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LOCAL INDECOMPOSABILITY OF HILBERT
MODULAR GALOIS REPRESENTATIONS

by Bin ZHAO (*)

Abstract. — We prove the indecomposability of the Galois representation
restricted to the p-decomposition group attached to a non CM nearly p-ordinary
weight two Hilbert modular form over a totally real field F under the assump-
tion that either the degree of F over Q is odd or the automorphic representation
attached to the Hilbert modular form is square integrable at some finite place of
F .
Résumé. — Nous prouvons l’indécomposabilité de la représentation galoisienne

restreinte au groupe de p-décomposition attaché à une forme modulaire quasi-
ordinaire de Hilbert sans multiplication complexe de poids 2 sous certainess hypo-
thèses.

The main purpose of this paper is to decide the indecomposability of
a Hilbert modular ordinary p-adic Galois representation restricted to the
decomposition group at p, under the assumption that the representation is
not of CM type. This question was originally posed by R.Greenberg. In the
elliptic modular case, it was studied by Ghate and Vatsal and they gave an
affirmative answer in [11] under some conditions. In a recent preprint [1],
joint with Balasubramanyam, they generalized their result to the Hilbert
modular case under some restrictive conditions. Their method is to study
the specialization of Λ-adic forms corresponding to weight one classical
forms, and they use the density of such specializations to conclude for
higher weight modular forms.
In contrast to [1], our method is geometric and relies on the study of

Galois representations attached to abelian varieties of GL(2)-type. More
precisely, let F be a totally real field and f be a (parallel) weight two Hilbert
modular form of level m over F . Assume that f is a Hecke eigenform and

Keywords: Galois representation, Hilbert modular forms, complex multiplication.
Math. classification: 11F80, 11G18, 14K22.
(*) The author is partially supported by Hida’s NSF grant DMS 0753991 and DMS
0854949 through UCLA graduate division.



1522 Bin ZHAO

let Kf be its Hecke field. For any prime λ of Kf over a rational prime p, let
Kf,λ be the completion of Kf at λ. It is well known that there is a Galois
represention ρf : Gal(Q̄/F ) → GL2(Kf,λ) attached to f . Moreover if the
eigenform f is nearly p-ordinary, then up to equivalence the restriction of
ρf to the decomposition group Dp of Gal(Q̄/F ) at p is of the shape (see
[35] Theorem 2 for the ordinary case and [18] Proposition 2.3 for the nearly
ordinary case):

ρf |Dp
∼
(
ε1 ∗
0 ε2

)
.

In this paper we need to put the following technical condition on f when
the degree of F over Q is even: there exists a finite place v of F such that
πv is square integrable (i.e. special or supercuspidal) where πf = ⊗vπv is
the automorphic representation of GL2(FA) associated to f (FA is the adele
ring of F ). Then the main result of this paper is:

Theorem 1. — If f does not have complex multiplication, then ρf |Dp

is indecomposable.

We will state this theorem in a little more general way as Theorem 5.6 in
Section 5 and give a proof there. Here is the sketch of our argument. Under
the assumption on f , there exist an abelian variety Af/F and a homomor-
phism L→ End0(Af/F ) where L/Kf is a finite extension and the degree of
L over Q equals to the dimension of Af , such that the Galois representation
ρf comes from the λ-adic Tate module of Af (at least upto a twist of a
character). Hence the theorem is reduced to prove: if the abelian variety
Af/F does not have complex multiplication, then its λ-adic Tate module
Tλ(Af ) is indecomposable as an Ip-module, where Ip is the inertia group
of Gal(Q̄/F ) at a prime p of F over p. By an analysis of the endomorphism
algebra of an abelian variety of GL(2)-type in section 1, we can always take
L to be a totally real field (see Proposition 1.4). Moreover, we can assume
that Af is absolutely simple and has good reduction at p. Then the key
argument can be divided into two steps:
First, under the assumption that Af/F does not have complex multi-

plication, we can find two distinct primes Q and L of F not lying over p
with the following property: the abelian variety Af/F has good reduction
at Q and L, and if we use AQ (resp. AL) to denote the reduction of Af at
Q (resp. L), then End0

L(AQ/F̄q ) and End0
L(AL/F̄l) are non-isomorphic CM

quadratic extension of L (see Lemma 5.1). Here q (resp. l) is the residue
characteristic of the prime Q (resp. L). The proof is a slight modification
of the argument given in [15] using Faltings’s isogeny theorem, a Serre-type
open image theorem due to Ribet, and some standard results on the density
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LOCAL INDECOMPOSABILITY OF GALOIS REPRESENTATIONS 1523

of primes. As is clear from the argument given in the proof of Lemma 5.1,
when the prime p is ramified in the field L, we need to construct an extra
auxiliary prime in our argument.
Second, we prove that if the λ-adic representation of Ip attached to the

Tate module of Af is decomposable, it is impossible to find the primes
Q and L with the property in the first step. The idea is that by putting
polarization and level structure on Af/F , the abelian variety Af/F gives rise
to a point on an appropriate Hilbert modular Shimura variety. When the
rational prime p is ramified in the field L, the Lie algebra Lie(Ap/F̄p) may
not be free OL⊗Z F̄p-module of rank 1. In other words, the special fiber of
the abelian variety Af/F at p may not lie in the Hilbert modular Shimura
variety considered in [15]. In our argument, we use the integral model of
Hilbert modular Shimura variety considered by Deligne and Pappas in [6].
The definition of this model will be recalled in section 2 and 3. We prove
that if the abelian variety Af/F has good reduction at the prime p, then it
extends to an OF,(p)-valued point on this Shimura variety. We also study
the local properties of the above Shimura variety in section 3. In section 4
we prove that each L-linear isogeny of AQ/F̄q

with degree prime to q induces
an automorphism of the Shimura variety, and hence an automorphism of
the ordinary deformation space of the mod q reduction of Af sitting in the
special fiber of x at q. Using the rigid analytic logarithms of the Serre-Tate
coordinates on the ordinary deformation space (see section 4), we can prove
that this automorphism must also fixes the special fiber of x at l. Then we
can conclude that End0

L(AQ/F̄q ) and End0
L(AL/F̄l) must be isomorphic as

L-algebras. In [15], Hida proved this result under the assumption that the
prime p is unramified in the base field F and the field L. What we do
here is to remove the unramified assumption. Besides the different Hilbert
modular Shimura variety we consider above, there are two more problems
which arising from dropping the unramified conditions. If p is ramified
in the base field F , the abelian variety Af/F may not sit in the origin
of the local deformation space of its mod p fiber. We calculate its Serre-
Tate coordinate in Lemma 4.3 and use eigen-coordinates to eliminate this
ambiguity. If p is ramified in the field L, we have troubles on comparing the
differential sheaf of Af/F and its Serre-Tate coordinates by the Kodaira-
Spencer map. This can be overcame by a suitable base change. Both of
these two technical issues will be discussed much more concretely at the
beginning of section 4.

We prove the main result in Section 5, and we give an Λ-adic version of
our result by applying an argument in [11],which generalizes the result of [1]
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1524 Bin ZHAO

unconditionally when the degree [F : Q] is odd and when the degree [F : Q]
is even, we need to assume that at some finite place v of F , the represen-
tation πv is square integrable. At the end we explain how our result can
be applied to study a problem of Coleman on determining which classical
elliptic modular forms lie in the image of the operator defined in [4].

Acknowledgement: I would like to express my sincere gratitude to my
advisor Professor Hida Haruzo for his patient guidance as well as constant
support. Without his careful explanation of his work [15] , I cannot get
the approach to the work in this paper. I would like to thank Professor
Don Blasius, Professor Chandrashekhar Khare, Professor Eknath Ghate
and Ashay Burungale for many helpful discussions on this topic. I would
also like to thank the anonymous referee for a lot of useful suggestions.

Notations: Throughout this paper, we use F to denote a totally real field
with degree d over Q and use OF to denote its integer ring. Let D = DF/Q
be the different of F/Q and dF = NormF/Q(D) be its discriminant. For
any prime p of OF , let Op (resp. Fp) be the completion of OF (resp. F )
with respect to p. We use A to denote the adele ring of Q, and use FA (resp.
FAf ) to denote the adele ring (resp. finite adele ring) of F .
Fix an algebraic closure Q̄ of Q. For each rational prime p, we fix an

algebraic closure Q̄p of Qp and let Cp be the p-adic completion of Q̄p. Fix
an embedding ip : Q̄→ Cp. We also fix an algebraic closure F̄p of the prime
field Fp. Let Wp = W (F̄p) be the ring of Witt vectors of F̄p, and Lp be its
quotient field. Then Lp can be identified with the p-adic completion of the
maximal unramified extension in Q̄p/Qp.

1. Abelian Varieties of GL(2)-type

Let E be a number field with degree d over Q, and A/Q be an abelian
variety of dimension d. Set End0(A/Q) = End(A/Q)⊗Z Q, which is a finite
dimensional semisimple algebra over Q. Suppose that we have an algebra
homomorphism E → End0(A/Q), which identifies E with a subfield of
End0(A/Q). Recall that the abelian variety A/Q has complex multiplication
if End0(A/Q) contains a commutative semisimple subalgebra of dimension
2d over Q. Then from [23] Section 5.3.1, we have the following two results:

Proposition 1.1. — If A/Q does not have complex multiplication, then
A/Q is isotypic (i.e. there exists a simple abelian variety B/Q such that A/Q
is isogeneous to (B/Q)e for some e > 1), and End0

E(A/Q) = E.

ANNALES DE L’INSTITUT FOURIER



LOCAL INDECOMPOSABILITY OF GALOIS REPRESENTATIONS 1525

Proposition 1.2. — Under the conditions of Proposition 1.1, if we as-
sume further that A/Q is simple, then one of the following four possibilities
holds for D = End0(A/Q):

(1) E is a quadratic extension of a totally real field Z and D is a totally
indefinite division quaternion algebra over Z;

(2) E is a quadratic extension of a totally real field Z and D is a totally
definite division quaternion algebra over Z;

(3) E is a quadratic extension of a CM field Z and D is a division
quaternion algebra over Z;

(4) E = D and E is totally real.

Remark 1.3. — (1) A quaternion algebra D over a totally real field
Z is called totally indefinite if for any real embedding τ : Z → R,
the R-algebra D⊗Z,τ R is isomorphic to the matrix algebra M2(R);
the quaternion algebra D/Z is called totally definite if for any real
embedding τ : Z → R, the R-algebra D⊗Z,τ R is isomorphic to the
Hamilton quaternion algebra H.

(2) From Proposition 1.1, we see that End0(A/Q) is always a cen-
tral simple algebra and E is a maximal commutative subfield of
End0(A/Q);

(3) As remarked in [23], case 2 in Proposition 1.2 cannot happen by
[32], Theorem 5(a) and Proposition 15.

Proposition 1.4. — Under the notations and assumptions in Propo-
sition 1.1, assume further that there exists a totally real field k such that
the abelian variety A/Q is defined over k, and the homomorphism E →
End0(A/Q) factors through End0(A/k). Then we can find a totally real
field F with degree d over Q, which can be embedded into D = End0(A/Q)
as a unital subalgebra of D.

Proof. — By Propositon 1.1, we can find a simple abelian variety B/Q
and an integer e such that A/Q is isogeneous to (B/Q)e. Hence we have
an isomorphism of simple algebras End0(A/Q) ∼= Me(End0(B/Q)),and d =
e · d1, where d1 is the dimension of B/Q. Since any maximal commutative
subfield of End0(A/Q) has degree d over Q, any maximal commutative sub-
field of D1 = End0(B/Q) should have dimension d/e = d1. In other words,
we can find number field E1 of degree d1 over Q, which can be embedded
into End0(B/Q) as a subalgebra. Since A/Q does not have complex multi-
plication, neither does B/Q. In summary, B/Q satisfies all the assumptions
in Proposition 1.2. Assume that End0(B/Q) is of type 3 as in Proposition
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1526 Bin ZHAO

1.2, i.e. End0(B/Q) is a division quaternion algebra over a CM field Z and
[E1 : Z] = 2. Since d1 = [E1 : Q] = 2[Z : Q], the degree s of Z over Q
equals to d1

2 . Since Z is a CM field, we can find s′ = s
2 different embeddings

τi : Z → Q, i = 1, ..., s′, such that HomQ(Z,Q) = {τ1, ..., τs′ , τ̄1, ..., τ̄s′},
where τ̄i is the complex conjugation of τi for i = 1, ..., s′. Then we have an
isomorphism

θ : D1 ⊗Q R ∼=
∏

τi,i=1,...,s′
M2(C).

