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HIGHER SYMMETRIES OF THE LAPLACIAN
VIA QUANTIZATION

by Jean-Philippe MICHEL (*)

Abstract. — We develop a new approach, based on quantization methods,
to study higher symmetries of invariant differential operators. We focus here on
conformally invariant powers of the Laplacian over a conformally flat manifold
and recover results of Eastwood, Leistner, Gover and Šilhan. In particular, confor-
mally equivariant quantization establishes a correspondence between the algebra
of Hamiltonian symmetries of the null geodesic flow and the algebra of higher sym-
metries of the conformal Laplacian. Combined with a symplectic reduction, this
leads to a quantization of the minimal nilpotent coadjoint orbit of the conformal
group. The star-deformation of its algebra of regular functions is isomorphic to the
algebra of higher symmetries of the conformal Laplacian. Both identify with the
quotient of the universal envelopping algebra by the Joseph ideal.
Résumé. — Nous développons une nouvelle approche, basée sur des méthodes

de quantification, pour étudier les symétries supérieures d’opérateurs différentiels
invariants. Nous traitons ici le cas des puissances conformes du laplacien sur une
variété conformément plate et retrouvons les résultats de Eastwood, Leistner, Gover
et Šilhan. En particulier, la quantifciation conformément équivariante établit une
correspondence entre l’algèbre des symétries hamiltoniennes du flot géodésique nul
et l’algèbre des symétries supérieures du laplacien conforme. Via une réduction
symplectique, ceci conduit à une quantification de l’orbite nilpotente minimale du
groupe conforme. La star-déformation de son algèbre de fonctions régulières est
isomorphe à l’algèbre des symétries supérieures du laplacien conforme. Les deux
s’identifient au quotient de l’algèbre enveloppante de l’algèbre de Lie conforme par
l’idéal de Joseph.

1. Introduction

There are a number of different notions of symmetries for a differential
operator P on a manifold M . The most basic symmetries are the vector
fields X ∈ Vect(M) preserving the considered operator: [P,X] = 0. More
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nilpotent orbit, Symplectic reduction.
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generally, symmetries can be given by differential operators D ∈ D(M) of
arbitrary order which commute with P . Such symmetries obviously pre-
serve the eigenspaces of P . Here, we are interested in the more general
notion of higher symmetries. They are defined as the differential operators
D1 satisfying PD1 = D2P for some differential operator D2. Thus, they
preserve the kernel of P but not the other eigenspaces in general. They
form a subalgebra of D(M).
The higher symmetries given by differential operators of first order form

a Lie algebra g, which contains the vector fields preserving P . The deter-
mination of the space of higher symmetries of P , together with its algebra
and g-module structure, is of interest from at least two points of view: the
integrability of the equation Pφ = 0, with φ in the source space of P , and
the representation theory of the g-module kerP .
Higher symmetries have been investigated first for the Laplacian P = ∆.

On R3, Boyer, Kalnins and Miller have classified all the second order higher
symmetries of the Laplacian [10], which allows them to get all the possible
coordinates systems separating the equation ∆φ = 0. Later on, revealing
the conformal nature of higher symmetries of ∆, Eastwood has classified all
of them on Rn [19]. In particular, he provides an explicit bijection between
the higher symmetries of ∆ and the traceless conformal Killing tensors.
After this seminal work, higher symmetries of various operators have been
investigated from the point of view of parabolic geometries [20, 25, 40],
using either ambient method or tractor calculus. Physics papers have also
appeared on the subject [4, 5].
Up to constants, the Lie algebra of first order higher symmetries of ∆

on Rp,q is given by g = o(p + 1, q + 1), which acts by conformal Killing
vector fields X ∈ Vect(Rp,q), i.e. LXg = fXg, with fX ∈ C∞(M) and g the
pseudo-Euclidean metric. Explicitly, for X ∈ g, we have

(1.1) ∆(X + λDivX) = (X + µDivX)∆,

where Div is the divergence operator, λ = n−2
2n , µ = n+2

2n . In [19], Eastwood
proves that the algebra of higher symmetries of ∆ is a quotient of the
universal enveloping algebra U(g)/J . Moreover, he computes the ideal J
which turns to be equal to the classical Joseph ideal [27].
The results in [19] rely on the conformal invariance of ∆ on Rp,q and

hold as well on any conformally flat manifold (M, g) [25], after replacing ∆
by the conformal Laplacian

P1 = ∇i gij∇j −
n− 2

4(n− 1)R,
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HIGHER SYMMETRIES VIA QUANTIZATION 1583

where ∇ is the Levi-Civita connection and R the scalar curvature. On the
homogeneous model of conformal geometry, given by the product of spheres
Sp × Sq, the representation of g on kerP1 defined by (1.1) integrates to a
unitary irreducible representation of the Lie group G = O(p + 1, q + 1), if
p+ q > 4 is even [6]. This is the intensively studied minimal representation
of G, see e.g. [28, 29]. The induced representation of U(g) on kerP1 has
for kernel the Joseph ideal J , as proved in [6], and coincides then with the
action of higher symmetries on kerP1.
In this paper, we obtain the classification of higher symmetries of P1 and

their algebraic structure in a new manner, using the theory of equivariant
quantization of cotangent bundles [17, 9, 12]. By the way, we get three
new results. First, we establish that the map between traceless conformal
Killing tensors and higher symmetries of the Laplacian is a restriction of
the conformally equivariant quantization, which is defined on all the alge-
bra of symmetric tensors [17]. Second, we identify the algebra of traceless
conformal Killing tensors on Sp × Sq with the algebra of regular functions
on O00, the minimal nilpotent coadjoint orbit of G. Third, we provide a
geometric interpretation for the algebraic structure of the space of higher
symmetries of P1, as the unique g-equivariant star-deformation of the alge-
bra of regular functions on O00, investigated in [1, 2]. We determine more
generally the higher symmetries of the conformal powers of the Laplacian,
denoted P`, and thus recover the results of Gover and Šilhan [25]. The
present approach can be generalized to number of cases, indeed, equivari-
ant quantization is available for any |1|-graded parabolic geometry and for
differential operators acting on any irreducible natural bundles [12].
Let us now detail the content of this paper.
In Section 2, we describe our main tools, namely the classification of

conformally invariant operators on symbols [21, 33], the conformally equi-
variant quantization Qλ,λ [17], parametrized by λ ∈ R, and the induced
star product on symbols [16].
In Section 3, we formulate and prove our first main result. We char-

acterize the space Aλ,` of higher symmetries of P` (with λ = n−2`
2n ) and

the space K` of s-generalized conformal Killing tensors with s < ` [35],
as kernels of some conformally invariant operators. Then, we prove that
conformally equivariant quantization Qλ,λ intertwines both conformally
invariant operators. As a result, we get an isomorphism of g-module Qλ,λ :
K` → Aλ,`, with g the the Lie algebra of conformal vector fields. Note that
explicit formulas are available for the conformally equivariant quantization
[18, 32, 37, 38].

TOME 64 (2014), FASCICULE 4



1584 Jean-Philippe MICHEL

In section 4, we identify the algebras K` and Aλ,`. We prove that the
space K of generalized conformal Killing tensors is the subalgebra of sym-
metric tensors generated by g. Moreover, the spaces K` arise as quotients of
K. Similarly, the spaces of symmetries Aλ,` are obtained as quotients of the
algebra Aλ of differential operators generated by X + λDivX with X ∈ g.
We describe then all the coadjoint orbits of G in the image of the moment
map µ : T ∗Rp+1,q+1 → g∗ as symplectic reductions of the source manifold.
The algebras of regular functions on the two nilpotent orbits in the image
of µ identify with K and K1. As a consequence, we get an explicit descrip-
tion of the symmetry algebras Aλ,` as deformations of K`. More precisely,
the algebra K1 is the algebra of regular functions on the minimal nilpotent
coadjoint orbit O00 and the corresponding symmetry algebra Aλ,1 of P1 is
isomorphic to a quotient U(g)/J . The ideal J is identified with the Joseph
ideal from its defining property: this is the unique completely prime ideal
in U(g) with associated variety O00 [27]. Finally, we build a star product on
each coadjoint orbit in the image of µ. In particular, the conformally equi-
variant quantization induces the unique graded g-equivariant star product
on O00, studied in [1, 2], and furnishes a representation of this star product
on kerP1.

