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SYMPLECTIC PERIODS OF THE CONTINUOUS
SPECTRUM OF GL(2n)

by Shunsuke YAMANA

Abstract. — We provide a formula for the symplectic period of an Eisenstein
series on GL(2n) and determine when it is not identically zero.
Résumé. — On donne une formule pour la période symplectique d’une série

d’Eisenstein pour le groupe GL(2n) et on détermine sous quelles conditions celle-ci
n’est pas identiquement nulle.

Introduction

After Jacquet and Rallis [6] initiated the study of global symplectic peri-
ods for automorphic representations of GL(2n), Offen [10, 11] determined
which automorphic representations in the discrete spectrum of GL(2n) have
a nonvanishing symplectic period. In this paper we generalize his result to
the entire automorphic spectrum of GL(2n).
We write G for the group GL(2n) viewed as an algebraic group over a

number field F with adele ring A. Fix a skew symmetric matrix ε in G(F )
and let H = Hε denote its symplectic group. For an automorphic form φ

on G(A), we define the symplectic period of φ by

PH(φ) =
∫
H(F )\H(A)

φ(h)dh.

The integral may not converge in general, but can be defined via regular-
ization (see [10]). Let π be an irreducible subrepresentation of the space of
automorphic forms on G(A). We say that π is H-distinguished if there is
φ ∈ π such that PH(φ) 6= 0. In the description below, we refer to the body
of this paper for all unexplained notation.

Keywords: symplectic periods, intertwining periods, continuous spectrum.
Math. classification: 11F67, 11F70.



1562 Shunsuke YAMANA

The theory of Eisenstein series provides a description of the contin-
uous spectrum of L2(G(F )\G(A)) in terms of the discrete spectrum of
Levi subgroups of G. Let Q = LV be a standard parabolic subgroup of
G of type (k1, . . . , kr). Given a square-integrable automorphic form ψ on
V (A)Q(F )\G(A) and s ∈ a∗L,C, the Eisenstein series

E(g, ψ, s) =
∑

γ∈Q(F )\G(F )

ψ(γg)e〈s,HL(γg)〉

converges for <s regular enough in the positive Weyl chamber. The Eisen-
stein series is meromorphic in the complex parameter s and is holomorphic
near the imaginary axis

√
−1a∗L.

Lemma 2.4 shows that if s ∈
√
−1a∗L, then E(ψ, s) has a convergent

integral over H(F )\H(A). Thus PH(E(ψ, s)) is a meromorphic function
on a∗L,C which is holomorphic on

√
−1a∗L. In Proposition 2.5 we will show

that PH(E(ψ, s)) is identically zero unless all ki are even. In the latter
case we derive a formula of PH(E(ψ, s)) from a formula of the symplectic
period of truncated cuspidal Eisenstein series obtained by Offen [10] and the
description of the discrete spectrum proven by Moeglin and Waldspurger
[8], using Cauchy’s integral formula and Fubini’s theorem. The idea of the
proof is the same as that of Arthur [1]. This formula generalizes the formula
that was proven by Jacquet and Rallis [6] and then extended by Offen [10].
To rewrite this formula in a form which is more suitable for our purpose,

Section 3 extends the theory of the intertwining period to square-integrable,
but not necessarily cuspidal, automorphic forms on V (A)Q(F )\G(A). Sup-
pose that all ki are even. We take a skew symmetric matrix y in L(F ) and
η ∈ G(F ) so that y = ηε tη. Let Hy = ηHη−1 be the symplectic group of
y. Put Ly = Hy ∩ L. The period integral

PLy (ψ)(g) =
∫
Ly(F )\Ly(A)

ψ(lg)dl

is convergent. We define the global intertwining period by the integral

J(wθL, ψ, s) =
∫
η−1Ly(A)η\H(A)

PLy (ψ)(ηh)e〈s,HL(ηh)〉dh,

which converges absolutely for <s ∈ a∗L sufficiently regular in the positive
Weyl chamber. We will prove in Theorem 3.2 that for s ∈ a∗L,C in general
position

PH(E(ψ, s)) = J(wθL, ψ, s).
By the description of the discrete spectrum of GL(N) alluded to above,

there is a bijection between irreducible automorphic representations in the
discrete spectrum of L and pairs (d, σ), where d = (d1, . . . , dr), di is a

ANNALES DE L’INSTITUT FOURIER



SYMPLECTIC PERIODS 1563

factor of ki for each i, ni = ki/di and σ = ⊗ri=1σi is an irreducible cuspi-
dal automorphic representation of

∏r
i=1 GL(ni,A). Let Pi be the standard

parabolic subgroup of GL(ki) of type (ni, . . . , ni) and view
∏r
i=1 Pi as the

standard parabolic subgroup of L. Let π be the unique irreducible quotient
of the induced representation of L(A) obtained from the representation
⊗ri=1(σ⊗dii ⊗ρ1/ni

Pi
) of

∏r
i=1 Pi(A), where ρPi is the square root of the mod-

ulus function of Pi(A). Then π occurs in the discrete spectrum of L.
For s ∈ a∗L,C let I(π, s) denote the automorphic representation of G(A)

induced from π[s] := π ⊗ e〈s,HL(·)〉. Let ψ ∈ I(π, 0). If not all di are even,
then J(wθL, ψ, s) is identically zero as PLy (ψ) = 0 by the result of Offen
[10]. When all di are even, we will show in Section 4 that J(wθL, ψ, s) is
factorizable and expressed as a ratio of L-functions up to finitely many
local factors at the ramified places and conclude that J(wθL, ψ, s) is not
identically zero for a suitable choice of ψ by appealing to Offen’s works
[10, 11]. In particular, I(π, s) is H-distinguished for generic values of the
parameter s, if and only if there is a point s ∈ a∗L,C such that I(π, s) is H-
distinguished, and if and only if all di are even. This concludes the project
initiated by Jacquet and Rallis and then developed by Offen.
This project was suggested to us by Erez Lapid, to whom we are most

thankful. We have profited from conversations with Erez Lapid and Omer
Offen during the course of this work. We would like to thank the He-
brew University of Jerusalem, where this paper was partly written. The
author is supported by JSPS Grant-in-Aid for Research Activity Start-up
24840033. This work is partially supported by the JSPS Institutional Pro-
gram for Young Researcher Overseas Visits “Promoting international young
researchers in mathematics and mathematical sciences led by OCAMI”.
Last, but not least, we thank the referee for useful comments.

