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AN OBSTRUCTION TO `p-DIMENSION

by Nicolas MONOD & Henrik Densing PETERSEN (*)

Abstract. — Let G be any group containing an infinite elementary amenable
subgroup and let 2 < p < ∞. We construct an exhaustion of `pG by closed invariant
subspaces which all intersect trivially a fixed non-trivial closed invariant subspace.
This is an obstacle to `p-dimension and gives an answer to a question of Gaboriau.
Résumé. — Soit G un groupe contenant un sous-groupe infini élémentairement

moyennable et soit 2 < p < ∞. Nous construisons des sous-G-modules fermés de
`pG d’union croissante dense mais qui rencontrent trivialement un sous-module
fermé non trivial. Ce phénomène est un obstacle à la quête d’une dimension `p et
répond à une question de Gaboriau.

Introduction and Statement of the Result

The Murray–von Neumann dimension, also called `2-dimension, has pro-
ved tremendously valuable since its introduction in 1936 [11]. This is partic-
ularly true for its use through `2-Betti numbers of groups since the seminal
article [1] by Cheeger and Gromov. This has prompted recent work in pur-
suit of a more general `p-dimension for 1 < p <∞; see e.g. [9, 8, 5, 6]. The
purpose of this short note is to establish a fundamental obstruction to this
endeavour.
One of the central motivations to define a notion of `p-dimension is to

take advantage of the situations where `p-cohomology carries information
not accessible through to `2-methods, see e.g. [12]. However, this involves
typically p large, in particular p > 2; unfortunately this range appears to
be much more difficult than p 6 2.
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Given a (discrete) group G, a concrete test for the existence of an `p-
dimension with at least some positivity and continuity properties is the
following question of Gaboriau, see Question 1.1 in [6]. Let (Ei)i∈N be
an invariant exhaustion of `pG, i.e., an increasing sequence of (left-) G-
invariant closed subspaces Ei ⊆ `pG with dense union. If a G-invariant
closed subspace F ⊆ `pG meets each Ei trivially, does it follow that F is
trivial?
This question also seems to be the main missing point to establish the

measure-equivalence invariance of the vanishing of `p-cohomology in paral-
lel to [4]. Such invariance would notably settle the well-known open problem
of the vanishing of reduced `p-cohomology for amenable groups.
The case of amenable groups was expected to be much more tractable,

and indeed Gournay [6] has given a positive answer to Gaboriau’s question
when G is amenable and p 6 2. The present note shows that the situation
is very much opposite for p > 2, even when G = Z.

Theorem 0.1. — Let G be an infinite elementary amenable group and
let 2 < p <∞.
There exists a closed invariant subspace 0 6= F ⊆ `pG and an invariant

exhaustion (Ei)i∈N of `pG such that Ei ∩ F = 0 for all i ∈ N.

Our current proof of this theorem involves notably a cameo appearance
of the Feit–Thompson Theorem [3] and a result of Saeki [14] in classical
harmonic analysis.

In general, we will say that an invariant exhaustion (Ei)i of `pG is thin,
if there is a closed invariant subspace F 6= 0 satisfying Ei ∩F = 0 for all i.
It is not hard to see (and will be needed in the proof anyway) that the
existence of such exhaustions can be induced up from subgroups. We thus
record the following formally stronger statement:

Corollary 0.2. — Thin invariant exhaustions of `pG for all p > 2
exist more generally for every group G containing an infinite elementary
amenable subgroup. In particular, this holds for every non-trivial group
which is not torsion.

Thus, for instance, any infinite linear group G over any field of any
characteristic admits thin invariant exhaustions of `pG for all p > 2 because
the assumptions of Corollary 0.2 are satisfied due to the Tits alternative
(Theorems 1 and 2 in [16]).
Perhaps one should find another proof of Theorem 0.1. In any case, this

would be necessary to address the following.
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Conjecture 0.3. — Any infinite group G admits a thin invariant ex-
haustion of `pG for all p > 2.

Proof of the Result

First we observe that the property of not having a thin invariant exhaus-
tion is hereditary:

Lemma 0.4. — Let G be a group and 1 6 p < ∞. Suppose that G
contains a subgroup H which has a thin invariant exhaustion (Ei)i of `pH.
Then G has a thin invariant exhaustion of `pG.

