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ON THE MULTIPLICITY OF EIGENVALUES
OF CONFORMALLY COVARIANT OPERATORS

by Yaiza CANZANI (*)

Abstract. — Let (M, g) be a compact Riemannian manifold and Pg an el-
liptic, formally self-adjoint, conformally covariant operator of order m acting on
smooth sections of a bundle over M . We prove that if Pg has no rigid eigenspaces
(see Definition 2.2), the set of functions f ∈ C∞(M,R) for which Pefg has only
simple non-zero eigenvalues is a residual set in C∞(M,R). As a consequence we
prove that if Pg has no rigid eigenspaces for a dense set of metrics, then all non-zero
eigenvalues are simple for a residual set of metrics in the C∞-topology. We also
prove that the eigenvalues of Pg depend continuously on g in the C∞-topology,
provided Pg is strongly elliptic. As an application of our work, we show that if
Pg acts on C∞(M) (e.g. GJMS operators), its non-zero eigenvalues are generically
simple.
Résumé. — Soit (M, g) une variété riemannienne et Pg un opérateur elliptique,

auto-adjoint, covariant conforme d’ordre m agissant sur les sections lisses d’un fibré
sur M . Nous montrons que si Pg n’admet pas d’espaces propres rigides (voir Dé-
finition 2.2), l’ensemble des fonctionsf ∈ C∞(M,R) pour lesquelles Pefg n’admet
que des valeurs propres non nulles est un ensemble résiduel dans C∞(M,R). Ce
résultat a comme conséquence que si Pg n’admet pas d’espaces propres rigides pour
un ensemble dense de métriques, alors toutes les valeurs propres non nulles sont
simples pour un ensemble résiduel de métriques dans la topologie C∞. Nous mon-
trons également que les valeurs propres de Pg dependent continûment de g dans
la topologie C∞ si Pg est fortement elliptique. Comme applications de nos résul-
tats, nous montrons que si Pg agit sur C∞(M), comme dans le cas des opérateurs
GJMS, alors les valeurs propres non-nulles de cet opérateur sont génériquement
simples.

1. Introduction

Conformally covariant operators (see Definition 3.1) are known to play
a key role in Physics and Spectral Geometry. In the past few years, much
work has been done on their systematic construction, understanding, and

Keywords: Multiplicity, eigenvalues, conformal geometry, conformally covariant opera-
tors, GJMS operators.
Math. classification: 53A30, 58C40.
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classification [3, 8, 6, 7, 17, 20, 22, 29, 33]. In Physics, the interest for
conformally covariant operators started when Bateman [4] discovered that
the classical field equations describing massless particles (like Maxwell and
Dirac equations) depend only on the conformal structure. These operators
are also important tools in String Theory and Quantum Gravity, used to
relate scattering matrices on conformally compact Einstein manifolds with
conformal objects on their boundaries at infinity [23]. In Spectral Geometry,
the purpose is to relate global geometry to the spectrum of some natural
operators on the manifold. For example, the nice behavior of conformally
invariant operators with respect to conformal deformations of a metric
yields a closed expression for the conformal variation of the determinants
leading to important progress in the lines of [8, 9, 15].
When it comes to perturbing a metric to deal with any of the problems

described above, it is often very helpful and simplifying to work under
the assumption that the eigenvalues of a given operator are a smooth, or
even continuous, function of a metric perturbation parameter. But real-
ity is much more complicated, and usually, when possible, one has to find
indirect ways of arriving to the desired results without such assumption.
However, it is generally believed that eigenvalues of formally self-adjoint
operators with positive leading symbol on SO(m) or Spin(m) irreducible
bundles are generically simple. And, as Branson and Ørsted point out in
[14, pag 22], since many of the quantities of interest are universal expres-
sions, the generic case is often all that one needs. In many cases, it has
been shown that the eigenvalues of metric dependent, formally self-adjoint,
elliptic operators are generically simple. The main example is the Laplace
operator on smooth functions on a compact manifold, see [25, 31, 2, 5]. The
simplicity of eigenvalues has also been shown, generically, for the Hodge-
Laplace operator on forms on a compact manifold of dimension 3 (see [18]).
Besides, in 2002, Dahl proved such result for the Dirac operator on spinors
of a compact spin manifold of dimension 3; see [16]. It seems to be the case
that in the class of conformally covariant operators the latter is the only
situation for which the simplicity of the eigenvalues has generically been
established. In this note we hope to shed some light in this direction.
A summary of the main results follows. Let (M, g) be a compact Rie-

mannian manifold and Eg a smooth bundle overM . Consider Pg : Γ(Eg)→
Γ(Eg) to be an elliptic, formally self-adjoint, conformally covariant oper-
ator of order m acting on smooth sections of the bundle Eg. Endow the
spaceM of Riemannian metrics overM with the C∞-topology. Among the
main results are:
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− Suppose Pg : Γ(Eg) → Γ(Eg) has no rigid eigenspaces (see Definition
2.2). Then the set of functions f ∈ C∞(M,R) for which Pefg has only
simple non-zero eigenvalues is a residual set in C∞(M,R). As a corollary
we prove that if Pg has no rigid eigenspaces for a dense set of metrics,
then all non-zero eigenvalues are simple for a residual set of metrics inM.

− Suppose Pg : Γ(Eg) → Γ(Eg) satisfies the unique continuation principle
for a dense set of metrics in M. Then the multiplicity of all non-zero
eigenvalues is smaller than the rank of the bundle for a residual set of
metrics inM.

− As an application, if Pg acts on C∞(M) (e.g. GJMS operator), its non-
zero eigenvalues are simple for a residual set of metrics inM.