Notation

Let F be a number field with adele ring A. For any positive integer m
we denote by Gm the group GL(m) viewed as an algebraic group over F .
We fix a natural number n and denote G = G2n. Let K be the standard
maximal compact subgroup of G(A) and P0 = M0U0 the Borel subgroup of
G of upper triangular matrices in G, where M0 is the subgroup of diagonal
matrices and the unipotent radical U0 of P0 is the subgroup of unipotent
upper triangular matrices. A parabolic subgroup of G is called standard if
it contains P0. A Levi subgroup of a standard parabolic subgroup of G is
called standard if it contains M0. By parabolic and Levi subgroups of G
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1564 Shunsuke YAMANA

we always mean standard parabolic and Levi subgroups of G. There is a
bijection between standard Levi subgroups of Gm and ordered partitions
of m.

Let P = MU be a parabolic subgroup of G. We denote the lattice of
rational characters of M by X∗(M). For χ ∈ X∗(M) we define a ho-
momorphism |χ| : M(A) → R×+ by |χ|(m) =

∏
v |χv(mv)|v, where the

product ranges over all places v of F , χv is the extension of χ to M(Fv)
and | · |v is the standard absolute value on Fv. We form the real vec-
tor space aM = HomZ(X∗(M),R). We also have the dual vector space
a∗M = X∗(M)⊗Z R, and its complexification a∗M,C = X∗(M)⊗Z C. In case
M = M0 we write a∗0 = a∗M0

. The canonical pairing on a∗0×a0 is denoted by
〈 , 〉, which induces a nondegenerate pairing on a∗M×aM . A height function
HM : G(A)→ aM is the left U(A)-invariant, right K-invariant function on
G(A) satisfying e〈χ,HM (m)〉 = |χ|(m) for m ∈ M(A) and χ ∈ X∗(M). Put
M(A)1 = {m ∈ M(A) | HM (m) = 0}. Let A0 be the image of R2n

+ in
M0(A) under the isomorphism M0 ' G2n

m , where R ↪→ F ⊗ R is given
by x 7→ 1 ⊗ x. We can form the central subgroup TM of M , the inter-
section AM of A0 with TM (A) and the discrete part L2

disc(M(F )\M(A)1)
of L2(M(F )\M(A)1). Note that M(A) = AM ×M(A)1 and HM induces
an isomorphism AM ' aM . It is well-known that L2

disc(M(F )\M(A)1) de-
composes with multiplicity one. We denote by Πd(M) the set of irreducible
subrepresentations of the representation ofM(A)1 on L2

disc(M(F )\M(A)1),
and by Πc(M) the set of irreducible cuspidal automorphic representations
ofM(A)1. We view irreducible representations ofM(A)1 as representations
of M(A) by extending the action of M(A)1 to M(A) so that AM acts triv-
ially. If π is an irreducible representation of M(A) and λ belongs to a∗M,C,
then π[λ](m) = π(m)e〈λ,HM (m)〉 is another irreducible representation of
M(A). The set of associated a∗M,C orbits is in bijective correspondence un-
der the restriction mapping fromM(A) toM(A)1 with the set of irreducible
unitary representations of M(A)1.

Let R+(M0,M) and ∆M
0 be the sets of positive roots and simple roots

of M0 in M , respectively. We write ρM0 ∈ a∗0 for half the sum of elements
in R+(M0,M). More generally, for another Levi subgroup L of G with
M ⊂ L, the parabolic subgroup P ∩L of L determines the sets R+(TM , L)
and ∆L

M . Namely, R+(TM , L) is the set of elements in X∗(TM ) obtained
by decomposing the Lie algebra of U ∩ L under the adjoint action of TM ,
and ∆L

M the set of linear forms on aM obtained by restriction of elements
in the complement of ∆M

0 in ∆L
0 . Let (aLM )∗ be the vector subspace of a∗M

generated by ∆L
M . Note that there is a canonical direct sum decomposition

ANNALES DE L’INSTITUT FOURIER
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a∗M = a∗L ⊕ (aLM )∗. Let ρLM = ρLP be the projection of ρL0 on a∗M . When
L = G, we will write ρP and ∆M in place of ρGP and ∆G

M .
Let WM denote the Weyl group of M . We write W = WG. For standard

Levi subgroups M,M ′ of G we write W (M,M ′) for the set of elements
w ∈ W of minimal length in wWM such that wMw−1 = M ′. A para-
bolic subgroup P ′ = M ′U ′ is said to be associated to P if W (M,M ′) is
not empty. Set W (M) =

⋃
M ′W (M,M ′). Explicitly, an element of W (M)

is represented by a unique permutation matrix that shuffles the diagonal
blocks of M without causing any internal change within each block.
Let wn be the n× n permutation matrix with unit anti-diagonal. Put

ε = ε2n =
( 0 wn

−wn 0

)
.

We represent θ as the automorphism θ(g) = ε tg−1ε−1. The symmetric space
attached to (G, θ) is the variety

C = {x ∈ G | xθ(x) = 1}.

The group G acts on C by the twisted conjugation g ? x = gxθ(g)−1. Since
C is a translate by ε of the space of nondegenerate skew symmetric matrices
of size 2n, the space C is a single G-orbit. For x ∈ C and any subgroup Q
of G we will denote the stabilizer of x in Q by Qx. However, we will denote
by Hx the group Gx and further by

H = Sp(n) = {g ∈ G | gε tg = ε}

the stabilizer in G of the identity. For a subgroup Q of G we will always
denote QH = Q ∩ H, which gives a bijection between θ-stable parabolic
subgroups of G and parabolic subgroups of H. If Q = LV is a θ-stable
parabolic subgroup, then QH = LHVH is a Levi decomposition for QH .

Note that θ stabilizes the Borel subgroup P0 and hence defines involu-
tions on a0 and a∗0. Let (a∗0)±θ denote the ±1 eigenspaces of θ in a∗0. We
identify (a∗0)+

θ with X∗((M0)H)⊗Z R. For θ-stable Levi subgroups M ⊂ L
of G let ∆LH

MH
be the set of nontrivial projections of elements of ∆L

M onto
(a∗0)+

θ . Then ∆LH
MH

is a basis of ((aLM )∗)+
θ , and ∆H

(M0)H forms a set of sim-
ple roots for H with respect to the Borel subgroup (P0)H of H. We make
similar definitions for the set of coroots and denote by (∆̂∨)LHMH

the dual
basis of ∆LH

MH
in (aLM )+

θ . There is a unique element ρPH ∈ (a∗M )+
θ such

that δPH (m) = e〈2ρPH ,HM (m)〉 for all m ∈ MH(A), where δPH denotes the
modulus function on PH(A). We fix Haar measures on various groups as
in [10].