2. Conformal geometry of differential operators and of
their symbols

We introduce in this section the basic notions that we use throughout
the paper. We recall two important results : the existence and uniqueness
of the conformally equivariant quantization [17] and the classification of
the conformally invariant operators on the space of symbols, as in [33].

2.1. Basic definitions

Let M be a smooth manifold and D(M) be the algebra of differential
operators on C∞(M). The algebra D(M) has a natural filtration

D0(M) ⊂ D1(M) ⊂ · · · ⊂ Dk(M) ⊂ · · · ,

where the space Dk(M), of differential operators of order k, is defined as
the space of operators P on C∞(M) satisfying [· · · [P, f0], · · · ], fk] = 0 for

ANNALES DE L’INSTITUT FOURIER
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all functions f0, . . . , fk ∈ C∞(M). The associated graded algebra grD(M)
is defined as

S(M) =
∞⊕
k=0
Dk(M)/Dk−1(M)

and called the algebra of symbols. It identifies to two isomorphic algebras:
the algebra of symmetric tensors Γ(STM) and the algebra of functions on
T ∗M , which are fiberwise polynomial. In that way, S(M) inherits of the
canonical Poisson bracket {·, ·} on T ∗M .
The canonical projections σk : Dk(M) → Dk(M)/Dk−1(M) are called

the principal symbol maps. They satisfy the two following properties

σk+l(AB) = σk(A)σl(B),(2.1)
σk+l−1([A,B]) = {σk(A), σl(B)},(2.2)

for all A ∈ Dk(M) and B ∈ Dl(M).

2.2. Actions of Vect(M) on the spaces of differential operators
and symbols

The diffeomorphisms of M lift canonically to automorphisms of GL(M),
the principal bundle of linear frames overM . Consequently, they act canon-
ically on sections of every associated bundles to GL(M). The corresponding
infinitesimal actions of the Lie algebra Vect(M) of vector fields are given
by Lie derivatives. In particular, we get a Vect(M)-module structure on
the spaces of symbols S(M).
The space of λ-densities is defined as Fλ := Γ(|ΛnT ∗M |⊗λ), with λ ∈ R.

The line bundle |ΛnT ∗M |⊗λ is the associated line bundle

|ΛnT ∗M |⊗λ = GL(M)×ρ R,

where the representation ρ of the group GL(n,R) on R is given by

ρ(A)e = |detA|−λe, ∀A ∈ GL(n,R), ∀e ∈ R.

Via a global section |vol|λ, the Vect(M)-module Fλ identifies to the module
(C∞(M), Lλ), endowed with the Vect(M)-action

(2.3) LλX = X + λDiv(X),

where Div is the divergence operator with respect to |vol|. Note that a
metric g on M defines a canonical 1-density denoted |volg|.

TOME 64 (2014), FASCICULE 4
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The Vect(M)-module Dλ,µ of differential operators from λ- to µ-densities
identifies to (D(M),Lλ,µ), with

Lλ,µX A = LµXA−AL
λ
X ,

for all X ∈ Vect(M) and A ∈ D(M). This action preserves the filtration of
D(M), hence the algebra of symbols inherits of a Vect(M)-action compati-
ble with the grading. This action coincides with the Vect(M)-action by Lie
derivative on

Sδ = S(M)⊗C∞(M) Fδ,

for δ = µ− λ.

2.3. Conformal Lie algebra

A conformal structure on a smooth manifoldM is given by an equivalence
class [g] of pseudo-Riemannian metrics, where two metrics h and g are
considered equivalent if h = Fg for some positive function F ∈ C∞(M). The
signature (p, q) of the metric g is an invariant of the conformal structure.

To each signature corresponds a canonical flat model (Rp,q, [η]), with
η = Ip⊗−Iq. The conformal manifold (M, [g]) is said to be conformally flat
if it admits an atlas (Ui, φi), such that φ∗i [η] coincides with the restriction
of [g] to Ui.

The vector fields that preserve a conformal class [g] are called conformal
Killing vector fields. They are characterized by the equation LXg = fXg,
with LXg the Lie derivative of g along X and fX ∈ C∞(M). If (M, [g]) is
conformally flat of dimension p+ q > 3, the local conformal Killing vector
fields form a sheaf of Lie algebras locally isomorphic to

g = o(p+ 1, q + 1),

which is the conformal Lie algebra of (Rp,q, [η]).
An important example of conformally flat manifold is Sp×Sq, viewed as

a homogeneous space of G = O(p + 1, q + 1). Starting from the isometric
action of G on the pseudo-Euclidean space Rp+1,q+1, we get an action
of G on the space of isotropic half-lines, which identifies naturally to the
manifold Sp×Sq. Via this construction, the flat metric on Rp+1,q+1 induces
a conformally flat structure on Sp × Sq, preserved by the G-action.

ANNALES DE L’INSTITUT FOURIER
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2.4. Conformal invariants

The classification of differential operators, acting between natural bun-
dles and which are invariant under the action of local conformal Killing
vector fields, is the same over all conformally flat manifolds (M, [g]) of sig-
nature (p, q). Using local conformal coordinates (xi), which are such that
gij = Fηij for a positive function F , the invariant differential operators
are given by the same formulæ on (M, [g]) and on Rp,q. Moreover, such a
classification can be deduced from the classification of morphisms of gen-
eralized Verma modules of g = o(p+ 1, q+ 1), obtained in [7, 8]. All results
presented here can also be derived from the Weyl theory of invariants [41],
applied to the affine part of g, and basic computations, see e.g. [33].

First, we provide the well-known classification of the conformal invariants
of the Vect(M)-modules of differential operators Dλ,µ and of symbols Sδ.
We write them in terms of local conformal coordinates (xi, pi) on T ∗M ,
of the corresponding derivatives (∂i, ∂pi), and of the 1-densities |volg| and
|volη| determined by the metrics g and η respectively.

Proposition 2.1. — On a conformally flat manifold (M, [g]), the con-
formal invariants of (Sδ)δ∈R and (Dλ,µ)λ,µ∈R are given, up to a multiplica-
tive constant, by

• R` ∈ S 2`
n for ` ∈ N,

• P` ∈ Dλ,µ for ` ∈ N and λ = n−2`
2n , µ = n+2`

2n ,

where R = |volg|2/ng−1 and P` is the `th conformal power of the Laplacian.
In conformal coordinates, they read locally as R = |volη|2/nηijpipj and
P` = |volη|2`/n(ηij∂i∂j)` .

We refer to [24] and references inside for global expressions of the confor-
mal powers of the Laplacian. Since the principal symbol map is Vect(M)-
equivariant, conformally invariant differential operators give rise to confor-
mally invariant symbols, but the fact that they are in correspondence is
remarkable.
Second, we present the classification of the conformally invariant differ-

ential operators on the space of symbols, as it appears in [33]. It relies on
the harmonic decomposition of the g-module of symbols, namely

Sδ =
⊕

k,s∈N, 2s6k
Sδk,s,

TOME 64 (2014), FASCICULE 4



1588 Jean-Philippe MICHEL

where Sδk,s is the module of symbols S of degree k and of the form S = RsS0
with S0 a traceless symbol. This means TS0 = 0, where T is the trace
operator locally given by T = ηij∂pi∂pj . The other local operators playing
a role are

D = ∂i∂pi , G = ηijpi∂j , ∆ = ηij∂i∂j ,

the divergence, gradient and Laplace operators respectively.