Let πi be the composition

D1 ↪→ D1 ⊗Q R
θ−→

∏
τi,i=1,...,s′

M2(C) πi−→M2(C),

where the map πi is the i-th projection, for i = 1, ..., s′. Let π̄i be the com-
plex conjugation of πi. Then {π1, ..., πs′ , π̄1, ..., π̄s′} are all the absolutely
irreducible (complex) representations of D1 (up to isomorphism).
On the other hand, we have a representation of D1 by ρ1 : D1 →

EndC(Lie(B) ⊗Q̄ C). Let ri (resp. si) be the multiplicity of πi (resp π̄i)
in ρ1. Then for any z ∈ Z, the trace of ρ1(z) is given by the formula:

Tr(ρ1(z)) = 2
s′∑
i=1

(riτi(z) + siτ̄i(z)).

Since Lie(A/Q̄) ∼= (Lie(B/Q̄))e, we have the representation

ρ : D → EndC(Lie(A)⊗Q̄ C),

such that for any z ∈ Z,

Tr(ρ(z)) = eTr(ρ1(z)) = 2e
s′∑
i=1

(riτi(z) + siτ̄i(z)).

Since Z ⊆ E and the homomorphism E → End0(A/Q̄) factors through
End0(A/k), we have Tr(ρ(z)) ∈ k, for any z ∈ Z. From [32] Section 4, we
have ri + si = 2, for all i = 1, ..., s′. Thus for each i, either ri = si = 1 or
ri · si = 0. If ri · si = 0 for at least one i, then Tr(ρ(z)) cannot lie in the
totally real field k for all z ∈ Z as Z is assumed to be a CM field. Hence
ri = si = 1 for all i. Then by [32] Theorem 5(e) and Proposition 19, this
case cannot happen.
Combined with Remark 1.3(3), we see that End0(B/Q) is either a totally

real field or a totally indefinite division algebra over a totally real field.
Then the existence of F results from:

Lemma 1.5. — Let D be a central simple algebra over a totally real field
Z with [D : Z] = d2. If for all real embeddings τ : Z → R, the R-algebra

ANNALES DE L’INSTITUT FOURIER



LOCAL INDECOMPOSABILITY OF GALOIS REPRESENTATIONS 1527

D ⊗Z,τ R is isomorphic to the matrix algebra Md(R), then we can find a
field extension F/Z with degree d such that F is totally real and can be
embedded into D as an Z-subalgebra.

Proof of the lemma: We use an argument similar with the proof of Lemma
1.3.8 in [5]. It is enough to find a field extension F/Z with degree d such
that F is totally real and splits D(i.e D ⊗Z F ∼= Md(F )).
Let Σ be a non empty set of non-archimedean places of Z containing all

the finite places where D does not split, and Σ∞ be the set of archimedean
places of Z. By the weak approximation theorem, the natural map:

Z →
∏
v∈Σ

Zv ×
∏
v∈Σ∞

Zv

has dense image. Hence we can find a monic polynomial f(X) ∈ Z[X] of
degree d, such that it is sufficiently close to a monic irreducible polynomial
of degree d over Zv for all v ∈ Σ, and it is sufficiently close to a totally
split polynomial of degree d over R for all v ∈ Σ∞. Set F = Z[X]/(f(X)).
Then F/Z is a degree d field extension such that F is totally real and for
any v ∈ Σ, there is exactly one place w of F lying over v and hence Fw/Zv
is a degree d extension of local fields.
We still need to check that F splits D. Since D⊗Z F is a central simple

algebra over F and F is a global field, it is enough to prove that for any
place w of F (archimedean and non-archimedean), we have an isomorphism
D ⊗Z Fw ∼= Md(Fw). Let v be the place of Z over which w lies.

If w is archimedean, then Zv ∼= Fw ∼= R, and hence

D ⊗Z Fw ∼= (D ⊗Z Zv)⊗Zv Fw ∼= Md(R), (1.1)

by our assumption on D.
If w is non-archimedean and v is not in Σ,then D ⊗Z Zv is already

isomorphic to the matrix algebra over Zv, so we are safe in this case.
Finally, assume that w is non-archimedean and v ∈ Σ. As Fw/Zv is a

degree d extension of local field, the base change from Zv to Fw induces
a homomorphism of Brauer groups Br(Zv) → Br(Fw), which under the
isomorphism Br(Zv) ∼= Br(Fw) ∼= Q/Z by local class field theory, is nothing
but multiplication by d. As [D : Z] = d2, the order of D⊗Z Zv in Br(Zv) is
divisible by d. This implies that D⊗Z Fw represents the identity element in
Br(Fw); i.e.D ⊗Z Fw ∼= Md(Fw). Hence F/Z is the desired extension. �

Hereafter we always work with the pair (A/Q, ι : F → End0(A/Q)), where
F is a totally real field with degree d over Q. Since the abelian variety A/Q
is projective, we can find a number field k such that A is defined over k,
and End(A/Q)) = End(A/k). Let Ok be the integer ring of k, and for all
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1528 Bin ZHAO

prime ideals P of Ok over some rational prime p, let O(P) be localization
of Ok at the prime P and FP = Ok/P be its residue field. As in [15], we
make the following assumption:
(NLL) the abelian variety A/k has good reduction atP and the reduction

A0 = A⊗OP
FP has nontrivial p-torsion F̄p-points.

Change the abelian variety A/k if necessary, we can assume that ι gives a
homomorphism ι : OF → End(A/k). Let F̄p be an algebraic closure of FP.
Wp = W (F̄p) is the ring of Witt vectors of F̄p. We have the decomposition
of Barsotti-Tate OF -modules:

A0[p∞] =
⊕
p|p

A0[p∞].

Here p ranges over the primes ideals of OF over p and for each p, let

A0[p∞] = lim
→
A0[pn]

be the p-divisible Barsotti-Tate group of A0. We also define

Tp(A0) = lim
←
A0[pn](F̄p)

as the p-divisible Tate module of A0.
We say that a prime p of OF over p is ordinary if A0[p] has nontrivial

F̄p-points, otherwise we say that p is local-local. When p is ordinary and p
is unramified in k, we have an exact sequence of Barsotti-Tate Op-modules
over Wp:

0→ µp∞ ⊗Zp O∗p → A[p∞]/Wp
→ Fp/Op → 0.

Here O∗p = HomZp(Op,Zp) is the Zp-dual of Op.
Let Σordp be the set of all ordinary primes of OF over p, and Σllp be the

set of all local-local primes. Then the condition (NLL) is equivalent to the
fact that Σordp is not empty. Also we define:

A0[p∞]ord =
⊕

p∈Σordp

A0[p∞], A0[p∞]ll =
⊕
p∈Σllp

A0[p∞].

2. Abelian varieties with real multiplication

In this section we introduce the notion of abelian varieties with real
multiplication (AVRM for short). Then we prove that by a change via an
isogeny, we can make the abelian variety A/k considered in the previous
section into an abelian variety of this type.

ANNALES DE L’INSTITUT FOURIER



LOCAL INDECOMPOSABILITY OF GALOIS REPRESENTATIONS 1529

Fix an invertible OF -module L, with a notion of positivity L+ on it:
for each real embedding τ : F → R, we give an orientation on the line
L⊗OF ,τ R. First we recall the following definition in [6]:

Definition 2.1. — An L-polarized abelian scheme with real multipli-
cation by OF is the triple (A/S , ι, ϕ) consisting of

(1) A/S is an abelian scheme of relative dimension d;
(2) ι : OF → End(A/S) is an algebra homomorphism which gives A/S

an OF -module structure;
(3) ϕ : L → HomSym

OF (A/S , At/S) is an OF -linear morphism of sheaves
of OF -modules on the étale site (Sch/S)ét of the category of S-
schemes, such that ϕ sends totally positive elements of L into po-
larizations of A/S , and the natural morphism α : A⊗OF L→ At is
an isomorphism. Here At is the dual abelian scheme of A, and L is
the constant sheaf valued in L, and the sheaf HomSym

OF (A/S , At/S)
is defined by :

(Sch/S)ét 3 T 7→ HomSym
OF ,T (AT/T , AtT/T ) = {λ : AT/T → AtT/T |λ

is OF -linear and symmetric}
When L = c is a fractional ideal of OF with the natural notion of positivity,
we call the isomorphism α : A ⊗OF c → At a c-polarization of A (see
[25]1.0 for more discussion). We also make the convention that for c ∈ c,
the morphism λ(c) : A → At is the corresponding symmetric OF -linear
homomorphism.

Remark 2.2. — The fppf abelian sheaf A ⊗OF L is the sheafication of
the functor

(Sch/S)fppf 3 T 7→ A(T )⊗OF L.
This sheaf is represented by an abelian scheme over S, which is denoted

by A ⊗OF L. Hence the isomorphism α in (3) can be regarded as an iso-
morphism of abelian schemes over S.

Definition 2.3. — Let A/S be an abelian scheme over a scheme S of
relative dimension d, and ι : OF → End(A/S) be an algebra homomor-
phism. We say that the pair (A/S , ι) satisfies the condition (DP) if the
natural morphism α : A⊗OF HomSym

OF (A/S , At/S)→ At is an isomorphism.
We say that the pair (A/S , ι) satisfies the condition (RA) if Zariski locally
on S, Lie(A/S) is a free OS ⊗Z OF -module of rank 1.

We remark here that the two conditions (DP) and (RA) in Definition 2.3
can be checked at each geometric point of the base scheme S. When the
pair (A/S , ι) satisfies the condition (RA), we come to the notion of abelian
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1530 Bin ZHAO

schemes with real multiplication (by OF ) defined in [29]. As explained in
[6]2.9, when dF is invertible on S, condition (DP) in Definition 2.3 implies
(RA). For later use, we explain that condition (RA) implies (DP) under
some assumption on S and by a suitable choice of the pair (L,L+), we can
make A/S be an L-polarized abelian scheme with real multiplication by OF
. First we need the following:

Proposition 2.4. — ([29]1.17,1.18) Let A/S be an abelian scheme of
relative dimension d,and ι : OF → End(A/S) be an algebra homomorphism.
Then the étale sheaf HomSym

OF (A/S , At/S) defined above is locally constant
with values in a projective OF -module of rank 1, endowed with a notion of
positivity corresponding to polarizations of A/S . In particular, when S is
normal and connected, this sheaf is constant.

Here we remark that in [29], the abelian scheme A/S is assumed to satisfy
condition (RA). But this condition is not necessary in the proof of the above
proposition.
Now assume that S is normal and connected (e.g. S is the spectrum

of the integer ring of a number field). Then from Proposition 2.4 we can
find a projective OF -moduleM of rank 1 with a notion of positivityM+
and a morphism ϕ : M → HomSym

OF (A/S , At/S). To check this ϕ satisfies
condition (3) in Definition 2.1, we still need to check that the morphism
α : A⊗OF M→ At is an isomorphism.

We can assume that S = Spec(k), where k is an separably closed field and
we want to prove that α is an isomorphism of abelian varieties over k. Then
it suffices to show that for any rational prime l, there exists 0 6= λ ∈ M,
such that deg(ϕ(λ)) is prime to l. In fact, for any α ∈M, we have a natural
morphism A→ A⊗OF M whose effect on R-valued points is given by the
formula (R is an k-algebra):

A(R) 3 a 7→ a⊗OF λ ∈ A(R)⊗OF M.

The composition of this morphism with α is ϕ(λ). Hence deg(α)|deg(ϕ(λ)).
In particular, deg(α) is prime to l. As l is arbitrary, deg(α) = 1 and hence
α is an isomorphism.

To prove the existence of λ, we apply an argument in [12] Chapter 3
Section 5: when char(k) > 0, by [29]1.13, we can always lift the pair (A/k, ι)
to an abelian scheme with real multiplication (Ã/W (k), ι̃) satisfying (RA).
Here W (k) is the ring of Witt vectors of k. Hence we can assume that
char(k) = 0. By Lefschetz principle, we can assume that k is the complex
filed. Then the existence of λ follows from the complex uniformization
[12]Chapter 2 Section 2.2.
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The following proposition tells us that when S is a scheme of character-
istic 0, condition (RA) and hence (DP) is automatically satisfied.

Proposition 2.5. — Let k be a field of characteristic 0, A/k be an
abelian variety of dimension d, and ι : OF → End(A/k) be an algebra
homomorphism. Then Lie(A/k) is a free OF ⊗Z k-module of rank 1.

Proof. — By Lefschetz principle we can again work over the complex
field. Then the result follows from [12] Chapter 2, Corollary 2.6. �

Now we consider the object considered in Section 1. Let k be a num-
ber field, A/k be an abelian variety of dimension d satisfying the condition
(NLL), and ι : F → End0(A/k) be an algebra homomorphism. We want to
prove that there is a c-polarized abelian variety A′/Ok with real multiplica-
tion by OF which is isogenous to A/k.
We can find an order O in F which is mapped into End(A) under ι.