TOME 64 (2014), FASCICULE 4



1566 Shunsuke YAMANA

1. Residues of cuspidal Eisenstein series

This section explains how the general Eisenstein series is obtained as a
residue of a cuspidal Eisenstein series. For two integers a 6 b we denote
the set {a, a + 1, . . . , b} by [a, b]. We understand that [a, b] = ∅ if a > b.
For λ ∈ C we define the character νλ of Gm(A) by g → | det g|λ. Let
(m1, . . . ,mt) be an ordered partition of 2n and P = MU the standard par-
abolic subgroup of G of type (m1, . . . ,mt). For ρ = ⊗i∈[1,t]ρi ∈ Πd(M) and
λ = (λ1, . . . , λt) ∈ a∗M,C ' Ct we write ρ[λ] for the pull-back of ⊗i∈[1,t]ν

λiρi
to P (A). We denote by I(ρ, λ) the representation induced from ρ[λ] to G(A)
using normalized parabolic induction. We will write I(ρ) in place of I(ρ, 0)
and identify the spaces of the representations I(ρ, λ) with the space I(ρ)
by restricting functions to K. The action is then given by

[I(ρ, λ)(g)ψ](y) = ψ(yg)e〈λ,HM (yg)〉−〈λ,HM (y)〉 (ψ ∈ I(ρ), g, y ∈ G(A)).

For ψ ∈ I(ρ) we define ψλ ∈ I(ρ, λ) by

ψλ(g) = e〈λ,HM (g)〉ψ(g).

We will identify W (M) with the permutation group St of [1, t] in the
following way. For τ ∈ St we define a permutation matrix wM (τ) ∈W (M)
by wM (τ) = (Aij), where Aij is the mτ−1(i) ×mj zero matrix unless i =
τ(j), in which case Aij = 1mj . Note that when w = wM (τ),

wdiag(g1, . . . , gt)w−1 = diag(gτ−1(1), . . . , gτ−1(t)).

Thus wMw−1 is of type (mτ−1(1), . . . ,mτ−1(t)),

wρ = ⊗i∈[1,t]ρτ−1(i), wλ = (λτ−1(1), . . . , λτ−1(t)).

We form the Eisenstein series on G(A) by

E(g, ψ, λ) =
∑

γ∈P (F )\G(F )

ψλ(γg).

If P ′ = M ′U ′ is associated to P , then for w ∈ W (M,M ′) the intertwining
operator M(w, λ) is defined by

M(w, λ)ψ(g) = e−〈wλ,HM′ (g)〉
∫
Uw(A)\U ′(A)

ψ(w−1ug)e〈λ,HM (w−1ug)〉du,

where Uw = U ′ ∩ wUw−1. The series and the integral both converge ab-
solutely if <λ sufficiently regular in the positive Weyl chamber, and they
possess meromorphic continuations to the space a∗M,C.
The classification of the discrete spectrum for Gm(A) was established

through a deep study by Moeglin and Waldspurger of residues of cuspidal
Eisenstein series in [8]. The representations in Πd(Gm) are parametrized
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by pairs (d, σ0) where d divides m and σ0 ∈ Πc(Gm/d). Given such a pair
(d, σ0), the representation I(σ⊗d0 ,Λd) has the unique irreducible quotient
which is denoted by L(σ0,Λd), where

Λd =
(
d− 1

2 ,
d− 3

2 , . . . ,
1− d

2

)
.

The representation L(σ0,Λd) occurs in L2
disc(Gm(F )\Gm(A)1) with mul-

tiplicity one. In particular, L(σ0,Λd) ∈ Πc(Gm) if and only if d = 1. For
ϕ ∈ I(σ⊗d0 ) the meromorphic function

E(ϕ, λ)
d−1∏
i=1

(λi − λi+1 − 1)

is holomorphic at λ = Λd. We define the multiresidue E−1(ϕ) of E(ϕ, λ)
at λ = Λd to be its limit as λ → Λd. The functions E−1(ϕ) are square
integrable automorphic forms on Gm(A), and ϕΛd 7→ E−1(ϕ) defines an
intertwining map from I(σ⊗d0 ,Λd) onto L(σ0,Λd).
Let ki = dini and let (k1, . . . , kr) be a partition of 2n. Take P to be the

standard parabolic subgroup of G with Levi component

M = GL(n1)× · · · ×GL(n1)︸ ︷︷ ︸
d1

× · · · ×GL(nr)× · · · ×GL(nr)︸ ︷︷ ︸
dr

.

LetQ=LV denote the standard parabolic subgroup ofG of type (k1, . . . , kr).
Put

σ = ⊗i∈[1,r]σ
⊗di
i ∈ Πc(M), π = ⊗i∈[1,r]L(σi,Λdi) ∈ Πd(L).

Put

∆i = [d′i + 1, d′i+1], ∆′i = [d′i + 1, d′i+1 − 1], i ∈ [1, r],

where d′i =
∑i−1
j=1 dj for i ∈ [1, r + 1]. We put |d| = d′r+1 and set

Λd = (Λd1 ,Λd2 , . . . ,Λdr ) ∈ a∗M ' R|d|.

We define on a∗M,C the linear functionals

Rj(λ) = λj − λj+1, j ∈ [1, |d| − 1].

For ϕ ∈ I(σ) let

EQ(g, ϕ, λ) =
∑

γ∈P (F )\Q(F )

ϕ(γg)e〈λ,HM (γg)〉

TOME 64 (2014), FASCICULE 4
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be an Eisenstein series induced from P ∩ L to L. The function EQ−1(ϕ) is
defined by

EQ−1(ϕ) = lim
λ→Λd

EQ(ϕ, λ)
r∏
i=1

∏
j∈∆′

i

(Rj(λ)− 1)

 .
The limit exists and ϕΛd 7→ EQ−1(ϕ) defines a nonzero intertwining map

I(σ,Λd)→ I(π).