− If Pg : Γ(Eg) → Γ(Eg) is strongly elliptic, then the eigenvalues of Pg
depend continuously on g in the C∞-topology of metrics.
Not many statements can be proved simultaneously for all conformally

covariant operators, even if self-adjointness and ellipticity are enforced.
Some of these operators act on functions, others act on bundles. For some
of them the maximum principle is satisfied, whereas for others is not. Some
of them are bounded below while others are not. We would therefore like to
emphasize that we find remarkable that our techniques work for the whole
class of conformally covariant operators.
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2. Statement of the results

In order to provide a precise description of our results, we introduce the
following
Conventions. Let (M, g) denote a compact Riemannian manifold and

consider a smooth bundle Eg overM with product on the fibers ( , )x. Write
Γ(Eg) for the space of smooth sections and denote by 〈 , 〉g the global inner
product 〈u, v〉g =

∫
M

(u(x), v(x))xdvolg, for u, v ∈ Γ(Eg).
A differential operator Pg : Γ(Eg) → Γ(Eg) is said to be formally self-
adjoint if for all u, v ∈ Γ(Eg) we have 〈Pgu, v〉g = 〈u, Pgv〉g. Let σPg
denote the principal symbol of Pg and let m be the order of Pg. We say
that Pg is elliptic if σPg (ξ) : (Eg)x → (Eg)x is an invertible map for all
(x, ξ) ∈ T ∗M , ξ 6= 0. For a definition of a conformally covariant operator
see Definition 3.1.
Throughout this paper we work under the following assumptions:
• M is a compact differentiable manifold, g is a Riemannian metric
overM and Eg denotes a smooth bundle overM as described above.

• Pg : Γ(Eg) → Γ(Eg) is an elliptic, formally self-adjoint, con-
formally covariant operator of order m.

• The spaceM of Riemannian metrics over M , is endowed with the
C∞-topology: Fix a background metric g, and define the distance
dmg between two metrics g1, g2 by

dmg (g1, g2) := max
k=0,...,m

‖∇kg (g1 − g2)‖∞.

The topology induced by dmg is independent of the background met-
ric and it is called the Cm-topology of metrics on M .

There are many ways of splitting the spectrum of an operator. The main
ideas in this paper are inspired by the constructive methods of Bleecker
and Wilson [5]. In what follows the main results of this paper are stated.
Theorem 2.1. — For Pg : C∞(M) → C∞(M), the set of functions

f ∈ C∞(M,R) for which all the non-zero eigenvalues of Pefg are simple is
a residual set in C∞(M,R).

To obtain a generalization of Theorem 2.1 for operators acting on bundles
we introduce the following
Definition 2.2. — An eigenspace of Pg : Γ(Eg)→ Γ(Eg) is said to be

a rigid eigenspace if it has dimension greater or equal than two, and for
any two eigensections u, v with ‖u‖g = ‖v‖g = 1 then

‖u(x)‖x = ‖v(x)‖x ∀x ∈M.

ANNALES DE L’INSTITUT FOURIER
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Remark. — By the polarization identity this condition is equivalent to
the existence of a function cg on M so that for all u, v in the eigenspace

(u(x), v(x))x = cg(x)〈u, v〉g ∀x ∈M.

In this setting, we establish the following

Theorem 2.3. — If Pg : Γ(Eg) → Γ(Eg) has no rigid eigenspaces, the
set of functions f ∈ C∞(M,R) for which all the non-zero eigenvalues of
Pefg are simple is a residual set in C∞(M,R).

As a consequence of Theorem 2.3 (or Theorem 2.1) we prove

Corollary 2.4. — Suppose Pg : Γ(Eg) → Γ(Eg) has no rigid eigen-
spaces for a dense set of metrics in M, or that it acts on C∞(M). Then,
the set of metrics g ∈M for which all non-zero eigenvalues of Pg are simple
is a residual subset ofM.

Of course, one would like to get rid of the “non rigidity” assumption.
Probably, this assumption cannot be dropped if we restrict ourselves to
work with conformal deformations only. However, we believe that a generic
set of deformations should break the rigidity condition. We thereby make
the following

Conjecture. — Pg has no rigid eigenspaces for a dense set of metrics
inM.

If we remove the “non rigidity” condition and ask the operator to satisfy
the unique continuation principle we obtain

Theorem 2.5. — If Pg : Γ(Eg)→ Γ(Eg) satisfies the unique continua-
tion principle, the set of functions f ∈ C∞(M,R) for which all the non-zero
eigenvalues of Pefg have multiplicity smaller than rank(Eg) is a residual
set in C∞(M,R).

We note that for line bundles the unique continuation principle gives
simplicity of eigenvalues, for a generic set of conformal deformations.

Corollary 2.6. — Suppose Pg : Γ(Eg) → Γ(Eg) satisfies the unique
continuation principle for a dense set of metrics in M. Then, the set of
metrics g ∈ M for which all non-zero eigenvalues of Pg have multiplicity
smaller than the rank of the bundle is a residual subset ofM.

For c ∈ R, consider the setMc := {g ∈M : c /∈ Spec(Pg)} . For g ∈Mc,
let

µ1(g) 6 µ2(g) 6 µ3(g) 6 . . .

TOME 64 (2014), FASCICULE 3
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be all the eigenvalues of Pg in (c,+∞) counted with multiplicity. Note that
it may happen that there are only finitely many µi(g)’s. We prove

Theorem 2.7. — The setMc is open, and the maps

µi :Mc → R g 7→ µi(g)

are continuous in the C∞-topology of metrics.

If Pg is strongly elliptic, its spectrum is bounded below. It can be shown
[26, (7.14) Appendix] that for a fixed metric g0 there exists c ∈ R and
a neighborhood V of g0 so that Spec(Pg) ⊂ (c,+∞) for all g ∈ V . An
immediate consequence is

Corollary 2.8. — If Pg : Γ(Eg)→ Γ(Eg) is strongly elliptic, then its
eigenvalues are continuous for g ∈M in the C∞-topology.

Two important remarks:
• If P : Γ(E) → Γ(E) is an elliptic, formally self-adjoint operator
acting on a smooth bundle over compact manifold, its eigenvalues
are real and discrete. In addition, there is an orthonormal basis of
ΓL2(E) of eigensections of P .

• All the results stated above hold for non-zero eigenvalues. Given a
non-zero eigenvalue of multiplicity greater than 1, we use confor-
mal transformations of the reference metric to reduce its multiplic-
ity. This cannot be done for zero eigenvalues for their multiplicity,
dim ker(Pg), is a conformal invariant.

The rest of the paper is organized as follows. In Section 3 we define con-
formally covariant operators and provide examples of operators to which
our results can be applied. In Section 4 we introduce the tools of pertur-
bation theory that we shall need to split non-zero eigenvalues when they
are not simple. In Section 5 we adapt the results in perturbation theory to
our class of operators and find necessary conditions to split the non-zero
eigenvalues. In Section 6 we prove Theorems 2.1, 2.3 and 2.5. In Section 7
we prove Corollary 2.4, Corollary 2.6, and Theorem 2.7.

3. Conformally Covariant Operators: definition
and examples

Next we provide examples of well known operators to which our results
can be applied. Let g be a Riemannian metric over M and Pg : C∞(M)→
C∞(M) a (metric dependent) differential operator of order m.