By Serre’s Tensor construction ([5]1.7.4.), we can find an isogeny f : A→
A′ over k, and the induced isomorphism End0(A/k) → End0(A′/k) carries
OF ⊆ End0(A/k) into End(A′/k). Hence we have an algebra homomorphism
ι′ : OF → End(A′/k). By our assumption, A/k has good reduction at the
prime P of Ok. By the criterion of Néron-Ogg-Shafarevich ([31] Section 1
Corollary 1), A′/k also has good reduction at P, and hence can be extended
to an abelian scheme A′/O(P)

(recall that O(P) is the localization of Ok at
the prime P). Since O(P) is a normal domain, by a lemma of Faltings (see
[9] Lemma 1), the restriction to the generic fiber induces a bijection

End(A′/O(P)
)→ End(A′/k).

So we have an algebra homomorphism OF → End(A′/O(P)
), which is again

denoted by ι′.
From Proposition 2.4, the étale sheaf HomSym

OF (A′/O(P)
, A′t/O(P)

) is a con-
stant sheaf c for some fractional ideal c, with the natural notion of positivity
c+. Thus we have a natural isomorphism ϕ : c→ HomSym

OF (A′/O(P)
, A′t/O(P)

)
which sends totally positive elements of c to polarizations of A′/O(P)

. We
still need to check that the natural morphism α : A′ ⊗OF c → A′t is an
isomorphism over O(P). As char(k) = 0, by Proposition 2.5, α is an iso-
morphism at the generic fiber of O(P). Hence α is an isomorphism again
by Faltings lemma.
In summary, we have:

Proposition 2.6. — Let A/k be an abelian variety of dimension d sat-
isfying the condition (NLL) in Section 1, and ι : F → End0(A/k) be an
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algebra homomorphism. Then we can find a fractional ideal c and an c-
polarized abelian scheme (A′/O(P)

, ι′, ϕ) with real multiplication byOF such
that A/k is k-isogenous to A′/k.

Remark 2.7. — Let A/S be an abelian scheme of relative dimension
d and ι : OF → End(A/S) be an algebra homomorphism. By a similar
argument as above, we see that if S is an integral normal scheme and the
generic fiber of S is of characteristic 0, then the pair (A/S , ι) must satisfy
the condition (DP).
For later discussion, we need the following:
Lemma 2.8. — Let A/S , A′/S be two abelian schemes of relative dimen-

sion d, and ι : OF → End(A/S), ι′ : OF → End(A′/S) be two algebra
homomorphisms. Suppose that there exists an OF -linear étale homomor-
phism of abelian schemes f : A → A′. If the pair (A/S , ι) satisfies the
condition (DP), so does (A′/S , ι′).

Proof. — Without loss of generality, we can assume that S = Spec(k) for
some separably closed field k. If char(k) = 0, then (A′/S , ι′) satisfies (DP)
automatically by Proposition 2.5. So we can assume that char(k) = p > 0.
From the discussion of [12] Page 100 − 101, the pair (A/k, ι) can be lifted
to characteristic 0; i.e., there exist:

(1) a normal local domain W with maximal ideal m and residue field k
such that the quotient field of W is of characteristic 0;

(2) an abelian scheme Ã/W with an OF -action ι̃ : OF → End(Ã/W )
such that (A/k, ι) is isomorphic the the pull back of (Ã/W , ι̃) under
the natural morphism Spec(k)→ Spec(W ).

Replacing W by its m-adic completion if necessary, we can assume that W
is complete.
Since f : A→ A′ is étale and OF -linear, C = ker(f) is a finite étale OF -

submodule of A/k. Then we can lift C to an étale OF -submodule C̃/W of
Ã/W . Let Ã′/W be the quotient of Ã/W by C̃/W , with the natural homomor-
phism ι̃′ : OF → End(Ã′/W ) induced from Ã/W . By the above construction
it is easy to see that (Ã′/W , ι̃′) lifts (A′/k, ι′). Then from Remark 2.7, (A′/k, ι′)
satisfies (DP). �

3. Hilbert modular Shimura variety

Fix a finite set of primes Ξ. Set

Z(Ξ) = {m
n
∈ Q|m,n ∈ Z, (n, p) = 1,∀p ∈ Ξ}.
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Then define O(Ξ) = OF ⊗Z Z(Ξ), and O×(Ξ),+ as the set of totally positive
units in O(Ξ). Also we define:

Ẑ = lim←−Z/nZ, Ẑ
(Ξ) = lim←−Z/nZ, ZΞ =

∏
l∈Ξ
Zl,

where in the first inverse limit, n ranges over all positive numbers, and in
the second inverse limit, n ranges over all positive integers prime to Ξ. Let
A be the adele ring of Q. Then set

A(Ξ∞) = {x ∈ A|xl = x∞ = 0,∀l ∈ Ξ},

and FA(Ξ∞) = F ⊗Q A(Ξ∞).
Define the algebraic group G = ResOF /Z(GL(2)) and let Z be its center.

K is an open compact subgroup of G(Ẑ) which is maximal at Ξ, in the
sense that K = G(ZΞ)×K(Ξ), where

K(Ξ) = {x ∈ K|xp = 1 for all p ∈ Ξ}.

Definition 3.1. — Define the functor E′(Ξ)
K : Sch/Z(Ξ) → Set, such that

for each Z(Ξ)-scheme S, E′(Ξ)
K (S) = [(A/S , ι, λ̄, η̄(Ξ))]. Here [(A/S , ι, λ̄, η̄(Ξ))]

is the set of isomorphism classes of quadruples (A/S , ι, λ̄, η̄(Ξ)) consisting
of:

(1) an abelian scheme A/S of relative dimension d;
(2) an algebra homomorphism ι : OF → End(A/S) such that the pair

(A/S , ι) satisfies the condition (DP) (see Definition 2.3);
(3) a subset {λ ◦ ι(b) : b ∈ O×(Ξ),+} of Hom(A/S , At/S) ⊗Z Q, where

λ : A/S → At/S is an OF -linear polarization of A, whose degree is
prime to Ξ;

(4) η̄(Ξ) is a rational K-level structure of the abelian scheme A/S (see
Remark 3.3 below).

An isomorphism from one quadruple (A/S , ι, λ̄, η̄(Ξ)) to another
(A′/S , ι′, λ̄′, η̄′(Ξ)) is an element f ∈ Hom(A/S , A′/S) ⊗Z Z(Ξ) whose degree
is prime to Ξ such that:

(1) f ◦ ι(b) = ι′(b) ◦ f for all b ∈ OF ;
(2) f t ◦ λ̄′ ◦ f = λ̄ as subsets of Hom(A/S , At/S)⊗Z Q;
(3) we have the equality of level stuctures: V (Ξ)(f)(η̄(Ξ)) = η̄′(Ξ) .

Now we choose a representative I = {c} of fractional ideals in the finite
class group

Cl(K) = (FA(Ξ∞))×/O×(Ξ),+ det(K).
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For each c, fix an OF -lattice Lc ⊆ V = F 2 such that ∧(Lc ∧ Lc) = c∗.
Here ∧ : V ∧ V → F is the alternating form given by ((a1, a2), (b1, b2)) 7→
a1b2 − a2b1.

Definition 3.2. — Define the functor E
(Ξ)
K,c : Sch/Z(Ξ) → Set,such

that for each Z(Ξ)-scheme S, E
(Ξ)
K,c(S) = {(A/S , ι, φ, ᾱ(Ξ))}/∼=, where

{(A/S , ι, φ, ᾱ(Ξ))}/∼= is the set of isomorphic classes of quadruples
(A/S , ι, φ, ᾱ(Ξ)) consisting of

(1) an abelian scheme A/S of relative dimension d;
(2) an algebra homomorphism ι : OF → End(A/S) such that the pair

(A/S , ι) satisfies the condition (DP) (see Definition 2.3);
(3) a c-polarization φ : A⊗OF c→ At of A/S (see Definition 2.1);
(4) ᾱ(Ξ) is an integral K-level structure of the abelian scheme A/S (see

Remark 3.3 below).

An isomorphism from one quadruple (A/S , ι, φ, ᾱ(Ξ)) to another
(A′/S , ι′, φ′, ᾱ′(Ξ)) is an isomorphism f : A→ A′ of abelian schemes over S
such that

(1) f ◦ ι(b) = ι′(b) ◦ f for all b ∈ OF ;
(2) f t ◦ φ′ ◦ (f ⊗OF Idc) = φ : A⊗OF c→ At;
(3) we have an equality of integral level structures: T (Ξ)(f)(ᾱ(Ξ)) =

ᾱ′(Ξ).

Remark 3.3. — Here we briefly recall the notion of level structures on
an abelian scheme with real multiplication. As in Definition 3.1 and 3.2,
we fix an abelian scheme A/S and a homomorphism ι : OF → End(A/S).
Take a point s ∈ S and let s̄ : Spec(k(s̄)) → S be a geometric point of S
over s, where k(s̄) is a separably closed field extension of the residue field
k(s) of S at the point s. Consider the prime-to-Ξ Tate module

TΞ(As̄) = lim
←−N

A[N ](k(s̄)),

where N runs through all positive integers prime to Ξ, and set V Ξ(As̄) =
TΞ(As̄)⊗Z ZΞ, which is a free FA(Ξ∞) -module of rank 2. When N is invert-
ible on S, the finite scheme A[N ] is étale over S. The algebraic fundamen-
tal group π(S, s̄) acts on A[N ](k(s̄)), and hence on TΞ(As̄) and V Ξ(As̄).
This action is compatible with the action of G(Ẑ(Ξ)) (resp. G(FA(Ξ∞))) on
TΞ(As̄) ( resp. V Ξ(As̄)).
We define a sheaf of sets ILV (Ξ) : (Sch/S)ét → Set on the étale site of

the category of S-schemes such that for any connected S-scheme S′, we
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have:

ILV (Ξ)(S′) = H0(π(S′, s̄′), IsomOF (Lc ⊗OF Ẑ(Ξ), TΞ(As̄′))),

where s̄′ is a geometric point of S′ over a point s′ of S′. The étale sheaf
ILV (Ξ) is independent of the choice of s′ (see [20] Section 6.4.1). The
group G(Ẑ(Ξ)) acts on the sheaf ILV (Ξ) through its action on the Tate
module TΞ(As̄′), and we denote by ILV (Ξ)/K the quotient sheaf of ILV (Ξ)

under the group action of K(Ξ). An integral K-level structure of A/S is a
section ᾱ(Ξ) ∈ ILV (Ξ)/K(S). Similarly we define another sheaf RLV (Ξ) :
(Sch/S)ét → Set such that for any connected S-scheme S′, we have:

RLV (Ξ)(S′) = H0(π(S′, s̄′), IsomOF (V ⊗Z A(Ξ∞), V Ξ(As̄′))),

and define the quotient sheaf RLV (Ξ)/K in the same way. Then a rational
K-level structure of A/S is a section η̄(Ξ) ∈ RLV (Ξ)/K(S).
Suppose that we have another abelian scheme A′/S and a homomorphism

ι′ : OF → End(A′/S). We can similarly define two étale sheaves ILV ′(Ξ) and
RLV ′(Ξ) replacingA/S byA′/S in the above construction. If f : A→ A′ is an
OF -linear isomorphism of abelian schemes, the isomorphism f induces an
isomorphism of Tate modules T (Ξ)(As̄) ∼= T (Ξ)(A′s̄) for any geometric point
s̄ of S. Hence f induces an isomorphism of étale sheaves T (Ξ)(f) : ILV (Ξ) →
ILV ′(Ξ) which is compatible with the G(Ẑ(Ξ))-action. Thus f also induces
an isomorphism T (Ξ)(f) : ILV (Ξ)/K → ILV ′(Ξ)/K for all subgroup K

of G(Ẑ). For any integral K-level structure ᾱ(Ξ) ∈ ILV (Ξ)/K(S), we use
T (Ξ)(f)(ᾱ(Ξ)) to denote its image under the isomorphism T (Ξ)(f). Similarly
if f : A→ A′ is an OF -linear prime-to-Ξ isogeny of abelian schemes, then
f induces an isomorphism V (Ξ)(As̄) ∼= V (Ξ)(A′s̄) and hence isomorphisms
of étale sheaves V (Ξ)(f) : RLV (Ξ) → RLV ′(Ξ) and V (Ξ)(f) : RLV (Ξ)/K →
RLV ′(Ξ)/K. For any rational K-level structure η̄(Ξ) ∈ RLV (Ξ)/K(S), we
use V (Ξ)(f)(η̄(Ξ)) to denote its image under the isomorphism V (Ξ)(f). We
refer to [21] Section 4.3.1 for more discussion on this topic.

Theorem 3.4. — When K is small enough (e.g. det(K(Ξ)) ∩ O×+ ⊆
(K(Ξ) ∩ Z(Z))2), then we have a natural isomorphism of functors:

i :
∐
c∈I

E
(Ξ)
K,c → E′

(Ξ)
K .