As a representation of G(A) induced from a unitary representation, I(π) is
known to be irreducible [2, 13]. For s ∈ a∗L,C we study the Eisenstein series
E(EQ−1(ϕ), s). The series E(EQ−1(ϕ), s) can be continued to a meromorphic
function on the space a∗L,C which is holomorphic on

√
−1a∗L (cf. [9]). It is

important to note that

(1.1) E(EQ−1(ϕ), s) = lim
λ→Λd

E(ϕ, λ+ s)
r∏
i=1

∏
j∈∆′

i

(Rj(λ)− 1)

 .
For w ∈W (M) we define the multiresidue M−1(w, s) of the intertwining

operator M(w, λ) to be the limit

M−1(w, s) = lim
λ→Λd

M(w, λ+ s)
r∏
i=1

∏
j∈∆′

i
, w(j)>w(j+1)

(Rj(λ)− 1)

 .
The limit exists when s ∈ a∗L,C is in a general position.

2. The period of the residue

Let A (G) be the space of automorphic forms on G(A). For φ ∈ A (G)
and a parabolic subgroup P of G we denote by EP (φ) the set of exponents
of φ along P . Let A (G)′ denote the space of automorphic forms on G(A)
whose exponents λ along P satisfy

〈λ,$∨〉 6= 〈2ρPH − ρP , $∨〉

for all $∨ ∈ (∆̂∨)HMH
and all θ-stable standard parabolic subgroups P =

MU of G. Let Af be the finite part of A. The procedure outlined in [4, 7],
using a mixed truncation operator ΛTm to regularize the integral, can be
applied to our case with little adjustment. We refer to [10] for the precise
definition and necessary modifications. Here we recall the properties of the
regularized period and its characterization:

ANNALES DE L’INSTITUT FOURIER
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Proposition 2.1 ([10]). — (1) The regularized integral

φ 7→
∫ ∗
H(F )\H(A)

φ(h)dh

gives a right H(Af)-invariant functional on A (G)′.
(2) If φ ∈ A (G) is integrable over the domain H(F )\H(A), then∫ ∗

H(F )\H(A)
φ(h)dh =

∫
H(F )\H(A)

φ(h)dh.

(3) For any φ ∈ A (G) the function T 7→
∫
H(F )\H(A) ΛTmφ(h)dh, defined

for T ∈ (a0)+
θ sufficiently regular in the positive Weyl chamber, is

of the form
∑
λ pλ(T )e〈λ,T 〉, where λ may be taken from the set⋃

PH
(ρP − 2ρPH + EP (φ)) and pλ(T ) are polynomials. Moreover, if

φ∈A (G)′, then p0(T ) is constant and is equal to
∫ ∗
H(F )\H(A) φ(h)dh.

Let P = MU be a θ-stable standard parabolic subgroup of G and ρ ∈
Πc(M). We denote by vMH

the volume of the parallelogram formed by
∆∨MH

. For ψ ∈ I(ρ) we define j(ψ) by

j(ψ) =
∫
KH

∫
MH(F )\MH(A)1

ψ(mk)dmdk.

Let us put

(2.1) µ = ρP0 − 2ρ(P0)H =
(
−1

2 , . . . ,−
1
2 ,

1
2 , . . . ,

1
2

)
∈ (a∗0)+

θ .

Theorem 2.2 (Offen [10]). — Let ρ ∈ Πc(M) and ψ ∈ I(ρ). Then∫
H(F )\H(A)

ΛTmE(h, ψ, λ)dh =
∑
w

vM ′
H
e〈µ+wλ,T 〉∏

α∈∆H
M′
H

〈µ+ wλ, α∨〉
j(M(w, λ)ψ),

where the sum is over all permutations w ∈ W (M) such that the type of
M ′ = wMw−1 is of the form (m1, . . . ,mt,mt, . . . ,m1).

Proof. — If M ′ = wMw−1 is of type (m1, . . . ,mt,mt, . . . ,m1), then

ρP ′ − 2ρP ′
H

= (ρP0 − ρM
′

P0
)− 2(ρ(P0)H − ρ

M ′H
(P0)H ) = ρP0 − 2ρ(P0)H ,

from which Theorem 2.2 is nothing but Theorem 7.8 of [10]. �

Let P , Q, σ and π be the same as in Section 1 in the rest of this section.

Lemma 2.3. — Let s ∈
√
−1a∗L and ψ ∈ I(π). Then the real parts of

cuspidal exponents of E(ψ, s) are permutations of the sequence

(−Λd1 ;−Λd2 ; . . . ;−Λdr )

TOME 64 (2014), FASCICULE 4
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of length |d| in which the order of elements in the segment −Λdi is preserved
for every i ∈ [1, r].

Proof. — Let ϕ ∈ I(σ). The Eisenstein series E(ϕ, λ) is concentrated on
parabolic subgroups associated to P and hence so is its residueE(EQ−1(ϕ), s).
If P ′ = M ′U ′ is associated to P , then the constant term of E(ϕ, λ) relative
to P ′ is given by ∑

w∈W (M,M ′)

M(w, λ)ϕ(g)e〈wλ,HM′ (g)〉.

Lemme on p. 650 of [8] and the adjoint formula of the intertwining operators
show that

lim
λ→Λd

M(w, λ+ s)ϕ(g)
r∏
i=1

∏
j∈∆′

i

(Rj(λ)− 1)

 = 0

unless w reverses the orders of elements in the segments ∆1, . . . ,∆r, which
completes the proof by (1.1). �

Lemma 2.4. — If s ∈
√
−1a∗L and ψ ∈ I(π), then the integral∫
H(F )\H(A)

E(h, ψ, s)dh

is absolutely convergent.

Proof. — It is explained in the proof of Proposition 1 of [3] how the
convergence of the period of an automorphic form depends only on its
cuspidal exponents. The symplectic period of an automorphic form φ on
G(A) converges if there is κ ∈ a∗0 such that for each standard parabolic
subgroup P ′ = M ′U ′ of G

〈ρP ′ − 2ρ(P0)H + ν + κM
′
, $∨〉 < 0

for all $∨ ∈ (∆̂∨)H(P0)H and all the real parts of cuspidal exponents ν of φ
along P ′, where κM ′ is the projection of κ on (aM ′0 )∗. Put

e+
i = (1, . . . , 1︸ ︷︷ ︸

i

, 0, . . . , 0), e−i = −(0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
i

).