ANNALES DE L’INSTITUT FOURIER
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We say that Pg is conformally covariant of bidegree (a, b) if for any con-
formal perturbation of the reference metric, g → efg with f ∈ C∞(M,R),
the operators Pefg and Pg are related by the formula

Pefg = e−
bf
2 ◦ Pg ◦ e

af
2 .

If we want to consider operators acting on vector bundles the definition
becomes more involved. Let M be a compact manifold (possibly with ori-
entation and spin structure), and Eg a vector bundle overM equipped with
a bundle metric.

Definition 3.1. — Let a, b ∈ R. A conformally covariant operator P
of order m and bidegree (a, b) is a map that to every Riemannian metric g
over M associates a differential operator Pg : Γ(Eg) → Γ(Eg) of order m,
in such a way that

A) For any two conformally related metrics, g and efg with f ∈
C∞(M,R), there exists a bundle isomorphism

κ : Eefg → Eg

that preserves length fiberwise and for which

Pefg = κ−1 ◦ e−
bf
2 ◦ Pg ◦ e

af
2 ◦ κ, (3.1)

B) The coefficients of Pg depend continuously on g in the C∞-topology
of metrics (see Definition 3.2).

For a more general formulation see [1, pag. 4]. It is well known that for
all these operators one always has a 6= b.

Definition 3.2. — The coefficients of a differential operator
Pg : Γ(Eg) → Γ(Eg) are said to depend continuously on g in the Ck-
topology of metrics if the following is satisfied: every metric g0 has a neigh-
borhood W in the Ck-topology of metrics so that for all g ∈ W there is an
isomorphism of vector bundles τg : Eg → Eg0 with the property that the
coefficients of the differential operator

τg ◦ Pg ◦ τ−1
g : Γ(Eg0)→ Γ(Eg0)

depend continuously on g.

We proceed to introduce some examples of operators to which our re-
sults can be applied; see [1, pag 5], [13, pag 253], and [32, pag 285] for more.

TOME 64 (2014), FASCICULE 3
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Conformal Laplacian. On surfaces, the most common example is the
Laplace operator ∆g having bidegree (0, 2). In higher dimensions its gen-
eralization is the second order, elliptic operator, named Conformal Lapla-
cian, P1,g = ∆g + n−2

4(n−1)Rg acting on C∞(M). Here ∆g = δgd and Rg is
the scalar curvature. P1,g is a conformally covariant operator of bidegree(
n−2

2 , n+2
2
)
.

Paneitz Operator. On compact 4 dimensional manifolds, Paneitz dis-
covered the 4th order, elliptic operator P2,g = ∆2

g + δg( 2
3Rg g − 2Ricg)d

acting on C∞(M). Here Ricg is the Ricci tensor of the metric g and both
Ricg and g are acting as (1, 1) tensors on 1-forms. P2,g is a formally self-
adjoint, conformally covariant operator of bidegree (0, 4). See [29].

GJMS Operators. In general, on compact manifolds of dimension
n even, if m is a positive integer such that 2m 6 n, Graham-Jenne-
Mason-Sparling constructed formally self-adjoint, elliptic, conformally co-
variant operators Pm,g, acting on C∞(M) with leading order term given
by ∆m. Pm,g is a conformally covariant operator of order 2m and bidegree(
n−2m

2 , n+2m
2
)
that generalizes the Conformal Laplacian and the Paneitz

operator to higher even orders. See [22].

Dirac Operator. Let (M, g) be a compact Riemannian spin manifold.
Denote its spinor bundle by Eg and write γ for the fundamental tensor-
spinor. Let ∇ be the connection defined as the natural extension of the
Levi-Civita connection on TM to tensor-spinors of arbitrary type. The
Dirac Operator 6∇g is, up to normalization, the operator on Γ(Eg) defined
by 6 ∇g = γα∇α. The Dirac operator is formally self-adjoint, conformally
covariant, elliptic operator of order 1 and bidegree

(
n−1

2 , n+1
2
)
. See [19,

pag. 9] or [24].

Rarita-Schwinger Operator. In the setting of the previous example,
let Tg denote the twistor bundle. The Rarita-Schwinger operator S0

g acting
on Γ(Tg) is defined by u→ γβ∇βuα− 2

nγα∇
βuβ , where n is the dimension

of M . S0
g is an order 1, elliptic, formally self-adjoint, conformally covariant

operator of bidegree
(
n−1

2 , n+1
2
)
. See [11].

Conformally Covariant Operators on forms. In 1982 Branson in-
troduced a general second order conformally covariant operator D(2,k),g on
differential forms of arbitrary order k and leading order term (n − 2k +
2)δgd + (n − 2k − 2)dδg for n 6= 1, 2 being the dimension of the manifold.
Later he generalized it to a four order operator D(4,k), g with leading order
term (n− 2k + 4)(δgd)2 + (n− 2k − 4)(dδg)2 for n 6= 1, 2, 4. Both D(2,k), g

and D(4,k), g are formally self-adjoint, conformally covariant operators and
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their leading symbols are positive provided k < n−2
2 and k < n−4

2 respec-
tively. On functions, D(2,0), g = P1,g and D(4,k), g = P2,g. See [12, pag 276],
[13, pag 253]. For recent results and higher order generalizations see [10]
and [21].

4. Background on perturbation theory

In this section we introduce the definitions and tools we need to prove
our main results. We follow the presentation in Rellich’s book [30], and a
proof for every result stated can be found there.

Let H be a Hilbert space with inner product 〈 , 〉 and U a dense subspace
of H. A linear operator A on U is said to be formally self-adjoint, if it
satisfies 〈Au, v 〉= 〈u,Av 〉 for all u, v ∈ U . A formally self-adjoint operator
A is said to be essentially self-adjoint if the images of A+ i and A− i are
dense in H; if these images are all of H we say that A is self-adjoint.
If A is a linear operator on U , its closure is the operator Ā defined on U

as follows: U is the set of elements u ∈ H for which there exists a sequence
{un} ⊂ U with limn un = u and Aun converges. Then Āu := limnAun. We
note that if A is formally self-adjoint, so is Ā.