The proof is essentially given in [20] Section 4.2.1 so we omit the proof
here. The only thing we want to remark here is that for any quadruple
(A/S , ι, λ̄, η̄(Ξ)) considered in Definition 3.1, we can find an abelian scheme
A′/S with real multiplication ι′,and an OF -linear prime-to-Ξ isogeny f :
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A → A′ of abelian schemes over S such that A′/S admits an integral level
structure. Since S is a Z(Ξ)-scheme, the isogeny f is étale. From Lemma
2.8, the pair (A′/S , ι′) also satisfies the condition (DP). Then we can follow
the argument in [20] Section 4.2.1 to conclude this theorem.
From [6], the functor E

(Ξ)
K,c is representable. By Theorem 3.4, when K

is small enough, we can assume that the functor E′
(Ξ)
K is represented by

a Z(Ξ)-scheme Sh(Ξ)
K . From [6] Theorem 2.2, the scheme Sh(Ξ)

K is flat of
complete intersection over Z(Ξ), and smooth over Z(Ξ)[ 1

dF
].

Now we take the projective limit of Sh(Ξ)
K for various K, and get a

Z(Ξ)-scheme Sh(Ξ). It is clear that Sh(Ξ)
/Z(Ξ)

represents the moduli prob-

lem E′
(Ξ) : Sch/Z(Ξ) → Set, such that for each Z(Ξ)-scheme S, E′(Ξ)

K (S) =
[(A/S , ι, λ̄, η(Ξ))]. where [(A/S , ι, λ̄, η̄(Ξ))] is the set of isomorphism classes of
quadruples (A/S , ι, λ̄, η(Ξ)) considered in Definition 3.1, except that η(Ξ) ∈
RLA(Ξ)(S) is a rational level structure instead of a rational K-level struc-
ture for some open compact subgroupK. An isomorphism from one quadru-
ple (A/S , ι, λ̄, η(Ξ)) to another (A′/S , ι′, λ̄′, η′(Ξ)) is an element f ∈
Hom(A/S , A′/S) ⊗Z Z(Ξ) whose degree is prime to Ξ such that it satisfies
the first two conditions in Definition 3.1, and also V (Ξ)(f)(η(Ξ)) = η′(Ξ)

instead of that last condition there.
For any g ∈ G(FA(Ξ∞)), the map sending each quadruple (A/S , ι, λ̄, η(Ξ))

to another quadruple (A/S , ι, λ̄, g(η(Ξ))) induces an automorphism of the
functor E′(Ξ), and hence an automorphism of the Shimura variety Sh(Ξ)

/Z(Ξ)

by universality. We still denote this action by g.
For simplicity we denote the Shimua variety Sh

(Ξ)
/Z(Ξ)

by X/Z(Ξ) in the
following discussion. Pick a closed point xp ∈ X(F̄p). Let K be a neat sub-
group of G(FA(Ξ∞)). Then the natural morphism X → XK = X/K is étale.
Let OX,xp and OXK ,xp be the stalk of X and XK at xp, respectively. The
completion of OX,xp is canonically isomorphic to the completion of OXK ,xp ,
and we denote this completion by Ôxp . Suppose that xp is represented by
a quadruple (A0/F̄p , ι0, φ0, ᾱ0

(Ξ)) ∈ E
(Ξ)
K,c(F̄p).

Let CL/Wp
be the category of complete local Wp-algebras with residue

field F̄p. Consider the local deformation functor D̂p : CL/Wp
→ Set, given

by

D̂p(R) = {(A/R, ιR, φR)|(A/R, ιR, φR)×R F̄p ∼= (A0/F̄p , ι0, φ0)}/∼=,

here the triple (A/R, ιR, φR) consists of an abelian A schemes over R, an
algebra homomorphism ιR : OF → End(A/R) and a c-polarization φR of
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A/R. An isomorphism from a triple (A/R, ιR, φR) to another (A′/R, ι′R, φ′R)
is an isomorphism f : A→ A′ of abelian schemes over R such that

(1) for all a ∈ OF , we have f ◦ ιR(a) = ι′R(a) ◦ f : A→ A′;
(2) f t ◦ φ′R ◦ (f ⊗ Idc) = φR : A⊗OF c→ At.
Define a functor DEFp : CL/Wp

→ Set by the formula:

DEFp(R) = {(D/R,ΛR, εR)}/∼=,

where D/R is a Barsotti-Tate OF -module over R, ΛR : D ⊗OF c → Dt is
an OF -linear isomorphism of Barsotti-Tate OF -modules over R (Dt is the
Cartier dual of D), and εR : D0 = D ⊗R F̄p → A0[p∞] is an isomorphism
of Barsotti-Tate OF -modules over the special fiber Spec(F̄p) of Spec(R).

For any triple (A/R, ιR, φR) in D̂p(R), let A[p∞]/R be its p-divisible
Barsotti-Tate OF -module over R. The c-polarization φR of A/R gives an
isomorphism ΛR : A[p∞] ⊗OF c → At[p∞] ∼= (A[p∞])t. The isomorphism
(A/R, ιR, φR)×R F̄p ∼= (A0/F̄p , ι0, φ0) gives an isomorphism εR : A[p∞]⊗R
F̄p → A0[p∞]. By the Serre-Tate deformation theory ([26] Theorem 1.2.1),
we have:

Proposition 3.5. — The above association

(A/R, ιR, φR) 7→ (A[p∞]/R,ΛR, εR)

induces an equivalence of functors D̂p → DEFp.

We define two more functors DEF ?
p : CL/Wp

→ Set,? = ord, ll, by:

DEF ?
p (R) = {(D?, φ?, ε?)}/∼=,

here in the triple (D?, φ?, ε?), D? is a Barsotti-Tate OF -module over R,φ? :
D?⊗OF c→ (D?)t is an isomorphism of Barsotti-Tate OF -modules over R,
and ε? : D? ⊗R F̄p → A0[p∞]? is an isomorphism over F̄p.

Similar with [15] Proposition 1.2, we have the following facts:
(1) the functor DEFp is represented by the formal scheme Ŝp/Wp

asso-
ciated to Ôxp ;

(2) there is a natural equivalence of functors: DEFp ∼= DEF ordp ×
DEF llp ,and hence the formal Ŝp/Wp

is a product of two formal
schemes Ŝordp/Wp

and Ŝllp/Wp
such that DEF ?

p is represented by Ŝ?
p/Wp

for ? = ord, ll;
(3) For each p ∈ Σordp , fix an isomorphism Op

∼= Tp(A0) (recall that
Tp(A0) is the p-adic Tate module of A0 defined in Section 1). Since c
is prime to p, by the c-polarization φ0, we also have an isomorphism
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Op
∼= Tp(At0). Then Ŝordp/Wp

is a smooth formal scheme overWp which
is isomorphic to∏
p∈Σord

Hom(Tp(A0)⊗Op
Tp(At0), Ĝm) ∼=

∏
p∈Σord

Hom(Op, Ĝm)

=
∏

p∈Σord
Ĝm ⊗Zp O∗p,

here O∗p = HomZp(Op,Zp).

In fact, for any triple (A/R, ιR, φR) in D̂p(R), the level structure ᾱ0
(Ξ) on

A0 can be extended uniquely to a level structure on A/R. Then the functor
D̂p, and hence the functor DEFp by Proposition 3.5, is represented by the
the formal scheme Ŝp/Wp

= Spf(Ôxp).
For a triple (D/R,ΛR, εR) ∈ DEFp(R), we have a canonical decompo-

sition the Barsotti-Tate OF -module D = Dord × Dll, where Dord is the
maximal ordinary Barsotti-Tate OF -submodule of D, and Dll is its local-
local complement. From this we have a morphism

DEFp(R) 3 (D/R,ΛR, εR) 7→

{(Dord
/R ,ΛR|Dord , εR|Dord), (Dll

/R,ΛR|Dll , εR|Dll)}∈DEF ordp (R)×DEF llp (R),

from which we get a equivalence of functors between DEFp and DEF ordp ×
DEF llp . Hence the formal scheme Ŝp/Wp

is a product of two formal schemes
Ŝordp/Wp

× Ŝllp/Wp
.

In contrast with [15] Proposition 1.2, the formal scheme Ŝp/Wp
may not

be smooth when p divides the discriminant dF of F since the Shimura
variety Sh

(p)
/Z(p)

we consider here is not smooth. But from the Serre-Tate
deformation theory, the formal scheme Ŝordp/Wp

is always smooth, and this is
the part we are interested in.

4. Eigen coordinates

At the beginning of this section we set up some notations. Let k ⊆ Q̄ be
a number field and Ξ be a finite set of primes. For each p ∈ Ξ, choose a
finite extension L̃p of Lp in Cp such that:

(1) k ⊆ i−1
p (L̃p);

(2) i−1
p (L̃p) contains the Galois closure of F in Q̄.
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Denote by W̃p the valuation ring of L̃p. Then define:

W̃Ξ =
⋂
p∈Ξ

i−1
p (W̃p) ⊆ Q̄, W̃k = W̃Ξ ∩ k.

The ring W̃Ξ is a semilocal ring, and for each l ∈ Ξ, there is a unique
maximal ideal ml with residue characteristic l. Let L̃Ξ be the quotient field
of W̃Ξ.
Suppose that the quadruple (A

/W̃Ξ
, ι, λ̄, η(Ξ)) represents a point x ∈

Sh(Ξ)(W̃Ξ) such that the image of x lies in Sh(Ξ)(W̃k). For each p ∈
Ξ, x induces an F̄p-valued point xp ∈ Sh(Ξ)(F̄p). Then the quadruple
(AP/F̄p , ιP, λ̄P, η

(Ξ)
P ) obtained by mod p reduction represents the point xp.

This section is the most important part of this paper. We give a sketch
of what we want to do in this section before we start the down to earth
arguments.

First we construct a torus R×(Ξ) acting on the Hilbert modular Shimura
variety which fixes the closed point xp. Hence this action induces an au-
tomorphism on the formal completion Ŝp of the Shimura variety Sh(Ξ) at
the closed point xp. From the previous section, we have a decomposition
Ŝp/Wp

= Ŝordp/Wp
× Ŝllp/Wp

. Then we recall the construction of ρ̂-eigen σ-
coordinates in [15] and give the explicit expression of the action of R×(Ξ) on
these coordinates. When the ind-étale exact sequence of the Barsotti-Tate
Op-module A[p∞] splits over W̃p, we calculate its Serre-Tate coordinates
in Lemma 4.3. It turns out that when p is ramified in the base field (so
Wp 6= W̃p) this Serre-Tate coordinate is a p-th power root of unity and the
abelian variety A

/W̃p
is isogenous to an abelian variety whose Serre-Tate

coordinate at p is 1. From the construction of the eigencoordinates, the
ρ̂-eigen σ-coordinates of these abelian varieties are all 0 for any embed-
ding σ : F → Q̄p which induces the prime p in F . Since we can change
our abelian variety by an isogenous abelian variety, the eigen coordinates
should be the right object to study.
The above calculation is local at p. We want to transit the action of R×(Ξ)

on Ŝp/Wp
to the deformation space Ŝl/Wl

for some other prime l with the
property that there exists a prime L of k over l and A

/W̃Ξ
has partially

ordinary reduction at L. Let π : A→ Spec(W̃Ξ) be the structure morphism
and set ω = π∗(ΩA/W̃Ξ

) which is an OF ⊗Z W̃Ξ-module and define ω⊗2 =
ω ⊗OF⊗ZW̃Ξ

ω. This is the global object which allows us to compare the
action of R×(Ξ) at different local deformation space. The sheaf ω⊗2 is related
with the Serre-Tate coordinates (or the eigen coordinates) through the
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Kodaira-Spencer map. The Kodaira-Spencer map is not an isomorphism in
general if the reduction of A

/W̃Ξ
at P is not ordinary. We want to have

decomposition of ω⊗2 by its OF ⊗Z W̃Ξ-module structure as in [25]. Recall
I = Hom(F, Q̄). The natural homomorphism

OF ⊗Z W̃Ξ → W̃I
Ξ, a⊗ b 7→ (σ(a) · b)σ∈I

is not an isomorphism when the prime p ∈ Ξ is ramified in OF . It becomes
an isomorphism when base change to the quotient field L̃Ξ of W̃Ξ. On the
other hand, the formation of the sheaf ω

/W̃Ξ
is compatible with arbitrary

base change. So we can decompose the sheaf ω⊗2 ⊗W̃Ξ
L̃Ξ as a direct sum

⊕σ∈I ω̃⊗2σ such that on ω̃⊗2σ, the ring OF acts by the embedding σ :
F → Q̄. Under this decomposition and the Kodaira-Spencer map, we can
compare the endomorphism algebras of the reductions of A

/W̃Ξ
at different

primes and get our main result Theorem 4.4 at the end of this section.