Theorem 2.2. — [33] Let k > 2s and k′ > 2s′ be four integers, and
δ, δ′ ∈ R. The space of conformal invariant differential operators from Sδk,s
to Sδ′k′,s′ satisfies

• if n2 (δ′ − δ) /∈ Z, it is trivial,
• if j = n

2 (δ′ − δ) ∈ Z, it is one dimensional and generated by
Id, if s′ = s, k′ = k and j = 0
Rs
′
DdT s, if s′ − s = j, k − k′ = d− 2j and δ = 1 + 2(k−s)−d−1

n ,

Rs
′
Gg0T

s, if s′ − s = j − g, k − k′ = s− s′ − j and δ = 2s+1−g
n ,

Rs
′L`T s, if s′ − s = j − `, k − k′ = 2(`− j) and δ = 1

2 + k−`
n ,

where G0 = Π0 ◦G with Π0 the projection on traceless symbols and L` =
∆` + a1GD∆`−1 + · · ·+ a`G

`D` for given real coefficients a1, . . . , a`.

Global expression for divergence and gradient operators can be found in
[14], and we refer to [43] for L1.

2.5. Conformally equivariant quantization

Let λ, µ ∈ R and δ = µ−λ. We call quantization the linear isomorphisms

Qλ,µ : Sδ → Dλ,µ,

which are right inverses of the principal symbol map on homogeneous sym-
bols. This means σk ◦ Qλ,µ = Id on Sδk for all k ∈ N.
Let h be a subalgebra of Vect(M). Since both Sδ and Dλ,µ are Vect(M)-

modules, one can look for h-equivariant quantization, i.e. maps Qλ,µ which
intertwine the h-action. There are no such map if h = Vect(M) as proved
in [30]. On a conformally flat manifold, one can choose h = g, the con-
formal Lie algebra. As proved in [17], there exists a unique g-equivariant
quantization Qλ,µ for generic values of δ = µ− λ.

The exceptional values of δ leading to a non-unique or a non-existing
conformally equivariant quantization have been classified in [38, 33]. In
particular, δ = 0 is not an exceptional value.

ANNALES DE L’INSTITUT FOURIER
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Theorem 2.3. — [38, 33] The conformally equivariant quantization ex-
ists and is unique on Sδk,s if and only if there is no conformally invariant
differential operators from Sδk,s to

⊕
k′<k Sδk′ , i.e. for δ /∈ IDk,sq

(
IGk,s ∪ ILk,s

)
where

IDk,s =
{

1 + 2(k − s)− d− 1
n

| d ∈ J1, k − 2sK
}
,

IGk,s =
{

2s+ 1− g
n

| g ∈ J1, sK
}
, ILk,s =

{
1
2 + k − l

n
| l ∈ J1, sK

}
.

(2.4)

Explicit formulæ are available for the conformally equivariant quantiza-
tion. As an example, we recall the one obtained by Radoux [37] on the
space Sδ∗,0 =

⊕
k∈N Sδk,0 of traceless symbols. It relies on the divergence

operator and the normal ordering, which are locally defined by D = ∂i∂pi
and N : Si1···ik(x)pi1 · · · pik 7→ Si1···ik(x)∂i1 · · · ∂ik .

Proposition 2.4. — [37] Let δ /∈ {1 + 2k−1−m
n |m = 1, . . . , k}, λ ∈ R

and µ = λ + δ. On the space Sδk,0 of traceless symbols of degree k, the
conformally equivariant quantization is given by

(2.5) Qλ,µ = N ◦
(

k∑
m=0

ckmD
m

)
,

with ck0 = 1 and ckm = k−m+nλ
m(2k−m−1+n(1−δ)) c

k
m−1, for m = 1, . . . , k.

The conformal equivariance ofQλ,µ implies that it is globally well-defined
over conformally flat manifolds. In the general case, including symbols with
non-vanishing trace, fully explicit formulæ are known only for symbols up to
the degree 3 in momenta variables p [18, 32]. Moreover, Šilhan has obtained
an expression for the conformally equivariant quantization in the curved
case on all symbols, in terms of the tractor calculus [38].
We will need an extra statement on the conformally equivariant quanti-

zation, which is not in the literature but can be straightforwardly deduced
from [17].

Proposition 2.5. — Let λ, µ ∈ R with δ = µ − λ and let E be a g-
submodule of Sδ. For a shift δ /∈ 1

nN
∗, there exists a unique g-equivariant

quantization Qλ,µ : E → Dλ,µ.

TOME 64 (2014), FASCICULE 4
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2.6. Conformally equivariant graded star product

Let us start with standard definitions. The algebra of symbols S0 is
commutative and graded, moreover, as a subalgebra of C∞(T ∗M), it car-
ries a Poisson bracket denoted by {·, ·}. A graded (or homogeneous) star
product on S0 is an associative C[[~]]-linear product ? on S0 ⊗ C[[~]],
with ~ a formal parameter. For S1, S2 ∈ S0, it is of the form S1 ? S2 =∑
m∈N (i~)mBm(S1, S2) and satisfies:
(1) B0(S1, S2) = S1S2,
(2) B1(S1, S2)−B1(S2, S1) = {S1, S2},
(3) for all integers k, l,m, Bm : S0

k⊗S0
l → S0

k+l−m is a bilinear operator.
A frequently required extra property is the symmetry (or parity) of the
star product, namely Bm(S1, S2) = (−1)mBm(S2, S1) for all integers m, or
equivalently S1 ? S2 = S2 ? S1, where · is the complex conjugation.

Let us introduce three maps: the C[[~]]-linear map = : S0 ⊗ C[[~]] →
S0 ⊗ C[[~]] defined by (i~)kId on S0

k , the C[[~]]-linear extension Qλ ⊗ Id :
S0 ⊗ C[[~]]→ Dλ,λ ⊗ C[[~]] of some quantization Qλ and the composition
Qλ~ = (Qλ ⊗ Id) ◦ =. We denote by ∗ the adjoint operation with respect
to the Hermitian product (φ, ψ) =

∫
M
φψ, defined on complex compactly

supported half-densities.

Proposition 2.6. — The product ?λ defined by

(2.6) S1 ?
λ S2 = (Qλ~)−1(Qλ~(S1) ◦ Qλ~(S2)

)
, ∀S1, S2 ∈ S0 ⊗ C[[~]],

is a graded star product on S0. If the quantization satisfies Q
1
2
~ (S) =

Q
1
2
~ (S)∗ for all S ∈ S0, then the star product ? 1

2 is symmetric.

Proof. — These results are classical. Using the property
(
σk ◦ Qλ~

)
|Sk(M) =

(i~)kId of the quantization Qλ~ and the two Properties (2.1) and (2.2) of the
principal symbol maps, one easily proves that ?λ is a graded star product.
If the quantization satisfies Q

1
2
~ (S) = Q

1
2
~ (S)∗ for all S ∈ S0, we deduce

that S1 ?
1
2 S2 = S2 ?

1
2 S1 for all symbols S1, S2, thanks to the equalities

Q
1
2
~ (S1 ?

1
2 S2) =

(
Q

1
2
~ (S1) ◦ Q

1
2
~ (S2)

)∗
= Q

1
2
~ (S̄2 ?

1
2 S̄1). �

The action of X ∈ Vect(M) on S0 ⊂ C∞(T ∗M) is given by the Hamil-
tonian derivation {µX , ·}, where µX = Xipi. From a star product ? on S0,
we can define a new action of Vect(M) on S0 ⊗C[[~]] via the star bracket,
i.e. X ∈ Vect(M) acts on S ∈ S0⊗C[[~]] by [µX , S]? = µX ?S−S?µX . Let
h be a subalgebra of Vect(M). The star product is said h-equivariant (or
strongly h-invariant) if both induced h-actions coincide, namely [µX , S]? =

ANNALES DE L’INSTITUT FOURIER



HIGHER SYMMETRIES VIA QUANTIZATION 1591

i~{µX , S} for all X ∈ h and all S ∈ S0. As one can expect, conformally
equivariant quantizations give rise to g-equivariant star products.

Proposition 2.7. — [17, 16] Let (M, [g]) be a conformally flat mani-
fold. The star product ?λ induced by the conformally equivariant quanti-
zation Qλ,λ via Equation (2.6) is a graded g-equivariant star product on
S0. It is symmetric if and only if λ = 1

2 .

It is easy to prove that all graded g-equivariant star products on S0 arise
in that way.