Lemma 2.3 shows that 〈ν, e±i 〉 6 0 for all i ∈ [1, 2n] and all the real parts
of cuspidal exponents ν of E(ψ, s). Since $∨ ∈ (∆̂∨)H(P0)H has the form
1
2 (e+

n + e−n ) or e+
i + e−i for i ∈ [1, n− 1], we see that 〈ν,$∨〉 6 0. Note that

ρP0 = ρM
′

P0
+ ρP ′ . Thus κ = ρP0 works in view of (2.1). �
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For any permutation τ ∈ St we define κτ ∈ S2t via

κτ (2i− 1) = τ−1(i), κτ (2i) = 2t+ 1− τ−1(i), i ∈ [1, t].

Put Mτ = κτMκ−1
τ . When τ = 1, we denote κ2t = κτ and M† = Mτ .

Proposition 2.5. — Let ϕ ∈ I(σ) and s ∈
√
−1a∗L. Then∫

H(F )\H(A)
E(h,EQ−1(ϕ), s)dh = 0

unless all di are even. If all di are even, then for each τ ∈ St,∫
H(F )\H(A)

E(h,EQ−1(ϕ), s)dh = vMτ
H
j(M−1(κτ , s)ϕ).

In particular, the right hand side is independent of the choice of τ .
Offen demonstrated the special case of this result for r = 1 in [10].

Though the proof holds almost verbatim for our general case, we reproduce
it here. For λ ∈ a∗M,C we write W (M)λ for the subset of W (M) consisting
of all elements w that satisfy the following conditions:

• the type of wMw−1 is of the form (m1, . . . ,mt,mt, . . . ,m1);
• µ+ wλ ∈ (a∗0)−θ .

Lemma 2.6. — Let s = (s1, . . . , sr) ∈
√
−1a∗L. Suppose that s1, . . . , sr

are distinct. Then W (M)Λd+s is empty unless all di are even. If all di are
even and if we put t = |d|/2, then τ 7→ κτ is a bijection between St and
W (M)Λd+s.

Proof. — Assume that w ∈W (M)Λd+s. Note that for x = (x1, . . . , x2t) ∈
a∗M ′,C, where M ′ is of type (m1, . . . ,mt,mt, . . . ,m1), x ∈ (a∗0)−θ if and only
if xj = x2t+1−j for all j ∈ [1, t]. If we put λ[y] = (λ1 + y, . . . , λa + y) for
λ ∈ Ca and y ∈ C, then

Λd + s = (Λd1 [s1],Λd2 [s2], . . . ,Λdr [sr]).

By the assumption on s, for each j there is a segment ∆i to which both
w−1(j) and w−1(2t + 1 − j) belong. Therefore all di must be even for
W (M)Λd+s to be not empty. We can infer from (2.1) that

w−1(2t+ 1− j)− w−1(j) = 1, j ∈ [1, t]

Lemma 2.6 is now proven in exactly the same way as in the proof of Lemma
8.3 of [10]. �

We appeal to Lemma 8.1 of [10]. There is a minor error in that lemma.
It is true not for a fixed T but as T varies.
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Lemma 2.7 (cf. [10, Lemma 8.1]). — Let V be a finite dimensional
vector space over C. Let

fλ(T ) =
d∑
i=1

ai(λ)e〈bi(λ),T 〉,

where T ∈ V , ai are meromorphic functions near a point λ = λ0 ∈ V ∗ and
bi are linear endomorphisms of V ∗ such that b1(λ0), . . . , bd(λ0) ∈ V ∗ are
distinct. Assume that limλ→λ0 fλ(T ) exists. Then ai is holomorphic at λ0
for all i and

lim
λ→λ0

fλ(T ) =
d∑
i=1

ai(λ0)e〈bi(λ0),T 〉.

Now we are ready to prove Proposition 2.5. In view of Lemma 2.4 and
Proposition 2.1(2) our task is to compute

(2.2)
∫ ∗
H(F )\H(A)

E(h,EQ−1(ϕ), s)dh.

We use Cauchy’s integral formula to express the residue E(EQ−1(ϕ), s) as a
Cauchy integral of E(ϕ, λ). The Cauchy integral can be interchanged with
the truncation operator, and then Fubini’s theorem allows us to exchange
the Cauchy integral and the period integral. This argument is the same
as that introduced by Arthur on pp. 47–48 of [1] (see also p. 293 of [10]).
Therefore we deduce from (1.1) that∫

H(F )\H(A)
ΛTmE(h,EQ−1(ϕ), s)dh

= lim
λ→Λd

∫
H(F )\H(A)

ΛTmE(h, ϕ, λ+ s)dh
r∏
i=1

∏
j∈∆′

i

(Rj(λ)− 1)

 .
This limit exists, and Theorem 2.2 combined with Proposition 2.1(3) and
Lemma 2.7 shows that (2.2) is equal to

lim
λ→Λd

∑
w∈W (M)Λd+s

vM ′
H
j(M(w, λ+ s)ϕ)

∏r
i=1
∏
j∈∆′

i
(Rj(λ)− 1)∏

α∈∆H
M′
H

〈µ+ w(λ+ s), α∨〉 .

Since (2.2) can be viewed as a meromorphic function in s (cf. Proposition
12 of [4]), it suffices to prove Proposition 2.5 for s in a general position of√
−1a∗L. Thus we assume that s1, . . . , sr are distinct and that M−1(κτ , s)

are holomorphic at s for all τ ∈ St. Since the first part of Proposition 2.5
follows immediately from Lemma 2.6, we hereafter assume that all di are
even. Since we know that the limit exists, we may compute it by computing
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a directional limit in a ‘good’ direction. Recall t = |d|/2. For w ∈ W (M)
and i ∈ [1, t− 1] we define the functionals Lw,i on a∗M,C by

Lw,i(λ) = λw−1(i) − λw−1(i+1) + λw−1(2t−i) − λw−1(2t+1−i),

and we set Lw,t(λ) = λw−1(t) − λw−1(t+1). Then

{〈wλ, α∨〉 | α ∈ ∆H
M ′
H
} = {Lw,i(λ) | i ∈ [1, t]}.

