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THE GEOMETRY OF NON-UNIT PISOT
SUBSTITUTIONS

by Milton MINERVINO & Jörg THUSWALDNER (*)

Abstract. — It is known that with a non-unit Pisot substitution σ one can
associate certain fractal tiles, so-called Rauzy fractals. In our setting, these frac-
tals are subsets of a certain open subring of the adèle ring of the associated Pisot
number field. We present several approaches on how to define Rauzy fractals and
discuss the relations between them. In particular, we consider Rauzy fractals as the
natural geometric objects of certain numeration systems, in terms of the dual of
the one-dimensional realization of σ, and in the context of model sets for particular
cut and project schemes. We also define stepped surfaces suited for non-unit Pisot
substitutions. We provide basic topological and geometric properties of the Rauzy
fractals, prove some tiling results for them, and provide relations to subshifts de-
fined in terms of the periodic points of σ, to adic transformations, and a domain
exchange.
Résumé. — On peut associer à une substitution de type Pisot non unimo-

dulaire σ certaines tuiles fractales, appelés fractals de Rauzy. Dans ce contexte,
ces fractals sont des sous-ensembles d’un certain sous-anneau ouvert de l’anneau
des adèles du corps de nombres associé. On présente plusieurs approches sur la
façon de définir les fractals de Rauzy. En particulier, on considère les fractals de
Rauzy comme des objets géométriques naturels associés à certains systèmes de
numération, en termes du dual de la réalisation unidimensionnelle de σ et comme
des ensembles définis par coupe et projection. On définit également des surfaces
discrètes adaptées aux substitutions de type Pisot non unimodulaires. On éta-
blit des propriétés topologiques et géométriques basiques des fractals de Rauzy,
ainsi que des résultats de pavage. Finalement on fournit des relations entre des
sous-décalages définis en termes de points périodiques de σ, des transformations
adiques et un échange de morceaux.

Keywords: Rauzy fractal, tiling, p-adic completion, beta-numeration.
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1. Introduction

In order to derive dynamical properties of unit Pisot substitutions,
Arnoux and Ito [4] associated fractal tiles to these substitutions. These so-
called Rauzy fractals, named in honor of the seminal paper by Rauzy [25]
who first worked out a complete example, have been studied extensively in
the meantime (see e.g. [7, 8, 18, 19, 27, 30, 32]). Siegel [29] defined these
fractals also for Pisot substitutions that are not necessarily unit. As con-
jectured already by Rauzy [26], this requires to extend the representation
space for these sets by certain p-adic factors (Figure 1.1 shows an example
of a tiling induced by such a Rauzy fractal). In his fundamental PhD thesis,
Sing [31] studied various properties of these non-unit Rauzy fractals in the
context of model sets and recently, Akiyama et al. [3] investigated them
in the context of beta-numeration (see also [9] for some number theoretic
properties of these sets).

R

Q3

Figure 1.1. Tiling of the representation space Kσ associated with the
2-letter non-unit substitution σ(1) = 152, σ(2) = 13.

Rauzy fractals have been defined in different ways and were studied in
different contexts. So far, most of these approaches have been considered
only in the case of unit Pisot substitutions. In the first part of the present
paper we present and correlate these approaches in the general case of a
non-unit Pisot substitution σ. Here, if α is the Pisot number associated
with σ, the Rauzy fractal associated with σ is defined in a certain subring
Kσ of the adèle ring AQ(α), whose non-Archimedean factors are determined
by the prime divisors of the principal ideal (α) of the ring of integers O of
Q(α). In particular, we define Rauzy fractals in the following contexts.

• We review Dumont-Thomas numeration (cf. [14]), which is a gen-
eralization of the well-known notion of beta-numeration, and view
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THE GEOMETRY OF NON-UNIT PISOT SUBSTITUTIONS 1375

Rauzy fractals as the natural geometric objects related to this kind
of numeration (called Dumont-Thomas subtiles in this context).

• We extend the geometric realization of a substitution and its dual
which was first studied by Arnoux and Ito [4] to the non-unit case
and define Rauzy fractals as renormalized pieces of stepped hy-
persurfaces with p-adic factors (and call them E∗1 -subtiles in this
setting; see Figure 1.2).

• We present Sing’s [31] construction of Rauzy fractals via cut and
project schemes and define them in terms of a graph directed iter-
ated function system. In this framework Rauzy fractals occur as the
dual prototiles of the multi-component model set associated with
this cut and project scheme.

We show how these different approaches are related, provide conjugacies
of the underlying mappings, and prove that the respective Rauzy fractals
are all the same (up to affine transformations).

In the second part of this paper we establish geometric and topological
properties of Rauzy fractals, some of which occur in Sing’s Thesis [31] in
the context of model sets, some of them are new. In particular, carrying
over the model set definition of Rauzy fractals to Dumont-Thomas numer-
ation, we prove that Rauzy fractals can be regarded as the solution of a
graph directed set equation governed by the prefix automaton of σ. This set
equation provides a natural subdivision of the subtiles of a Rauzy fractal
and highlights its self-affine structure that is inherited from the underlying
substitution. We discuss how Rauzy fractals are related to certain sub-
shifts defined in terms of periodic points of the substitution σ and relate
adic transformations to domain exchanges of subpieces of Rauzy fractals.
We show that Rauzy fractals always admit a multiple tiling of the rep-

resentation space Kσ. Moreover, extending results of [3] on non-unit beta
numeration we prove a tiling criterion for Rauzy fractals. In particular,
we show that Rauzy fractals admit a tiling of the representation space
provided that the representations of the underlying Dumont-Thomas nu-
meration obey a certain finiteness condition which is an extension of the
well-known property (F) of beta-numeration (see [17]). An example for such
a tiling is depicted in Figure 1.1.
We illustrate the results of our paper with examples for a two as well as

a three letter substitution.
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1376 Milton MINERVINO & Jörg THUSWALDNER

Figure 1.2. T−5
ext (U) for the substitution σ(1) = 21213, σ(2) = 12.

2. Preliminaries

2.1. Pisot substitutions

Let A = {1, 2, . . . , n} be a finite alphabet, and denote by A∗ the set of
finite words over A. The set A∗ endowed with the concatenation of words
is a free monoid with the empty word ε as identity element. Given w ∈ A∗
and a ∈ A, let |w| be the length of the finite word w, |w|a be the number
of occurrences of a in w. We denote by Aω the set of (right) infinite words
and by ωA the set of left-infinite words over A. The topology on Aω is the
product topology of the discrete topology on A. This implies that Aω is a
compact Cantor set. A bi-infinite word overA is a two-sided sequence inAZ.
We can equip AZ with a topology in an analogous way as we did for Aω. A
right or bi-infinite word u is purely periodic if there exists v ∈ A∗ \{ε} such
that u = vω. Recall that u is uniformly recurrent if every word occurring
in u occurs in an infinite number of positions with bounded gaps.

A substitution is an endomorphism of the free monoid A∗ with the con-
dition that the image of each letter is non-empty and, for at least one letter
a ∈ A,

∣∣σk(a)
∣∣→∞. A substitution naturally extends to the set of infinite

and bi-infinite sequences. A one-sided (two-sided) periodic point of σ is an
infinite (bi-infinite) word u that satisfies σk(u) = u, for some k > 0. If
k = 1, then u is called fixed point of σ.
We can naturally associate with a substitution σ an incidence matrix

Mσ with entries (Mσ)a,b = |σ(b)|a, for all a, b ∈ A. The map P : A∗ → Nn,
w 7→ (|w|1 , . . . , |w|n)t is called the abelianisation map. Obviously, we have
Mσ ◦ P = P ◦ σ. A substitution is primitive if Mσ is a primitive matrix.
Every primitive substitution σ has at least one periodic point and without
loss of generality we can assume that σ has at least one fixed point. Indeed,
if k is the period length then we may just work with σk instead of σ.
The prefix automaton associated to the substitution σ is the directed

graph with set of vertices A and set of labeled edges a p−→ b if there exist
p, s ∈ A∗ such that σ(a) = pbs.

ANNALES DE L’INSTITUT FOURIER
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Recall that an algebraic integer α > 1 is a Pisot number if all its algebraic
conjugates α′ other than α itself satisfy |α′| < 1. A substitution σ is a
Pisot substitution if the dominant eigenvalue of Mσ is a Pisot number.
Furthermore we say that a Pisot substitution is unit if α is a unit, otherwise
we call it non-unit. We say that a primitive substitution σ is irreducible if
the characteristic polynomial of Mσ is irreducible over Q. It is not hard to
show that each irreducible Pisot substitution is primitive (see e.g. [13]).

We introduce the following important combinatorial condition on substi-
tutions.

Definition 2.1. — A substitution σ over the alphabet A satisfies the
strong coincidence condition if for every pair (b1, b2) ∈ A2, there exists
k ∈ N and a ∈ A such that σk(b1) = p1as1 and σk(b2) = p2as2 with
P(p1) = P(p2) or P(s1) = P(s2).

2.2. Substitution dynamical systems

Recall that the two-sided shift S : AZ → AZ is a homeomorphism on
AZ and let u ∈ AZ. The set Xu := {Sju : j ∈ N} is a shift space, and we
call it the symbolic dynamical system associated with u. If σ is a primitive
substitution, then all σ-periodic words are uniformly recurrent, and thus
have the same language. The symbolic dynamical system associated with σ
is the system associated with any of these. We will denote it by (Xσ, S). It
is known that (Xσ, S) is minimal and uniquely ergodic (see [16, 24]). Every
word in Xσ has a unique decomposition w = Sk(σ(v)), with v ∈ Xσ and
0 6 k < |σ(v0)|. This means that any word in Xσ can be uniquely written
in the form

w = . . . | · · ·︸︷︷︸
σ(v−1)

| w−k · · ·w−1.w0 · · ·wl︸ ︷︷ ︸
σ(v0)

| · · ·︸︷︷︸
σ(v1)

| · · ·︸︷︷︸
σ(v2)

| · · ·

with · · · v−1v0v1 · · · ∈ Xσ. Let p = w−k · · ·w−1 the prefix of σ(v0) of length
k and let s = w1 · · ·wl its suffix. The word w is completely defined by the
word v and the decomposition of σ(v0) of the form pw0s. Let P be the
finite set of all such decompositions, i.e., ,

(2.1) P = {(p, a, s) ∈ A∗ ×A×A∗ : ∃ b ∈ A, σ(b) = pas}.

We can define a desubstitution map χ on Xσ (which sends w to v), and
a partition map ρ from Xσ to P, corresponding to the decomposition of

TOME 64 (2014), FASCICULE 4



1378 Milton MINERVINO & Jörg THUSWALDNER

σ(v0). These two maps are continuous.

χ : Xσ → Xσ, w 7→ v such that w = Skσ(v), and 0 6 k < |σ(v0)| ,
ρ : Xσ → P, w 7→ (p, w0, s) such that σ(v0) = pw0s, and k = |p| .

Let X l
P be the set of left-infinite sequences (pi, ai, si)i>0 = · · · (p1, a1, s1)

(p0, a0, s0) ∈ ωP such that σ(ai+1) = piaisi, for all i > 0. The subshift X l
P

is sofic. The prefix-suffix development is the map EP : Xσ → X l
P defined

by EP(w) = (ρ(χi(w)))i>0 = (pi, ai, si)i>0. If an infinite number of prefixes
and suffixes are non-empty then we have the combinatorial expansion w =
limk→∞ σk(pk) · · ·σ(p1)p0.w0s0σ(s1) · · ·σk(sk), where the triples (pi, ai, si)
play the role of digits. It is shown in [12] that the map EP is continuous
and onto X l

P , and it is one-to-one except on the orbit of periodic points of
σ, where it is k-to-one with k > 1.

If we project each of the (pi, ai, si) of an element of X l
P on the first

component we obtain the labels of a left-infinite walk in the prefix automa-
ton of the substitution σ. We will see in Section 4 that the hierarchical
desubstitution structure of Xσ is reflected in a natural way in the theory
of Dumont-Thomas expansions.