Thus Corollary 0.2 follows indeed from Theorem 0.1.
Proof of Lemma 0.4. — Let G and p be given and fix a subgroup H of

G and a thin invariant exhaustion (Ei)i of `pH. We have a G-equivariant
isomorphism of `p-spaces

`pG ∼= `p(G/H, `pH),

where theG-action on the right-hand side is given by (g.ξ)(x) = c(g, g−1.x).
ξ(g−1.x) for g ∈ G, x ∈ G/H, ξ ∈ `p(G/H, `pH), and c : G ×G/H → H a
cocycle representative for the inclusion H < G.
Now take F 6= 0 a closed invariant subspace of `pH such that Ei∩F = 0

for all i, and define Ẽi := `p(G/H,Ei) and similarly F̃ := `p(G/H,F ).
Then (Ẽi)i is a thin invariant exhaustion of `pG. �

From here on, the proof splits into two cases:
(A) G contains an element of infinite order.
(B) G is a torsion group.

Proof in case (A)

By Lemma 0.4, we can assume G ∼= Z. For a measure µ on a Borel space
we denote the support of µ by suppµ. We denote the Lebesgue measure on
T by λ and the Fourier–Stieltjes coefficients of µ by µ̂.

Proposition 0.5. — Let 2 < p <∞ and suppose that µ is a measure on
T such that λ(suppµ) = 0 and µ̂ ∈ `pZ. Denote by F the closed, invariant
subspace of `pZ generated by µ̂. Then there is an invariant exhaustion
(Ei)i∈N of `pZ such that F ∩ Ei = 0 for all i ∈ N.

TOME 64 (2014), FASCICULE 4
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Proof. — Let p, µ be given as in the statement and denote K := suppµ.
We can choose a decreasing family (Ui)i∈N of open neighbourhoods of K,
such that

(i) K =
⋂
i Ui.

(ii) Ui+1 ⊆ Ui for all i ∈ N.
By the existence of a smooth partition of unity, there exist smooth func-

tions σi on T such that for every i ∈ N, t ∈ T we have

σi(t) =
{

0 if t ∈ Ui+1,

1 if t ∈ U{
i .

On Ui \Ui+1, we do not care about the value σi(t) as long as σi is smooth.
By the smoothness of σi, the Fourier transforms Si := σ̂i are in `1Z for

all i ∈ N. Further, we observe that in `1Z we have for every i ∈ N that

(0.1) Si+1 ∗ Si = Si,

since the identity σi+1(t) ·σi(t) = σi(t) holds pointwise on T. Indeed, fixing
some i we observe that both sides of the latter equality are zero if t ∈ Ui+1,
and that if t ∈ U{

i+1 then σi+1(t) = 1 so that the equality is tautological.
From this point on we consider the Si as translation-invariant operators

on `pZ, acting by convolution.
Since µ and σi have disjoint support, µ̂ is in kerSi (compare [13, Lemma

2]). It follows that F ⊆ kerSi for all i. We define Ei := ker(Id`pZ−Si). The
Ei are then closed, invariant subspaces, and it is obvious that F ∩ Ei = 0
for all i ∈ N.
The fact that Ei ⊆ Ei+1 for all i ∈ N follows directly from the iden-

tity (0.1). Indeed, take x ∈ Ei. Then we get x = Si.x = (Si+1Si).x =
Si+1.(Si.x) = Si+1.x whence x ∈ Ei+1.

Finally, we need to see that
⋃
iEi is dense in `pZ. For this denote by ιp :

`2Z→ `pZ the canonical embedding. For each i ∈ N there is an orthogonal
projection pi ∈ LZ, the von Neumann algebra generated by the left-regular
representation of Z on `2Z, such that under the spatial isomorphism LZ ∼=
L∞T, pi corresponds to the indicator function, 1U{

i
, of the complement of

Ui. Then, denoting by S(2)
i the operator of convolution by Si on `2Z we have

pi(`2Z)⊆ker(Id`2Z−S
(2)
i ). It follows that ιp(pi(`2Z))⊆ker(Id`pZ−Si)=Ei.

