prime divisor E of
p, and a real number λ > 0 such that v(ϕ) = λordE(ϕ ◦ p) for all
ϕ ∈ K(X).

4. More generally, all quasimonomial valuations are tame. A valua-
tion v ∈ Xan is quasimonomial if there is some blowup p : X ′ → X

over ξ and a monomial valuation w at a point ζ ∈ X ′ such that
v(ϕ) = w(ϕ◦p) for all ϕ ∈ K(X). Such valuations are studied in de-
tail in [29], see also [12]. Monomial valuations and divisorial valua-
tions are both examples of quasimonomial valuations. The tameness
of quasimonomial valuations was proved by Tougeron ([41, Lemma
IX.1.3], see also [27]). They are sometimes called Abhyankar valu-
ations, since they are precisely those valuations v ∈ Xan for which
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one has equality in the Abhyankar inequality; they are further char-
acterized by being Shilov boundaries of Weierstrass domains inXan.
See [36, §4] for more details about these alternate characterizations.
Quasimonomial valuations (indeed, even divisorial valuations) are
dense in Xan.

5. One should note that there are tame valuations in Xan that are not
quasimonomial, and, if dimX > 1, there are valuations in Xan that
are not tame, see for instance [17, Proposition A.3].

Suppose that v ∈ Xan is a valuation, and thus that it defines a valuation
on the function field K(X) of X. If we identify K(X) with the subfield
f∗K(X) ⊆ K(X), then the preimages of v for f are precisely the val-
uations on K(X) which extend v on f∗K(X). For the remainder of the
section, we will assume that the map f is separable, that is, that the field
extension K(X)/f∗K(X) is separable. This is a weaker assumption than
Assumption 4.7.

Proposition 9.7. — Suppose that v ∈ Xan is a valuation, and f(w) =
v. Let L/F denote the field extension K(X)/f∗K(X), so that w is a valu-
ation on L extending v on F . If f is separable, then the multiplicity of f at
w is given by mf (w) = [Lw : Fv], where Lw and Fv denote the completions
of L and F with respect to w and v, respectively.

Proof. — The local rings OX,w and OX,v are fields, andmf (w) = [OX,w :
OX,v] for any preimage w of v. If H (w) and H (v) denote the completed
residue fields of w and v, respectively, then [H (w) : H (v)] 6 [OX,w :
OX,v]. One has isomorphisms H (w) ∼= Lw and H (v) ∼= Fv, and therefore
[Lw : Fv] 6 [OX,w : OX,v] = mf (w). Since L/F is separable,

Fv ⊗F L ∼=
⊕

f(w)=v

Lw

by [4, Corollary VI.8.2/2], and thus

dm = [L : F ] =
∑

f(w)=v

[Lw : Fv] 6
∑

f(w)=v

mf (w) = dm.

It follows that mf (w) = [Lw : Fv] for each preimage w of v. �

Corollary 9.8. — Suppose f is a separable, and let Nf denote the
norm homomorphism Nf : K(X)× → f∗K(X)× associated to the field ex-
tension K(X)/f∗K(X). If v ∈ Xan is a valuation and ϕ ∈ K(X)×, then∑

f(w)=v

mf (w)w(ϕ) = v(Nf (ϕ)).
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Proof. — See [4, Corollary VI.8.5/3]. �

Proposition 9.9. — Let v ∈ Xan be a valuation. Assume that for each
ϕ ∈ K(X)× one has

d−mn
∑

fn(w)=v

mfn(w)|w(ϕ)| → 0

as n → ∞. Then the preimages of v equidistribute to the Dirac mass at
the Gauss point.

Proof. — Let µn = d−mnfn∗δv for each n > 0. It suffices to show that
every weak limit µ of a subsequence µni is the Dirac mass at the Gauss
point. Suppose such a µ were not the Dirac mass at the Gauss point. Then
there is some irreducible proper closed set E ( X such that µ(red−1(E)) >
0. Let ψ : Xan → [0, 1] be the continuous function

ψ(w) :=
{

min{1, w(mE)} red(w) ∈ E.
0 red(w) /∈ E.