2.3. Algebraic framework

We recall some notions from algebraic number theory. For more details
we refer e.g. to [23].

Let K be a number field and O its ring of integers. A prime (or place) p
is a class of equivalent valuations of K. An Archimedean equivalence class
is called an infinite prime and it will be denoted by p | ∞, while a non-
Archimedean equivalence class is called a finite prime, denoted by p - ∞.
The set of all infinite primes will be denoted by S∞. The infinite primes
p | ∞ are obtained from the Galois embeddings τ : K → C, and we define
| · |p : K → R by |x|p = |τx| if p is real, |x|p = |τx|2 if p is complex. If p is
finite, we define | · |p : K → R by |x|p = N(p)−vp(x), where N(p) = pfp|(p) is
the norm of the ideal p lying over (p), fp|(p) its inertia degree, vp : K∗ → Z
the p-adic valuation, defined by the unique prime ideal factorization

(x) := xO =
∏
p

pvp(x).

Note that vp(x) = 0 for almost all p. Furthermore, given any x ∈ K∗, we
have the important product formula

(2.2)
∏
p

|x|p = 1.

ANNALES DE L’INSTITUT FOURIER
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We write Kp for the completion of K with respect to | · |p. Denote by
Op the ring of integers of the completion Kp, i.e., the valuation ring

Op = {x ∈ Kp : vp(x) > 0}.

By Ostrowski’s theorem everyKp is either isomorphic to R or C, for infinite
primes p, or to a finite extension of Qp, for finite primes p. Furthermore,
for p finite, we can express any element of Kp as

∑∞
i=m diν

i, where m ∈ Z,
ν is a uniformiser, i.e., vp(ν) = 1, and the di are taken in a fixed system of
representatives of the residue class field Op/pOp.
For p | ∞ we equip Kp with the real Lebesgue measure in case p is real

and with the complex Lebesgue measure otherwise. If p - ∞ we equip Kp

with the Haar measure µp(x + pk) = N(p)−k. We know (see for instance
[28, Proposition 2, Chapter II]) that for every measurable subset M of a
local field Kp and for every x ∈ Kp,

(2.3) µp(x ·M) = |x|p µp(M).

Consider the adèle ring AK of K and the open subrings

AK,S =
∏
p∈S

Kp ×
∏
p/∈S

Op,

for some finite set of primes S containing S∞. Let OS = {x ∈ K : |x|p 6
1 for all p /∈ S} be the set of S-integers. We know that AK = K + AK,S∞
and K ∩ AS∞ = OS∞ . Moreover, K is a discrete, co-compact subgroup of
AK .

3. The representation space

Let σ be an irreducible Pisot substitution with incidence matrix Mσ and
Pisot root α. Consider the number fieldK = Q(α) of degree n and signature
(r, s), and let K∞ = K ⊗Q R ∼= Rr × Cs. Define the locally compact ring

Kα = K∞ ×
∏
p|(α)

Kp =
∏
p∈Sα

Kp,

where Sα = {p : p | ∞ or p | (α)}. We have injective ring homomorphisms
Φ and Φ∞ which diagonally embed K into Kα and K∞, respectively. More
precisely

Φ : K −→ Kα, ξ 7−→
∏
p∈Sα

ξ,

Φ∞ : K −→ K∞, ξ 7−→
∏

p∈S∞

ξ.

TOME 64 (2014), FASCICULE 4



1380 Milton MINERVINO & Jörg THUSWALDNER

Note that K acts multiplicatively on Kα by ξ · (zp)p∈Sα = (ξzp)p∈Sα , for
ξ ∈ K.
The representation space is defined as

Kσ =
∏

p∈Sα\{p1}

Kp,

where p1 is the infinite prime satisfying |α|p1
= α. We equip Kα and Kσ

with the product of the metrics induced by | · |p and with the product
measure µKα , respectively µ, of the measures µp, for p ∈ Sα, respectively
p ∈ Sα \ {p1}. Notice that multiplication by α acts as a uniform con-
traction in Kσ. Let π : Kα → Kσ be the projection which modules out
the p1-coordinate, and let πp1 : Kα → Kp1 be the projection defined by
πp1((zp)p) = zp1 . We will denote by Φ′ = π ◦ Φ the diagonal embedding of
K into Kσ.
In case the substitution σ is unit the representation space will consist

only of Archimedean completions, because in this case (α) = O and there
is no finite prime p satisfying p | (α).

Lemma 3.1. — Let M ⊂ Kσ be a measurable set. Then

µ(α ·M) = α−1 · µ(M).

Proof. — By (2.3) we obtain

µ(α ·M) =
∏

p∈Sα\{p1}

|α|p · µ(M),

and using the product formula (2.2) we easily deduce that
∏

p∈Sα\{p1} |α|p
= α−1. �

Recall that a subset W ⊂ Kα is called a Delone set if it is uniformly
discrete and relatively dense. This means that there are radii r,R > 0 so
that each ball of radius r (respectively R) contains at most (respectively
at least) one point of W .

Lemma 3.2. — The set Φ(OSα) is a Delone set in Kα.

Proof. — The subring AK,Sα intersects the uniformly discrete subring
K in OSα , so Φ(OSα) is likewise uniformly discrete in the closed subring
Kα. In order to show the relative denseness, note that AK,Sα is clopen in
AK , so AK,Sα/OSα (with its quotient topology) is a clopen subgroup of the
compact group AK/K and, hence, is compact. As Kα/Φ(OSα) is a quotient
of AK,Sα/OSα , it is also compact. �
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Let vα = (v1, . . . , vn) be a left eigenvector ofMσ associated to α, assume
that vα is scaled in a way that vi ∈ Q(α), and consider the Z-module
V = 〈v1, . . . , vn〉Z.

Lemma 3.3. — V is a free Z-module of rank n. Consequently, the num-
bers vi are rationally independent.

Proof. — As vα is an eigenvector, we get that αV ⊂ V . Moreover, vα 6= 0
which implies that V 6= {0}. Thus, since α is irrational of degree n, the el-
ements vj , αvj , . . . , αn−1vj ∈ V are linearly independent over Q. Therefore
〈vj , αvj , . . . , αn−1vj〉Z ⊂ V and, hence, V has rank n. �

Since V is an abelian group and αV ⊂ V we have that V is a finitely
generated Z[α−1]-module. As vi ∈ Q(α) there is q ∈ Z such that vi ∈
q−1Z[α] holds for each i ∈ {1, . . . , n}. Thus each generator of V is taken in
q−1Z[α] and, hence, V · Z[α−1] is a (fractional) ideal of the ring Z[α−1].

Lemma 3.4. — The following assertions hold:
(1) OSα = O[α−1].
(2) V · Z[α−1] is a subgroup of finite index of OSα .

Proof. — Since α−1 ∈ OSα and O ⊆ OSα the inclusion OSα ⊇ O[α−1]
follows. To prove the reverse inclusion, choose x ∈ OSα and let p | (α).
Then there exists k ∈ N such that

∣∣αkx∣∣
p
6 1. Since Sα is a finite set of

primes, setting h = max{k ∈ N :
∣∣αkx∣∣

p
6 1, for p | (α)} we get αhx ∈ O,

and, hence, OSα ⊆ O[α−1].
V is a subgroup of finite index of q−1O, for some q ∈ Z, which implies that

there exists m ∈ N such that mq−1O ⊆ V . Thus V ·Z[α−1] ⊆ q−1O[α−1] ⊆
1
mV ·Z[α−1] and it suffices to show that V ·Z[α−1] is a subgroup of finite in-
dex of 1

mV ·Z[α−1]. Suppose on the contrary thatmV ·Z[α−1] is a subgroup
of V · Z[α−1] of infinite index, in particular

∣∣V · Z[α−1]/mV · Z[α−1]
∣∣ >

mn. Let x1, . . . , xmn+1 be mn + 1 pairwise different representatives of
V ·Z[α−1]/mV ·Z[α−1]. Since x1, . . . , xmn+1 ∈ V ·Z[α−1], there exists l ∈ N
such that x1, . . . , xmn+1 ∈ V 〈1, α−1, . . . , α−l〉Z. As V 〈1, α−1, . . . , α−l〉Z is a
Z-module of rank at most n, V 〈1, α−1, . . . , α−l〉Z/mV 〈1, α−1, . . . , α−l〉Z has
index at most mn, which implies that there exist i, j ∈ {1, . . . ,mn+1} such
that xi ≡ xj mod mV 〈1, α−1, . . . , α−l〉Z, contradicting xi 6≡ xj mod mV ·
Z[α−1]. �

Lemma 3.5. — Φ(V · Z[α−1]) is a Delone set in Kα.

Proof. — This follows immediately by Lemma 3.2 and Lemma 3.4. �

TOME 64 (2014), FASCICULE 4
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Thus Φ(V ·Z[α−1]) is a discrete subgroup of Kα and, hence, a lattice. We
look now for a fundamental domain of Kα modulo the lattice Φ(V ·Z[α−1]).
We define dp = min{vp(x) : x ∈ V }, for every p | (α).

Lemma 3.6. — The set

D =
{

n∑
i=1

riΦ∞(vi) : ri ∈ [0, 1)
}
×
∏
p|(α)

pdp

is a fundamental domain for Kα mod Φ(V · Z[α−1]).

Proof. — Let w1, . . . , wn be an integral basis of O over Z. We claim that
the set

D0 :=
{

n∑
i=1

riΦ∞(wi) : ri ∈ [0, 1)
}
×
∏
p|(α)

Op

is a fundamental domain for Kα mod Φ(OSα).
To prove this claim let z := (zp)p∈Sα ∈ Kα. We know that Φ∞(w1), . . . ,

Φ∞(wn) is a basis of the real vector space K∞. Thus z∞ := (zp)p|∞ =∑n
i=1 riΦ∞(wi) ∈ K∞ for some ri ∈ R, and we denote by ι(z∞) the element∑n
i=1bricwi ∈ O. For p | (α), zp ∈ Kp can be written as

zp =
−1∑

i=−m
ciν

i +
∞∑
i=0

ciν
i, m ∈ N,

where ν is a uniformiser and the ci are taken in a system of representatives
of the residue class field Op/pOp. Basically we view zp as the sum of a
p-adic fractional part, that we denote by λp(zp), and a p-adic integral part.
Define

y =
∑
p|(α)

λp(zp) + ι

(
z∞ − Φ∞

( ∑
p|(α)

λp(zp)
))

.

One checks that y ∈ OSα and z − Φ(y) ∈ D0. Indeed, z∞ − Φ∞(y) is an
element of the form

∑n
i=1 riΦ∞(wi) with ri ∈ [0, 1), by definition of y,

and, for p | (α), observe that both zp −Φp

(∑
p|(α) λp(zp)

)
and Φp(ι(z∞ −

Φ∞(
∑

p|(α) λp(zp)))) are in Op. Furthermore z − Φ(x) /∈ D0 for all x ∈
OSα \ {y} (note that the intervals for the ri in the definition of D0 are
half-open).
Now we replace the lattice Φ(OSα) with the sublattice Φ(V ·Z[α−1]). As

w1, . . . , wn is a Q-basis forK, the same holds for v1, . . . , vn. The completion
of V at p, i.e., Vp := V ⊗Z Zp is isomorphic to pdp . We can express an
element zp of the completion Kp as zp =

∑−1
i=−m ciν

i +
∑∞
i=0 ciν

i where
ν is a uniformiser and the ci are taken in a set of representatives of the
residue class field Vp/pVp isomorphic to pdp/pdp+1. Thus we can adapt all
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the arguments given above to get a unique element y ∈ V · Z[α−1] such
that z− Φ(y) ∈ D. �

4. The geometry of Dumont-Thomas numeration

4.1. Dumont-Thomas numeration

Dumont and Thomas [14] studied numeration systems associated with a
primitive substitution σ. This notion of numeration allows to expand real
numbers with respect to a real base α > 1, which is the Perron-Frobenius
eigenvalue of the substitution. Dumont-Thomas expansions depend on the
prefix automaton of the substitution and on the left eigenvector vα associ-
ated with α. The digit set for the expansions is D = {δ(p) : (p, a, s) ∈ P},
where P is defined in (2.1) and δ is the map given by

δ : A∗ → Q(α), δ(p) = 〈P(p),vα〉.