3. Classification of the higher symmetries of the conformal
powers of the Laplacian

The aim of this section is to show how conformally equivariant quanti-
zation sheds new light on the determination of higher symmetries of con-
formal Laplacian, initiated by Eastwood [19] and pursued in [20] and [25]
for conformal powers of the Laplacian, in the conformally flat case. In all
this section we work over a conformally flat manifold (M, [g]) of dimension
n > 3 and P` denotes the `th conformal power of the Laplacian, pertaining
to Dλ,µ for values of the weights henceforth fixed to λ = n−2`

2n , µ = n+2`
2n .

3.1. Definition of higher symmetries of P`

Let λ′ ∈ R and (P`) = {DP`|D ∈ Dµ,λ
′} be the left ideal generated by

P` in Dλ,λ
′ , with either λ′ = λ or λ′ = µ, depending on the context.

Definition 3.1. — The space of higher symmetries of P` is

Aλ,` = {D1 ∈ Dλ,λ such that ∃D2 ∈ Dµ,µ, P`D1 = D2P`}/(P`).

IfD1 = DP`, withD ∈ Dµ,λ, the equality P`D1 = (P`D)P` holds. Hence,
all elements D1 ∈ (P`) satisfy the relation P`D1 = D2P` and the quotient
defining Aλ,` is well-defined.
Clearly, Aλ,` is a subalgebra of Dλ,λ/(P`) and coincides with the kernel

of the conformally invariant map

QHS : Dλ,λ/(P`) → Dλ,µ/(P`)
[D] 7→ [P`D](3.1)

where QHS stands for Quantum Higher Symmetries and [D] = D + (P`).
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Remark 3.2. — Resorting to conformal coordinates, higher symmetries
prove to be locally the same on flat and conformally flat manifolds, but
global existence can nevertheless be problematic in this more general set-
ting. We do not address this issue and work only locally.

Example 3.3. — The higher symmetries of P` given by first order dif-
ferential operators are the constants, acting by multiplication as zero order
differential operators, and the Lie derivatives LλX for X ∈ g. In accordance
with Proposition 2.1, we have indeed P`LλX = LµXP`.

3.2. Symmetries of the null geodesic flow and generalizations

Choosing a metric g ∈ [g], we can regard P1 as acting on functions.
Then, D1 ∈ Dk(M) is a higher symmetry if there exists A ∈ D(M) such
that [P1, D1] = AP1. Applying the principal symbol map and using (2.2),
we get

{R, σk(D1)} ∈ (R),
where R = σ2(P1) (see Proposition 2.1) and (R) is the ideal generated by
R in S0. Consequently, σk(D1) is constant along the Hamiltonian flow of
R, on the level set R = 0. Via the isomorphism TM ∼= T ∗M , provided by
the metric g, this flow identifies with the null geodesic flow so that σk(D1)
is a constant along the null geodesics. Thus, σk(D1) is a conformal Killing
tensor. We recall their definition, using round bracket for symmetrization
of indices and the partial derivatives (∂i) associated to local conformal
coordinates (xi). Moreover, L is an arbitrary tensor and G0 = Π0 ◦G (see
Theorem 2.2).

Definition 3.4. — A conformal Killing k-tensor K is defined equiva-
lently as

• A symmetric traceless tensor of order k s.t. ∂(i0Ki1···ik) = g(i0i1Li2···ik),
• A traceless symbol of degree k satisfying {R,K} ∈ (R),
• A traceless symbol of degree k in the kernel of G0.

Easy computations lead to the equivalence between the three assertions.
As for higher symmetries, we are not concerned by global existence ques-
tions and work locally. For k = 1, we recover the notion of conformal Killing
vectors whose space identifies to the Lie algebra g. The conformal Killing
tensors of higher orders correspond to transformations of the phase space
T ∗M not preserving the configuration manifold M . Besides, the space of
conformal Killing k-tensors is a finite-dimensional representation of g which
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turns out to be irreducible, as a consequence of Lepowsky’s generalization
[31] of the Bernstein-Gelfand-Gelfand resolution. We can generalize this
picture to tensors (or symbols) with trace, using the conformal invariance
of G2s+1

0 T s on S0
k,s. The following definition is due to Nikitin and Prilipko

[35].

Definition 3.5. — A s-generalized conformal Killing k-tensor K is de-
fined equivalently as

• A symmetric traceless tensor of order (k − 2s) s.t.
∂(i0 · · · ∂i2sKi2s+1···ik) = g(i0i1Li2···ik),

• A symbol RsK ∈ S0
k,s which is in the kernel of G2s+1

0 T s.

The equivalence of the two assertions relies on the equality T s(RsK) =
cK, where c is a constant. Again, the space of s-generalized conformal
Killing tensors of order k is an irreducible g-module. We denote this sub-
space of S0

k,s by Kk,s and set K∗,s =
⊕

k>2sKk,s,

(3.2) K =
⊕
s∈N
K∗,s and K` = K/(R`) '

`−1⊕
s=0
K∗,s.

Remark 3.6. — Killing k-tensors are symmetric tensors satisfying
∂(i0Ki1···ik) = 0, or equivalently symbols of degree k satisfying {R,K} = 0.
One can easily check that Killing tensors are elements of K.

3.3. From classical to quantum symmetries

Here, we state and prove our first result : the conformally equivariant
quantization Qλ,λ establishes a bijection between the two spaces of sym-
metries Aλ,` and K`. The existence of a g-module isomorphism between
Aλ,` and K` was established for the first time in [25] via different methods.
We assume that ` ∈ N∗, λ = n−2`

2n and µ = n+2`
2n . To state our theorem we

need the following

Lemma 3.7. — Let (R`) be the left ideal generated by R` in S0 and
(P`) be the ideal generated by P` in Dλ,λ. The conformally equivariant
quantization satisfies Qλ,λ((R`)) = (P `) and induces then an isomorphism
of g-modules

(3.3) Qλ,λ : S0/(R`)→ Dλ,λ/(P `).

Abusing notation, we call it a conformally equivariant quantization and
denote it by Qλ,λ.
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Proof. — The map SR` 7→ Qµ,λ(S)P` is conformally equivariant on (R`)
and provides a right inverse to the principal symbol map on homogeneous
symbols. By Proposition 2.5, this map coincides with Qλ,λ. �

Theorem 3.8. — The conformally equivariant quantization as in (3.3)
induces an isomorphism of g-modules Qλ,λ : K` → Aλ,`, identifying higher
symmetries of P` with s-generalized conformal Killing tensors for s < `.
Moreover, every K ∈ K satisfies P`Qλ,λ(K) = Qµ,µ(K)P`.

Proof. — The idea of the proof is to use the conformally equivariant
quantization to identify the kernel Aλ,` of the operator QHS, see (3.1),
with the one of an operator CHS on symbols, its name standing for Clas-
sical Higher Symmetries. As a consequence, we have to deal with the quo-
tient algebras Dλ,λ′/(P`) with λ′ = λ or λ′ = µ. Clearly, the principal
symbol maps descend as surjective maps σk : Dλ,λ

′

k /(P`) →
⊕`−1

s=0 S
λ′−λ
k,s

and, whenever it exists, the conformally equivariant quantization gives then
an isomorphism of g-modules, namely Qλ,λ′ :

⊕`−1
s=0 Sλ

′−λ
∗,s → Dλ,λ′/(P`),

where Sλ′−λ∗,s =
⊕

k∈N S
λ′−λ
k,s .

If 2` < n
2 + 1, Qλ,µ exists on

⊕`−1
s=0 Sλ

′−λ
∗,s , according to Proposition

2.3. The operator CHS is then determined by the following commutative
diagram of g-modules

(3.4) Dλ,λ/(P`)
QHS // Dλ,µ/(P`)

⊕`−1
s=0 S0

∗,s

Qλ,λ

OO

CHS
// ⊕`−1

s=0 S
2`
n
∗,s

Qλ,µ

OO

Thus, CHS is a conformally invariant operator, and as such it should fit in
the classification given in Theorem 2.2. On S0

∗,s, the operator CHS is then
equal to R`−s−1G2s+1

0 T s, up to a multiplicative constant. This constant
cannot be zero since QHS does not vanish on the image of S0

∗,s. Hence, by
Definition 3.5, the kernel of QHS is isomorphic to the space K` via the map
Qλ,λ.