This function is strictly positive on red−1(E) and 0 elsewhere, so
∫
ψ dµ >

0. On the other hand, if ϕ ∈ mE , then ψ(w) 6 |w(ϕ)|. Thus

0 <
∫
ψ dµ = lim

i→∞

∫
ψ dµni 6 lim

i→∞
d−mni

∑
fni (w)=v

mfn(w)|w(ϕ)| = 0,

a contradiction. This completes the proof. �

Lemma 9.10. — Let p ∈ X be a closed point, and let D be an effective
divisor on X with local defining equation ϕ at p. Then one has the inequal-
ity ordp(ϕ) 6 degLs D, where s > 1 is an integer large enough that Ls is
very ample.

Proof. — The lemma is trivial if p /∈ Supp(D), so assume p ∈ Supp(D).
Since Ls is very ample, there exist global sections s1, . . . , sm of Ls vanishing
at p such that the ti := si,p ∈ mp ⊂ OX,p generate the tangent space at p.
Replacing the si by some K-linear combination of the si if necessary, the
Weierstrass preparation theorem gives that ϕ can be decomposed in ÔX,p
as ϕ = uQ, where u is a unit and

Q(t) = tnm + g1(t1, . . . , tm−1)tn−1
m + · · ·+ gn(t1, . . . , tm−1)

is a Weierstrass polynomial of degree n = ordp(ϕ). It follows that

dimK OX,p/(ϕ, t1, . . . , tm−1) = dimK K[tm]/(tnm) = n = ordp(ϕ).

TOME 64 (2014), FASCICULE 4



1776 William GIGNAC

On the other hand, dimK OX,p/(ϕ, t1, . . . , tm−1) is exactly the local inter-
section multiplicity D · Div(s1) · · · · · Div(sm−1) at p. This is, of course,
bounded above by the global intersection number

D ·Div(s1) · · · · ·Div(sm−1) = degLs D. �

Theorem 9.11. — Let X be a smooth irreducible projective variety,
and f : (X,L) → (X,L) a separable polarized morphism of degree d > 2.
Let v ∈ Xan be a tame valuation. Then the preimages of v equidistribute
to the Dirac mass at the Gauss point of Xan.

Proof. — Let ϕ ∈ K(X)× be a nonconstant function, and let D1 and D2
be effective divisors on X with Div(ϕ) = D1 −D2. Let ξ = red(v). Fix an
n > 1, and let ψ1, ψ2 ∈ K(X)× be rational functions that are regular at
every fn-preimage of ξ such that ϕ = ψ1/ψ2. Then if w ∈ f−n(v) is any
fn-preimage of v,

|w(ϕ)| = |w(ψ1)− w(ψ2)| 6 w(ψ1) + w(ψ2).

It follows from Corollary 9.8 that∑
fn(w)=v

mfn(w)|w(ϕ)| 6 v(Nfn(ψ1)) + v(Nfn(ψ2)).

By construction, ψi is gives a local defining equation of Di at each ζ ∈
f−n(ξ) for i = 1, 2. Since Div(Nfn(ψi)) = fn∗ Div(ψi), it follows that
Nfn(ψi) is regular at ξ and that it is a local defining equation for fn∗Di at
ξ for i = 1, 2.

By assumption v is tame, so there is a constant C > 0 such that v 6
Cordξ on OX,ξ. We then get the inequality∑

fn(w)=v

mfn(w)|w(ϕ)| 6 Cordξ(Nfn(ψ1)) + Cordξ(Nfn(ψ2)).

If p ∈ X is a closed point specializing ξ at which both Nfn(ψ1) and Nfn(ψ2)
are regular, then ordξ(Nfn(ψi)) 6 ordp(Nfn(ψi) for i = 1, 2, giving∑

fn(w)=v

mfn(w)|w(ϕ)| 6 Cordp(Nfn(ψ1)) + Cordp(Nfn(ψ2)).

Since Nfn(ψi) is the local defining equation of fn∗Di at p, we have the
estimate ordp(Nfn(ψi)) 6 degLs fn∗Di, where s > 1 is an integer large
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enough that Ls is very ample. Thus∑
fn(w)=v

mfn(w)|w(ϕ)| 6 C degLs fn∗D1 + C degLs fn∗D2

= C degfn∗Ls D1 + C degfn∗Ls D2

= Cdn(m−1)(degLs D1 + degLs D2).

This proves the estimate d−mn
∑
fn(w)=vmfn(w)|w(ϕ)| = O(d−n). Using

Proposition 9.9, the preimages of v equidistribute to the Dirac mass at the
Gauss point of Xan. �
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