Notice that D ⊂ V is finite and depends on the normalization of vα. A
sequence (δ(pi))i>1 ∈ Dω is called (σ, a)-admissible if there exists a walk
in the prefix automaton labeled by (pi)i>1 starting from a with infinitely
many non-empty suffixes.

Proposition 4.1 (Dumont-Thomas [14]). — Let σ be a primitive sub-
stitution on the alphabet A and fix a ∈ A. For every x ∈ [0, δ(a)), there
exists a unique (σ, a)-admissible sequence (δ(pi))i>1 ∈ Dω such that

(4.1) x =
∑
i>1

δ(pi)α−i.

We will call an expansion of this form a (σ, a)-expansion and we will
denote its sequence of digits by (x)σ,a.
For x ∈ R+, let m > −1 be the smallest integer such that α−m−1x ∈

[0, δ(a)), for some a ∈ A. Then we can expand α−m−1x using Proposi-
tion 4.1 and obtain a walk labeled by (p−i)i>−m such that

x =
m∑
i=0

δ(pm−i)αm−i +
∑
j>1

δ(p−j)α−j ⇐⇒

(x)σ,a = δ(pm) · · · δ(p0).δ(p−1)δ(p−2) · · ·

Set X =
⋃
a∈A

(
[0, δ(a))× {a}

)
and define the map

Tσ : X → X, (y, b) 7→
(
αy − δ(p), a

)
,
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where a ∈ A and p ∈ A∗ are uniquely determined by σ(b) = pas and
αy − δ(p) ∈ [0, δ(a)). Given any (y, b) ∈ X we get its (σ, b)-expansion by
computing its Tσ-orbit. Notice that Tσ is not injective and the pre-image
has the form

(4.2) T−1
σ (x, a) =

⋃
b
p−→a

{(α−1(x+ δ(p)), b)}, for (x, a) ∈ X.

It is easy to see from this identity that for (x, a) ∈ X we have

(4.3) αmT−mσ (x, a) = x+ αmT−mσ (0, a), ∀m ∈ N,

where x+ (z, a) = (x+ z, a) is used.

4.2. Integers and fractional parts

We will be interested in “integers” and “fractional parts” obtained from
the Dumont-Thomas numeration system generated by the substitution σ,
i.e., all those x ∈ R+ such that only non-negative (respectively negative)
powers of α occur in its (σ, a)-expansion, for some a ∈ A.

In the sequel, for a sequence of subsets {Ak}k∈N of a topological space,
we write Limk→∞Ak for the topological limit (if it exists; see e.g. [20,
Chapter II, §29] for the definition of this object).
Let Z(k)

σ,a = αk ·T−kσ (0, a) ⊂ R be the set of real numbers corresponding to
all finite walks of length k in the prefix automaton ending at state a, i.e., the
sums

∑k−1
i=0 δ(pi)αi, where ak

pk−1−→ · · · p1−→ a1
p0−→ a. To such an element we

associate the left-sequence of digits δ(pk−1) · · · δ(p1)δ(p0). ∈ ∗D. Observe
that these sets are not nested (see Example 4.5).

Definition 4.2. — The set of (σ, a)-integers is the topological limit
Zσ,a = Limk→∞ Z(k)

σ,a. We call the union of the Zσ,a for a ∈ A σ-integers
and denote it by Zσ.

The topological limit in the definition exists since for every interval
[0, `] ⊂ R+ there exists k0 ∈ N such that Limk→∞ Z(k)

σ,a∩ [0, `] = Z(k)
σ,a∩ [0, `],

for each k > k0.
Notice that the set of σ-integers is a subset of V and is discrete and

closed. The set Zσ,a is the set of those finite sums
∑k−1
i=0 δ(pi)αi ∈ Z(k)

σ,a,
k ∈ N, whose associated sequence of digits can be left-padded by zeros. In
particular, Zσ,a (

⋃
k>0 Z

(k)
σ,a, that is, not every approximation is a (σ, a)-

integer.
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Definition 4.3. — The set of (σ, a)-fractional parts is defined as

(4.4) Frac(σ, a) = V · Z[α−1] ∩ [0, δ(a)),

and Frac(σ) =
⋃
a∈A Frac(σ, a) = V · Z[α−1] ∩ [0,maxa∈A δ(a)), will be

called the set of σ-fractional parts.

An element x ∈ Frac(σ, a) has a (σ, a)-expansion (x)σ,a = .δ(p−1)δ(p−2)
· · · , where (p−k)k>1 is the label of an infinite walk in the prefix automaton
starting at state a.

Lemma 4.4. — Tσ maps Frac(σ) onto Frac(σ).

Proof. — Given (x, a) ∈ Frac(σ, a), Tσ(y, b) = (x, a) for all (y, b) such
that y = α−1(x + δ(p)) and σ(b) = pas. Notice that there exists at least
one (y, b) of this form since the prefix automaton is strongly connected
by the primitivity of σ. It is clear that y ∈ V · Z[α−1]. Furthermore, if
(x)σ,a = .δ(p1)δ(p2) · · · , then (y)σ,b = .δ(p)δ(p1)δ(p2) · · · which implies
that y ∈ [0, δ(b)). �

Example 4.5. — Let σ be the substitution σ(1) = 121, σ(2) = 11. We
have

Mσ =
(

2 2
1 0

)
, det(xI −Mσ) = x2 − 2x− 2.

This substitution is an irreducible non-unit Pisot substitution with asso-
ciated Pisot root α = 1 +

√
3. A left eigenvector associated to α for Mσ

is vα = (α2 , 1). From the prefix automaton of the substitution depicted in
Figure 4.1 we can see that the set of digits is D = {δ(ε), δ(1), δ(12)}. In

Figure 4.1. The prefix automaton of the substitution σ(1) = 121,
σ(2) = 11.

Figure 4.2 we illustrate the map Tσ and its combinatorial structure. If the
letter a of a point (x, a) ∈ X is equal to 1 then the function depicted in the
left square is used to compute the first coordinate of its image, if it is 2,
we use the one in the right square. Moreover, the second coordinate of the
image of (x, a) is 1 if the line of the linear piece is black, and 2 if it is light
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gray. For example, given (x, 1) ∈ [ 1
2 ,

α−1
2 )×{1}, which is in the left square,

after one iteration of Tσ it will jump to the right square. We compute as

0 α
2

α
2

1

1
2

α−1
2

0 α
2

α
2

1

1
2

1

Figure 4.2. The map Tσ

an example the orbit of
( 1

4 , 1
)
:( 1

4 , 1
) Tσ //

(
α
4 , 1
) Tσ //

( 1
2 , 2
) Tσ // (0, 1) Tσ

zz

Thus we have
( 1

4
)
σ,1 = .0δ(1)δ(1). Observe that

(
α3

4 , 1
)

=
( 3α

2 +1, 1
)
∈ Z(k)

σ,1

for all k > 2, thus 3α
2 +1 is a (σ, 1)-integer. On the other hand

( 3α
2 +1, 2

)
∈

Z(2)
σ,2, with associated walk 2 1−→ 1 1−→ 2, but ( 3α

2 + 1, 2) /∈ Z(3)
σ,2, and this

is due to the fact that we cannot left-pad its expansion by 0s, i.e., we
can extend the walk in the automaton on the left only by adding a digit
δ(1). As another example we have δ(1)δ(12). ∈ Z(2)

σ,1, with associated walk
2 1−→ 1 12−→ 1, but it cannot be extended to any infinite walk. In this sense,
it remains an approximation. We list some other expansions:

(α−1
3 )σ,2 = .δ(1)0 (α−2)σ,1 = .δ(1)δ(1)0δ(12), (α−1

4 )σ,1 = .0δ(12)δ(12).

4.3. Tiles associated with Dumont-Thomas Numeration

We are now in a position to define tiles for Dumont-Thomas numeration.
These tiles form a generalization of the tiles defined in Akiyama [2] and
Akiyama et al. [3] in the context of beta-numeration.

Definition 4.6. — The Dumont-Thomas subtiles associated with an
irreducible Pisot substitution σ are defined as

(4.5) Rσ(a) = Φ′(Zσ,a) (a ∈ A).
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The Dumont-Thomas central tile is defined as

(4.6) Rσ =
⋃
a∈A
Rσ(a).

An example of a Dumont-Thomas central tile is depicted in Figure 4.3.
For z = (zp)p∈Sα\{p1} ∈ Kσ define the norm ‖z‖ = max{|zp|p : p ∈

Sα \ {p1}}, and set

(4.7) M = max{‖Φ′(δ(p))‖ : δ(p) ∈ D}
1− ‖Φ′(α)‖ .

Note that the Dumont-Thomas subtiles Rσ(a) are closed by definition.
Furthermore they are contained in the closed ball B(0,M) = {z ∈ Kσ :
‖z‖ 6 M}. Thus they are non-empty compact sets. We will prove more
properties of these tiles later.

Again generalizing [2] (see also [3] and [8]) for x ∈ Frac(σ) we define the
x-tiles as

Rx =
⋃

{a∈A: x∈[0,δ(a))}

Φ′( Lim
k→∞

αkT−kσ (x, a)).

Using (4.3) we easily see that they are unions of subtiles translated by
Φ′(x) that depend on the number of basic intervals which contain x, i.e.,

Rx =
⋃

{a∈A: x∈[0,δ(a))}

Rσ(a) + Φ′(x).

For this reason it suffices to consider subtiles in the sequel.

R

Z2

Figure 4.3. The central tile Rσ for σ(1) = 21213, σ(2) = 12 subdi-
vided in the purple (dark gray) subtile Rσ(1) and the yellow (light
gray) subtile Rσ(2). (1) Here we represented each

∑∞
i=0 diα

i ∈ Z2 by∑∞
i=0 di2−i−1 ∈ [0, 1], with di ∈ {0, 1}.

(1)Ambiguity with colors and grayscale is due on whether you are reading an electronic
version of the paper or a printed one.
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Definition 4.7 (see also [31, Definition 6.80]). — The stepped surface
for an irreducible Pisot substitution σ with associated Pisot root α is

(4.8) S = {(Φ(x), a) ∈ Kα ×A : x ∈ Frac(σ, a)}.

The set of projected points of the stepped surface into Kσ given by

(4.9) Γ = π(S) = {(Φ′(x), a) ∈ Kσ ×A : x ∈ Frac(σ, a)}

will be called the translation set.

As we will see later, this set is the natural translation set for a (multiple)
tiling induced by the subtiles. Sing [31, Definition 6.80] defines stepped
surfaces in the context of cut and project schemes; we will come back to
this in Section 6.

For our purposes (particularly in Section 10) we will interpret (γ, a) ∈
Kα×A either as a colored translation vector or as a colored face of the fun-
damental domain Kα/Φ(V ·Z[α−1]) (see Lemma 3.6). To be more precise,
in this latter case, (γ, a) will be represented as γ +Da, where

Da =
{∑
i 6=a

riΦ∞(vi) : ri ∈ [0, 1)
}
×
∏
p|(α)

pdp ,

and dp = min{vp(x) : x ∈ V }.
The set function T−1

σ defined in (4.2) is defined on subsets of R × A.
Thus T−1

σ cannot be extended to Kα × A in a natural way. However, its
restriction to subsets of Q(α) ×A admits a natural extension to Kα ×A.
We call this extension T−1

ext . Its precise definition is
(4.10)
T−1

ext : Kα ×A −→ 2Kα×A, T−1
ext (γ, a) =

⋃
b
p−→a

{(α−1(γ + Φ(δ(p))), b)}.

We can iterate T−1
ext for m times and get

(T−1
ext )m(γ, a) =

⋃
bm

pm−1→ ···
p1→b1

p0→a
(α−m(γ + Φ(δ(p0) + αδ(p1) + · · ·+

(4.11)

αm−1δ(pm−1))), bm)

=
⋃

σm(b)=pas

(α−m(γ + Φ(δ(p))), b).