We fix v0 ∈ a∗M so that Lκτ ,i(v0) 6= 0 for all i ∈ [1, t] and τ ∈ St. Since
〈µ+ κτ (Λd + s), α∨〉 = 0 for all τ ∈ St, (2.2) is equal to

lim
c→0

∑
τ∈St

vMτ
H
ct−rj(M(κτ ,Λd + s+ cv0)ϕ)

∏r
i=1
∏
j∈∆′

i
Rj(v0)∏t

i=1 Lκτ ,i(v0)

=
∑
τ∈St

vMτ
H
j(M−1(κτ , s)ϕ)

∏t
j=1R2j−1(v0)∏t
i=1 Lκτ ,i(v0)

by Lemma 2.6. The remaining part of the proof continues as in p. 296 of
[10]. Consequently, vMτ

H
j(M−1(κτ , s)ϕ) is independent of τ . �

3. The intertwining periods

Let P = MU be a parabolic subgroup of G. Offen provides a complete
analysis of the double cosets P\G/H in [10, 11]. We recall the necessary
definitions and results. Let wM0 denote the longest element of WM . Put
w0 = wG0 and wθM = wM0 wG0 . Set

W (θ) = {ww0w
−1w0 | w ∈W}.

We will identify WM\W/W θM with the set MWθM of reduced repre-
sentatives. We use the relative Bruhat decomposition to define a map
ιM : P\C → MWθM by ιM (P ? x) = ξ, where Pξθ(P ) = Pxθ(P ). Proposi-
tion 3.5 of [10] asserts that ιM defines a bijection P\C ' W (θ) ∩ MWθM .
For ξ ∈ W (θ) ∩ MWθM we write Oξ for the unique P -orbit in C that ιM
maps to ξ.
The set of admissible twisted involutions is defined by

IM (θ) = {ξ ∈ MWθM | w0ξw0 = ξ−1, ξθ(M)ξ−1 = M} ⊂W (θM,M).

If ξ ∈ IM (θ), then ξθ acts as an involution on a∗M , and (a∗M )±ξθ denotes the
±1 eigenspaces of ξθ in a∗M . For ξ ∈ IM (θ) we put

Φξ = {β ∈ R+(TM , G) | ξθβ < 0},
Ψξ = {β ∈ R+(TM , G) | ξθβ = β},

Ψ0
ξ = {β ∈ R+(TM , G) | ξθβ = ±β}.
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For ξ ∈ IM (θ) and ξ′ ∈ IM ′(θ) we set

W (ξ, ξ′) = {w ∈W (M,M ′) | wξ = ξ′w0ww0, wβ > 0 for β ∈ Ψξ},

W 0(ξ, ξ′) = {w ∈W (M,M ′) | wξ = ξ′w0ww0, wβ > 0 for β ∈ Ψ0
ξ}.

Let (m1, . . . ,mt) be the type of M . An M -admissible involution of [1, t]
is a permutation τ ∈ St which satisfies τ2 = 1 and mi = mτ−1(i) for
i ∈ [1, t] and such that mi is even whenever τ(i) = i. We associate to
ξ ∈ IM (θ) ∩W (θ) an M -admissible involution τξ of [1, t] via

wM0 ξw0 = wM (τξ).

The map ξ 7→ τξ is a bijection between IM (θ) ∩W (θ) and the set of all
M -admissible involutions of [1, t]. We put Sξ = {i ∈ [1, t] | τξ(i) = i}.
Let ρ ∈ Πd(M). Let ξ ∈ IM (θ) ∩W (θ) and choose x ∈ Oξ ∩Mξ. We

define ρξ ∈ (a∗M )+
ξθ by requiring δPx(m) = e〈2ρξ,HM (m)〉 for all m ∈Mx(A),

where δPx is the modulus function of Px(A) and (a∗M )+
ξθ is identified with

X∗(Mx)⊗ZR. SinceOξ∩Mξ is a uniqueM orbit by [10, Proposition 3.6(2)],
ρξ is independent of the choice of x. There is m ∈M such that mMxm

−1 is
the subgroup ofM consisting of matrices of the form diag[a1, . . . , at], where
ai = ta−1

j ∈ Gmi whenever τξ(i) = j 6= i, and ai ∈ Sp(mi/2) whenever
τξ(i) = i. Lemma 2.4 shows that for any ψ ∈ I(ρ) the period integral

PMx(ψ)(g) =
∫
Mx(F )\Mx(A)1

ψ(mg)dm

is well-defined.
We choose η so that x = η ? 12n. The intertwining period is defined by

(3.1) J(ξ, ψ, λ) =
∫
η−1Px(A)η\H(A)

PMx(ψ)(ηh)e〈λ,HM (ηh)〉dh

for λ in some open set of 2ρξ − ρP + (a∗M,C)−ξθ. The integral makes sense
and depends neither on the choice of x nor on η.

Proposition 3.1. — Notation being as above, if γ is a sufficiently large
real number, then the integral (3.1) converges absolutely when <λ−2ρξ+ρP
belongs to

Dξ,M = {Λ ∈ (a∗M )−ξθ | 〈Λ, β
∨〉 > γ for all β ∈ Φξ}.

Proof. — For each i there is a pair (di, σi) such that ρi ' L(σi,Λdi),
where di divides mi and σi ∈ Πc(Gmi/di). We can take x ∈ Oξ ∩ M0ξ

to define J(ξ, ψ, λ). Let P ′ = M ′U ′ be the parabolic subgroup contained
in P which corresponds to the partition obtained from (m1, . . . ,mt) by
replacing the entry mi by

(
mi
di
, . . . , midi

)
for i ∈ Sξ. Let ρ′ = ⊗i∈[1,t]ρ

′
i be a
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representation of M ′(A), where ρ′i = ρi if i /∈ Sξ, and ρ′i = σ⊗dii if i ∈ Sξ.
Define λ′ = (λ′1, . . . , λ′t) ∈ a∗M ′ by λ′i = 0 if i /∈ Sξ, and λ′i = κdiΛdi if
i ∈ Sξ. Since Proposition 2.5 shows that PMx(ψ) is identically zero unless
all di are even, we may suppose that all di are even. Applying Proposition
2.5 to ρi for each i ∈ Sξ, we see that there is an element ψ′ ∈ I(ρ′) satisfying

PMx(ψ)(g) =
∫
P ′x(A)\Px(A)

PM
′
x(ψ′)(pg)e〈λ

′,HM′ (pg)〉dp,

and hence
J(ξ, ψ, λ) = J(ξM ′ , ψ′, λ+ λ′),

where we view ξM ′ = ξ as an element of IM ′(θ). One can readily check
that Dξ,M ⊂ DξM′ ,M ′ and

λ+ λ′ + ρP ′ − 2ρξM′ ∈ (a∗M ′,C)−ξM′θ,

which reduces the statement to the case where Sξ is empty.
We write τξ as a product of disjoint reflections

τξ = (i1, j1) · · · (it/2, jt/2).