For arbitrary values of `, Qλ,µ may not exist and the proof is more
involved. The conformally invariant operator CHS is then defined via the
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following commutative diagram of g-modules

(3.5) Dλ,λk /(P`)
QHS // Dλ,µk′ /(P`)

σk′

��
S0
k,s

Qλ,λ

OO

CHS
// S

2`
n

k′ ,

where k′ ∈ N is taken as small as possible, so that CHS does not van-
ish. According to Theorem 2.2, the operator CHS is proportional either to
R`−s−1G2s+1

0 T s or to R`+s−k−n2 Lk+n
2
T s, and the second case can occur

only if n/2 + (k − s) 6 `.
We prove that Qλ,λ(ker CHS) = ker QHS. Since Qλ,λ is a bijective lin-

ear map, we get that Qλ,λ(ker CHS) contains ker QHS. We prove the con-
verse inclusion. If CHS is proportional to R`−s−1G2s+1

0 T s, we obtain that
Qλ,λ(ker CHS) = ker QHS by irreducibility of the kernel of CHS. If CHS is
proportionnal to R`+s−k−n2 Lk+n

2
T s, then CHS has for target space S2`/n

k′,s′

with k′ = 2`−k−n and s′ = 2`−2(k−s)−n. According to Proposition 2.3,
Qλ,µ exists on S2`/n

k′,s′ , so that one gets the conformally invariant operator

(
QHS ◦ Qλ,λ −Qλ,µ ◦ CHS

)
: S0

k,s → D
λ,µ
k′′ /(P`),

with k′′ < k′. But the only conformally invariant operator S0
k,s → S

2`/n
k′′

is zero, hence the latter operator vanishes and we get Qλ,λ(ker CHS) =
ker QHS in all cases.

We prove that CHS is proportional to R`−s−1G2s+1
0 T s. Suppose it is not

the case, then CHS is proportionnal to R`+s−k−n2 Lk+n
2
T s and its kernel

is infinite dimensional. Since Qλ,λ(ker CHS) = ker QHS for all k, s, the
graded associated algebra to Aλ,` satisfies grAλ,` ' ker CHS, and is then a
subalgebra of S0/(R`). If its intersection with S0

k,s is infinite dimensional,
then its intersection with S0

m for m > k is infinite dimensional also. But,
as stated above, CHS is proportional to R`−s′−1G2s′+1

0 T s
′ on S0

m,s′ , for all
s′, if m is big enough. The intersection of the kernel of CHS with S0

m is
then finite dimensional. As a consequence, CHS cannot be proportionnal
to R`+s−k−n2 Lk+n

2
T s

Combining the results of the two preceding paragraph, we get the desired
correspondence between K` and Aλ,` in the general case.
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Now, we can define on Dλ,λ a new conformally invariant operator QHS0 :
D 7→ P`D−Qµ,µ◦(Qλ,λ)−1(D)P`. If Qλ,µ exists, the commutative diagram

Dλ,λ
QHS0 // Dλ,µ

S0

Qλ,λ

OO

// S 2`
n

Qλ,µ

OO

leads to a non-vanishing conformally invariant operator on S0
∗,s, which, by

Theorem 2.2, is proportional to the same operator CHS as before if s <
`− 1, and to the null operator otherwise. We conclude that P`Qλ,λ(K) =
Qµ,µ(K)P` for any K ∈ K if Qλ,µ exists. The proof in the general case is
analogous. �

Remark 3.9. — For ` = 1 and (M, g) a conformally flat Lorentzian
manifold, classical and quantum symmetries for the equations of motion
of a free massless particle correspond to each other: {R,K} ∈ (R) ⇐⇒
[P1,Qλ,λ(K)] ∈ (P1).

Remark 3.10. — The differential operators commuting with P` are the
higher symmetries satisfying Qλ,λ(K) = Qµ,µ(K), K ∈ K. In particular,
for Killing 2-tensors K, one has [34]

Qα,α(K) = Kij∇i∇j + (∇iKij)∇j −
n2α(1− α)

(n+ 1)(n+ 2)(∇i∇jKij)

− n2α(α− 1)
(n− 2)(n+ 1)RicijKij

+ 2n2α(1− α)
(n− 2)(n− 1)(n+ 1)(n+ 2)R gijKij ,

where α ∈ R, ∇ is the Levi-Civita connection, Ric the Ricci tensor and
R the scalar curvature. Since λ + µ = 1, we get Qλ,λ(K) = Qµ,µ(K), and
these operators are symmetries of P`.

Remark 3.11. — Explicit expressions can be obtained for the higher
symmetries of P` via the formulæ for the conformally equivariant quanti-
zation given in (2.5) for ` = 1 or in [38] for the general case. The obtained
differential operators admit analogs in the curved case, which are not neces-
sarily higher symmetries anymore. E.g. all the conformal Killing 2-tensors
do not give rise to higher symmetries of the conformal Laplacian in general
[34].
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4. Algebras of symmetries: geometric realizations and star
deformations

The aim of this section is to provide a geometric interpretation for the
algebras of classical symmetries, to deduce from them the algebras of higher
symmetries of P` and to identify the star products induced by their compo-
sition as differential operators. In all this section we work over a conformally
flat manifold (M, [g]) of dimension n > 3 and signature (p, q).

4.1. Algebras of symmetries are generated by g

Let us give a brief reminder on universal enveloping algebra U(h) and
symmetric algebra S(h) of an arbitrary Lie algebra h. See e.g. [15] for more
details. From the tensor algebra of h, U(h) and S(h) inherit respectively a fil-
tration {Uk(h)}k and a grading S(h) =

⊕
k Sk(h) such that grU(h) ' S(h).

Consequently, the canonical projections Uk(h) → Uk(h)/Uk−1(h) define
principal symbol maps, whose right inverses are called quantizations of
S(h). Two such quantizations Q1, Q2 : S(h) → U(h) are then linear bijec-
tions and satisfy Q−1

1 ◦ Q2 = Id + N with N : S(h) → S(h) a map which
strictly lowers the degree. The symmetrization map Sym : S(h) → U(h)
given by

(4.1) Sym : Xi1 · · ·Xik 7→
1
k!
∑
τ∈Sk

Xτ(i1) · · ·Xτ(ik)

is known to define a h-equivariant quantization of S(h) for the canonical
extensions of the adjoint action of h to S(h) and U(h) [15]. Any other h-
equivariant quantization is then of the form Φ = Sym ◦φ, with φ = Id +N

and N a h-equivariant map on S(h) strictly lowering the degree.
We return to the Lie algebra g = o(p + 1, q + 1), acting by conformal

Killing vector fields on (M, [g]). Let µ0 : T ∗M → g∗ be the moment map.
Via the defining universal properties of the algebras S(g) and U(g), the
comoment map µ∗0 : g → S0

1 and the Lie derivative Lλ : g → Dλ,λ1 (see
(2.3)) extend to algebra morphisms µ∗0 : S(g)→ S0 and Lλ : U(g)→ Dλ,λ.
Let K be the space of generalized conformal Killing tensors, defined in (3.2).