A family of linear operators A(ε) on U indexed by ε ∈ R is said to
be regular in a neighborhood of ε = 0 if there exists a bounded bijective
operator U : H → U so that for all v ∈ H, A(ε)[U(v)] is a regular element,
in the sense that it is a power series convergent in a neighborhood of ε = 0.
Finding the operator U is usually very difficult. Under certain conditions
on the operators, proving regularity turns out to be much simpler. To this
end, we introduce the following criterion.

Criterion 4.1. — ([30, page 78]) Suppose that A(ε) on U is a family
of formally self-adjoint operators in a neighborhood of ε = 0. Suppose that
A(0) = A(0) is essentially self-adjoint, and there exist formally self-adjoint
operators A(1), A(2), . . . on U such that for all u ∈ U

A(ε)u = A(0)u+ εA(1)u+ ε2A(2)u+ . . .

Assume in addition that there exists a > 0 so that

‖A(k)u‖ 6 ak‖A(0)u‖, for all k = 1, 2, . . .

Then, on U , A(ε) is essentially self-adjoint and A(ε) on U is regular in a
neighborhood of ε = 0.

TOME 64 (2014), FASCICULE 3
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For the purpose of splitting non-zero eigenvalues, next proposition plays
a key role.

Proposition 4.2. — ([30, page 74]) Suppose that B(ε) on U is a fam-
ily of regular, formally self-adjoint operators in a neighborhood of ε = 0.
Suppose that B(0) = B(0) is self-adjoint. Suppose that λ is an eigenvalue
of finite multiplicity ` of the operator B(0), and suppose there are positive
numbers d1, d2 such that the spectrum of B(0) in (λ− d1, λ+ d2) consists
exactly of the eigenvalue λ.
Then, there exist power series λ1(ε), . . . , λ`(ε) convergent in a neighbor-

hood of ε = 0 and power series u1(ε), . . . , u`(ε), satisfying
(1) ui(ε) converges for small ε in the sense that the partial sums con-

verge in H to an element in U , for i = 1 . . . `.
(2) B(ε)ui(ε) = λi(ε)ui(ε) and λi(0) = λ, for i = 1, . . . , `.
(3) 〈ui(ε), uj(ε)〉 = δij , for i, j = 1, . . . , `.
(4) For each pair of positive numbers d′1, d′2 with d′1 < d1 and d′2 < d2,

there exists a positive number δ such that the spectrum of B(ε) in
[λ − d′1, λ + d′2] consists exactly of the points λ1(ε), . . . , λ`(ε), for
|ε| < δ.

We note that since B(ε)ui(ε) = λi(ε)ui(ε), differentiating with respect
to ε both sides of the equality we obtain

〈B(1)(ε)ui(ε), uj(ε)〉+ 〈u′i(ε), B(ε)uj(ε)〉
= 〈λ′i(ε)ui(ε), uj(ε)〉+ 〈u′i(ε), λi(ε)uj(ε)〉.

When i = j the above equality translates to

λ′i(ε) = 〈B(1)(ε)ui(ε), ui(ε)〉. (4.1)

Also, evaluating at ε = 0 we get

λ′i(0) = 〈B(1)ui(0), uj(0)〉δij . (4.2)

5. Perturbation theory for Conformally Covariant
operators

Consider a conformal change of the reference metric g → eεfg for f ∈
C∞(M) and ε ∈ R. Since Pg : Γ(Eg) → Γ(Eg) is a conformally covariant
operator of bidegree (a, b), there exists κ : Eeεfg → Eg, a bundle isomor-
phism that preserves the length fiberwise, so that

Peεfg = κ−1 ◦ e−
bεf

2 ◦ Pg ◦ e
aεf

2 ◦ κ.
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We work with a modified version of Peεfg. For c := a+b
4 set

η := c− b

2 = a

2 − c
and define

Af (ε) : Γ(Eg)→ Γ(Eg), Af (ε) := eηεf ◦ Pg ◦ eηεf .

The advantage of working with these operators is that, unlike Peεfg, they
are formally self-adjoint with respect to 〈 , 〉g. Note that η 6= 0 for a 6= b,
and observe that

Af (ε) = eηεf ◦ Pg ◦ eηεf

= ecεfe−
bεf

2 ◦ Pg ◦ e
aεf

2 e−cεf

= κ ◦ ecεf ◦ Peεfg ◦ e−cεf ◦ κ−1.

Remark 5.1. — Af (ε) and Peεfg have the same eigenvalues. Indeed, u(ε)
is an eigensection of Peεfg with eigenvalue λ(ε) if and only if κ(ecεfu(ε)) is
an eigensection for Af (ε) with the same eigenvalue.

Af (ε) is a deformation of Pg = Af (0) that has the same spectrum as
Peεfg and is formally self-adjoint with respect to 〈, 〉g. Note also that Af (ε)
is elliptic so there exists a basis of ΓL2(Eg) of eigensections of Af (ε).

Lemma 5.2. — With the notation of Criterion 4.1, the operators
A

(k)
f (ε) := 1

k!
dk

dεk
Af (ε) are formally self-adjoint and

∥∥∥A(k)
f (ε)u

∥∥∥
g
6

(2 |η| ‖f‖∞)k

k! ‖Af (ε)u‖g ∀u ∈ Γ(Eg). (5.1)

Proof. — Since Af (ε) is formally self-adjoint, so is A(k)
f (ε). Indeed, for

u, v ∈ Γ(Eg), 〈Af (ε)u, v〉g−〈u,Af (ε)v〉g = 0. Hence, 0 = dk

dεk
(〈Af (ε)u, v〉g−

〈u,Af (ε)v〉g)
∣∣
ε=0 =

= k!(〈A(k)
f u, v〉g − 〈u,A(k)

f v〉g). For the norm bound, observe that

dk

dεk

[
Af (ε)(u)

]
= ηk

k∑
l=0

(
k

l

)
fk−lAf (ε)(f lu), (5.2)

and notice that from the fact that Af (ε) is formally self-adjoint it also
follows that ‖Af (ε)(hu)‖g 6 ‖h‖∞‖Af (ε)u‖g for all h ∈ C∞(M). �

In the following Proposition we show how to split the multiple eigenvalues
of Pg. From now on we write A(k)

f := A
(k)
f (0).
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Proposition 5.3. — Suppose λ is a non-zero eigenvalue of Pg. Let Vλ
be the eigenspace of eigenvalue λ and Π the orthogonal projection onto it.
With the notation of Proposition 4.2, if Π ◦A(1)

f |Vλ is not a multiple of the
identity, there exists ε0 > 0 and a pair (i, j) for which λi(ε) 6= λj(ε) for all
0 < ε < ε0.