4.1. Construction and properties of eigen coordinates

By [15] Lemma 2.2, we have

Lemma 4.1. — If AP/F̄p is not supersingular (i.e. Σordp 6= ∅), then there
exists a CM quadratic extensionM of F , and an isomorphism of F -algebras
θP : M ∼= End0

F (AP/F̄p). Set R = M ∩ θ−1
P (EndOF (AP/F̄p)), which is

an order in M . If a prime ideal p in OF belongs to Σordp ; i.e. AP[p] has
nontrivial F̄p-rational points, then p splits into two primes PP̄ in R with
P 6= P̄.

As in [15], we make the convention that we choose P such that AP[P] is
connected and AP[P̄] is étale.
By the above lemma, we have an isomorphism M ⊗F Fp

∼= Fp×Fp, such
that the first factor corresponds to P and the second factor corresponds to
P̄. AsM can be naturally embedded intoM⊗FFp, we have two embeddings
from M to Fp, which correspond to the two factors of Fp × Fp. We always
regard M as a subfield of Fp by the first embedding, while the second
embedding is denoted by c : M ↪→ Fp.
Let R(Ξ) = R ⊗Z Z(Ξ). For α ∈ R×(Ξ), θP(α) is a prime-to-Ξ isogeny of

AP/F̄p , and hence induces an endomorphism of V (Ξ)(AP). We still denote
this endomorphism by θP(α). Define a map ρ̂ : R×(Ξ) → G(FA(Ξ∞)) such that
for each α ∈ R×(Ξ), ρ̂(α) is given by the formula: η(Ξ)

P ◦ ρ̂(α) = θP(α) ◦ η(Ξ)
P .
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Fix a prime-to-Ξ polarization λP of AP as a representative of λ̄P. Under
the isomorphism θP, the Rosati involution associated to λP on End0

F(AP/F̄p)
induces a positive involution on field M . As M is CM, this involution must
be the complex conjugation on M . Hence for any α ∈ R×(Ξ), λ

−1
P ◦ θP(α)t ◦

λP = θP(ᾱ). Then θP(α)t◦λP◦θP(α) = λP◦θP(ᾱ)◦θP(α) = λP◦θP(αᾱ).
Since αᾱ ∈ O×(Ξ),+, we have θP(α)t◦λ̄P◦θP(α) = λ̄P. So θP(α) is an isogeny
from the quadruple (AP/F̄p , ιP, λ̄P, η

(Ξ)
P ) to (AP/F̄p , ιP, λ̄P, θP(α)(η(Ξ)

P )) =
(AP/F̄p , ιP, λ̄P, ρ̂(α)(η(Ξ)

P )) in the sense of Definition 3.1; in other words, the
automorphism g = ρ̂(α) of the Shimura variety Sh(Ξ)

/WΞ
= Sh

(Ξ)
/Z(Ξ)

×Z(Ξ)WΞ

fixes the closed point xp.
Denote the formal scheme Ŝp/Wp

as the completion of the Shimura variety
Sh

(Ξ)
/WΞ

along the closed point xp, and νp : Ŝp/Wp
→ Sh

(Ξ)
/Wp

is the natural
morphism. As explained in Section 3, Ŝp/Wp

is the product of two formal
schemes Ŝordp/Wp

and Ŝllp/Wp
, and if we fix an isomorphism Op

∼= Tp(AP)
for each p ∈ Σord, then Ŝordp/Wp

is isomorphic to Πp∈ΣordĜm ⊗Zp O∗p. By
deformation theory, we have a Serre-Tate coordinate tp ∈ Ĝm ⊗Zp O∗p for
each p ∈ Σord. Then for each object R in the category CL/Wp

, and an
R-valued point x ∈ Ŝp(R), the Serre-Tate coordinate gives us an element
tp(x) ∈ Ĝm(R)⊗Zp O∗p = (1 + mR)⊗Zp O∗p, here mR is the maximal ideal
of R. In particular, when R is a subring of Cp, we can consider the p-adic
logarithm logp : R → Cp. Consider the following map:

logp⊗ Id : (1 +mR)⊗Zp O∗p → Cp⊗Zp O∗p ∼= Hom(Op,Cp) ∼=
∏

σ:F→Q̄,σ∼p

Cp.

Here the notation σ ∼ p means that the composite map ip ◦ σ : F →
Q̄p induces the prime p of F . For such σ, let πσ be the projection of
Πσ:F→Q̄,σ∼pCp to its σ-factor. Then we get an element τσ(x) = πσ ◦ (logp⊗
Id)(tp(x)) ∈ Cp. The association x ∈ Ŝp(R) 7→ τσ(x) ∈ Cp gives p-adic
rigid analytic functions on the rigid analytic space (Ŝordp )p−an associated
to Ŝordp .

Remark 4.2. — From the above construction, we can see that actually
the eigen coordinates take values in the valuation ring of the field Cp. But
in later argument, we need to invert the prime p when comparing the eigen
coordinates and the invariant differential sheaf of AW̃Ξ

by the Kodaira-
Spencer map. Hence we always regard the coordinates τσ as Cp-valued
functions on the formal scheme Ŝordp or Cp-valued rigid analytic functions
on (Ŝordp )p−an.
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Since the action of g = ρ̂(α) on the Shimura variety Sh
(Ξ)
/WΞ

fixes the
closed point xp, this action also preserves the formal schemes Ŝordp and Ŝllp ,
and hence g = ρ̂(α) acts on the function τσ for each σ ∼ p, p ∈ Σord. By
[22] Lemma 3.3, the action of g = ρ̂(α) on the Serre-Tate coordinate tp
is given by the formula g(tp) = tα

1−c

p . (See the explanation after Lemma
4.1 for the two embeddings of M to Fp). Then by the construction of
τσ, we see that the action of g = ρ̂(α) on the function τσ is given by
the formula: g(τσ) = τσ ◦ ρ̂(α) = ip ◦ σ(α1−c) · τσ. We remark here that
ip ◦ σ : F → Q̄p naturally extends to an embedding ip ◦ σ : Fp → Q̄p, and
hence the expression ip ◦ σ(α1−c) is well defined. As in [15], the function
τσ is called a ρ̂-eigen σ-coordinate.
Now consider the original point x ∈ Sh(Ξ)(W̃Ξ), which is represented by

the quadruple (A
/W̃Ξ

, ι,λ̄, η
(Ξ)).

Lemma 4.3. — Assume that we have a prime p ∈ Σord, such that the
exact sequence of Barsotti-Tate Op-modules :

0→ µp∞ ⊗Zp O∗p → A[p∞]→ Fp/Op → 0

splits over over W̃p. In this case, the Serre-Tate coordinate tp(x) for the
prime p at the point x must be a p-th power root of unity. In particular,
for the ρ̂-eigen coordinate we have τσ(x) = 1 for all σ ∼ p.

This fact is proved in [2] Section 7 or [14] Section 6.3.4 in the case of
elliptic curves. The higher dimensional case is considered in [7] when the
abelian variety has ordinary reduction at P. Since the discussion in the
partially ordinary case may not exist in the references, for the sake of
completeness we give a proof here.
Proof. — First we assume that the ring R = M ∩ θ−1

P (EndOF (AP/F̄p))
in Lemma 4.1 is the integer ring OM of M . From Lemma 4.1 , the prime
p in OF splits into two primes P and P̄ in OM such that the finite group
scheme AP[P]/F̄p (resp. AP[P̄]/F̄p) is connected (resp. étale).

From the splitting of the exact sequence

0→ µp∞ ⊗Zp O∗p → A[p∞]→ Fp/Op → 0

over W̃p, for each integer n, there exists a finite subgroup scheme A[P̄n]
/W̃p

of A[pn]
/W̃p

which projects isomorphically to AP[P̄]/F̄p under the reduction
map. Denote the quotient abelian scheme (A/A[P̄n])

/W̃p
by A′

n/W̃p

and let

πn : A→ A′n be the natural projection defined over W̃p.
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As M is a number field, there exists a positive integer N and an element
a ∈ OM such that P̄N = (a) in OM . Under the isomorphism θP : M ∼=
End0

F (AP/F̄p), the element a ∈ OM gives an isogeny of AP/F̄p whose kernel
is AP[P̄N ]/F̄p , which is still denoted by a.

From the above construction, the projection πN : A→ A′N is a lifting of
the isogeny a : AP → AP to W̃p. From [26] Theorem 2.1(4) or [7] Formula
3.7.2, we have the following equation:

tp(A′
N/W̃p

; a(α), α′) = tp(A
/W̃p

;α, ā(α′)),

for α, α′ ∈ TpAP(F̄p). Here ā is the complex conjugate of a in M . From
our choice of the element a ∈ OM , the action of a (resp. ā) on TpAP(F̄p)
is divisible by p (resp. invertible). Hence the above equation tells us that
the Serre-Tate coordinate tp(A

/W̃p
;α, α′) is a p-th power. Now we replace

a by arbitrary power of a, and repeat the above argument. It follows that
tp(A

/W̃p
;α, α′) is a pn-th power for all n > 1. As tp(A

/W̃p
;α, α′) ∈ Ĝm(W̃p),

we have tp(A
/W̃p

;α, α′) = 1 for all α, α′ ∈ TpAP(F̄p). So we have tp(x) = 1.
In the general case, as the ring R is an order inM , we can find a positive

integer m such that ma ∈ R. We replace a by ma in the above argument,
and it is easy to see that tp(x)m = 1 in this setting. As the Serre-Tate
coordinate tp(x) belongs to Ĝm(W̃p), we can take m as a power of p, as
desired. �

4.2. Comparison of endomorphism algebras at different special
fibers

In this section we want to compare the endomorphism algebras of the spe-
cial fibers of the abelian scheme A

/W̃Ξ
. The key ingredient is the Kodaira-

Spencer map, which we will recall below.
As we can regard x ∈ Sh(Ξ)(W̃Ξ) as a W̃p-rational point the point x

actually sits in the formal scheme Ŝp/Wp
, in other words, if we regard x

as a morphism Spec(W̃Ξ) → Sh(Ξ), then this morphism factors through
νp : Ŝp → Sh(Ξ).

Let (Aunivp , ιunivp , φunivp ) be the universal object over Ŝp. Let πp : Aunivp →
Ŝp be the structure morphism and ep : Ŝp → Aunivp be the morphism
corresponding to the identity element. Consider the sheaf ωunivp =
(πp)∗(ΩAunivp /Ŝp

) = e∗p(ΩAunivp /Ŝp
) over Ŝp/Wp

, which has a natural O
Ŝp
⊗Z

OF -module structure, and compatible with arbitrary base change. Set
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(ωunivp )⊗2 = ωunivp ⊗(O
Ŝp
⊗ZOF ) ω

univ
p . Then we have the Kodaira-Spencer

map:

KS : (ωunivp )⊗2 → Ω
Ŝp/Wp

.

We remark here that the Kodaira-Spencer map is O
Ŝp
⊗Z OF -linear and

compatible with the g = ρ̂(α)-action on both sides.
By the isomorphism Ŝp ∼= Ŝordp ×Ŝllp overWp, we have the decomposition:

Ω
Ŝp/Wp

= (πord)∗Ω
Ŝordp /Wp

⊕ (πll)∗Ω
Ŝllp /Wp

, where πord : Ŝp → Ŝordp and

πll : Ŝp → Ŝllp are the natural projection. Since Ŝordp
∼= Πp∈ΣordĜm⊗Zp O∗p,

if we set Ŝp = Ĝm⊗Zp O∗p, then we have Ω
Ŝordp /Wp

= ⊕p∈Σord(πp)∗Ω
Ŝp/Wp

,

where πp : Ŝordp → Ŝp is the natural projection. To express the g-action on
Ω
Ŝordp /Wp

in a simple way, we base change this module to L̃p, i.e. we consider

Ω
Ŝordp /Wp

⊗Wp
L̃p = Ω

Ŝordp /L̃p
= ⊕p∈ΣordΩ

Ŝp/L̃p
, which is free of finite rank

over (Ŝordp )
/L̃p

. Moreover, for each p ∈ Σord, the set {dτσ|τ ∼ p} forms a
basis of the module Ω

Ŝp/L̃p
over Ŝp, here τσ’s are the ρ̂-eigen coordinates

constructed above.
On the other hand, we consider the cotangent bundle (ωunivp )⊗2 ⊗Wp

L̃p = (ω̃univp )⊗2, which has a natural OF ⊗Z L̃p-module structure. By our
construction of L̃p, for any embedding σ : F → Q̄, σ(OF ) is contained
in i−1

p (L̃p). Hence we have the isomorphism OF ⊗Z L̃p ∼= Πσ:F→Q̄L̃p. By
this isomorphism we can decompose the OF ⊗Z L̃p-module (ω̃univp )⊗2 as
(ω̃univp )⊗2 = ⊕σ:F→Q̄(ω̃univp )⊗2σ such that on the bundle (ω̃univp )⊗2σ, OF
acts through the embedding σ.
Then by [25] section 1.0, for each p ∈ Σord, the Kodaira-Spencer map

induces an isomorphism⊕
σ:F→Q̄,σ∼p

(ω̃univp )⊗2σ → (πp ◦ πord)∗ΩŜp/L̃p
,

under which the bundle (ω̃univp )⊗2σ corresponds to the sub-bundle gener-
ated by dτσ. Hence the action of g = ρ̂(α) preserves each (ω̃univp )⊗2σ and
acts it by multiplying the scalar ip ◦σ(α1−c). Moreover, as we assume that
τσ(x) = 0 for all σ ∼ p, g also preserves (ω̃univp )⊗2σ(x).
Now we can state the main result in this section:

Theorem 4.4. — Fix an embedding σ1 : F → Q̄, such that ip ◦ σ1
induces p. If there exists some prime l 6= p in Ξ, such that the prime l
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induced from il ◦ σ1 belongs to Σordl , then we have an isomorphism of F -
algebras: End0

F (AP/F̄p
) ∼= End0

F (AL/F̄l
). Here AL/F̄l

sits in the quadru-
ple (AL/F̄l , ιL, λ̄L, η

(Ξ)
L ) obtained by mod l reduction of the point x ∈

Sh(Ξ)(W̃Ξ).