Proposition 4.1. — Let λ ∈ R. The spaces K and Aλ := Qλ,λ(K) are
algebras satisfying

K = µ∗0(S(g)) ' S(g)/I and Aλ = Lλ(U(g)) ' U(g)/Jλ,
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where I is a graded ideal of S(g) and Jλ is a filtered ideal of U(g)) such
that gr Jλ ' I.
Moreover, the conformally equivariant quantization of K lifts to a g-

equivariant quantization Φλ of S(g), such that the following diagram com-
mutes

(4.2) S(g)

µ∗0

��

Φλ // U(g)

Lλ

��
K

Qλ,λ
// Aλ

Proof. — We start with proving K = µ∗0(S(g)). Let ` ∈ N∗. By definition,
the space of higher symmetriesAλ,` is a subalgebra of Dλ,λ/(P`). Therefore,
the equality K` = K/(R`) (see (3.2)) implies that K is a subalgebra of S0.
From Lλ(g) ⊂ Aλ,` we deduce µ∗0(g) ⊂ K and then µ∗0(S(g)) ⊂ K. Since the
g-module µ∗0(S(g)) ∩ S0

k,s is clearly non-empty and Kk,s is an irreducible
g-module, we get the converse inclusion.
Now, we prove that Aλ = Lλ(U(g)). By semi-simplicity of g, the finite

dimensional representations of g are completely reducible. In particular,
K∩S0

k can be viewed as a g-submodule of Sk(g) for all k ∈ N. This leads to
the decomposition S(g) ' K⊕ I of the symmetric algebra. In other words,
µ∗0 admits a g-equivariant section. Using the embedding of Lλ(U(g)) into
Dλ,λ, we get then the following diagram of g-modules

S(g)
Sym // U(g)

Lλ

��
K

OO

Qλ,λ ((QQQQQQQQQQQQQQQQ Lλ(U(g))

��
Dλ,λ

Each arrow in the latter diagram is g-equivariant and preserves the princi-
pal symbol. Hence, uniqueness of Qλ,λ on the g-module K implies that the
diagram is commutative, proving Aλ = Lλ(U(g)).
Since µ∗0 respects the grading, its kernel I is a graded ideal, and since Lλ

preserves the filtration, its kernel Jλ is filtered. Using the commutativity
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of the following diagram,

Uk(g)

��

Lλ // Aλ ∩ Dλ,λk

��
Sk(g)

µ∗0 // Kk,

where the vertical arrows denote principal symbol maps, we get that
gr Jλ = I.
We have proved S(g) ' K⊕I, and along the same line we get U(g) ' Aλ⊕

Jλ. Using again the semi-simplicity of g, the isomorphism Jλk /J
λ
k−1 ' Ik

leads to Jλk ' Ik ⊕ Jλk−1. Thus, there exists an isomorphism of g-modules
between I and Jλ, inverse to the symbol map. Together with the previous
decomposition of S(g) and U(g), this ensures the existence of the quantiza-
tion Φλ and the commutativity of the Diagram (4.2). �

The proof shows that Kk,s = µ∗0(S(g)) ∩ S0
k,s. Thus, on conformally flat

manifolds, the s-generalized conformal Killing k-tensors are algebraically
generated from the conformal Killing vectors. This fact can also be deduced
from results in [11].
We recall that Aλ,` is the algebra of higher symmetries of P` (see Def-

inition 3.1) and K` is the space of s-generalized conformal Killing tensors
with s < ` (see (3.2)).

Corollary 4.2. — Let ` ∈ N∗ and λ = n−2`
2n . We have the isomor-

phisms of algebras

K` = K/(R`) ' S(g)/I` and Aλ,` = Aλ/(P`) ' U(g)/Jλ,`,

where the ideals are I` = I + (µ∗0)−1(R`) and Jλ,` = Jλ + (Lλ)−1(P`).

Proof. — By definition, we have K` = K/(R`). The equality Aλ,` =
Aλ/(P`) is a consequence of Qλ,λ(K`) = Aλ,` and Qλ,λ((R`)) = (P`) (see
Theorem 3.8 and Lemma 3.7 respectively). The remaining results follow
from Proposition 4.1, R` ∈ µ∗0(S(g)) and again Qλ,λ((R`)) = (P`). �

4.2. A family of coadjoint orbits of O(p+ 1, q + 1)

We restrict in this section to the case where M is the homogeneous
space Sp × Sq of the conformal group G = O(p + 1, q + 1). This group
admits a linear Hamiltonian action on T ∗Rp+1,q+1, hence it embeds into
the symplectic linear group Sp(2n+ 4,R), with n = p+ q. The centralizer
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of G in Sp(2n + 4,R) is isomorphic to SL(2,R), and they form together a
Howe dual pair, see [26]. Their moment maps are given explicitly by

(4.3) µ : T ∗Rp+1,q+1 → g∗ and J : T ∗Rp+1,q+1 → sl(2,R)∗
(u, v) 7→ u ∧ v (u, v) 7→ (u · v, u2, v2)

where u, v ∈ Rp+1,q+1 and we use the G-module isomorphisms g∗ ' g '
Λ2Rp+1,q+1.
Our aim is to describe the coadjoint orbits in the image of µ as symplectic

reductions at 0. This is closely related to known results on symplectic dual
pairs [3], see also [36].

We consider Lie groups generated by the flow of Hamiltonian functions
in J∗

(
S(sl(2,R))

)
, i.e. polynomial functions in x2 = ηABx

AxB , xp =
xApA and p2 = ηABpApB , where (xA, pA) are Cartesian coordinates on
T ∗Rp+1,q+1. Important such functions are given by the Casimir elements
of g and sl(2,R) in C∞(T ∗Rp+1,q+1). They are equal to

C = (xp)2 − x2p2

and C/4 respectively, if we define the Killing form by the map (X,Y ) 7→
1
2Tr(ρ(X)ρ(Y )) with ρ the standard representation.
We denote by 〈f1, . . . , fk〉 the Lie group generated by the flow of

Hamiltonian functions f1, . . . , fk ∈ C∞(T ∗Rp+1,q+1) and by
T ∗Rp+1,q+1// 〈f1, . . . , fk〉 the corresponding symplectic quotient at 0. If
the linear span of those functions is closed under the Poisson bracket, the
above symplectic quotient is then the quotient of the common zero locus of
f1, . . . , fk by their Hamiltonian flows. By the Marsden-Weinstein Theorem,
this quotient space is a symplectic manifold if 0 is a regular value of the
involved Hamiltonian functions. E.g., we have

(4.4) T ∗
(
Rp+1,q+1 \ {0}

)
//
〈
xp, x2〉 ' T ∗(Sp × Sq).

Note that T ∗(Sp × Sq) splits into three stable submanifolds under the
Hamiltonian G-action, according to the sign of the norm of covectors, with
straightforward notation: T ∗(Sp×Sq) = T ∗+(Sp×Sq)tT ∗0 (Sp×Sq)tT ∗−(Sp×
Sq).

Theorem 4.3. — Let p, q > 1, n > 3 and P (α, β) be the space of planes
in Rp+1,q+1 of signature (α, β). The coadjoint orbits of G in the image of
µ are classified as follows:

(1) the one parameter family of semi-simple orbits Oa+ and Oa− for
a ∈ R∗+ such that

T ∗Rp+1,q+1// 〈xp,C − a〉 Z4−−−−−→Oa+ t Oa−
'−−−−−→P (2, 0) t P (0, 2),
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(2) the one parameter family of semi-simple orbits Oa for a ∈ R∗− such
that

T ∗Rp+1,q+1// 〈xp,C − a〉 Z4−−−−−→Oa
'−−−−−−→P (1, 1),

(3) the two nilpotent orbits O0+ and O0− such that

T ∗+(Sp × Sq) t T ∗−(Sp × Sq) Z2−−−−−→O0+ t O0−
R∗−−−−−→P (1, 0) t P (0, 1),

(4) The minimal nilpotent orbit O00 such that

(T ∗(Sp × Sq) \ Sp × Sq)// 〈R〉 Z2−−−−−→O00
R∗−−−−−→P (0, 0),

(5) The null orbit {0}.
All the arrows denote G-equivariant coverings, whose fibers are indicated
as superscript. The first ones are symplectomorphisms.