Proof. — Assume the results of Proposition 4.2 are true for B(ε) =
Af (ε), and note that for there is a basis of ΓL2(Eg) of eigensections of
Af (ε), the eigensections of Af (ε) and Af (ε) coincide. By relation (4.2),
λ′1(0), . . . , λ′`(0) are the eigenvalues of Π◦A(1)

f |Vλ . Since Π◦A(1)
f |Vλ is not a

multiple of the identity, there exist i, j with λ′i(0) 6= λ′j(0) and this implies
that λi(ε) 6= λj(ε) for small ε, which by Remark 5.1 is the desired result.
We therefore proceed to show that all the assumptions in Proposition 4.2
are satisfied for B(ε) = Af (ε), U = Γ(Eg) and H = ΓL2(Eg).

Af (0) = Pg is self-adjoint: This follows from the fact that Pg is essen-
tially self-adjoint, and the closure of an essentially self-adjoint is a self-
adjoint operator. To see that Af (0) = Pg is essentially self-adjoint, note
that since there is a basis of ΓL2(Eg) of eigensections of Pg, it is enough to
show that for any eigensection φ of eigenvalue λ there exist u, v ∈ Γ(Eg) for
which Pgu+ iu = φ and Pgv − iv = φ. Thereby, it suffices to set u = 1

λ+iφ

and v = 1
λ−iφ.

Af (ε) is regular on Γ(Eg): From Lemma 5.2 and Criterion 4.1 applied to
A(ε) = Af (ε), we obtain that Af (ε) is a family of operators on Γ(Eg) which
are essentially self-adjoint and their closure Af (ε) on Γ(Eg) is regular. �

5.1. Splitting eigenvalues

Recall from Definition 2.2 that an eigenspace of Pg is said to be a rigid
eigenspace if it has dimension greater or equal than two, and for any two
eigensections u, v with ‖u‖g = ‖v‖g = 1 one has

‖u(x)‖x = ‖v(x)‖x ∀x ∈M.

Being an operator with no rigid eigenspaces is the condition that will
allow us to split eigenvalues. For this reason, at the end of this section
we show that operators acting on C∞(M) have no rigid eigenspaces (see
Proposition 5.6).
Our main tool is the following
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Proposition 5.4. — Suppose Pg has no rigid eigenspaces. Let λ be a
non-zero eigenvalue of Pg of multiplicity ` > 2. Then, there exists a func-
tion f ∈ C∞(M,R) and ε0 > 0 so that among the perturbed eigenvalues
λ1(ε), . . . , λ`(ε) of Peεfg there exists a pair (i, j) for which λi(ε) 6= λj(ε)
for all 0 < ε < ε0.

Proof. — Since Pg has no rigid eigenspaces, there exist u, v ∈ Γ(Eg)
linearly independent normalized eigensections in the λ-eigenspace so that
‖u(x)‖2

x 6= ‖v(x)‖2
x for some x ∈ M . For such sections there exists f ∈

C∞(M,R) so that 〈fu, u〉g 6= 〈fv, v〉g. To prove our result, by Proposition
5.3 it would suffice to show that

〈A(1)
f u, u〉g 6= 〈A(1)

f v, v〉g.

Using that Pg is formally self-adjoint and evaluating equation (5.2) at
ε = 0 (for k=1) we have

〈A(1)
f u, u〉g = η 〈fPg(u) + Pg(fu), u〉g = 2η λ〈fu, u〉g,

and similarly, 〈A(1)
f v, v〉g = 2η λ〈fv, v〉g. The result follows. �

A weaker but more general result is the following

Proposition 5.5. — Suppose Pg : Γ(Eg)→ Γ(Eg) satisfies the unique
continuation principle. Let λ be a non-zero eigenvalue of Pg of multiplicity
` > rank(Eg). Then, there exists ε0 > 0 and a function f ∈ C∞(M,R) so
that among the perturbed eigenvalues λ1(ε), . . . , λ`(ε) of Peεfg there is a
pair (i, j) for which λi(ε) 6= λj(ε) for all 0 < ε < ε0.

Proof. — Let {u1, . . . , u`} be an orthonormal basis of the λ-eigenspace.
If for some i 6= j there exists x ∈ M for which ‖ui(x)‖x 6= ‖uj(x)‖x we
proceed as in Proposition 5.4 and find f ∈ C∞(M,R) for which 〈fui, ui〉g 6=
〈fuj , uj〉g. We show that under our assumptions this is the only possible
situation.

If for any two normalized eigensections u, v ∈ Γ(Eg) of eigenvalue λ we
had ‖u(x)‖2

x = ‖v(x)‖2
x for all x ∈ M , then by the polarization identity

(see remark in Definition 2.2) we would obtain (ui(x), uj(x))x = 0 for all
i 6= j and x ∈ M . By the rank condition, for some i = 1, . . . , ` the section
ui has to vanish on an open set, and by the unique continuation principle
it must vanish everywhere, which is a contradiction. �

We finish this section translating the previous results to the setting of
smooth functions.

Proposition 5.6. — Operators acting on C∞(M) have no rigid eigen-
spaces.
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Proof. — Let ũ, ṽ be two linearly independent, orthonormal eigenfunc-
tions of Pg with eigenvalue λ. Set D := {x ∈M : ũ(x) 6= ṽ(x)}. If there is
x ∈ D with ũ(x) 6= −ṽ(x), the functions u = ũ and v = ṽ break the rigidity
condition. If for all x ∈ D we have ũ(x) = −ṽ(x), the functions u = ũ+ṽ

‖ũ+ṽ‖g
and v = ũ−ṽ

‖ũ−ṽ‖g do the job. Indeed, v = 0 on Dc and there exists x ∈ Dc

for which u(x) 6= 0 because otherwise ũ ≡ −ṽ and this contradicts the
independence. �

6. Eigenvalue multiplicity for conformal deformations

In this section we address the proofs of Theorems 2.1, 2.3 and 2.5.

6.1. Proof of Theorems 2.1 and 2.3.

Given α ∈ N, and g ∈M consider the set

Fg,α :=
{
f ∈ C∞(M,R) : λ is simple

for all λ ∈ Spec(Pefg) ∩
(
[−α, 0) ∪ (0, α]

)}
.

The set of functions f ∈ C∞(M,R) for which all the non-zero eigenvalues
of Pefg are simple coincides with the set

⋂
α∈N Fg,α. To show that the latter

is a residual subset of C∞(M,R), we prove that the sets Fg,α are open and
dense in C∞(M,R).