Proof. — Set ω = π∗(Ω1
A/W̃Ξ

), which is naturally an OF ⊗Z W̃Ξ-module.

Again we set ω⊗2 = ω ⊗(OF⊗ZW̃Ξ) ω. The base change ω⊗2 ⊗W̃Ξ
L̃Ξ is an

OF ⊗Z L̃Ξ-module. By our construction of L̃Ξ, we have an isomorphism:

OF ⊗Z L̃Ξ ∼=
⊕

σ:F→Q̄

L̃Ξ.

From this we have the decomposition: ω⊗2 ⊗W̃Ξ
L̃Ξ = ⊕σ:F→Q̄ω̃

⊗2σ.
Since the formation of the cotangent sheaf ωunivp over Ŝp is compatible

with arbitrary base change, by the Cartesian diagram:

A

��

// Aunivp

��
Spec(L̃p)

x // Ŝp,

we see that ω̃⊗2σ⊗L̃Ξ
L̃p = (ωunivp )⊗2σ(x). As g = ρ̂(α) acts on the Shimura

variety Sh(Ξ)
/W̃Ξ

, g sends the bundle ω⊗2⊗W̃Ξ
L̃Ξ and hence each factor ω̃⊗2σ

to the corresponding bundles over g(x). As g preserves (ωunivp )⊗2σ(x) for
all σ ∼ p, it also preserves ω̃⊗2σ. In particular, g preserves ω̃⊗2σ1 .

As ω̃⊗2σ1⊗L̃Ξ
L̃l = (ω̃univl )⊗2σ1(x), g also preserves the fiber (ω̃univl )⊗2σ1(x)

of the bundle (ω̃univl )⊗2σ1 at the point xl and acts on it by multiplica-
tion by il ◦ σ1(α). Hence g must act on the eigen coordinate τσ1,l(x) by
multiplying il ◦ σ1(α), and g preserves the sub-bundle of Ω

Ŝl/Wl
(x) gen-

erated by dτσ1,l(x). If g sends xl ∈ Sh(Ξ)(F̄l) to another point x′l 6= xl,
the action of g has to move the deformation space Ŝl over xl to the de-
formation space Ŝ′l over x′l, where Ŝ′l is the completion of Sh(Ξ)

/W̃Ξ
along

the closed point x′l. Then g induces an isomorphism of cotangent bundles
g : Ω

Ŝl/Wl
(x)→ Ω

Ŝ′
l
/Wl

(g(x)) and hence g cannot preserve any sub-bundle

of Ŝordl/Wl
(x), which is a contradiction. So g fixes the point xl, i.e. there exists

a prime-to-Ξ isogney θ̃L(α) of AL,such that θ̃L(α) ◦ η(Ξ)
L = η

(Ξ)
L ◦ ρ̂(α), and

hence establishes an isomorphism from the quadruple (AL/F̄l , ιL, λ̄L, η
(Ξ)
L )

to the quadruple (AL/F̄l , ιL, λ̄L, η
(Ξ)
L ◦ ρ̂(α)). The association α 7→ θ̃L(α)
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gives us an embedding M ↪→ End0
F (AL/F̄l

). Since End0
F (AL/F̄l

) is also a
CM quadratic extension of F by Lemma 4.1, this embedding must be an
isomorphism. Hence we get the desired isomorphism of F -algebras. �

5. Main result on local indecomposability and applications

Let k be a number field. Suppose that we are given an abelian variety
A/k and an algebra homomorphism ι : OF → End(A/k) (recall that F is a
totally real field of degree d over Q and OF is its integer ring). Assume that
there is a prime ideal P of k over a rational prime p, such that A/k satisfies
the condition (NLL) in section 1. From Proposition 1.1, the abelian variety
A/Q̄ = A/k×k Q̄ is isotypic. Without loss of generality, we can assume that
A/k is absolutely simple. Let IP be the inertia group of Gal(Q̄/k) at the
prime P.
Before we give the main result, we need the following:

Lemma 5.1. — If the abelian variety A/Q̄ = A/k ×k Q̄ does not have
complex multiplication, we can find two primes L and Q of k lying over
l and q respectively (p, l, q are distinct primes), such that A/k has good
reduction at L and Q, and F -algebras End0

F (AL/F̄l) and End0
F (AQ/F̄q ) are

non-isomorphic CM quadratic extension of F , here AL/F̄l (resp. AQ/F̄q ) is
the reduction of A/k at L (resp. Q).

Proof. — Fix an embedding σ : F → Q̄ such that the composition il ◦ σ
induces the prime p. From [15] Proposition 7.1, the set

{L|L is a prime of k over a rational prime l 6= p

such that A/k has good reduction at L, and Σordl 6= ∅}

has Dirichlet density 1. On the other hand, the primes l in F which splits
completely over Q also has Dirichlet density 1, we can find a prime L of k
over a rational prime l such that:

(1) l is unramified in F ;
(2) A/k has good reduction at L and Σordl contains the prime l induced

by il ◦ σ and l splits over Q.
Let AL/F̄l be the reduction of A/k at L, and set ML = End0

F (AL/F̄l). By
Lemma 4.1, ML is a quadratic CM extension of the field F .

Now by an argument in [15] Proposition 5.1 we can find a prime Q of k
over a rational prime q 6= p, l, such that

(1) A/k has good reduction at Q;
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(2) Σordq contains the prime induced by iq ◦ σ;
(3) MQ = End0

F (AQ/F̄q ) is a CM quadratic extension of F which is
non-isomorphic to ML.

For completeness, we give a sketch of the construction of Q and refer
to [15] Proposition 5.1 for more details. We use D to denote the division
algebra End0(A/k) and let Z be the center of D. From Proposition 1.2, Z
is totally real and either Z = F = D or D is a quaternion division algebra
over Z and [F : Z] = 2.

For any prime q of F , we fix an isomorphism Tq(A) ∼= (OF,q)2, and
denote by rq : Gal(Q̄/k)→ GL2(OF,q) as the induced Galois representation
on Tq(A). Define the algebra Cq = Zq[rq(Gal(Q̄/k))] as the subalgebra of
End0

Zq
(Tq(A)) = EndOZ,q(Tq(A))⊗OZ,q Zq, of rq generated over Zq by the

image of rq. Then by Faltings’ isogeny theorem, Cq is either isomorphic to
a quaternion division algebra over Zq or isomorphic to M2(Zq). In the case
q = l, Cl is isomorphic to M2(Fl) = M2(Zl). Under this assumption,we
can apply an argument in [30] Chapter 4 to prove that the image Im(rl)
contains an open subgroup of SL2(Zl) ⊆ C×l .
Choose a quadratic ramified extension K/Ql. Since Fl/Ql is unramified,

K and Fl are linearly disjoint over Ql. Let L be the compositum field of
K and Fl. Define the torus T/OF,l of GL2/OF,l as the norm 1 subgroup of
ResOL/OF,l(Gm); i.e.

T (OF,l) = {x ∈ O×L |NormL/Fl
(x) = 1}.

Hence T/OF,l is a maximal anisotropic torus of GL2/OF,l , and T (OF,l) ∩
SL2(Zl) is a maximal anisotropic torus of GL2/Zl .
Choose α ∈ T (OF,l) ∩ Im(r) ∩ SL2(Zl), such that α has two different

eigenvalues in Q̄l. Then T (OF,l) is the centralizer Tα of α in GL2(OF,l).
Since the isomorphism classes of maximal torus in GL2/OF,l is finite, the
isomorphism class of the centralizer of α is determined by α mod pj , for
some integer j large enough. In other word, if β ∈ SL2(Zl), such that
α ≡ β mod pj , then the centralizer Tβ of β is isomorphic to Tα = T .
By Chebotarev density, we can find a prime Q of k over a rational prime
q 6= p, l, such that A/k has good reduction at Q and r(FrobQ) ≡ α mod pj .
Hence the commutator Tr(FrobQ) of r(FrobQ) is isomrphic to T . Let MQ

be the field generated over F by the eigenvalues of r(FrobQ). By the above
construction, l does not split in MQ, and hence MQ is not isomorphic to
ML. Further by [15] Proposition 7.1, we can assume that Σordq contains the
prime induce from iq ◦ σ.
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Then it is clear from the above construction that the primes Q and L

satisfy the desired property. �

Now we can state and prove the main theorem in this paper:

Theorem 5.2. — Under the above notations and assumptions, suppose
further that A/Q̄ = A/k ×k Q̄ does not have complex multiplication, then
for any p ∈ Σordp , the p-adic Tate module Tp(A) of A is indecomposable as
an IP-module.

Proof. — Let the prime Q and L be the primes of k in the previous
lemma. Define a finite set of primes Ξ = {p, q, l}. For this set Ξ, we define
the semilocal ring W̃k as in section 4. Hence the abelian variety A/k can
be extended to an abelian scheme A

/W̃k
. From Proposition 2.6, replacing

A/k by an isogenous abelian variety if necessary, we can assume that the
abelian scheme A

/W̃k
admits an OF -action ι : OF → End(A

/W̃k
) and

a c-polarization φ for some fractional ideal c of F . Then by choosing a
integral level structure αΞ of A, we get a quadruple (A

/W̃k
, ι, φ, αΞ), which

represents a point in the Shimura variety x ∈ Sh(Ξ)(W̃k).
Now assume that the Tate module Tp(A) is decomposable as an IP-

module. Then the exact sequence of Barsotti-Tate Op-modules over W̃p:

0→ µp∞ ⊗Zp Op → A[p∞]→ Fp/Op → 0

splits. Then by Theorem 4.4, we must have isomorphisms of F -algebras:
MQ

∼= End0
F (AQ/F̄p) and ML

∼= End0
F (AL/F̄p). But this contradicts with

our construction MQ � ML. Hence Tp(A) must be indecomposable as an
IP-module. �

5.1. Application to Hilbert modular Galois represenations

As the first application of Theorem 5.2, we study the Galois representa-
tion attached to certain Hilbert modular forms. First we recall the notions
of Hilbert modular forms and Hecke operators.

Let I = HomQ(F, Q̄), and let Z[I] be the set of formal Z-linear combi-
nations of elements in I. Then Z[I] can be identified with the character
group X(T ) of the torus T . Take k = (kσ)σ∈I such that kσ > 2 for all
σ ∈ I and all the kσ’s have the same parity. Set t = (1, . . . , 1) ∈ Z[I] and
n = k − 2t. Choose v = (vσ)σ∈I such that vσ > 0, for all σ, vσ = 0 for at
least one σ, and there exists µ ∈ Z such that n + 2v = µt ∈ Z[I]. Then
define w = v + k − t.
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Recall that in Section 3 we define the algebraic groupG = ResOF /Z(GL2)
and T = ResOF /Z(Gm). Denote by ν : G→ T the reduced norm morphism.
Fix an open subgroup U of G(Ẑ) = GL2(ÔF ) where ÔF = OF ⊗Z Ẑ =
ΠpOF,p. In the last product, p ranges over all the prime ideals of OF and
OF,p is the completion of OF at p. Let FA = F ⊗Z A be the adele ring of
F . We can decompose the group G(FA) as the product G∞ × Gf , where
G∞ (resp. Gf ) is the infinite (resp. finite) part of G(FA), and for each
u ∈ G(FA), we have the corresponding decomposition u = u∞uf .

Let h be the complex upper half plane and i =
√
−1 ∈ h. Let hI be the

product of d copies of h indexed by elements in I and z0 = (i, . . . , i) ∈ hI.
Define a function j : G∞ × hI → CI by the formula:((

aτ bτ
cτ dτ

)
, zτ

)
τ∈I
7→ (cτzτ + dτ )τ∈I.