There is no harm in assuming that ρik ' ρjk for k ∈ [1, t/2]. We write an
Iwasawa decomposition of g ∈ G(A) with respect to P (A) as g = p(g)k(g).
Taking into account a canonical identification of ρik with its contragredient,
we see that

e−〈ρP ,HM (g)〉PMx(ψ)(g) =
∫
Mx(F )\Mx(A)1

ρ(mp(g))ψ(k(g))dm

is a matrix coefficient of the unitary representation ρi1 ⊗· · ·⊗ρit/2 , so that

sup
g∈G(A)

|e−〈ρP ,HM (g)〉PMx(ψ)(g)| <∞.

Proposition 4.3 of [10] now completes our proof. �

Theorem 3.2. — Let ψ ∈ I(π) and s ∈
√
−1a∗L. Then∫

H(F )\H(A)
E(h, ψ, s)dh = 0

unless all di are even. If all di are even, then∫
H(F )\H(A)

E(h, ψ, s)dh = J(wθL, ψ, s).

Proof. — We may assume that all di are even. Put

x = diag[εk1 , . . . , εkr ]ε ∈ C, κd = diag[κd1 , . . . , κdr ] ∈W (M,M).

Note that ιL(x) = wθL ∈ IL(θ) ∩ W (θ). The intertwining operator
M−1(κd) = M−1(κd, s) is independent of s. We define w′ ∈ W (M) by
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κ|d| = w′κd. If L′ is the Levi subgroup of G of type
(
k1
2 ,

k1
2 , . . . ,

kr
2 ,

kr
2
)
,

then w′ is given by w′ = wL′(κ2r). When we view wθL as an element of
IM (θ), we will rewrite it as ξM . One can check that w′ ∈W 0(ξM ,12n). By
the functional equation stated in Theorem 7.7 of [10]

j(M(w′, λ)φ) = J(12n,M(w′, λ)φ,w′λ) = J(ξM , φ, λ)

for all φ ∈ I(σ). By rewriting the formula of Proposition 2.5, we get∫ ∗
H(F )\H(A)

E(h,EQ−1(ϕ), s)dh = vM†
H
j(M(w′, κdΛd + s)M−1(κd)ϕ)

= vM†
H
J(ξM ,M−1(κd)ϕ, κdΛd + s).

Note that

x ∈ C ∩M0ξM , Qx = Lx, ρwθL = ρQx = 0, (a∗L,C)−wθLθ = a∗L,C.

Applying Proposition 2.5 to EQ−1(ϕ) with L and Lx in place of G and H,
we get

vM†
H

∫
Px(A)\Qx(A)

PMx(M−1(κd)ϕ)(qg)e〈κdΛd,HM (qg)〉dq

=
∫
Lx(F )\Lx(A)

EQ−1(ϕ)(hg)dh = PLx(EQ−1(ϕ))(g).

Since
〈s,HM (qg)〉 = 〈s,HL(qg)〉 = 〈s,HL(g)〉

for s ∈ a∗L,C, q ∈ Qx(A) and g ∈ G(A), we finally obtain

(3.2)
∫ ∗
H(F )\H(A)

E(h,EQ−1(ϕ), s)dh = J(wθL, EQ−1(ϕ), s)

for s in some open set of a∗L,C. Since the left hand side is meromorphically
continued to a∗L,C and holomorphic on

√
−1a∗L by Lemma 2.4 (cf. Proposi-

tion 12 of [4]), so is J(wθL, EQ−1(ϕ), s). The stated identity is obtained by
evaluating at s ∈

√
−1a∗L. �

We are going to prove the following result in the next section.

Proposition 3.3. — Notation being as in Theorem 3.2, we assume
that all di are even. Then there is ψ ∈ I(π) such that the function s 7→∫
H(F )\H(A)E(h, ψ, s)dh is not identically zero.

We set forth the following conjecture:

Conjecture 3.4. — Let σ ∈ Πc(M) and π ∈ Πd(L) be as in Section 1.
If all di are even, then I(π, λ) is distinguished by H for each λ ∈

√
−1a∗L.
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The following theorem generalizes Theorem 7.7 of [10].

Theorem 3.5. — Let ρ ∈ Πd(M), ψ ∈ I(ρ) and ξ ∈ IM (θ) ∩W (θ).
(1) J(ξ, ψ, λ) extends to a meromorphic function on the space 2ρξ −

ρP + (a∗M,C)−ξθ.
(2) For ξ′ ∈ IM ′(θ) and w ∈W (ξ, ξ′)

J(ξ′,M(w, λ)ψ,wλ) = J(ξ, ψ, λ).

Proof. — We can deduce the theorem from (3.2) and [10, Lemma 4.4] by
the same technique as in [4, 7]. The detail is left to the reader. �

4. The local intertwining periods

Let P = MU be a parabolic subgroup of G of type (m1, . . . ,mt), ρ ∈
Πd(M) and ξ ∈ IM (θ) ∩W (θ). Choose x ∈ Oξ ∩Mξ and η so that x =
η ? 12n. We assume that τξ(i) 6= i for all i ∈ [1, t]. We may suppose that
ρi ' ρτξ(i) for all i ∈ [1, t] as PMx(ψ) is identically zero for all ψ ∈ I(ρ)
otherwise. Then the period integral PMx gives rise to the unique (up to
a scalar) Mx(A)-invariant form lMx

on ρ. We fix an identification of ρ
with a restricted tensor product ⊗vρv. This identification presupposes the
choice of Kv-fixed vectors in the space of ρv for almost all v. The invariant
form lMx

on ρ decomposes into local invariant forms lMx,v on ρv. The local
intertwining period is defined by

Jv(ξ, ψv, λ) =
∫
η−1Px(Fv)η\H(Fv)

lMx,v(ψv(ηh))e〈λ,HM (ηh)〉dh

for ψv ∈ I(ρv) and for λ in some open set of 2ρξ − ρP + (a∗M,C)−ξθ. Then we
have the factorization

J(ξ, ψ, λ) =
∏
v

Jv(ξ, ψv, λ),

provided that ψ = ⊗vψv is factorizable.
We switch to a local setting and drop the index v from our notation.

Thus F = Fv is a local field of characteristic zero. When X is an algebraic
group over F , we will write X = X(F ) for simplicity. The length function
`M : W (M)→ Z>0 is defined in [9] by

`M (w) = #{α ∈ R+(TM , G) | wα < 0}.