Then it just remains to note that, since λ(U{
i )↗i 1, the union

⋃
i pi(`2Z)

is dense in `2Z. Thus
⋃
i ιp(pi(`2Z)) is dense in `pZ. �

To complete the proof of Theorem 0.1 in case (A), we now need to know
that a non-zero measure µ as in the statement of the previous proposition
does indeed exist (µ 6= 0 implies F 6= 0). This follows from the main

ANNALES DE L’INSTITUT FOURIER



AN OBSTRUCTION TO `p-DIMENSION 1367

theorem of [14] as we shall now recall. Let ϕ : c0(Z)→ c0(Z) be a continuous
map (with respect to sup-norm); for instance, ϕ can be the composition by
any continuous map ϕ0 : R→ R with ϕ0(0) = 0. Then Saeki proves in [14]
that there is a probability measure µ with Lebesgue-null support such that
the Fourier–Stieltjes coefficients µ̂(n) satisfy

(0.2)
∑
n∈Z

∣∣µ̂(n)2ϕ(µ̂)(n)
∣∣ <∞.

Thus, implicitly, µ̂ vanishes at infinity; see Remark (ii) below. If we choose
for instance ϕ0(x) = |x|p−2 for p > 2, then (0.2) shows that µ̂ is in
`p, as desired. We can also obtain µ̂ in all `p simultaneously if we ar-
range limx→0 |x|ε/ϕ0(x) = 0 for all ε > 0; an explicit example is ϕ0(x) =
exp(−

√∣∣ log |x|
∣∣). This finishes the proof of case (A).

Proof in case (B)

Since G is an elementary amenable torsion group, it is locally finite by
Theorem 2.3 in [2]. We can now appeal to a result of Hall–Kulatilaka [7],
relying in turn on the Feit–Thompson Theorem [3], to conclude that G
contains an infinite abelian subgroup. Therefore, using again Lemma 0.4,
we can assume that G is a countably infinite locally finite abelian group.
The proof of Theorem 0.1 in this case follows the overall strategy of the
case of Z, if one redefines a “smooth function” to mean a locally constant
function on a totally disconnected compact space. We shall therefore need
to address the question of the existence of a suitable measure µ on the
Pontryagin dual Ĝ, Proposition 0.7 below. We first record a version of
Proposition 0.5 in this setup. Let λ

Ĝ
denote the normalized Haar measure

on the profinite group Ĝ.

Proposition 0.6. — Let 2 < p <∞ and suppose that µ is a measure on
Ĝ such that λ

Ĝ
(suppµ) = 0 and µ̂ ∈ `pG. Denote by F the closed, invariant

subspace of `pG generated by µ̂. Then there is an invariant exhaustion
(Ei)i∈N of `pG such that F ∩ Ei = 0 for all i ∈ N.

Proof. — We first observe that Lemma 2 of [13] holds in general for G
countable abelian and the proof goes through verbatim in this generality.
This forms the basis for imitating the proof of proposition 0.5; the only
point that needs justification is the “smoothness” of σi to ensure σ̂i ∈ `1G.
In fact, we claim that we can even arrange σ̂i ∈ CG.

TOME 64 (2014), FASCICULE 4
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Indeed, since Ĝ is profinite, we can take Ui to be a compact-open subset
given as the pre-image π−1(Vi) of a subset Vi ⊆ Ĥi in some finite quotient
π : Ĝ→ Ĥi, where Hi is a finite subgroup of G. The indicator function 1U{

i

of the complement is 1V {
i
◦π and hence 1̂U{

i
is supported on Hi. Therefore,

defining σi = 1U{
i
, the transform σ̂i is finitely supported. Now (0.1) holds

and the rest of the proof is unchanged. �

We now need again to show that a non-zero measure µ as in Propo-
sition 0.6 exists to finish the proof of the theorem. Saeki states in [14,
Remark (II)] that his method still works as long as Ĝ does not contain
an open subgroup of bounded order (in Saeki’s notation, the desired con-
clusion is obtained by choosing f to be the constant function one on our
compact group Ĝ, which he denotes by G). He indicates however that a
different technique is required when Ĝ does contain an open subgroup of
bounded order, although that technique is not provided. We shall therefore
propose a proof in the proposition below.

Proposition 0.7. — If Ĝ contains an open subgroup of bounded order,
then it admits a probability measure µ such that λ

Ĝ
(suppµ) = 0 and

µ̂ ∈ `pG for all p > 2.