Proposition 4.8. — The set S is invariant under T−1
ext .

Proof. — We prove the proposition in two steps:
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• If (Φ(x), a) ∈ S then T−1
ext (Φ(x), a) ∈ S. This is equivalent in show-

ing that every element of T−1
σ (x, a) ∈ Frac(σ). But this is a direct

consequence of Lemma 4.4.
• Distinct faces have disjoint images. Suppose (Φ(y), b) ∈ T−1

ext (Φ(x1), a1)
∩T−1

ext (Φ(x2), a2), that is

(y, b) ∈ T−1
σ (x1, a1) ∩ T−1

σ (x2, a2).

This implies that Tσ(y, b) = (x1, a1) and Tσ(y, b) = (x2, a2), which
is impossible unless (x1, a1) = (x2, a2), since y has a unique (σ, b)-
expansion. �

Observe that we can write Rσ(a) in terms of the extended mapping T−1
ext :

Rσ(a) = Φ′( Lim
k→∞

Z(k)
σ,a) = Lim

k→∞
Φ′(Z(k)

σ,a) = limH
k→∞

Φ′(Z(k)
σ,a)

= limH
k→∞

π(αkT−kext (0, a)),
(4.12)

where limH denotes the limit with respect to the Hausdorff metric. Indeed,
the third equality holds since all Φ′(Z(k)

σ,a) are contained in a compact set,
and the fourth follows easily recalling the definition of Z(k)

σ,a and observing
that T−1

ext ◦ Φ = Φ ◦ T−1
σ and Φ′ = π ◦ Φ.

Figure 4.4. T−4
ext ((0, 1) ∪ (0, 2)) for the substitution σ(1) = 21213,

σ(2) = 12.

R

Q2

Figure 4.5. T−4
ext ((0, 1) ∪ (0, 2)) projected into Kσ.
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4.4. Projective limit

For a ∈ A, let us consider again the sets Z(i)
σ,a = αi · T−iσ (0, a), i > 1,

which can be thought as approximations of the set of integers Zσ,a. The sets
Z(i)
σ,a together with the continuous maps f ji : Z(j)

σ,a → Z(i)
σ,a,

∑j−1
k=0 δ(pk)αk 7→∑i−1

k=0 δ(pk)αk, for i, j ∈ N+ and j > i, form a projective system. Consider
the projective limit
(4.13)

Ẑσ,a = lim←−
i

Z(i)
σ,a =

{
(xi)∞i=1 ∈

∏
i>1

Z(i)
σ,a : for all j > i, f ji (xj) = xi

}
,

and the union Ẑσ =
⋃
a∈A Ẑσ,a.

If we give to each Z(i)
σ,a the discrete topology and to

∏
i>1 Z

(i)
σ,a the product

topology, the space Ẑσ,a inherits a topology which turns it into a compact
space.
We can equip Ẑσ,a with two other topologies. Indeed, equip Ẑσ,a with

the topology defined by the distance

d(x, y) = 2−max{m∈N: xm=ym}, for x = (xi)i>1, y = (yi)i>1 ∈ Ẑσ,a.

In this way Ẑσ,a is a compact Cantor set isomorphic to the subshift of finite
type formed by the left-infinite sequences (δ(pi))i>0 ∈ ωD such that (pi)i>0

is the labeling of a left-infinite walk · · · p2−→ a2
p1−→ a1

p0−→ a in the prefix
automaton of σ.
On the other hand we can equip Ẑσ,a with the topology defined by the

distance d(x, y) = ‖Φ′(x)− Φ′(y)‖. An element of Ẑσ,a can be represented
as an infinite sum

∑
i>0 δ(pi)αi, where each truncation

∑`
i=0 δ(pi)αi is

contained in Z(`+1)
σ,a . Extending Φ′ continuously, we can use this mapping

in order to map the infinite sums in Ẑσ,a to Kσ. The image Φ′(Ẑσ,a) is
exactly the Dumont-Thomas subtile Rσ(a).
The definition of the projective limit Ẑσ,a encompasses these two points

of view, thus we can consider one of its elements either as an admissible left
infinite sequence or as an infinite sum. Another advantage is that we have
all the approximations (i.e., the truncations) of the elements included in
this vision. In both interpretations multiplication by α acts as a contraction.
We come back to Ẑσ,a in Section 8.2.

5. Geometric realizations of a substitution

The aim of this section is to generalize the formalism of one-dimensional
geometric realizations of substitutions and their dual (see Arnoux and
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Ito [4]) to the non-unit case. This will lead to another definition of Rauzy
fractal and stepped surface for a non-unit Pisot substitution.

5.1. The maps E1 and E∗1

A consequence of dealing with non-unit Pisot substitutions is that Mσ :
Zn → Zn is not invertible. We define a suitable bigger space whereMσ acts
and is invertible.
Indeed, let Z =

⋃
k>0M

−k
σ Zn. We denote by F the infinite dimensional

real vector space of the maps Z ×A → R that take value zero except for a
finite set. For x ∈ Z, a ∈ A denote by [x, a] the element of F which takes
value 1 at (x, a) and 0 elsewhere; the set {[x, a] : x ∈ Z, a ∈ A} is a basis
of F . The support of an element of F is the set of (x, a) on which it is not
zero.
We define the one-dimensional geometric realization E1 of σ on F by

E1[y, b] =
∑
b
p−→a

[Mσy−P(p), a].

Denote by F∗ the space of linear forms on F with finite support, i.e., those
linear forms for which there exists a finite subset X of Z×A such that the
form is 0 on any element of F whose support does not intersect X; this
space admits as basis the set {[x, a]∗ : x ∈ Z, a ∈ A}. We can associate to
E1 its dual map E∗1 on F∗.

Proposition 5.1. — The dual map E∗1 is defined on F∗ by

(5.1) E∗1 [x, a]∗ =
∑
b
p−→a

[M−1
σ (x + P(p)), b]∗.

Proof. — By definition of the dual map we have

〈E∗1 [x, a]∗, [y, b]〉 = 〈[x, a]∗, E1[y, b]〉

= 〈[x, a]∗,
∑
b
p−→c

[Mσy−P(p), c]〉.

This product can take only 0 and 1 as values and is not zero if and only if
c = a and Mσy−P(p) = x. Since Mσ is invertible as a map from Z to Z,
this implies y = M−1

σ (x + P(p)). �

Denote by H the hyperplane of Rn orthogonal to vα, and let H> be the
set {x ∈ Rn : 〈x,vα〉 > 0}, i.e., the half-space above H. The half-space H<
strictly below H is defined in the same fashion. We look for all those x ∈ Z
that are close to the hyperplane H, in particular, we want x ∈ H> and
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x−ea ∈ H< to be true for some a ∈ A. One problem arises: we get too many
points with this property and we would like to have a discrete set. Thus
we enlarge again our space by adding the non-Archimedean completions
in order to distribute the points with respect to their p-adic height. Define
Zext = Z ×

∏
p|(α)Kp and a map

Ψ : Z −→ Zext,

x 7−→ (x, 〈x,vα〉, . . . , 〈x,vα〉).

AsM t
σ acts as a multiplication by α along vα we can extendMσ naturally to

Zext. Indeed, it acts as a multiplication by α in each of the non-Archimedean
factors. Without risk of confusion this extension will again be denoted by
Mσ. Moreover, set Hext = H ×

∏
p|(α)Kp. This is the space where the

subtiles will live. We can also carry over the definition of F to the space
Fext of mappings from Ψ(Z)×A to R:

Z ×A

[x,a]
��

Ψ // Ψ(Z)×A

[Ψ(x),a]
xxrrrrrrrrrrr

R

Similarly we carry over the space F∗ to F∗ext. Thus we can extend the maps
E1 and E∗1 respectively on Fext and F∗ext, denoting them again by the same
names.
We can interpret geometrically an element [x, a] ∈ Fext as a segment

{x− θΨ(ea) : θ ∈ [0, 1]} in Zext. In this way we get the “broken line” with
reversed orientation associated with the fixed point u = u0u1 . . . of the
substitution in terms of E1:

(5.2) − Lu =
⋃
n>0

En1 [0, u0].

From now on we will only consider elements of F∗ that are of the form∑
k[xk, ak]∗ (all the coefficients will be 1). Thus we shall consider E∗1 as a

transformation acting directly on subsets of Ψ(Z)×A.

5.2. E∗1 -subtiles and the stepped surface

Definition 5.2. — Let πu : Rn → H be the projection onto H along
the right eigenvector uα of Mσ corresponding to α, renormalized such that
〈uα,vα〉 = 1. Let us consider πu× id : Zext → Hext, where id is the identity
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map on
∏

p|(α)Kp. The E∗1 -subtiles associated with an irreducible Pisot
substitution σ are defined as

(5.3) Tσ(a) = limH
k→∞

(πu × id)(Mk
σ · (E∗1 )k[0, a]∗) (a ∈ A).

Furthermore the central tile of the substitution is defined as

(5.4) Tσ =
⋃
a∈A
Tσ(a).

Observe that the limit in Equation (5.3) exists by a similar argument as
the one in [10, Lemma 3.4].

We now generalize the notion of stepped surface given in [4] for the unit
case. Define it as the set

(5.5) Gext = {[Ψ(x), a]∗ ∈ Zext ×A : x ∈ H>, x− ea ∈ H<}.

We will provide in Section 7 connections between the two different notions
of tiles and stepped surfaces seen so far.

6. Model sets

In this section we describe Sing’s approach (see [31]) of studying Rauzy
fractals from the view point of cut-and-project schemes and model sets.
We also want to justify here the terminology of calling the set Γ defined in
(4.9) a translation set.

Definition 6.1 (see e.g. [5, Section 5]). — A cut and project scheme,
or CPS, is a triple (G,H, L̃) consisting of a locally compact group G which
is the union of countably many compact sets, called the physical space, a
locally compact group H called the internal space and a lattice L̃ in G×H,
such that two natural projections π1 : G×H → G, π2 : G×H → H satisfy
the following properties:

(i) The restriction π1|L̃ is injective.
(ii) The image π2(L̃) is dense in H.

Setting L = π1(L̃), the star-map is defined as (·)? = π2 ◦(π1|L̃)−1 : L→ H,
and is well-defined on L by injectivity of π1|L̃. With these definitions, we
have L̃ = {(x, x?) : x ∈ L}. We say that a cut and project scheme (G,H, L̃)
is symmetric if (H,G, L̃) is a cut and project scheme as well. Given a cut
and project scheme (G,H, L̃) and a subsetW ⊂ H define Λ(W ) = {x ∈ L :
x? ∈W}. We call such a set Λ(W ), or more generally any translate of such
a set, a model set if W is a non-empty compact set and W = int(W ). We
say that a model set is regular if ∂W has zero Haar measure. In addition,
we say that a set Q is an inter model set if Λ(int(W )) ⊂ Q ⊂ Λ(W ).
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A finite family Λ = (Λ1, . . . , Λn) is a multi-component Delone set if
supp(Λ) =

⋃n
a=1 Λa is a Delone set. Similarly we say that Λ is a multi-

component model set if each Λa = Λ(Wa) is a model set with respect to
the same CPS. The next results can be found in [31].

Lemma 6.2. — Φ(V · Z[α−1]) = αΦ(V · Z[α−1]).