For any Levi subgroup M and α ∈ ∆M there is an element sα ∈ W (M)
characterized by the property that `M (sα) = 1 and sαα < 0.
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Lemma 4.1. — Let ξ ∈ IM (θ)∩W (θ), ξ′ ∈ IM ′(θ)∩W (θ), and α ∈ ∆M .
Assume that sα ∈W (ξ, ξ′).

(1) `θM ′(ξ′) = `θM (ξ), `θM (ξ)+2 or `θM (ξ)−2 according as ξθα = ±α,
α 6= ξθα > 0 or −α 6= ξθα < 0.

(2) Assume that Sξ is empty and −α 6= ξθ(α) < 0. Let ρ be an irre-
ducible unitary representation of M . Let ψ ∈ I(ρ) and λ ∈ 2ρξ −
ρP + (a∗M,C)−ξθ. If the double integral defining J(ξ, ψ, λ)converges
absolutely, then

J(ξ′,M(sα, λ)ψ, sαλ) = J(ξ, ψ, λ).

Proof. — The proof of (1) is the same as that of Lemma 3.2.1 of [7]. Since
wM ′(τξ′) = sαwM (τξ)s−1

α , if Sξ is empty, then Sξ′ is empty. The proof of
(2) mimics the argument of Proposition 10.1.1 of [7] by utilizing Lemma
3.8 of [10]. �

By the same reasoning as [4, 7, 10] we can use Lemma 4.1 to deduce
convergence and meromorphic continuation of J(ξ, ψ, λ) from those of the
intertwining operators. As far as the convergence is concerned, we may
replace ρ by the trivial representation. We will not repeat the proof.

Proposition 4.2. — Let ρ be an irreducible unitary representation of
M , ψ ∈ I(ρ) and ξ an element of IM (θ) ∩W (θ) such that Sξ is empty.

(1) J(ξ, ψ, λ) converges absolutely when <λ− 2ρξ + ρP ∈ Dξ,M .
(2) J(ξ, ψ, λ) is continued meromorphically to 2ρξ − ρP + (a∗M,C)−ξθ.

Let (d1n1, . . . , drnr) be a partition of 2n, P = MU the parabolic sub-
group of G of type (n1, . . . , n1, . . . , nr, . . . , nr), and σ = ⊗i∈[1,r]σ

⊗di
i an

irreducible unitary generic representation of M . Suppose that all di = 2ti
are even. The local L factors L(s, σi×σ∨j ) are defined by Jacquet, Piatetski-
Shapiro and Shalika [5] in the nonarchimedean case. Since σ is unitary and
generic, the factors L(s, σi × σ∨j ) are holomorphic in <s > 1.
We use the notation defined in the proof of Theorem 3.2. Take a decom-

position w′ = sα` · · · sα1 , where ` = `M (w′), αi ∈ ∆Mi , and M1 = M ,
Mi+1 = sαiMis

−1
αi for i ∈ [1, `]. Since `θM (ξM ) = 2`M (w′), Lemma 4.1(1)

shows that −αi 6= ξiθαi < 0, where ξ1 = ξM , ξi+1 = sαiξi(w0sαiw0)−1 for
i ∈ [1, `]. Applying Lemma 4.1(2) successively, we get

J(ξM , φ, λ) = J(12n,M(w′, λ)φ,w′λ), φ ∈ I(σ).

Observe that M(κd) = M(κd,Λd + s) is independent of s. Note that when
d is even,

{(j, k) | 1 6 j < k 6 d, κd(j) > κd(k)} = {(2j, k) | 1 6 2j < k 6 d}.
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If F is a nonarchimedean field, σ is unramified and φ ∈ I(σ) is K-invariant
such that φ(e) = 1, then by the Gindikin-Karpelevich formula

M(κd)φ = φ

r∏
i=1

ti−1∏
j=1

2ti∏
k=2j+1

L(k − 2j, σi ⊗ σ∨i )
L(k − 2j + 1, σi ⊗ σ∨i )

= φ

r∏
i=1

L(1, σi ⊗ σ∨i )ti−1∏ti−1
j=1 L(2j + 1, σi ⊗ σ∨i )

and M(w′, κdΛd + s)φ(e) is equal to∏
16i<j6r

ti∏
k=1

2tj∏
l=1

L(l − 2k + si − sj + ti − tj , σi ⊗ σ∨j )
L(l − 2k + si − sj + ti − tj + 1, σi ⊗ σ∨j )

=
∏

16i<j6r

ti∏
k=1

L(si − sj + 2k − ti − tj − 1, σi ⊗ σ∨j )
L(si − sj + ti + tj + 1− 2k, σi ⊗ σ∨j ) .

Proposition 4.3. — Notation being as above, J(ξM ,M(κd)ϕ, κdΛd +
s) is not identically zero as a meromorphic function and as ϕ varies.

Proof. — For g ∈ G and ϕ ∈ I(σ) we put

jLx(ϕ)(g) =
∫
Px\Lx

lMx
(M(κd)ϕ(qg))e〈κdΛd,HM (qg)〉dq

as in [12]. Theorem 5 of [11] tells us that jLx is not identically zero on I(σ).
Note that

J(ξM ,M(κd)ϕ, κdΛd + s) =
∫
Qx\Hx

jLx(ϕ)(hη)e〈s,HL(hη)〉dh.

Since dimQ+ dimHx − dimLx = dimG, we see that QHx is an open set
in G. Thus this integral can be taken to be nonzero by choosing ϕ to be
supported in a small neighborhood inside Q\QHxη. �

Back to the global setup, we are now ready to prove Proposition 3.3. Let
S be a finite set of places of F which contains all the archimedean places
and such that for all v /∈ S, σv is unramified and ϕv is Kv-invariant. Then∫ ∗

H(F )\H(A)
E(h,EQ−1(ϕ), s)dh =

r∏
i=1

Ress=1L
S(s, σi ⊗ σ∨i )ti−1∏ti−1

j=1 LS(2j + 1, σi ⊗ σ∨i )

×
∏

16i<j6r

ti∏
k=1

LS(si − sj + 2k − ti − tj − 1, σi ⊗ σ∨j )
LS(si − sj + ti + tj + 1− 2k, σi ⊗ σ∨j )

×
∏
v∈S

Jv(ξM ,M(κd)ϕv, κdΛd + s).

Proposition 4.3 now completes the proof of Proposition 3.3.
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