We note that for conformal metric deformations, the multiplicity of the
zero eigenvalue remains fixed. Indeed, according to (3.1), for u ∈ Γ(Eg)
and f ∈ C∞(M,R), we know

Pg(u) = 0 if and only if Pefg(κ−1(e−
af
2 u)) = 0.

Throughout this subsection we assume the hypothesis of Theorems 2.1 or
2.3 hold.

6.1.1. Fg,α is dense in C∞(M,R)

Fix f0 /∈ Fg,α and let W be an open neighborhood of f0. Since at least
one of the eigenvalues in [−α, 0) ∪ (0, α] has multiplicity greater than two,
we proceed to split it. By Proposition 5.4 (and Proposition 5.6 when the
operator acts on C∞(M)) there exists f1 ∈ C∞(M,R) for which at least
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two of the first α non-zero eigenvalues of Peε1f1 (ef0g) are different as long
as ε1 is small enough. Moreover, those eigenvalues that were simple would
remain being simple for such ε1. Also, for ε1 small enough, we can assume
that none of the eigenvalues that originally belonged to [−α, α]c will have
perturbations belonging to [−α, α]. Let ε1 be small as before and so that
ε1f1 + f0 belongs to W . If ε1f1 + f0 belongs to Fg,α as well, we are done.
If not, in finitely many steps, the repetition of this construction will lead
us to a function εNfN + · · ·+ ε1f1 + f0 in W ∩ Fα. Hence, Fg,α is dense.

6.1.2. Fg,α is open in C∞(M,R)

Fix f0 ∈ Fg,α. In order to show that Fg,α is open we need to establish
how rapidly the eigenvalues of Af (ε) grow with ε. From now on we restrict
ourselves to perturbations of the form eεf (ef0g) for f ∈ C∞(M,R) with
‖f‖∞ < 1. Let u(ε) be an eigensection of Af (ε) with eigenvalue λ(ε).
Equation (4.1) gives |λ′(ε)| 6 ‖A(1)

f (ε)u(ε)‖g for j = 1, . . . , α. Putting this
together with inequality (5.1) for k = 1 we get

|λ′(ε)| 6 2|η| ‖Af (ε)u(ε)‖g = 2|η| |λ(ε)|.
The solution of the differential inequality leads to the following bound

for the growth of the perturbed eigenvalues:

|λ(ε)− λ| 6 |λ|
(
e2|η| |ε| − 1

)
, |ε| < δ.

Write λ1 6 λ2 6 · · · 6 λκ for all the eigenvalues (repeated according
to multiplicity) of Pef0g that belong to [−α, 0) ∪ (0, α]. Let d1, . . . , dκ be
so that the intervals [λj − dj , λj + dj ] for j = 1, . . . , κ, are disjoint. Write
λβ− for the biggest eigenvalue in (−∞,−α) and λβ+ for the smallest eigen-
value in (α,+∞). We further assume that λβ− /∈ [λ1 − d1, λ1 + d1] and
λβ+ /∈ [λκ − dκ, λκ + dκ].

λβ−

−α

λ1 λj λκ

α

λβ+

dj λβ+−λκ−dκ

λj(ε)

In order to ensure that for each j = 1, . . . , α the perturbed eigenvalue
λj(ε) belongs to [λj−dj , λj+dj ], select 0 < δ1 6 δ, so that whenever |ε| < δ1
we have that |λj(ε)− λj | 6 |λj |

(
e2|η| |ε| − 1

)
6 dj for all j = 1, . . . , κ.

To finish our argument, we need to make sure that none of the pertur-
bations of the eigenvalues that initially belonged to (−∞,−α) ∪ (α,+∞)
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coincide with the perturbations corresponding to λ1, . . . , λκ. To such end,
it is enough to choose 0 < δ2 6 δ so that for |ε| < δ2,

|λβ+ |
(
e2|η| |ε| − 1

)
< min{λβ+ − λκ − dκ, λβ+ − α},

and

|λβ− |
(
e2|η| |ε| − 1

)
< min{λ1 − d1 − λβ− , −α− λβ−}.

Summing up, if ‖f‖∞ < 1 and |ε| < min{δ1, δ2}, then εf + f0 ∈ Fg,α.
Or in other words, {f0 + f : ‖f‖∞ < ε} ⊂ Fg,α, so Fg,α is open.

6.2. Proof of Theorem 2.5

The set of functions f ∈ C∞(M,R) for which all the eigenvalues of Pefg
have multiplicity smaller than rank(Eg) can be written as ∩α∈NF̂g,α where

F̂g,α :=
{
f ∈ C∞(M,R) : dim Ker(Pefg − λ) 6 rank(Eg)

for all λ ∈ Spec(Pefg) ∩
(
[−α, 0) ∪ (0, α]

)}
.

F̂g,α is dense in C∞(M,R) by the same argument presented in 6.1.1,
using Proposition 5.5 to find the fi’s. The proof for F̂g,α being open in
C∞(M,R) is analogue to that in 6.1.2.

7. Local continuity of eigenvalues

The arguments we present in this section are an adaptation of the proof
of Theorem 2 in [27] by Kodaira and Spencer; they prove similar results
to Theorem 2.7 for strongly elliptic operators that have coefficients that
depend continuously on a parameter t ∈ Rn in the C∞-topology.

From now on fix a Riemannian metric g0. Let {Xi}i∈I be a finite covering
of M with local coordinates (x1

i , . . . , x
n
i ) on each neighborhood Xi and let

u ∈ Γ(Eg) be represented in the form (u1
i (x), . . . , uµi (x)) for x ∈ Xi and

µ = rank(Eg). For each integer k define the k- norm

‖u‖2
k :=

µ∑
ν=1

∑
α
|α|6k

∑
i∈I

∫
Xi

|∂αi uνi (x)|2 dvolg0 ,
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where ∂αi := ∂α1
x1
i
. . . ∂αnxn

i
and |α| = α1 + · · ·+αn. We note that ‖·‖0 = ‖·‖g0

and that the k-norm just introduced is equivalent to the k-Sobolev norm.