Proof. — We know that αV · Z[α−1] ⊂ V · Z[α−1], therefore αΦ(V ·
Z[α−1]) ⊂ Φ(V · Z[α−1]). The set αΦ(V · Z[α−1]) is a sublattice of Φ(V ·
Z[α−1]). Let D′ be a fundamental domain of Kα/αΦ(V ·Z[α−1]) and recall
that D is a fundamental domain of Kα/Φ(V · Z[α−1]) (see Lemma 3.6).
Then, by (2.3) and (2.2)

µKα(D′) =
∏
p∈Sα

|α|p · µKα(D) = µKα(D),

and the claim follows. �

Proposition 6.3. — (R,Kσ,Φ(V ·Z[α−1])) forms a symmetric cut and
project scheme:

R
πp1←− Kα

π−→ Kσ =
∏

p∈Sα\{p1}

Kp

∪ ∪ ∪

V · Z[α−1] 1−1←→ Φ(V · Z[α−1]) 1−1←→ Φ′(V · Z[α−1])

Proof. — The set Φ(V ·Z[α−1]) is a lattice by Lemma 3.5. The projections
πp1 and π are injective on Φ(V · Z[α−1]) by construction. By Kronecker’s
theorem V is dense in R and so is V · Z[α−1]. It remains to prove that
Φ′(V · Z[α−1]) is dense in Kσ (see [31, Lemma 6.55]). Since Φ(V · Z[α−1])
is a lattice in Kα, it is relatively dense. Hence Φ′(V · Z[α−1]) must be
relatively dense in Kσ, i.e., there exists a radius R > 0 such that B(0, R) +
Φ′(V · Z[α−1]) = Kσ. Multiplying this equation by α (which is equivalent
to a contraction in Kσ) and by Lemma 6.2 we get the denseness. �

For (Y, d) metric space, let H(Y ) be the space of non-empty compact
subsets of Y , equipped with the Hausdorff metric dH. In the model set
setting, Sing [31] associates to each primitive substitution σ an expanding
matrix function system Θ on Rn defined by

(6.1) Θab =
⋃
b
p−→a

{tδ(p) ◦ f0}, for a, b ∈ A,

where f0(x) = αx and tδ(p)(x) = x + δ(p). Then its substitution matrix
SΘ = (|Θab|)a,b∈A equals Mσ. Given such a Θ we can define the adjoint
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iterated function system Θ# on H(R)n by

(6.2) Θ#
ab =

⋃
a
p−→b

{f−1
0 ◦ tδ(p)}, for a, b ∈ A.

Then obviously SΘ# = M t
σ. Note that Θ# is just a way to write a graph

directed iterated function system in the sense of Mauldin and Williams [21]
in matrix form. By the general theory of graph directed iterated function
systems (see [21]) there exists a unique attractor for Θ#, and it is easy to
see that it is A = (Aa)a∈A ⊂ H(R)n, where the Aa = [0, δ(a)] are called
natural intervals.

Geometrically we can interpret σ as a tiling of the line: given a fixed point
u = u0u1 · · · ∈ Aω of σ, we represent each letter a by the “type a” interval
Aa; starting with the first of these intervals we can construct the entire line
inflating repetitively Aa by α and subdividing it into the corresponding
intervals given by the substitution (compare this to the action of the one-
dimensional geometric realization E1 defined in Section 5.1; in particular,
we refer to (5.2)).
Given the tiling of the line, denote the set of left endpoints of the type

a intervals by Λa. Precisely, define Λ = (Λa)a∈A by

(6.3) Λ =
⋃
k>0

Θk(∅, · · · , ∅, {0}, ∅, · · · , ∅)t,

where {0} is at position u0. Then Λ = (Λa)a∈A is a substitution multi-
component Delone set, i.e., Λ = Θ(Λ) and together with A = Θ#(A) this
forms the representation with natural intervals Λ+A of a fixed point u of
σ. (2)

Example 6.4. — Consider the substitution of Example 4.5, σ(1) = 121,
σ(2) = 11. Then we obtain the following expanding matrix function system
Θ and its adjoint iterated function system Θ#:

Θ =
(
{f0, fδ(12)} {f0, fδ(1)}
{fδ(1)} ∅

)
, Θ# =

(
{g0, gδ(12)} {gδ(1)}
{g0, gδ(1)} ∅

)
,

where fd(x)=αx+d and gd(x) = α−1(x+d), for d ∈ D = {δ(ε), δ(1), δ(12)}.
We get the tiling of the line applying repetitively the process of inflation
and subdivision on the interval [0, δ(1)]:

0
α
2 ·α7−→ 0 α+ 1 ·α7−→ 0 3α+ 2 ·α7−→ · · ·

(2)We could have defined Θ using the functions t−δ(p) ◦ f0, to obtain by duality Θ#.
In this way, we would have obtained a negative tiling of the line −(Λ+A), with Λa set
of right endpoints of the type a intervals.
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Furthermore we have that the sets Λa of left endpoints of the type a inter-
vals, for a ∈ A, satisfy the point set equations

Λ1 = αΛ1 ∪ αΛ1 + δ(12) ∪ αΛ2 ∪ αΛ2 + δ(1),
Λ2 = αΛ1 + δ(1),

and the natural intervals satisfy

A1 = α−1A1 ∪ α−1(A1 + δ(12)) ∪ α−1(A2 + δ(1)),

A2 = α−1A1 ∪ α−1(A1 + δ(1)).

We can extend Θ to the graph directed iterated function system Θ? on
H(Kσ)n relative to the CPS (R,Kσ,Φ(V · Z[α−1])) with star-map Φ′. As
done before we can consider the adjoint (Θ?)# on Kn

σ relative to the CPS
(R,Kσ,Φ(V ·Z[α−1])), which is an expanding matrix function system. This
can now be used to define Rauzy fractals in this context.

Definition 6.5. — Let Ω = (Ωa)a∈A ⊂ H(Kσ)n be the solution of
the graph directed iterated function system Θ?(Ω) = Ω. Ω is called the
dual prototile. The regular multi-component inter model set Υ = (Υa)a∈A
in Kn

σ associated with the CPS (Kσ,R,Φ(V · Z[α−1])), defined by Υa =
Λ([0, δ(a))), is called translation set.

Observe that, for a ∈ A,

Υa=Λ([0, δ(a)))={π(z) ∈ Kσ : z = (zp)p ∈ Φ(V · Z[α−1]), zp1 ∈ [0, δ(a))}
(6.4)

= Φ′(Frac(σ, a)),

which shows that the translation set Γ = supp(Υ ).

Lemma 6.6. — Γ is a Delone set.

Proof. — It suffices to prove that each Φ′(Frac(σ, a)) is a model set,
because by [22, Proposition 2.6] model sets are Delone sets. But this follows
from (6.4). �

7. Relations between different approaches

The aim of this section is to provide connections between the different ap-
proaches seen so far. We start establishing relations between the geometric
realization of a substitution and Dumont-Thomas numeration.
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Lemma 7.1. — The Q-basis {v1, . . . , vn} of Q(α) has the property that
multiplication by α in Q(α) is conjugate to the action of Mσ on Qn, that
is, the diagram

Q(α) ·α //

f

��

Q(α)

f

��
Qn

Mσ // Qn

commutes. Here f : Q(α) → Qn maps z = z1v1 + · · ·+ znvn to the vector
(z1, . . . , zn)t. Furthermore V · Z[α−1] ∼= Z as Z-modules.

Proof. — The commutativity of the diagram follows because vα is a
left eigenvector of Mσ. The isomorphism V · Z[α−1] ∼= Z follows because
V = 〈v1, . . . , vn〉Z ∼= Zn and the multiplication by α on V is conjugate to
the action of Mσ on Z. �

Regarding Q(α) as a vector space with basis {v1, . . . , vn} is particularly
convenient because, for every x ∈ Z, the scalar product 〈x,vα〉 is an ele-
ment of Q(α). We use the connection between V ·Z[α−1] and Z to associate
with every Ψ(x) ∈ Zext the embedding of 〈x,vα〉 ∈ Q(α) in Kα. Precisely
we have the following statement.

Lemma 7.2. — The following diagram is commutative:

Z
Ψ //

f−1

��

Zext

F

��

πu×id // Hext

G

��
V · Z[α−1] Φ // Kα

π // Kσ

where

(7.1) F =
(

Φ∞(v1)t · · · Φ∞(vn)t 0
0 I

)
,

I denotes the identity matrix whose size equals the number of finite primes
p satisfying p | (α), and G is the matrix obtained from F by erasing the
first row.

Proof. — For the left-square diagram, let x ∈ Z, then Ψ(x) = (x, 〈x,vα〉,
. . . , 〈x,vα〉) and applying F we get the vector (Φ∞(〈x,vα〉), 〈x,vα〉, . . . ,
〈x,vα〉). Now, embedding f−1(x) = 〈x,vα〉 by Φ we get exactly the same
vector.
For the right-square diagram, let x = (x1,x2) ∈ Zext, where x1 ∈ Z

and x2 ∈
∏

p|(α)Kp. Let α(i), i = 2, . . . , n, be the Galois conjugates of
α = α(1). Let vα(i) and uα(i) be respectively the left and right eigenvectors
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for α(i). Taking uα such that 〈uα,vα〉 = 1, it follows easily that {uα(i)}ni=1,
{vα(i)}ni=1 are dual bases. Then every x1 ∈ Z ⊂ Rn admits the decomposi-
tion (cf. [13, Section 2.1])

x1 = 〈x1,vα〉uα +
n∑
i=2
〈x1,vα(i)〉uα(i) .

Therefore

(πu × id)(x) = (〈x1,vα(2)〉uα(2) + . . .+ 〈x1,vα(n)〉uα(n) ,x2).

Applying G to this vector we get

G(πu × id)(x) = (〈x1,vα(2)〉, . . . , 〈x1,vα(n)〉,x2),

since {uα(i)}ni=1 and {vα(i)}ni=1 are dual bases. We obtain the same result
projecting Fx = (Φ∞(〈x1,vα〉),x2) by π. �

Notice that F is invertible because {v1, . . . , vn} are rationally indepen-
dent. The following result surveys and clarifies the connection established
between the Dumont-Thomas numeration and geometric representations of
substitutions.

Theorem 7.3. — Each square in the diagram

Z

Ψ

����
��

��
��

��

Mσ //

��

Z

Ψ

����
��

��
��

��

f−1

��

Zext
Mσ //

F

��

Zext

��

V · Z[α−1] ·α //

Φ
����

��
��

��
��

V · Z[α−1]

Φ
����

��
��

��
��

Kα
·α // Kα

is commutative.

Theorem 7.3 provides the connection between the two stepped surfaces
Gext in (5.5) and S in (4.8). Indeed, considering a point Ψ(x) ∈ Zext is
equivalent to taking a point Φ(〈x,vα〉) ∈ Φ(V ·Z[α−1]), up to conjugation.
Furthermore, the condition x ∈ H>, x− ea ∈ H< can be translated in the
Q(α)-world to 0 6 〈x,vα〉 < 〈ea,vα〉 = δ(a).
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The advantage of dealing in the number field world, i.e., with Kα instead
of the space Zext, is that the stepped surface and the translation set are
parametrized by one coordinate x ∈ V · Z[α−1] ∩ [0, δ(a)), for some a ∈ A.

By Theorem 7.3, T−1
ext and the dual geometrical substitution E∗1 are con-

jugate.

Lemma 7.4. — The following diagram is commutative:

Ψ(Z)×A
E∗1 //

F

��

2Ψ(Z)×A

F

��
Kα ×A

T−1
ext // 2Kα×A

with F defined in Equation (7.1) and where by convention F [x, a]∗ equals
(F (x), a).

Next we provide the relations between the Dumont-Thomas numeration
and the model set approach, and we connect the latter with the maps E1
and E∗1 .

We can refine the sets Z(k)
σ,a defined in Section 4.2 by taking only those

finite integers associated with walks in the prefix automaton starting at a
state b and ending at state a. Call these sets Z(k)

b,a . By definition Z(k)
σ,a =⋃

b∈A Z(k)
b,a . Moreover, if the word σ(b) starts with b we easily see that the

sequence (Z(k)
b,a)k>0 is nested.

Lemma 7.5. — Let u = u0u1 · · · be the fixed point of σ and let Λ
be as in (6.3). Then we have (Zu0,a)a∈A = Λ. Furthermore (Zσ,a)a∈A =
Limk→∞Θ

k({0})a∈A, and in particular (Zσ,a)a∈A = Θ(Zσ,a)a∈A.