Definition 5.3. — Define the space of Hilbert modular cusp forms
Sk,w(U ;C) as the set of functions f : G(FA) → C satisfying the follow-
ing conditions:

(1) f |k,wu = f , for all u ∈ UC∞+ where C∞+ = (R× ·SO2(R))I ⊆ G∞,
and

f |k,wu(x) = j(u∞, z0)−kv(u∞)wf(xu−1);

(2) f(ax) = f(x) for all a ∈ G(Q) = GL2(F );
(3) For any x ∈ Gf , the function fx : hI → C defined by u∞(z0) 7→

j(u∞, z0)kv(u∞)−wf(xu∞) for u∞ ∈ G∞ is holomorphic;

(4)
∫
FA/F

f

((
1 a

0 1

)
x

)
da = 0 for all x ∈ G(FA) and additive Haar

measure da on FA/F .
When F=Q, we also add the following condition: the function |Im(z)k/2fx(z)|
is uniformly bounded on h for all x ∈ Gf = GL2(Af ).

Fix an integral ideal m of F , we define three open subgroups of GL2(ÔF ):

U0(m) =
{(

a b

c d

)
∈ GL2(ÔF )|c ∈ mÔF

}
,

U1(m) =
{(

a b

c d

)
∈ GL2(ÔF )|c ∈ mÔF , a ≡ 1 mod mÔF

}
,

U(m) =
{(

a b

c d

)
∈ GL2(ÔF )|c ∈ mÔF , a ≡ d ≡ 1 mod mÔF

}
,

and set Sk,w(m,C) = Sk,w(U1(m),C).
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Let U,U ′ be two open compact subgroups of Gf and fix x ∈ Gf . Define
a Hecke operator

[UxU ′] : Sk,w(U ;C)→ Sk,w(U ′;C), f 7→
∑
i

f |k,wxi,

where {xi} is a set of representatives of the left cosets U\UxU ′; i.e., we
have UxU ′ =

∐
Uxi and when we consider the action f |k,wxi, we regard

xi ∈ Gf as an element in G(FA) such that its infinite part consists of d
copies of identity matrices. For all prime ideal q of F , fix a uniformizer πq
of Fq, and define the Hecke operator

T (q) =
[
U

(
1 0
0 βq

)
U

]
: Sk,w(U ;C)→ Sk,w(U ;C),

where βq ∈ F×Af is the finite idele whose q-component is πq and all the other
components are 1. For each fractional ideal n of F , set α = Πqπ

vq(n)
q ∈ F×Af ,

and define the Hecke operator

〈n〉 =
[
U

(
α 0
0 α

)
U

]
: Sk,w(U ;C)→ Sk,w(U ;C).

Let f ∈ Sk,w(m,C) be a normalized Hilbert modular eigenform in the
sense that for any prime ideal q of F , there exists c(q, f) ∈ Q̄ and d(q, f) ∈
Q̄ such that T (q)(f) = c(q, f) · f and 〈q〉(f) = d(q, f) · f . Let Kf be the
field generated over Q by all the c(a, f)’s and d(a, f)’s. Shimura proved
that Kf is a number field which is either totally real or CM. Denote by Of
the integer ring of Kf .
For such an f , let πf = ⊗πv be the automorphic representation of

GL2(FA) on the linear span of all the right translations of f by elements
of GL2(FA), here FA is the adele ring of F ,and πv is a representation of
GL2(Fv) for each finite place v of F . We assume that one of the following
two statements holds:

(1) [F : Q] is odd;
(2) there exists some finite place v of F such that πv is square inte-

grable.
For such an eigenform f , the following result is known (see [21] Theorem
2.43 for details and historical remarks). For each prime λ of Of over a
rational prime p, there is a continuous representation ρf,λ : Gal(Q̄/F ) →
GL2(Of,λ), which is unramified outside primes dividing mp such that for
any primes q - mp, we have:

trace(ρf,λ(Frobq)) = c(q, f), and det(ρf,λ(Frobq)) = d(q, f)Nq.
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Here Of,λ is the completion of Of at λ, Frobq is the Frobenius of Gal(Q̄/F )
at q,and for any ideal b of OF , Nb is the cardinality number of the ring
OF /b.

Fix a prime p of OF over a rational prime p, let Dp(resp. Ip) be the
decomposition group (resp. inertia group) of Gal(Q̄/F ) at p. Let λ be a
prime of Of over p. From [35] Lemma 2.1.5, if c(p, f) is a unit mod λ,
then the restriction of ρf,λ to Dp is upper triangular, i.e. there exist two
characters ε1, ε2 of Dp, such that

ρf,λ|Dp
∼
(
ε1 ∗
0 ε2

)
.

Lemma 5.4. — Suppose that k = 2t and f is nearly p-ordinary in the
sense that c(p, f) is a unit mod λ. Then there exists an abelian variety
Af/F , a finite extension L/Kf and an homomorphism L → End0(Af/F )
such that degree of L over Q equals to the dimension of Af and up to a
character the λ-adic representation ρf,λ comes from the Tate module of
Af .

Proof. — As the Hecke operator T (p) acts nontrivially on f , from [18]
Corollary 2.2, the local representation πp of GL2(Fp) is either a principal
representation π(ξp, ηp) or a special representation σ(ξp, ηp). From the ar-
gument in [18] Section 2, we can find a finite character χ : F×A /F× → Q̄×
(FA is the adele ring of F ) such that the p-component of χ satisfies χp = ξp
on O×F,p and unramified at every infinite place of F . Then the argument
in [18] Section 2 implies that the automorphic representation χ⊗ π corre-
sponds to a primitive p-ordinary newform f0. If we regard the representa-
tions ρf,λ and ρf0,λ as representations in GL2(Q̄p), then they are related
by the formula ρf,λ ⊗ χ−1 = ρf0,λ. It is enough to prove the statement for
the newform f0 and henceforth we assume that the Hilbert modular form
f is a primitive p-ordinary newform with character ψ for some idele class
character ψ of F with finite order.
From [16] Theorem 4.4 or [34] Theorem 2.1, there exists an abelian va-

riety Af defined over F , a finite extension L/Kf whose degree equals to
the dimension of Af and an embedding θ : L → End(Af/F ) such that the
λ-adic representation associated to the Tate module of Af is isomorphic to
ρf,λ. Moreover the number field L is either totally real or CM. To be more
precise, there exists an integer e such that dim(Af/F ) = e[Kf : Q]. When
[F : Q] is odd, e = 1 and there is nothing to explain in this situation. When
[F : Q] is even, e can be bigger than 1, and a priori the p-adic Tate mod-
ule of Af/F gives us a representation of Gal(Q̄/F ) in GL2(Lλ),where Lλ
is a finite extension of Kf,λ. Since this representation is odd, by choosing
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suitable eigenvectors of a complex conjugation c ∈ Gal(Q̄/F ) as basis for
Tp(Af ), we can realize this representation in GL2(Kf,λ). (See [35] Section
2.1 for details.) �

Remark 5.5. — As c(p, λ) is a unit mod λ, the abelian variety Af has
potentially semistable reduction at p by the lemma in [34] Section 2. More
precisely, if we denote by Fψ the number field corresponding to the char-
acter ψ by class field theory, then Af has semistable reduction over Fψ. In
fact, choose a prime λ′ of Of over a rational prime l 6= p and consider the
λ′-adic representation ρf,λ′ . When p does not divide the level m, the abelian
variety Af has good reduction at p because the representation ρf,λ′ is un-
ramified at p. If p divides m, one can consider the complex representation
σp of the local Weil-Deligne group W ′Fp

of F at p associated to ρf,λ′ (see
[33]). Then by a result of Carayol [3], we have an isomorphism π(σp) ∼= πp,
where π(σp) is the representation of GL2(Fp) associated to σp under the lo-
cal Langlands correspondence. In particular, the Euler factor L(πp, s) of the
L-series at p is given by (1−c(p, f)Np−s)−1. As c(p, f) 6= 0 by assumption,
L(πp, s) is nontrivial. Hence πp is either a special representation σ(αp, βp)
or a principal series representation π(αp, βp), where αp, βp are two quasi-
characters of F×p . In the first case, from [34] Theorem 2.2, the reduction
of Af at p is purely multiplicative. From the uniformization result in [28],
ρf,λ|Ip∩Gal(Q̄/Fψ) is indecomposable. As Ip ∩ Gal(Q̄/Fψ) is a subgroup of
Ip with finite index, and char(Kf ) = 0, the representation ρf,λ|Ip is also
indecomposable. In the second case, as the Euler factor L(πp, s) 6= 1, one of
the quasi-characters αp, βp is unramified. By comparing the determinant
of the two representations πp and σp, we see that the product ψ−1

p αpβp
is unramified, where ψp is the p-component of the idele class character
ψ. Hence over Fψ, both quasi-characters αp and βp are unramified. Then
from the criterion of Néron-Ogg-Shafarevich, the abelian variety Af has
good reduction over Fψ at p.

Now we would like to prove the following:

Theorem 5.6. — Under the above notations and assumptions in lemma
5.4, if f does not have complex multiplication, then the representation
ρf,λ|Ip is indecomposable.

Proof. — From Lemma 5.4 and Remark 5.5 we can assume that Af has
good reduction over Fψ. From Proposition 1.2, we see that Af/Q̄ is isotypic;
i.e. there exists a simple abelian variety B/Q̄ such that there exists an
isogeny ϕ : Af → Be for some integer e > 1. This isogeny induces an
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isomorphism of simple algebras i : End0(Af/Q̄)→ End0((B/Q̄)e). Hence we
have an embedding θB = i ◦ θ : L→ End0((B/Q̄)e).
From Proposition 1.4, we can find a totally real field FB and a homomor-

phism ιB : FB → End0(B/Q̄), such that [FB : Q] = dim(B/Q̄). Let Z be the
center of the division algebra End0(B/Q̄). From the proof of Proposition
1.4, if we identify FB as a subalgebra of End0(B/Q̄) by ιB , then Z ⊆ FB
and [FB : Z] 6 2.
If [FB : Z] = 1, we have FB = Z and hence FB ⊆ θB(L). Since both Af

and B are projective varieties, we can find a finite extension M of Fψ such
that

(1) the abelian variety B is defined over M ;
(2) we have the equalities of endomorphism algebras: End(Af/Q̄) =

End(Af/M ) and End(B/Q̄) = End(B/M ).
(3) the isogeny ϕ is defined over M .

Under the above notations, the isogeny ϕ gives an isomorphism of p-adic
Tate modules Tp(B)⊗FB L ∼= Tp(A), which is equivariant under the action
of the Galois group Gal(Q̄/M).
If [FB : Z] = 2, FB may not contained in the image θB(L). In this case,

we can find a quadratic extension K/L such that FB can be embedded
into K. As the homomorphism θ : L → End0(Af/Q̄) identifies L with a
maximal commutative subfield of the simple algebra End0(Af/Q̄), we can
extend this homomorphism to a homomorphism θ′ : K → End0(A2

f/Q̄),
which identifies K with a maximal commutative subfield of End0(A2

f/Q̄).
Similarly we can extend the homomorphism θB to a homomorphism θ′B :
K → End0(B2e

/Q̄). Since A2
f/Q̄ is isogeneous to B2e

/Q̄, the simple algebras
End0(A2

f/Q̄) and End0(B2e
/Q̄) are isomorphic. Since all automorphisms of

a simple algebra are inner, by choosing a suitable isogeny from A2
f/Q̄ to

B2e
/Q̄, we have an isomorphism i′ : End0(A2

f/Q̄) ∼= End0(B2e
/Q̄), such that

i′ ◦ θ′ = θ′B : K ∼= End0(B2e
/Q̄). By the same argument as above, we can

find a finite extension M/Fψ such that we have an isomorphism of p-adic
Tate modules: Tp(B) ⊗FB K ∼= Tp(Af ) ⊗L K, which is equivariant under
the action of Gal(Q̄/M).
As Be/M is isogenous to Af/M , B/M has good reduction at a prime p′ of

M over the prime p of F . By Theorem 5.2, for any place λB of FB such that
the λB-divisible Barsotti-Tate module of B/M is ordinary, the correspond-
ing λB-adic Tate module is indecomposable as a Gal(Q̄/M) ∩ Ip-module.
By the above isomorphism of Tate modules, we see that ρf,λ|Gal(Q̄/M)∩Ip
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is indecomposable. Since Gal(Q̄/M) ∩ Ip is a subgroup of Ip with finite
index, and char(Kf ) = 0, the representation ρf,λ|Ip must be also indecom-
posable. �

From Theorem 5.6, we can prove a result on local indecomposability
of Λ-adic Galois representations. First we briefly recall the definition of
ordinary Hecke algebras defined in [17] Section 3.