Proof. — Through the G-module isomorphisms Λ2Rp+1,q+1 ' g ' g∗,
coadjoint orbits are identified to G-orbits in the space of bivectors, endowed
with the natural G-action. The moment map µ defined by (4.3) takes its
values in the space of simple bivectors Bv = {u ∧ v|u, v ∈ Rp+1,q+1}.
Our key tool is the G-equivariant projection of Bv on the Grassmannian
Gr(2, n + 2) of planes in Rp+1,q+1. This is encompassed in the following
sequence of G-spaces:

(4.5) T ∗Rp+1,q+1 SL(2,R)−−−−−→Bv R∗−−−−−→Gr(2, n+ 2) ∪ {0},

where the superscripts denote the fibers of the coverings over Bv \ {0} and
Gr(2, n + 2). The moment map µ is G-equivariant, hence a G-stable sub-
set of T ∗Rp+1,q+1 projects onto coadjoint orbits of G, which themselves
project onto G-orbits of Gr(2, n + 2) ∪ {0}. Thanks to the Witt Theo-
rem, the latter are known to be {0} and the 6 spaces P (α, β) of planes of
given signature (α, β) for the induced metric. From (4.4), we easily get that
T ∗±(Rp+1,q+1

∗ )//
〈
xp, x2〉 ' T ∗±(Sp × Sq) and also that(

T ∗(Rp+1,q+1
∗ ) \ (Rp+1,q+1

∗ )
)
//
〈
xp, x2, p2〉 ' (T ∗(Sp×Sq)\(Sp×Sq))// 〈R〉,

where Rp+1,q+1
∗ := Rp+1,q+1 \ {0}. Thus, in the four non-trivial cases, we

deal with symplectic reductions of G-stable subset of T ∗Rp+1,q+1. We easily
check that the common zero locus of the Hamiltonian functions defining
the reduction have the announced images in Gr(2, n+2). Moreover, the one
parameter groups generated by the Hamiltonian flows of xp, x2, p2 and C
are respectively given by (u, v) 7→ (etu, e−tv), (u, v) 7→ (u, v+ tu), (u, v) 7→
(u + tv, v) and (u, v) 7→ (u + (tu2)v, v − (tv2)u), for t ∈ R. They act only
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in the fibers of µ, hence the map µ descends to the symplectic quotients.
A direct computation proves that the fibers of µ on the reduced spaces are
of cardinal 4 or 2. They admit a transitive action of the discrete groups Z4
and Z2 respectively, the action of their generators being (u, v) 7→ (−v, u)
and (u, v) 7→ (−u,−v). We end with the four sequences (1), (2), (3), and
(4). There, a unique coadjoint orbit lies over each orbit in Gr(2, n + 2),
since the action of the group G is transitive in the fibers of each arrow. For
a proof of the minimality of O00 we refer to [42]. �

The points (3) and (4) in the latter theorem combine, according to
Cordani [13], to provide a conformal regularization by T ∗M of the cone
O0+ ∪ O00 ∪ O0− , with singularity in O00.

Remark 4.4. — The used symplectic reductions of T ∗Rp+1,q+1 corre-
spond to symplectic reduction with respect to the moment map J of SL(2,R)
at, respectively, the points (0,±

√
a,∓
√
a) for a>0, (0,

√
|a|,
√
|a|) for a<0,

(0, 0,±1) and (0, 0, 0). Hence, we obtain a bijection between the coadjoints
orbits of SL(2,R) and the ones in the image of µ. Similar results are ob-
tained in [3] for general dual pairs, under the symplectic Howe condition.

Now, we determine the algebra of regular functions on each coadjoint
orbit of G in the image of µ. We have g ' Λ2Rp+1,q+1, that we represent
by the Young diagram . Accordingly, elementary representation theory of
the orthogonal Lie algebra leads to

(4.6) g� g = ⊕ and =
0
⊕ 0 ⊕ R.

In the second decomposition, the index 0 denotes the trace-free part, and
the three components correspond to K2,0, K2,1 and the one-dimensional
space generated by the Casimir element in S2(g), still denoted by C. The
extra term in the decomposition of g� g is generated by exterior products
in ΛRp+1,q+1 of elements in g ' Λ2Rp+1,q+1.

Lemma 4.5. — The comoment map µ∗ : S(g)→ C∞(T ∗Rp+1,q+1) has a
non-trivial kernel, given by the ideal generated by .

Proof. — Since elements of g are skew-symmetric 2-tensors V AB on
Rp+1,q+1, the map µ∗ is explicitly given by

V AB···CD 7→ xA · · ·xCV AB···CDpB · · · pD,

and vanishes then on tensors V AB···CD which are skew-symmetric in any
3 indices. Hence, the g-module is in the kernel of µ∗. In consequence,
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µ∗(Sk(g)) is contained in the g-module Sk(g)/
( )

, described by the Young
diagram with 2 lines and k columns. But none of the irreducible components
of such a Young diagram is in the kernel of µ∗, as all the traces, x2, xp, p2,
can occur in C∞(T ∗Rp+1,q+1). In conclusion, the algebra µ∗(S(g)) is iso-
morphic to S(g)/

( )
. �

Proposition 4.6. — Let a ∈ R, C the Casimir element of g and Ia =(
[C − a]R⊕

)
an ideal of S(g). The algebras of regular functions on Oa(±)

are given by S(g)/Ia.

Proof. — Following the proof of Theorem 4.3, we get that the moment
map µ descends to T ∗(Rp+1,q+1 \ {0})// 〈xp,C〉 and provides thus a Z4-
covering of the two orbits O0± . Hence, for all a ∈ R, the coadjoint orbit
Oa(±) admits a Z4-covering by a symplectic reduction of T ∗Rp+1,q+1. More-
over, the generator of Z4 acts by (u, v) 7→ (−v, u), so that it leaves invariant
the functions in µ∗g, which are linear combinations of xApB − xBpA, for
A,B = 0, . . . , p + q + 1. Therefore, on each coadjoint orbit Oa(±) , the al-
gebra of regular functions is isomorphic to the reduction of µ∗(S(g)) by
〈xp,C − a〉. The reduction with respect to xp modifies only the fibers of µ
and the Casimir element C Poisson commutes with all elements in µ∗(S(g)),
so that reduction with respect to 〈xp,C − a〉 amounts to modding out by
(C − a). �

4.3. The algebras of classical and quantum symmetries

We return now to a general conformally flat manifold (M, [g]), and use
notation of Section 4.1. In particular, K denotes the algebra of generalized
conformal Killing tensors, generated by µ∗0(g) in C∞(T ∗M), and K1 =
K/(R) is the algebra of traceless conformal Killing tensors over M .

Theorem 4.7. — The algebra K is isomorphic to the algebras of regular
functions on the orbits O0± , given by S(g)/I0 with I0 =

(
C · R⊕

)
and

C the Casimir element of g. Moreover, the algebra K1 is isomorphic to the
algebra of regular functions onO00, given by S(g)/I00 with I00 = ( 0)+I0.

Proof. — The algebras K and K1 are of local nature and thus we can
assume that M = Sp × Sq. According to Proposition 4.1, the algebra K
is generated by µ∗0g, where µ0 : T ∗±M → g∗ is the moment map of g. By
Theorem 4.3, µ0 is a Z2-covering of the coadjoint orbits O0± and the action
of Z2 leaves invariant the functions in µ∗0g. Hence, K identifies with the
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algebra of regular functions on the orbits O0± and the isomorphism K '
S(g)/I0 follows then from Proposition 4.6. Similarly, the coadjoint orbit
O00 admits a Z2-covering by the symplectic quotient (T ∗M \M)// 〈R〉.
Thus, the algebra of regular functions on O00 arises as a reduction of K.
Since {R,K} ⊂ (R), this reduced algebra is K/(R) ' K1. As R ∈ K2,1 is
the pullback of an element in 0, we finally obtain K1 ' S(g)/I00 and
I00 = ( 0) + I0. �

We can now recover the description of the algebras of higher symmetries
Aλ,` of the `th conformal powers of the Laplacian P`, obtained originally
in [25]. In addition, we determine the algebra Aλ = Qλ,λ(K), generated
by the space of Lie derivatives Lλ(g) in Dλ,λ. Recall that we define the
Killing form by 1

2Tr(XY ), for every X,Y ∈ g. The corresponding Casimir
operator in U(g) is given by C = Sym(C), the symmetrization of C ∈ S(g)
(see (4.1)).