Proof. — The assumption allows us to apply Corollary 25.10 in [10] and
deduce that Ĝ is isomorphic to a (countably infinite) product of finite
cyclic groups Z/niZ where only finitely many distinct integers ni occur.
Therefore, regrouping factors and using the Chinese remainder theorem,
we can write Ĝ ∼= A0 × BN for some finite abelian groups A0 and B 6= 0.
Let k > 2 be the cardinality of B. Regrouping factors some more, we write

Ĝ ∼= A0 ×
∞∏
n=1

(
Bn
)kn

=
∞∏
j=0

Aj ,

where for j > 1 each Aj is a group of size cj , a power of k, in such a way
that cj = kn occurs exactly kn times for each n ∈ N. We now define µ
explicitly as the infinite product µ =

∏∞
j=0 µj , where µ0 is the uniform

distribution on A0 and µj is the uniform distribution on the set Aj \ {0}
for all j > 1.
Since λ

Ĝ
is the product of the normalized measures on each factor, the

support of µ has Haar measure
∏∞
j=1(1−1/cj). This product is zero because∑∞

j=1 1/cj =∞ since this is a sum of terms k−n, each of which occurs kn
times.
We now fix p > 2 and proceed to prove that µ̂ is in `pG. We have

G ∼=
⊕∞

j=0 Âj and the dual Haar measure on Âj is the (non-renormalized)

ANNALES DE L’INSTITUT FOURIER
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counting measure. Therefore, it suffices to prove that the product of all
`p-norms of µ̂j over j > 1 is finite. Writing 1X for the indicator function
of a subset X of Aj or of Âj , we have 1̂{0} = c−1

j 1
Âj

for 0 ∈ Aj and 1̂Aj =
1{0} for 0 ∈ Âj . The density of µj can be written as cj(cj − 1)−1(1Aj

−
1{0}), which implies µ̂j = 1{0} − (cj − 1)−11

Âj\{0}
. We conclude that

‖µ̂j‖pp = 1+(cj−1)1−p. In other words, it remains to verify that the product∏∞
j=1(1+(cj−1)1−p) is finite, or equivalently that

∑∞
j=1(cj−1)1−p is finite.

The latter series is
∑∞
n=1 k

n(kn − 1)1−p which is indeed finite if and only
if p > 2. �

This completes the proof of Theorem 0.1.

Remarks

(i) Saeki’s measure µ on T satisfies that µ∗µ has a continuous density.
He points out that this cannot be achieved for certain groups in
case (B) above, see Remark (III) of [14].

(ii) Stating the above property (0.2) of µ requires to know a priori that
µ̂ vanishes at infinity. This can be verified in Saeki’s proof: it follows
e.g. from condition (1) on p. 230 in [14].

(iii) If G is any amenable group, then a necessary condition for the
existence of a thin invariant exhaustion (Ei)i as in Theorem 0.1, is
that the invariant subspace F have `p-dimension zero in the sense
of Gournay [6]. In fact, we conjecture that the converse is also true:

Conjecture 0.8. — Let G be a (countable, discrete) amenable
group, 1 6 p <∞, and F ⊆ `pG a closed invariant subspace. Then
dim`p F = 0 if and only if there is an invariant exhaustion (Ei)i of
`pG such that Ei ∩ F = 0 for all i.
More generally one can also consider this conjecture for sofic

groups [9, 8].

This conjecture is motivated by a result of Sauer [15, Theo-
rem 2.4] for Lück’s extended dimension function.

(iv) For G = Zn, n > 2 and p > 2n
n−1 the situation in Theorem 0.1 is

particularly nice. In this case one can take the subspace F to be the
kernel of an operator T ∈ CZn which acts without kernel on `2Zn,
and it was noticed already by Gournay [6, Remark 9.4] that in this
case the kernel in `pZn must have `p-dimension zero, in the sense
of [6].

TOME 64 (2014), FASCICULE 4
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For a proof that there exist a T with these properties see [13].
The proof that we can take the kernel of T as our F is analogous
to the proof of Proposition 0.5.

(v) Using an Euler characteristic argument, Gaboriau had previously
observed that for certain non-amenable groups G one cannot hope
to have a notion of `p-dimension for which (`pG)⊕n has dimension
n, and which also satisfies additivity for short exact sequences (see
the introduction of [5]). The fact that we produce thin exhaustions
for amenable groups should further increase the doubts that there
be any reasonable `p-dimension for large p.

Acknowledgements. Question [6, 1.1] was suggested to us by Kate
Juschenko. We also thank Antoine Gournay and Antoine Derighetti for
some nice discussions, and Damien Gaboriau for reading a preliminary ver-
sion of this note.
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