Proof. — We have Θk(∅, . . . , ∅, {0}, ∅, . . . , ∅)t = (Θk
a,u0

(0))a∈A, whose
elements are of the form αkδ(pk) + · · · + δ(p0) where u0

pk→ · · · p0→ a. But
these are elements of Z(k)

u0,a. Recalling that Z(k)
σ,a =

⋃
u0∈A Z(k)

u0,a, we get the
second statement. �

Lemma 7.6. — Let h : Ψ(Z)×A → Rn, [Ψ(y), a] 7→ (∅, . . . , ∅,{〈−y,vα〉},
∅, . . . , ∅)t, v : X → Rn, (x, a) 7→ (∅, . . . , ∅, {x}, ∅, . . . , ∅)t, with x at position
a, and let C = v ◦G ◦ (πu × id), where G is as in Lemma 7.2 and πu × id
as in Definition 5.2. Then the diagrams

Ψ(Z)×A E1 //

h

��

2Ψ(Z)×A

h

��
Rn Θ // Rn

X
T−1
σ //

v

��

2X

v

��
Rn Θ#

// Rn

Ψ(Z)×A
E∗1 //

C

��

2Ψ(Z)×A

C

��
Kn
σ

(Θ?)#
// Kn

σ
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are commutative.

Proof. — For the first diagram we have

Θ(h([Ψ(x), a])) = (Θ1a(〈−x,vα〉), . . . , Θna(〈−x,vα〉))t

=
( ⋃
a
p−→1

{α〈−x,vα〉+δ(p)}, · · · ,
⋃

a
p−→n

{α〈−x,vα〉+δ(p)}
)t

= h
( ∑
a
p−→b

[Ψ(Mσx−P(p)), b]
)

= h(E1[Ψ(x), a]).

For the second diagram

Θ#(v(x, a)) = (Θ#
1a(x), · · · , Θ#

na(x))t

=
( ⋃

1 p−→a

{α−1(x+ δ(p))}, · · · ,
⋃

n
p−→a

{α−1(x+ δ(p))}
)t

= v
( ⋃
b
p−→a

{(α−1(x+ δ(p)), b)}
)

= v(T−1
σ (x, a)).

By the second diagram (Θ?)# ◦ (v ◦ π) = (v ◦ π) ◦ T−1
ext , if we denote again

by v the map v acting on Kσ×A. Moreover we know that T−1
ext and E∗1 are

conjugate by F . Then, using π ◦ F = G ◦ (πu × id), the commutativity of
the third diagram follows by C. �

It has been already shown in Section 6 that the two translation sets Υ
and Γ are the same. By Lemma 7.6 we can translate Proposition 4.8 to
Υ = (Θ?)#(Υ ) (cf. [31, Proposition 6.72]).

We end this section by giving the relation between all kinds of Rauzy
fractals defined so far.

Theorem 7.7. — Let σ be an irreducible Pisot substitution over the
alphabet A and fix a ∈ A. Let Rσ(a) be the associated Dumont-Thomas
subtile, Tσ(a) the associated E∗1 -subtile and Ωa the associated dual pro-
totile. If G is the matrix defined in Lemma 7.2, then

Rσ(a) = Ωa = G Tσ(a).

Proof. — We start with proving the first identity. Recall thatΩ=(Ωa)a∈A
is the attractor of the graph directed iterated function system Θ?, and
the Dumont-Thomas subtiles are defined by Rσ(a) = Φ′(Zσ,a). Then by
Lemma 7.5

(Rσ(a))a∈A = Θ?(Φ′(Zσ,a))a∈A = Θ?(Rσ(a))a∈A
and the result follows by uniqueness of the attractor of Θ?.
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To prove the second identity, starting from (4.12) we get

Rσ(a) = limH
k→∞

π(αkT−kext (0, a))

= limH
k→∞

π(αkT−kext (F (0), a))

= limH
k→∞

π(αkF (E∗1 )k[0, a]∗) (by Lemma 7.4)

= limH
k→∞

π(FMk
σ (E∗1 )k[0, a]∗) (by Theorem 7.3)

= limH
k→∞

G(πu × id)(Mk
σ (E∗1 )k[0, a]∗) (by Lemma 7.2)

= G Tσ(a). �

Remark 7.8. — Rauzy fractals can be defined alternatively as the clo-
sure of the projections onto the contracting hyperplane of vertices of the
broken line associated to the fixed point u = u0u1 · · · of the substitution
(see e.g. [8, 11]). It turns out that this is equivalent to taking the closure of
the embedding by Φ′ of

⋃
k>0 Z

(k)
u0,a, for each a ∈ A. In fact, these Rauzy

fractals coincide with the Dumont-Thomas central tiles, since they are both
solutions of the graph directed iterated function system Θ?.

8. Basic properties of the tiles

In all what follows we will work in the number field setting, i.e., with
T−1

ext . For the sake of simplicity we will denote T−1
ext acting on Kσ×A again

by T−1
ext , instead of writing π ◦ T−1

ext . For this reason we write the Dumont-
Thomas subtiles as

(8.1) Rσ(a) = limH
k→∞

αk · T−kext (0, a), for a ∈ A.

We show now some of their properties.

8.1. Topological properties

The following proposition gives information on the p-adic height of the
central tile.

Proposition 8.1. — If z = (zp)p∈Sα\{p1} ∈ Rσ, for every p | (α) we
have zp ∈ pdp , where dp = min{vp(x) : x ∈ V }.
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Proof. — If z ∈ Rσ, we can write z =
∑∞
k=0 Φ′(δ(pk)αk). For p | (α), the

p-th component of z is zp =
∑∞
k=0 δ(pk)αk ∈ Kp. We deduce that vp(zp) >

mink>0{vp(δ(pk)αk)} = minδ(p)∈D{vp(δ(p))} = dp, thus zp ∈ pdp . �

Next we prove that the subtiles cover the representation space (cf. [3] for
the non-unit beta-expansion setting).

Proposition 8.2. — Let σ be an irreducible Pisot substitution. The
subtiles Rσ(a) provide a uniformly locally finite covering of the represen-
tation space Kσ governed by Γ, in particular

Kσ =
⋃

(γ,a)∈Γ

Rσ(a) + γ.

Proof. — Let Cσ =
⋃

(γ,a)∈ΓRσ(a) + γ. Every point of Cσ is of the form
z + Φ′(x), where z =

∑
i>0 Φ′(δ(pi)αi) ∈ Rσ(a), x =

∑
i>1 δ(p−i)α−i ∈

Frac(σ, a). We have αCσ ⊆ Cσ, since by Lemma 4.4 we have Tσ(x, a) ∈
Frac(σ, b) and αz + Φ′(δ(p−1)) ∈ Rσ(b), for some b ∈ A. By Lemma 6.6,
Cσ is relatively dense in Kσ. Furthermore, as αCσ ⊆ Cσ and α is a con-
traction, Cσ is dense in Kσ. By compactness of the subtiles and uniformly
discreteness of Γ we obtain Kσ = Cσ. �

In the following theorem we state important properties of our tiles (cf. [31,
Corollary 6.66]).

Theorem 8.3. — The following assertions hold for the subtiles Rσ(a),
a ∈ A, of an irreducible Pisot substitution.

(i) The subtiles Rσ(a) are the solution of the graph directed iterated
function system

(8.2) Rσ(a) =
⋃

(γ,b)∈T−1
ext (0,a)

α(Rσ(b) + γ) =
⋃
b
p−→a

αRσ(b) + Φ′(δ(p)),

where the union is measure disjoint.
(ii) Each subtile Rσ(a) is the closure of its interior.
(iii) The boundary of each subtile Rσ(a) has Haar measure zero.

Proof. — (i) Equation (8.2) is a direct consequence of Lemma 7.5, but
we prefer to give here an explicit proof. By (8.1) and (4.3) we obtain

Rσ(a) = limH
k→∞

αk · T−kext (0, a) = α limH
k→∞

⋃
(γ,b)∈T−1

ext (0,a)

αk−1 · T−(k−1)
ext (γ, b)

= α
⋃

(γ,b)∈T−1
ext (0,a)

(Rσ(b) + γ) =
⋃
b
p−→a

αRσ(b) + Φ′(δ(p)).
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Let m = (µ(Rσ(a)))a∈A. Applying the measure µ to equation (8.2) gives

(8.3) µ(Rσ(a)) 6
∑
b
p−→a

µ(αRσ(b) + Φ′(δ(p))) = α−1
∑
b
p−→a

µ(Rσ(b))

= α−1
∑
b∈A

(Mσ)abµ(Rσ(b)).

So we showed that the vector m satisfies Mσm > αm, and, as a direct
consequence of the Perron-Frobenius Theorem, we get Mσm = αm. Thus
the inequality in (8.3) is actually an equality, and thus no overlap with
positive measure occurs in the union in (8.2).
(ii) Since Kσ is locally compact, we deduce from Baire’s theorem that

there exists a ∈ A such that int(Rσ(a)) 6= ∅. Therefore (8.2) and the
primitivity of σ yield that int(Rσ(a)) 6= ∅ holds for each a ∈ A. Let now
a ∈ A and consider η ∈ Rσ(a). Let B be an open ball centered at η. It
suffices to show that B ∩ int(Rσ(a)) 6= ∅. Using the k-fold iteration

(8.4) Rσ(a) =
⋃

(γ,b)∈T−kext (0,a)

αk(Rσ(b) + γ)

of (8.2) for k large enough, we obtain that αk(Rσ(b) + γ) ⊆ B holds for
some (γ, b) ∈ T−kext (0, a). As int(αk(Rσ(b) + γ)) 6= ∅ the ball B contains
inner points of Rσ(a).

(iii) Let B ⊂ int(Rσ(a)) be an open ball and fix b ∈ A. By the primitivity
of σ we may choose k ∈ N large enough such that U := αk(Rσ(b) +γ) ⊆ B
holds for some (γ, b) ∈ T−kext (0, a). The boundary ∂U is a subset of the set
that is covered at least twice by the union (8.4). We claim that µ(∂U) = 0.
Indeed, if µ(∂U) > 0 was true, then

µ(Rσ(a)) 6
∑

(γ,b)∈T−kext (0,a)

µ(αk(Rσ(b) + γ))− µ(∂U),

contradicting the measure disjointness of the union (8.4). Thus µ(∂U) = 0
and, hence, µ(∂Rσ(b)) = 0. Since b ∈ A was arbitrary, we are done. �

8.2. Adic transformation and domain exchange

Siegel [29] shows that, if σ satisfies the strong coincidence condition (see
Definition 2.1), the following hold:

(1) The subtiles Rσ(a) are disjoint in measure.
(2) (Xσ, S) is isomorphic in measure to (Rσ, E), where E is the domain

exchange E(z) = z + Φ′(δ(a)), for z ∈ Rσ(a).
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We give a proof of the second result connecting it also to the adic trans-
formation Ẑσ → Ẑσ, x 7→ x+ δ(w0) on Ẑσ (cf. [13, Proposition 2.3]).
We will need the following lemma (see [12, Lemma 4.1, Proposition 5.1,

Theorem 5.1]).

Lemma 8.4. — Let w ∈ Xσ and EP(w) = (pi, ai, si)i>0 its prefix-suffix
development. Then EP(χ(w)) = (pi, ai, si)i>1 and EP(σ(w))=(qi, bi, ti)i>0
is such that q0 = ε and qi+1 = pi, for every i > 0. If Sw is a periodic point
of σ then EP(Sw) = (ε, bi, ti)i>0 and EP(w) = (pi, ai, ε)i>0, with (pi)i>0
periodic. If Sw is not periodic for σ then EP(Sw) = (qi, bi, ti)i>0 is such
that there exists an integer k0 with σk(pk) · · ·σ0(p0)a0 = σk(qk) · · ·σ0(q0),
for all k > k0.