Theorem 4.8. — For every λ ∈ R, the algebras Aλ = Qλ,λ(K) are
isomorphic to U(g)/Jλ with Jλ =

(
Sym

( )
⊕ [C − ρ(λ)]R

)
, where ρ(λ) =

n2λ(1− λ) is the eigenvalue of the Casimir operator C on λ-densities.
For λ = n−2`

n , the algebra of higher symmetries Aλ,` is isomorphic to
U(g)/Jλ,`, where Jλ,` is generated by Jλ and the Young diagram ... 0 of
length 2`. In particular, Jλ,1 is the Joseph ideal.

Proof. — According to Proposition 4.1 and Theorem 4.7, we have Aλ '
U(g)/Jλ and the graded ideal associated to Jλ is I0. We deduce that Jλ is
also generated by quadratic elements and we get then Jλ2 = Φλ(I2), with
I2 = I0∩S2(g) and Φλ = Sym◦φλ (see Proposition 4.1). The map φλ being
g-equivariant, the space φλ(I2) is a g-submodule of U2(g) ' R⊕ g⊕ S2(g).
Hence, Jλ2 is generated by Sym

( )
and the Casimir operator C of U(g),

modified by some real number ρ(λ). Since C − ρ(λ) projects onto 0 via
Lλ : U(g) → Dλ,λ, the real number ρ(λ) is necessarily the eigenvalue of
Lλ(C) on λ-densities. The latter has been computed in [17] for the opposite
Killing form.
From Corollary 4.2, we deduce that Aλ,` is isomorphic to U(g)/Jλ,`,

where Jλ,` is generated by Jλ and the Young diagram ... 0 of length 2`.
Thanks to Theorem 3.8, we have the isomorphism of algebras gr (Aλ,1) '
K1. As K1 ' S(g)/I00 and the ideal I00 is prime, we deduce that Jλ,1
is completely prime. Besides, their common characteristic variety is the
closure of the minimal nilpotent coadjoint orbit of G. These two properties
characterize the Joseph ideal [27]. �

ANNALES DE L’INSTITUT FOURIER



HIGHER SYMMETRIES VIA QUANTIZATION 1605

The identification of the Joseph ideal in the context of the higher sym-
metries of the Laplacian was already obtained in different manners [22, 39],
but not from its original definition like here. The determination of the ideals
Jλ,` has been already performed in the context of higher symmetries of P`
in [19, 20, 25], but in different terms. Let us make clear the link between
the two approaches. We denote by 〈·, ·〉 the chosen Killing form and C

the associated Casimir element in S(g). In the previous works, the projec-
tions of X � Y ∈ g� g on each irreducible component are used. Following
g�g = 0⊕ 0⊕R⊕ , we have X�Y = X�Y +X•Y + 〈X,Y 〉

2 dim gC+X∧Y .

Then, the ideal Jλ is clearly generated by Sym
( 〈X,Y 〉

2 dim g (C − ρ(λ)) +X ∧ Y
)

for X,Y ∈ g or equivalently by

Sym
(
X � Y −X � Y −X • Y + ρ(λ)

2 dim g
〈X,Y 〉

)
,

which is the obtained expression in [19, 20, 25], modulo the extra generator
associated to R`.

4.4. Quantization of a family of coadjoint orbits of G

Let H be a Lie group with Lie algebra h. Assume Φ : S(h) → U(h) is
a h-equivariant quantization of the Poisson algebra S(h) (see (4.1)). Anal-
ogously to the case of symbols, a h-equivariant graded star product ?Φ
can be obtained on S(h), as the pullback of the product on U(h) ⊗ C[[~]]
by the map Φ~ = (Φ ⊗ Id) ◦ =, where = : S(h) ⊗ C[[~]] → S(h) ⊗ C[[~]]
is the linear map defined by (i~)kId on Sk(h). Denoting by τ and γ the
anti-automorphisms of U(h) and S(h) defined by −Id on h, the symmetry
of the star product on S(h) is equivalent to Φ~(̄·) = τ ◦ Φ~(·), or simply
Φ ◦ γ = τ ◦ Φ.
The regular functions on the coadjoint orbits of H are Poisson algebras

S(h)/I, for various ideals I. To build graded h-equivariant star-products on
them boils down to find h-equivariant quantization maps S(h)/I → U(h)/J
with grJ ∼= I, see e.g. [2]. A method is to find a h-equivariant quantization
Φ of S(h), such that Φ(I) = J . This is not trivial, Φ(I) is not an ideal of
U(h) in general [23]. On minimal nilpotent coadjoint orbits, for h 6= sl(n)
a simple Lie algebra, there exists a unique h-equivariant quantization and
a unique graded h-equivariant star-product [1, 2]. In that case, J is the
Joseph ideal.
Here, we build a family of graded g-equivariant star-products, out of a

family of g-equivariant quantization of S(g), on the coadjoint orbits Oa(±) ,
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a ∈ R, and O00, as given in Theorem 4.3. According to Theorem 4.7,
the algebra of regular functions on O0± is the algebra K ' S(g)/I0 of
generalized conformal Killing tensors. By Diagram (4.2), the g-equivariant
quantization Qλ,λ on K lifts to a quantization on S(g) and induces a star-
deformation of K. This extends to the algebra of regular functions S(g)/Ia
on Oa(±) (see Proposition 4.6) via the following Lemma.

Lemma 4.9. — Let a ∈ R. There exists a g-equivariant linear map φa =
Id +Na on S(g), such that Na strictly lowers the degree and φa(Ia) = I0.
Thus, we get S(g)/Ia ' K as g-modules.

Proof. — We know that S(g) ' I ⊕K and I = (C) +
( )

. Resorting to

the semi-simplicity of g and the filtration of Ia = (C − a) +
( )

, we get
that S(g) ' Ia + S(g)/Ia and (C − a) admits a g-stable complement in Ia.
The map φa defined by C

C−a Id on (C−a) and by the identity on a g-stable
complementary space satisfies the required properties. �

Theorem 4.10. — There exists a family of g-equivariant quantizations
(Φλa)a,λ∈R of S(g) such that: (i) it lifts (Qλ,λ)λ∈R to S(g) for a = 0, (ii) it
induces a family of symmetric g-invariant star products on the coadjoint
orbits Oa(±) for a ∈ R, (iii) if a = 0 and λ = n−2

2n , it induces the unique
graded g-equivariant star-product on the minimal coadjoint orbit O00.

Proof. — The Proposition 4.1 ensures the existence of a g-equivariant
quantization Φλ of S(g) lifting Qλ,λ for every λ ∈ R. The lift property
is equivalent to Φλ(I) = Jλ. We define then the family of g-equivariant
quantizations Φλa = Φλ ◦ φa, where φa is introduced in Lemma 4.9. It can
be chosen such that φ0 = Id, so (i) is trivially satisfied. The Lemma 4.9
ensures that Φλa(Ia) is an ideal and a g-module, hence the g-invariant star
product ?Φλa on S(g), induced by Φλa , descends on the quotient S(g)/Ia. We
recall that ?Φλa is symmetric if Φλa satisfies τ ◦Φλa = Φλa ◦ γ. Redefining Φλa
by 1

2 (Φλa + τ ◦ Φλa ◦ γ), this is trivially the case, and the quantization Φλ0
is still a lift of Qλ,λ by uniqueness of the latter. This proves (ii). The last
point follows then from Corollary 4.2, Proposition 4.6 and the uniqueness
result in [1, 2]. �

Remark 4.11. — For two distinct coadjoint orbits, the star products
obtained above do not coincide in general. This is reminiscent to the work
of Fioresi and Lledó [23], dealing with star products tangential to semi-
simple coadjoint orbits of semi-simple Lie groups.

Remark 4.12. — Via the conformally equivariant quantization Qλ,λ, the
star-product on the minimal nilpotent coadjoint orbit of O(p+ 1, q + 1) is

ANNALES DE L’INSTITUT FOURIER



HIGHER SYMMETRIES VIA QUANTIZATION 1607

represented by the algebra of differential operators preserving the kernel of
the conformal Laplacian. The latter space is nothing else than the minimal
unitary representation of O(p+ 1, q + 1) if p+ q > 4 is even [6].
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