By the continuity of the coefficients of Pg (see Definition 3.2), there exists
Wg0 neighborhood of g0 in the C∞-topology of metrics, so that for every
metric g ∈ Wg0 there is an isomorphism of vector bundles τg : Eg → Eg0

with the property that the coefficients of the differential operator

Qg := τg ◦ Pg ◦ τ−1
g : Γ(Eg0)→ Γ(Eg0) (7.1)

depend continuously on g ∈ Wg0 . The following analogue of Lemma 3 in
[27] holds:

Lemma 7.1. — There exists a neighborhood W ⊂Wg0 of g0 so that for
every integer k > 0 there is a constant ck independent of g ∈ W for which

‖u‖2
k+m 6 ck

(
‖Qgu‖2

k + ‖u‖2
0
)
,

for all u ∈ ΓL2(Eg0) and g ∈ W.

Proof. — Since Pg is elliptic, from relation (7.1) we deduce that Qg is
elliptic as well. By Theorem 5.2 part (iii) in [28, p.193], for every pos-
itive integer k there exists a constant ck so that for all u ∈ Γ(Eg0),
‖u‖2

k+m 6 ck
(
‖Qg0u‖2

k + ‖u‖2
k

)
. By induction on k and the Sobolev em-

bedding Theorem we obtain

‖u‖2
k+m 6 ck

(
‖Qg0u‖2

k + ‖u‖2
0
)
.

The result follows from the continuity of the coefficients of Qg for g ∈
Wg0 . �

Since Pg is elliptic and formally self-adjoint, its spectrum Spec(Pg) is real
and discrete. Note that the spectrum of Pg and Qg coincide. Indeed, u is
an eigensection of Pg with eigenvalue λ if and only if τgu is an eigensection
of Qg with eigenvalue λ. Fix ξ ∈ C and define

Qg(ξ) := Qg − ξ.

It is well known that Qg(ξ) is surjective provided ξ belongs to the resolvent
set of Qg (i.e. ξ /∈ Spec(Pg)). Furthermore, for ξ0 in the resolvent set of
Pg0 , set bg0 := infλ∈Spec(Pg0 ) |λ− ξ0|. We then know

‖Qg0(ξ0)u‖0 > bg0‖u‖0.

Lemma 7.2. — There exists δ > 0 and V ⊂ Wg0 neighborhood of g0
so that the resolvent operator Rg(ξ) := Qg(ξ)−1 exists for g ∈ V and
|ξ − ξ0| < δ. In addition, for every u ∈ Γ(Eg0) the section Rg(ξ)u depends
continuously on ξ and g in the ‖ · ‖0 norm.
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Proof. — We first prove the injectivity of Qg(ξ). Let W be as in Lemma
7.1. It suffices to show that for all ε > 0 there exists δ > 0 and V ⊂ W so
that

‖Qg(ξ)u‖0 > (bg0 − ε)‖u‖0

for g ∈ V and |ξ − ξ0| < δ. We proceed by contradiction. Suppose there
exists ε > 0 together with a sequence {(δi,Vi, ui)}i, with δi

i→ 0 and Vi
shrinking around g0, such that

‖Qgi(ξi)ui‖0 < (bg0 − ε)‖ui‖0

for gi ∈ Vi and |ξi − ξ0| < δi. Without loss of generality assume ‖ui‖0 = 1.
By Lemma 7.1 we know ‖ui‖m 6 c0(bg0 − ε), and by the continuity in g

of the coefficients of Qg, it follows that ‖(Qgi(ξi)−Qg0(ξ0))ui‖0 → 0. Since

‖(Qgi(ξi)−Qg0(ξ0))ui‖0 > ‖Qg0(ξ0)ui‖0−‖Qgi(ξi)ui‖0 > bg0−(bg0−ε) = ε,

we obtain the desired contradiction.
To prove the continuity statement notice that

|Rg(ξ)u−Rg0(ξ0)u‖0

6
1
bg0

‖Qg(ξ)Rg(ξ)u−Qg(ξ)Rg0(ξ0)u‖0

= 1
bg0

‖Qg0(ξ0)Rg0(ξ0)u−Qg(ξ)Rg0(ξ0)u‖0

= 1
bg0

(
‖
(
Qg0 −Qg

)
(Rg0(ξ0)u)‖0 + |ξ − ξ0|‖(Rg0(ξ0)u)‖0

)
,

and use the continuity in g of the coefficients of Qg. �

Let g0 ∈ M and continue to write Wg0 for the neighborhood of g0 for
which the vector bundle isomorphism τg : Eg → Eg0 is defined for all
g ∈ Wg0 . Let C be a differentiable curve with interior domain D ⊂ C. For
g ∈ Wg0 , write Fg(C) for the linear subspace of Γ(Eg0)

Fg(C) := span
{
τgu : u ∈ Ker(Pg − λI) for λ ∈ D ∩ Spec(Pg)

}
.

Note that

dim Fg(C) =
∑

λ∈D∩Spec(Pg)

dim Ker(Pg − λI). (7.2)

Proposition 7.3. — If C meets none of the eigenvalues of Pg0 , then
there exists a neighborhood V ⊂ Wg0 of g0 so that for all g ∈ V

dim Fg(C) = dim Fg0(C). (7.3)
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Proof.
Step 1. For g ∈ Wg0 , define the spectral projection operator Fg(C) :

Γ(Eg0)→ Γ(Eg0) to be the projection of Γ(Eg0) onto Fg(C). Since C meets
none of the eigenvalues of Pg0 , by Lemma 7.2 there exist a neighborhood
C ′ of the curve C and a neighborhood V ′ ⊂ W of g0 so that none of
the eigenvalues of Pg belong to C ′ for g ∈ V ′. By holomorphic functional
calculus

Fg(C)u = − 1
2πi

∫
C

Rg(ξ)u dξ u ∈ Γ(Eg).

By Lemma 7.2 it follows that Fg(C)u depends continuously for ξ ∈ Cδ and
g ∈ V ′.