Sketch of the proof. — The first two statements follow from the defini-
tion of EP . For the third, a successor map ψ defined on X l

P and conjugate
to the shift on Xσ is introduced, i.e., such that ψ(EP(w)) = EP(Sw),
for w ∈ Xσ. Given (pi, ai, si)i>0 ∈ X l

P , ψ((pi, ai, si)i>0) = (qi, bi, ti)i>0
is defined as follows: let i0 be the first index such that si0 6= ε; then,
(qi0 , bi0 , ti0) is such that qi0bi0ti0 = pi0ai0si0 and |qi0 | = |pi0 |+1, for i > i0,
(qi, bi, ti) = (pi, ai, si), and for 0 6 i < i0 we take (ε, bi, ti) such that
σ(bi+1) = biti. This is precisely an adic transformation, and, for its partic-
ular shape, we can deduce the last claim. �

Proposition 8.5. — Let σ be an irreducible Pisot substitution satis-
fying the strong coincidence condition. Let

ϕ : Xσ → Ẑσ, w 7→
∑
i>0

δ(pi)αi

where EP(w) = (pi, ai, si)i>0 ∈ ωP is the prefix-suffix development of
w = · · ·w−1.w0w1 · · · . Then the action of σ on Xσ is conjugate to the
multiplication by α on Ẑσ and the following diagram

Xσ

ϕ //

S

��

Ẑσ
Φ′ //

+δ(w0)
��

Rσ

+Φ′(δ(w0))
��

Xσ

ϕ // Ẑσ
Φ′ // Rσ

is commutative.

Proof. — The first statement follows from Lemma 8.4 observing that the
action of σ on Xσ is conjugate to the right extension of elements of X l

P by
an element that has an empty prefix.

ANNALES DE L’INSTITUT FOURIER



THE GEOMETRY OF NON-UNIT PISOT SUBSTITUTIONS 1405

The commutativity of the left diagram is also a consequence of Lem-
ma 8.4. Let w ∈ Xσ and EP(w) = (pi, ai, si)i>0.

If Sw is not a periodic point of σ, EP(Sw) = (qi, bi, ti)i>0 is such that
there exists an integer k0 with σk(pk) · · ·σ(p0)w0 = σk(qk) · · ·σ0(q0), for
all k > k0. Thus

ϕ(Sw) =
∑
i>0

δ(qi)αi =
∑
i>0

δ(pi)αi + δ(w0) = ϕ(w) + δ(w0).

If Sw is a periodic point of σ then EP(Sw) = (ε, bi, ti)i>0 and EP(w) =
(pi, ai, ε)i>0, with (pi)i>0 periodic with period `. Thus ϕ(Sw) = 0 and
σi+kl(pi+k`) · · · p0w0 = σk`(σi(pi) · · · p0w0) for every i < ` and every inte-
ger k. Therefore

ϕ(w) = lim
k→∞

k∑
i=0

δ(pi)αi= lim
k→∞

(δ(pk)αk + · · ·+ δ(p1)α+ δ(p0w0))− δ(w0)

= lim
k→∞

αk`(δ(pi)αi + · · ·+ δ(p1)α+ δ(p0w0))− δ(w0)

= 0− δ(w0) = ϕ(Sw)− δ(w0).

The commutativity of the right diagram follows simply applying Φ′ ex-
tended to elements of Ẑσ and observing that the addition by Φ′(δ(w0)) is
well-defined up to a set of measure zero. �

Observe that the adic transformation can be interpreted and computed
by Bratteli diagrams (see e.g. [15]).

9. Multiple tilings and tilings; property (F)

In this section we show that the subtiles Rσ(a) induce a multiple tiling
of Kσ with respect to the translation set Γ. Moreover, we give a tiling
criterion in terms of a finiteness condition of (σ, a)-expansions.

9.1. Multiple tiling property

We call a collection C of compact subsets of Kσ a multiple tiling of Kσ if
each element of C is the closure of its interior and if there exists a positive
integer m such that µ-almost every point of Kσ is contained in exactly m
elements of C. If m = 1 then C is called a tiling of Kσ.
In this section we will prove that every irreducible Pisot substitution

induces a multiple tiling of the associated representation space.
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A patch is defined as a finite subset of Γ. We say that Γ is repetitive (or
quasi-periodic) if for any patch P there exists a radius R > 0 such that
every ball of radius R in Γ contains a translate of P .

Lemma 9.1. — The translation set Γ is repetitive.

This result is already contained in [31, Proposition 6.72] in the CPS
setting. We present a similar proof in the spirit of [11, Theorem 5.3.13] in
our setting.

Proof. — Let P = {(γk, ak), 1 6 k 6 `} be a patch of Γ. We can write
each γk as Φ′(xk), for xk ∈ V · Z[α−1] ∩ [0, δ(ak)). Let R1 be such that
B(0, R1) contains the patch P . There exists εk > 0 such that xk ∈ V ·
Z[α−1] ∩ [0, (1 − εk)δ(ak)), for each 1 6 k 6 `. Set ε := 1

2 mink εkδ(ak).
Then Φ′(x) + P is in Γ, for every x ∈ V · Z[α−1] ∩ [0, ε).

It remains to prove that there exists R > 0 such that any ball of radius R
inKσ contains a point Φ′(x) with x ∈ V ·Z[α−1]∩[0, ε). By the denseness of
V ·Z[α−1] in R there exists x0 ∈ V ·Z[α−1]∩ [0, ε/2). Let ∆ = maxa∈A δ(a).
We can divide [0,∆) in N = d2∆/εe subintervals [jε/2, (j+1)ε/2) of length
ε/2. For each j 6 N , there exists mj ∈ Z such that mjx0 + [jε/2, (j +
1)ε/2) ⊂ [0, ε).

Fix a point η ∈ Kσ. We know by Lemma 6.6 that there is R2 > 0 such
that every ball of radius R2 contains at least one element of Γ. In particular,
the ball B(η,R2) contains a point Φ′(x) with x ∈ V ·Z[α−1]∩ [0,∆). Thus
there exists j ∈ {0, . . . , N} such that x ∈ V · Z[α−1] ∩ [jε/2, (j + 1)ε/2),
and, hence, mj ∈ Z such that mjx0 + x ∈ [0, ε). This implies that Φ′(x +
mjx0) + P occurs in Γ.
Therefore, the ball centered in η with radius R := R1 + R2 + maxj

‖Φ′(mjx0)‖ contains a translated copy of the patch P and the lemma is
proved. �

We are now in a position to state the multiple tiling result (see also [11,
Theorem 5.3.13] for irreducible unit substitutions).

Theorem 9.2. — Let σ be an irreducible Pisot substitution. The col-
lection Cσ = {Rσ(a) + γ : (γ, a) ∈ Γ} is a multiple tiling of Kσ.

Proof. — Assume that the assertion of the theorem is false. Then there
exist `1, `2 ∈ N, `1 < `2, and M1,M2 ⊂ Kσ with µ(Mi) > 0 such that each
element of Mi is covered exactly `i times by the elements of Cσ (i = 1, 2).
As the boundaries of the subtiles have zero measure by Theorem 8.3 (iii),
there exist points ηi ∈ Mi that are not contained in the boundary of any
element of Cσ. Thus we can find ε > 0 such that B(ηi, ε) is covered exactly
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`i times by the collection Cσ. This implies that there exist a patch P2 ⊂ Γ
with `2 elements such that

B(η 2, ε) ⊂
⋂

(γ,a)∈P2

Rσ(a) + γ.

Consider the inflated ball α−kB(η1, ε). By the same arguments presented
above, each point of α−kB(η1, ε) is covered by exactly `1 tiles of the col-
lection α−kCσ. Each of the inflated tiles of α−kCσ can be decomposed in
a finite union of tiles in Cσ which are pairwise disjoint in measure. Thus
almost each point in α−kB(η1, ε) is contained in exactly `1 tiles of Cσ. By
Lemma 9.1 we can pick a suitable large k such that α−kB(η1, ε) contains a
translated copy P2 + γ, for some γ ∈ Γ. Therefore B(η2, ε) + γ is contained
in α−kB(η1, ε), for k large enough. The ball B(η2, ε) is covered exactly
`2 times, consequently B(η2, ε) + γ is covered at least `2 times, but this
yields a contradiction since almost every point in α−kB(η1, ε) is contained
in exactly `1 tiles, and `1 < `2. �

We state the following conjecture (see also the recent paper by Barge
et al. [6] where it is proposed to replace the irreducibility condition by a
topological condition on the tiling space associated with σ).

Conjecture 9.3. — Every irreducible Pisot substitution σ induces a
self-replicating tiling of its associated representation space Kσ.

9.2. Finiteness property

In this section we provide a tiling criterion for Cσ based on the geometric
property (F). We take inspiration mainly from [30].
Consider the set

U :=
⋃
a∈A

(0, a) ⊂ Γ.

It is easy to see that U ⊆ T−1
ext (U): indeed, (0, b) ∈ T−1

ext (0, a) if σ(b) = as,
i.e., if p = ε. Thus (0, b) ∈ T−1

ext (0, a) where a is the first letter of σ(b).
Hence the sequence ((T−1

ext )m(U))m>0 is an increasing sequence of subsets
of Γ.

Definition 9.4. — Let σ be an irreducible Pisot substitution. We say
that the substitution σ satisfies the geometric property (F) if the iterations
of T−1

ext on U eventually cover the whole self-replicating translation set Γ,
i.e., if

Γ =
⋃
m>0

T−mext (U).
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The geometric property (F) is an equivalent formulation of the finiteness
property firstly introduced in [17] in the beta-numeration framework and
further studied in [1]. Here we shall interpret it as a finiteness condition
on (σ, b)-expansions. Indeed, given (γ, b) ∈ Γ, γ can be written as Φ′(x)
where x ∈ V · Z[α−1] ∩ [0, δ(b)) which has a unique (σ, b)-expansion by
Proposition 4.1, i.e., x =

∑
i>1 δ(pi)α−i. Then we can say as well that

(γ, b) has a formal (σ, b)-expansion in Kσ, namely γ =
∑
i>1 Φ′(δ(pi)α−i).

Proposition 9.5. — The substitution σ satisfies the geometric prop-
erty (F) if and only if every point (γ, b) ∈ Γ has a unique finite (σ, b)-
expansion.

Proof. — Let (γ, b) ∈ Γ. If property (F) holds, then (γ, b) ∈ T−mext (0, a),
for some m > 0 and a ∈ A. Thus, using (4.11) we get

(9.1) γ = α−mΦ′(δ(p0)) + α−m+1Φ′(δ(p1)) + · · ·+ α−1Φ′(δ(pm−1)),

where b pm−1−→ · · · p1−→ a1
p0−→ a0 is a walk in the prefix automaton ending at

a = a0.
On the other hand, suppose that (γ, b) ∈ Γ has a unique finite (σ, b)-

expansion γ = α−1Φ′(δ(p1)) + · · · + α−mΦ′(δ(pm)) with b
p1−→ · · · pm−1−→

am−1
pm−−→ a. This yields that αmγ ∈ Rσ(a) and using the iterated set

equation in (8.4) we get

γ ∈
⋃

(η,c)∈T−mext (0,a)

Rσ(c) + η.

Thus we may conclude that (γ, b) ∈ T−mext (0, a). �

For an irreducible Pisot substitution σ satisfying the geometric property
(F), it is immediate from Proposition 8.2 and the definition of subtiles that
every z ∈ Kσ admits a (σ, a)-expansion in Kσ for some a ∈ A (cf. [30,
Proposition 3.9]), i.e.,

z =
∞∑
i=m

Φ′(δ(pi)αi), m ∈ Z.

In the context of beta-numeration, Akiyama [2] proved that property (F)
is equivalent to the fact that 0 is an exclusive inner point of the central tile.
Our next aim is to carry over this statement to the substitution context.

Definition 9.6. — A point η ∈ Kσ is an exclusive inner point of a col-
lection of finitely many tiles in a multiple tiling if it is contained exclusively
in this collection and in no other tile of the multiple tiling.
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Definition 9.7. — The zero-expansion graph G(0) of σ is the directed
graph such that the following conditions hold.

• The nodes (γ, a) ∈ Γ are such that ‖γ‖ 6M , where M is taken as
in Equation (4.7).