Let Φ be the Galois closure of F in Q̄. The embedding ip : Q̄ → Q̄p
induces a p-adic valuation on Φ and we denote by OΦ the valuation ring.
Let K be a finite extension of the p-adic closure of Φ in Q̄p, and OK be
the valuation ring of K. Let F∞/F be the maximal abelian extension of
F unramified outside p and ∞, and Z be its Galois group. Let Z1 be the
torsion free part of Z. Let Λ = OK [[Z1]] be the continuous group algebra
of Z1 over OK . Then Λ is (noncanonically) isomorphic to the formal power
series ring of 1 + δ variables over OK , where δ is the defect in Leopoldt’s
conjecture. Let χ : Gal(Q̄/F ) → Z×p be the cyclotomic character. The
restriction of χ to Z1 gives a character of Z1, which is still denoted by
χ. For any integer k > 2 and a finite order character ε : Z1 → Q̄p. The
character εχk−1 : Z1 → Q̄p gives a homomorphism κk,ε : Λ→ Q̄p.
For any two open compact subgroups U,U ′ of Gf and x ∈ Gf , we have

the modified Hecke operator defined in [17] Section 3:

(UxU ′) : Sk,w(U ;C)→ Sk,w(U ′;C).

For each prime ideal q of F , set

T0(q) =
(
U

(
1 0
0 βq

)
U

)
: Sk,w(U ;C)→ Sk,w(U ;C),

where βq is the same as in the definition of T (q).
Fix an integral ideal n of F which is prime to p, and for each integer

α > 1, set Sk,w(npα;C) = Sk,w(U1(n ∩ U(pα));C). Define the Hecke alge-
bra hk,w(npα;OΦ) as the OΦ-subalgebra of EndC(Sk,w(npα;C)) generated
by all the T0(q)’s over OΦ and define hk,w(npα;OK) = hk,w(npα;OΦ)⊗OΦ

OK . Inside hk,w(npα;OK) we have the p-adic ordinary projector eα =
limn→∞ T0(p)n! and we have the ordinary Hecke algebra hordk,w(npα;OK) =
eαhk,w(npα;OK). For β > α > 0, we have a natural surjective OK-algebra
homomorphism hordk,w(npβ ;OK)→ hordk,w(npα;OK), and we define

hordk,w(np∞;OK) = lim
←−α

hordk,w(npα;OK).

From [17] Theorem 3.3, the ordinary Hecke algebra hordk,w(np∞;OK) is a
torsion free Λ-module of finite type, and the isomorphism class of
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hordk,w(np∞;OK) as an OK-algebra only depends on the class of v in Z[I]/Zt,
and hence we denote this algebra by hordv (np∞;OK).
Now set h = hord0 (np∞;OK). Fix Spec(ΛL)→ Spec(h) a (reduced) irre-

ducible component of h and let F : h → ΛL be the corresponding homo-
morphism. Then ΛL is finite free over Λ, and the quotient field L of ΛL is
a finite extension of the quotient field of Λ. Let P be a Q̄p-valued point of
ΛL, and let ϕP : ΛL → Q̄p be the corresponding homomorphism. The point
P is called an arithmetic point if ϕP is an extension of κk,ε for some k and
ε. If P is an arithmetic point, then the composition ϕP ◦ F : h→ Q̄p gives
the Hecke eigenvalues of a classical Hilbert modular form f of weight k and
tame level n. We also say that the Hilbert modular form f corresponds to
P , and f belongs to the family F . We say that F has complex multiplica-
tion if there exists an arithmetic point P in F , such that the corresponding
Hilbert modular form has complex multiplication. Once this is the case,
then for all arithmetic point in F , the corresponding Hilbert modular form
also has complex multiplication.
It’s well known that there is a 2-dimensional Galois representation ρF :

Gal(Q̄/F )→ GL2(L) attached to F such that for each prime p of F over p,
the restriction of ρF to the decomposition Dp is upper triangula;i.e. ρF |Dp

is of the shape:

ρF |Dp
∼
(
δp up
0 εp

)
,

here δp, εp : Dp → ΛL are two characters of Dp.

Theorem 5.7. — Suppose that F does not have complex multiplica-
tion, and F has an arithmetic point P which corresponds to a weight 2
Hilbert modular form satisfying the condition required in Theorem 5.6.
Then there exists a proper closed subscheme S of Spec(ΛL) such that for
all arithmetic points P of Spec(ΛL) outside S which corresponds to a clas-
sical form f , the representation ρf |Dp

is indecomposable, where ρf is the
Galois representation attached to f . In particular, when Leopoldt conjec-
ture holds for F and p, then for all but finitely many classical forms f
belonging to F , the representation ρf |Dp

is indecomposable.

The proof follows essentially from the argument in [11] Theorem 18. For
the sake of completeness, we give a proof here.
Proof. — By the assumption and Theorem 5.6, the representation ϕP ◦

ρF |Dp
is indecomposable. Hence ρF |Dp

is indecomposable either. Define
cp = ε−1

p · up : Dp → ΛL. Then it’s easy to check that cF satisfies the
cocycle condition and ρF |Dp

is indecomposable if and only if the class
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[cp] of cp in H1(Dp,ΛL(δpε−1
p )) is nontrivial. Since ΛL is finite over Λ, the

residue field of ΛL is finite and let q be its order. Let E1 be the compositum
of the finitely many tamely ramified abelian extension of Fp whose order
divides q−1, and E2 be the maximal abelian pro-p-extension of Fp. Denote
by E the compositum field of E1 and E2 and set H = Gal(Q̄p/E) ⊆ Dp.
Then the characters δp and εp are trivial when restricted to H. Hence the
restriction of ρF to H is of the shape:

ρF |H ∼
(

1 λ

0 1

)
,

for some (additive) homomorphism λ : H → ΛL. From [11] Lemma 19, the
restriction

H1(Dp,ΛL(δpε−1
p ))→ H1(H,ΛL(δpε−1

p ))
is injective. Since [cp] is nontrivial in H1(Dp,ΛL(δpε−1

p )), the homomor-
phism λ : H → ΛL is nontrivial. Let I be the ideal of ΛL generated by
λ(H). Then I is nonzero and I defines a proper closed subscheme S of
Spec(ΛL). If f is a classical Hilbert modular form in F , then ρf |H is de-
composable if and only if f corresponds an arithmetic point in S. Hence for
any arithmetic point P of F outside S, which corresponds to the modular
form f , the representation ρf |H , and hence ρf |Dp

is indecomposable. �

Now we consider the nearly ordinary case. Let

OF,p = lim
←
OF /pnOF

be the p-adic completion of OF at p, and UF be the torsion free part of
O×F,p. Then set Γ = Z1×UF and let Λ′ = OK [[Γ]] be the continuous group
algebra. For any finite character ε : Γ→ Q̄×p , we have another character

Γ = Z1 × UF → Q̄×p , (a, d) 7→ χ(a)µdvε((a, d)),

which induces a homomorphism κn,v,ε : Λ′ → Q̄p.
We briefly recall the definition of nearly ordinary Hecke algebras de-

fined in [19] Section 1. For any α > 1, set Uα = U1(n) ∩ U(pα), and let
hk,w(npα;OΦ) be the OΦ-subalgebra of EndC(Sk,w(npα;C)) generated by
all the Hecke operators (UαxUα) for x ∈ U0(npα) over OΦ. Set
hk,w(npα;OK) = hk,w(npα;OΦ) ⊗OΦ OK . Applying the ordinary projec-
tor eα we get the nearly ordinary Hecke algebra h

n.ord
k,w (npα;OK), and

by taking limit, we have the Hecke algebra h
n.ord
k,w (np∞;OK). From [19]

Theorem 2.3, the Hecke algebra h
n.ord
k,w (np∞;OK) are all isomorphic to

each other for all pair (k,w) as OK-algebras and denote this algebra by
h
n.ord(np∞;OK), which is a torsion free Λ′-module of finite type. Let

Spec(Λ′L) be an irreducible component of Spec(hn.ord(np∞;OK)) and let
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F : hn.ord(np∞;OK)→ Λ′L be the corresponding homomorphism. We know
that Λ′L is free of finite rank over Λ′. A Q̄p-rational point P ∈ Spec(Λ′L)(Q̄p)
is called an arithmetic point if the corresponding homomorphism ϕP ex-
tends κn,v,ε for some n, v. For such an arithmetic point, the composition
ϕP ◦ (F) gives the eigenvalues of a Hilbert modular form of weight (k,w)
and tame level m.

For such an F , we have a two dimensional Galois representation ρF :
Gal(Q̄/Q) → GL2(Λ′L) such that for any prime p of F over p, the restric-
tion ρF |Dp

is upper triangular. Similarly with Theorem 5.7, we have the
following result:

Theorem 5.8. — Suppose that F does not have complex multiplica-
tion, and F has an arithmetic point P which corresponds to a (parallel)
weight 2 Hilbert modular form satisfying the condition required in Theo-
rem 5.6. Then there exists a proper closed subscheme S of Spec(Λ′L) such
that for all arithmetic points P of Spec(Λ′L) outside S which corresponds
to a classical form f , the representation ρf |Dp

is indecomposable, where ρf
is the Galois representation associated to f .

5.2. Application to a question of Coleman

In the rest of this paper, we work with elliptic modular forms. Let p > 3
be a prime number and N be a positive number prime to p. For each integer
k we use M†k(Γ1(N)) (resp. S†k(Γ1(N))) to denote the space of overconver-
gent p-adic modular forms (resp. cuspforms) of level N over Cp (see [24]
for the definitions). In [4] Proposition 6.3, Coleman proved that there is a
linear map θk−1 : M†2−k(Γ1(N))→M†k(Γ1(N)) such that the effect of θk−1

on the q-expansions is given by the differential operator (q ddq )k−1. Also
there is an operator U on M†k(Γ1(N)) such that if F (q) = Σn>0anq

n is an
overconvergent modular form, then U(F )(q) = Σn>0apnq

n. Recall that if F
is a generalized eigenvector for U with eigenvalue λ in the sense that there
exists some n > 1 such that (U − λ)n(F ) = 0, then the p-adic valuation
of λ is called the slope of F . From [4] Lemma 6.3, if f ∈ S†k(Γ1(N)) is a
normalized classical eigenform of slope strictly smaller than k − 1, then f
cannot be in the image of θk−1. On the other hand, a classical eigenform
cannot have slope larger than k − 1. Then it remains to consider the re-
maining boundary case; i.e. overconvergent modular forms of slope one less
than the weight. In [4] Proposition 7.1, Coleman proved that for k > 2,
every classical CM cuspidal eigenform of weight k and slope k− 1 is in the
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image of θk−1. Then he asked whether there is non-CM classical cusp forms
in the image of θk−1. Since the only possible slope for new forms of weight
k is k

2 − 1 (see [13] Section 4), it’s enough to consider old forms.
Let g = Σn>1anq

n be a classical normalized eigenform of level N and
weight k > 2. Denote by Kg = Q(an|n = 1, 2, . . .) the Hecke field of g,
which is known to be a number field. For each prime p of Kg over the
rational prime p, it induces an embedding ip : Kg → Q̄p and let vp be
the corresponding valuation on Kg. Then we can regard g as a modular
form over Q̄p by ip. As explained in [13] Section 4, one can attach to g
two oldforms on Γ1(N) ∩ Γ0(p) whose slopes add up to k − 1. When the
eigenform g is p-ordinary; i.e. vp(ap) = 1, one of the associated oldforms
has slope 0 and the other has slope k − 1 . We denote the latter oldform
by f . What we can prove is the following:

Proposition 5.9. — Let g be a weight two normalized classical cusp
eigenform on Γ1(N) with the Hecke field Kg. Suppose that there exists a
prime p of Kg over the rational prime p such that g is p-ordinary, and the
associated slope one oldform f is in the image of the operator θ. Then g is
a CM eigenform.

Proof. — Let ρg,p : Gal(Q̄/Q)→ GL2(Kg,p) be the p-adic Galois repre-
sentation attached to g. As explained in [8] Proposition 1.2 or [10] Propo-
sition 11, when f is in the image of θ, the restriction of ρg,p to an inertia
group Ip of Gal(Q̄/Q) at p splits as the direct sum of the trivial character
and the character χp, where χp is the p-adic cyclotomic character. Then
from Theorem 5.6, the eigenform g must have complex multiplication. �

Remark 5.10. — In [8] Theorem 1.3, Emerton proved that if the as-
sumption in the above proposition is true for all primes p of Kg over p,
then g is a CM eigenform. Hence the above proposition can be regarded
as an improvement of his theorem. Also in [10] Section 6, Ghate discussed
the case when p divides the level N . In this case he explained that one can
also attach to the eigenform g a primitive form f with the same weight and
level as g. Then he proved that f is in the image of θ if and only if the
restriction of ρg,p to the inertia group Ip splits (we need to emphasize here
that Ghate’s argument works for all weights, but we restrict ourselves to
the weight two case where Theorem 5.6 is applicable). Hence the result in
Theorem 5.6 also applies and the above proposition still holds in this case.
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