• There is a directed edge from (γ1, a1) to (γ2, a2) if and only if
(γ2, a2) ∈ T−1

ext (γ1, a1).
• Every node is the starting point of an infinite walk.

The zero-expansion graph is used to characterize all the elements (γ, a) ∈
Γ for which the tile Rσ(a) + γ contains 0. Suppose 0 ∈ Rσ(a) + γ. This
implies that γ ∈ B(0,M), where M is as in (4.7).

Proposition 9.8. — The zero-expansion graph G(0) of an irreducible
Pisot substitution σ is well defined and finite. A pair (γ, a) is a node of this
graph if and only if 0 ∈ Rσ(a) + γ.

Proof. — The graph is finite since the nodes are elements of the Delone
set Γ with bounded norm. Consider a node (γ, a) = (γ0, a0) ∈ G(0) and the
infinite walk {(γk, ak)}k>0 starting from it. Then, by definition of edges,
we get a left-infinite walk in the prefix automaton · · · p2−→ a2

p1−→ a1
p0−→ a0

and

γ = −Φ′(δ(p0))− αΦ′(δ(p1))− · · · − αkΦ′(δ(pk)) + αk+1γk+1.

Since multiplication by α is a contraction and ‖γk‖ is uniformly bounded in
k, we obtain for k →∞ a convergent power series: γ = −

∑
k>0 α

kΦ′(δ(pk)).
Thus −γ ∈ Rσ(a) and hence 0 ∈ Rσ(a) + γ.

Suppose conversely that 0 ∈ Rσ(a) + γ, for (γ, a) ∈ Γ. Then γ =
−
∑
k>0 α

kΦ′(δ(pk)), where (pk)k>0 is the labeling of a left-infinite walk
in the prefix automaton ending at state a. Let γ` = −

∑
k>0 α

kΦ′(δ(pk+`)).
Each γ`∈B(0,M) and αγ`+1 =γ`+Φ′(δ(p`)), i.e., (γ`+1, a`+1)∈T−1

ext (γ`, a`).
By induction (γ`, a`) ∈ Γ for all ` ∈ N, since this holds for γ = γ0 and Γ
is invariant under T−1

ext . Hence, (γk, ak)k>0 is an infinite walk in the zero-
expansion graph starting from (γ, a). �

Lemma 9.9. — Let σ be an irreducible Pisot substitution that satisfies
the strong coincidence condition. Then σ satisfies the geometric property
(F) if and only if 0 is an exclusive inner point of the central tile Rσ.

Proof. — Suppose that 0 is not an exclusive inner point of Rσ. Then
there exists γ 6= 0, which has a finite expansion by property (F), such
that 0 ∈ Rσ(a) + γ, which implies 0 =

∑∞
j=−m α

jΦ′(δ(pj)), for m ∈ N.
Multiplying by α−k yields 0 =

∑∞
j=−m α

j−kΦ′(δ(pj)), that means 0 ∈
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Rσ(ak) +
∑m+k
`=1 α−`Φ′(δ(pk−`)) for each k ∈ N, where each of these sums

represent a different element since the representation is unique. This gives
a contradiction with the local finiteness of the covering. Therefore 0 is an
exclusive inner point.
Assume that (F) does not hold, i.e., there exists (γ0, a0) ∈ Γ\

⋃
m>0 T

−m
ext

(U). In particular γ0 6= 0. Since T−1
ext (Γ) = Γ, we can define a sequence

{(γk, ak)}k>1 of elements of Γ with

(γk, ak) ∈ T−1
ext (γk+1, ak+1), k > 0.

Since multiplication by α is a contraction in Kσ, for some k0 ∈ N large
enough, γk ∈ B(0,M), for all k > k0, where M is as in equation (4.7).
There exist only finitely many (γk, ak) ∈ Γ such that γk ∈ B(0,M), since
Γ is a Delone set. Then

∃k′ > k0, ∃` > 0 such that (γk′ , ak′) = (γk′+`, ak′+`),

and γk′ 6= 0, otherwise γ0 ∈
⋃
m>0 T

−m
ext (U). This is equivalent to the

existence of a loop in the zero-expansion graph G(0)

γk′ → γk′+`−1 → · · · → γk′+1 → γk′ ,

and, by the definition of G(0), this implies that 0 ∈ Rσ(ak′) + γk′ . Since
γk′ 6= 0, we have that 0 is not an exclusive inner point of Rσ. �

Finally we can generalize the tiling condition given in [3] for beta nu-
meration.

Theorem 9.10. — Let σ be an irreducible Pisot substitution. If σ sat-
isfies the geometric property (F) and the strong coincidence condition, the
self-replicating multiple tiling {Rσ(a) + γ : (γ, a) ∈ Γ} is a tiling.

Proof. — By the geometric property (F) 0 is an exclusive inner point.
Since the strong coincidence condition holds, the subtilesRσ(a) are disjoint
in measure (see the end of Section 8.2) and there is a set of positive measure
around 0 which is covered only once. Since we know by Theorem 9.2 that
{Rσ(a) + γ : (γ, a) ∈ Γ} is a multiple tiling, this implies that the covering
degree is 1. �

10. Examples

In this section we consider two examples of irreducible non-unit Pisot
substitutions.

ANNALES DE L’INSTITUT FOURIER



THE GEOMETRY OF NON-UNIT PISOT SUBSTITUTIONS 1411

10.1. A two letters example

Consider the substitution σ(1) = 152, σ(2) = 13. We have

Mσ =
(

5 3
1 0

)
, det(xI −Mσ) = x2 − 5x− 3.

The dominant eigenvalue is α = 5+
√

37
2 and its conjugate ᾱ satisfies |ᾱ| < 1.

Figure 10.1. Prefix automaton of σ.

For every prime divisor p of N(α) = −3 we have a prime p | (p) such
that |α|p < 1. Therefore we factorize the prime ideal (3) in O and we find

(3) = (3, α)(3, α+ 1) = (α)︸︷︷︸
p1

(5− α)︸ ︷︷ ︸
p2

,

i.e., (3) splits completely in O: ei = fi = 1, for i = 1, 2. Now we look at the
normalized absolute values |α|p1

= 1
3 , |α|p2

= 1, and we deduce that we
have to consider only the non-Archimedean completion Kp1 , which is an
extension of degree e1f1 = 1 of Q3, equipped with the normalized absolute
value | · |p1

. Thus the representation space is Kσ = R × Q3. Notice that
α is a uniformiser for Kp1 and we can represent each element of Q3 as∑∞
i=m diα

i with di ∈ {0, 1, 2}, m ∈ Z. The canonical embedding is given
explicitly by

Φ′ : Q(α) −→ R×Q3, a0 + a1α 7−→
(
a0 + a1ᾱ,

∞∑
i=m

diα
i
)
.

We choose vα = (α3 , 1) as left eigenvector of Mσ. With this choice, we get
the following set of digits for the Dumont-Thomas expansions:

D = {δ(ε), δ(1), δ(11), δ(13), δ(14), δ(15)} =
{

0, α3 ,
2α
3 , α,

4α
3 ,

5α
3

}
.

We obtain the central tile Rσ by taking the closure of the embedding of
the σ-integers. Having chosen vα as above, we get that Rσ ⊂ R × Z3
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(see Proposition 8.1). Furthermore, the subtiles satisfy the following set
equations:

Rσ(1) = αRσ(1) ∪ (αRσ(1) + Φ′(δ(1))) ∪ (αRσ(1) + Φ′(δ(11)))

∪ (αRσ(1) + Φ′(δ(13))) ∪ (αRσ(1) + Φ′(δ(14)))
∪ αRσ(2) ∪ (αRσ(2) + Φ′(δ(1))) ∪ (αRσ(2) + Φ′(δ(11))),

Rσ(2) = αRσ(1) + Φ′(δ(15)).

R

Z3

R

Z3

Figure 10.2. The central tile Rσ divided in the red (light gray) subtile
Rσ(1) and the blue (dark gray) subtile Rσ(2), and the self similar
structure arising from the set equations.

R

Z3

Figure 10.3. First 3-adic level of the tiling of Kσ.

In Figure 10.3 it is represented the first 3-adic level of the tiling, i.e.,
those tiles whose p-adic part is contained in Z3: they are the Rx with

x ∈
{

2α
3 − 3, 2α

3 − 2, α3 − 1, 0, 1, 2− α

3 , 3−
α

3

}
.

One can check in fact that all these x are 3-adic integers. Furthermore
the tiles Rx, for x = 2α

3 − 3, α3 − 1, 0, 3 − α
3 , are union of the two subtiles

Rσ(1) and Rσ(2), because these x are less than 1, i.e., they are both in
[0, δ(1)) = [0, α/3) and [0, δ(2)) = [0, 1).
Note that for the representation of the tiles we used the following Eu-

clidean model for Q3:

g : Q3 → R+,

∞∑
i=m

diα
i 7→

∞∑
i=m

di3−i−1.
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R

Q3

Figure 10.4. Tiling of the representation space Kσ with translation
set Γ. The black (white) points belong to Φ′(Frac(σ, 1)) (respectively
Φ′(Frac(σ, 2))).

This map is onto, continuous, preserves the Haar measure but is not a
homomorphism with respect to the addition.
In Figure 10.5 and Figure 10.6 it is represented the action of T−1

ext on
the basic faces (0, 1), (0, 2) and on their union U . This is an example
of substitution satisfying the geometric property (F). Finally we show in
Figure 10.7 the exchange of domains given by the substitution σ.

(a) The face (0, 1) and its image
T −1

ext (0, 1).
(b) The face (0, 2) and its image
T −1

ext (0, 2).

Figure 10.5

10.2. A three letters example

Let σ be the substitution σ : 1 7→ 1113, 2 7→ 11, 3 7→ 2. The incidence
matrix of the substitution and its characteristic polynomial are

Mσ =

3 2 0
0 0 1
1 0 0

 , det(xI −Mσ) = x3 − 3x2 − 2.
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Figure 10.6. T−3
ext (U) and its projection into Kσ.

Figure 10.7. Exchange of domains.

One can check that the characteristic polynomial is irreducible over Q and
has one real root α ≈ 3.196 and two complex conjugate roots α2, ᾱ2 ≈
−0.098 ± 0.785i with norm less than 1. We want to determine the repre-

Figure 10.8. Prefix automaton of σ.

sentation space for the substitution σ. Setting K = Q(α), we know that
the Archimedean part of the representation space is C, while for the non-
Archimedean part we have to compute the prime ideal factorization of 2O:

(2) = (2, α)2 · (2, α− 1) = (α)2︸︷︷︸
p2

1

· (−1− α2)︸ ︷︷ ︸
p2

.
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We have |α|p1
= 1

2 , |α|p2
= 1, hence the non-Archimedean completion we

have to consider is Kp1 , which is an extension of degree e1f1 = 2 of Q2.
There exist only 7 non-isomorphic quadratic extensions of Q2, and one

can check that Kp1
∼= Q2(

√
7). By the way, α is a uniformiser in Kp1 ,

thus we can express every element of this completion as
∑∞
i=m diα

i, with
di ∈ {0, 1} and some m ∈ Z. Hence the canonical embedding is

Φ′ : Q(α)→ C×Q2(
√

7), a0+a1α+a2α
2 7→

(
a0+a1α2+a2α

2
2,
∞∑
i=m

diα
i

)
.

We represent each element of Q2(
√

7) with the Euclidean model Q2(
√

7)→
R+,

∑∞
i=m diα

i 7→
∑∞
i=m di2−i−1. In Figure 10.9 the tiles associated to the

substitution are represented. We choose vα = (α2/2, α, 1) as left eigenvec-
tor ofMσ. With this choice we have the set of digitsD={0, α2/2, α2, 3α2/2}
for the Dumont-Thomas expansions. Furthermore we have that the p-adic
part of the central tile is contained in Z2[

√
7].

C

Z2[
√

7]

Figure 10.9. Pictures of the central tile Rσ divided in the red (gray)
subtile Rσ(1), the blue (dark gray) Rσ(2) and the yellow (light gray)
Rσ(3).
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