Step 2. Let d = dim Fg0(C) and uλ1(g0), . . . , uλd(g0) be the eigenfunctions
of Pg0 spanning Fg0(C) with respective eigenvalues λ1(g0) 6 · · · 6 λd(g0).
Since Fg(C)u depends continuously on g ∈ V ′, for all u ∈ Γ(Eg0) we know
that

lim
g→g0

∥∥Fg(C) [uλj(g0)]− uλj(g0)
∥∥

0 = 0, for j = 1, . . . , d,

and therefore there exists V ⊂ V ′ neighborhood of g0 so that

Fg(C) [uλ1(g0)], . . . , Fg(C) [uλd(g0)]

are linearly independent for g ∈ V. We thereby conclude,

dim Fg(C) > dim Fg0(C) for g ∈ V. (7.4)

Step 3. Now let l := lim supg→g0 dim Fg(C). Consider {gi}i ⊂ V converg-
ing to g0 so that dim Fgi(C) = l for i = 1, 2, . . . , and let τgi(uλ1(gi)), . . . ,
τgi(uλl(gi)) be the eigensections that span Fgi(C) with respective eigenval-
ues λ1(gi) 6 · · · 6 λl(gi). By Lemma 7.1, ‖τgi(uλs(gi))‖m 6 c0(λs(gi)+1) is
bounded for all s = 1, . . . , l. Hence, since the Sobolev embedding is compact
for k > m, we may choose a subsequence {gih}h for which {τgih (uλs(gih ))}h
converges in the Sobolev norm ‖ · ‖k for all s = 1, . . . , l.
Set vs := limh τgih (uλs(gih )) and observe that since τg0 is the identity,

Pg0vs = Qg0vs = lim
h
Qgih τgih (uλs(gih )) = lim

h
λs(gih)τgih (uλs(gih )).

It follows that v1, . . . , vl are linearly independent eigensections of Pg0

that belong to Fg0(C). Thereby, for g ∈ V, equality (7.3) follows from
inequality (7.4) and

dim Fg0(C) > l = lim sup
g→g0

dim Fg(C). �
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7.1. Proof of Corollary 2.4

For δ ∈ (0, 1) and α ∈ (0,+∞), consider the sets

Gδ,α :=
{
g ∈M : λ is simple for all λ ∈ Spec(Pg) ∩

(
[−α,−δ] ∪ [δ, α]

)}
.

Assumming the hypothesis of Theorem 2.3 hold, we prove in Proposition
7.4 that the sets Gδ,α are open and dense inM with the C∞-topology.
Let {δ`}`∈N be a sequence in (0, 1) satisfying lim` δ` = 0, and let {αk}k∈N
be a sequence in (0,+∞) satisfying limk αk = +∞. Then

∞⋂
k=1

∞⋂
`=1
Gαk,δ`

is a residual set inM that coincides with the set of all Riemannian metrics
for which all non-zero eigenvalues are simple. For the proof of Corollary 2.4
to be complete, it only remains to prove

Proposition 7.4. — Suppose that Pg : Γ(Eg) → Γ(Eg) has no rigid
eigenspaces for a dense set of metrics. Then, the sets Gδ,α are open and
dense in the C∞-topology.

Proof. — We first show that Gδ,α is open. Let g0 ∈ Gδ,α and write
λ1(g0), . . . , λd(g0) for all the eigenvalues of Pg0 in [−α,−δ] ∪ [δ, α], which
by definition of Gδ,α are simple. Assume further that the eigenvalues are
labeled so that

−α6 λ1(g0)< . . . < λk(g0)6−δ and δ 6 λk+1(g0)< . . . < λd(g0)6 α.

Consider ε1 > 0 small so that no eigenvalue of Pg0 belongs to

[−α− ε1,−α] ∪ [−δ,−δ + ε1] ∪ [δ − ε1, δ] ∪ [α, α+ ε1].

For all 1 6 i 6 k− 1 let pi := 1
2 (λi(g0) +λi+1(g0)), and for k+ 2 6 i 6 d

let pi := 1
2 (λi−1(g0) + λi(g0)). We also set p0 := −α − ε1, pk := δ + ε1,

pk+1 := δ − ε1 and pd+1 := α+ ε1.

For all 1 6 i 6 k (resp. k + 1 6 i 6 d), let Ci be a differentiable curve
that intersects the real axis transversally only at the points pi−1 and pi
(resp. pi and pi+1). In addition, let ε2 > 0 be so that for each 1 6 j 6 k−1
and k+2 6 j 6 d, the circle Ĉj centered at pj of radius ε2 does not contain
any eigenvalue of Pg0 .
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−α −δ δ α

p0 p1 p2 p3 p4 p5
λ1 λ2 λ3 λ4

Ĉ1 Ĉ4

C2C1 C3 C4

By Proposition 7.3, there exists an open neighborhood V ⊂ Wg0 of g0 so
that for all g ∈ V and all i, j for which Ci and Ĉj were defined,

dim Fg(Ci) = dim Fg0(Ci) = 1 and dim Fg(Ĉj) = dim Fg0(Ĉj) = 0.
(7.5)

Since [−α,−δ]∪ [δ, α] is contained in the union of all Ci’s and Ĉj ’s, it then
follows from (7.2) and (7.5) that for all g ∈ V,

dim Ker(Pg − λI) = 1 ∀λ ∈ Spec(Pg) ∩
(
[−α,−δ] ∪ [δ, α]

)
.

Since V ⊂ Gδ,α, it follows that Gδ,α is open.

We proceed to show that the sets Gδ,α are dense. Let g0 /∈ Gδ,α and O be
an open neighborhood of g0. Our assumptions imply that there exists g ∈ O
so that the hypotheses of Theorem 2.3 are satisfied for Pg. It then follows
that there exist a function f ∈ C∞(M) so that the metric efg ∈ O and all
non-zero eigenvalues of Pefg are simple. Therefore, efg ∈ O ∩ Gδ,α. �

7.2. Proof of Corollary 2.4

For δ ∈ (0, 1) and α ∈ (0,+∞), consider the sets

Ĝδ,α :=
{
g ∈M : dim Ker(Pg − λI) 6 rank(Eg)

for all λ ∈ Spec(Pg) ∩
(
[−α,−δ] ∪ [δ, α]

)}
Using the same argument in Proposition 7.4 it can be shown that the

sets Ĝδ,α are open. To show that the sets Ĝδ,α are dense, one carries again
the same argument presented in Proposition 7.4, using the hypothesis of
Theorem 2.5 to find the metric g. Let {δ`}`∈N be a sequence in (0, 1) sat-
isfying lim` δ` = 0, and let {αk}k∈N be a sequence in (0,+∞) satisfying
limk αk = +∞. Then ∩k∩` Ĝαk,δ` is a residual set inM that coincides with
the set of all Riemannian metrics for which all non-zero eigenvalues of Pg
have multiplicity smaller than the rank of the bundle Eg. This completes
the proof of Corollary 2.4.
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7.3. Proof of Theorem 2.7

For c ∈ R, we continue to write Mc = {g ∈ M : c /∈ Spec(Pg)}. In
addition, for g ∈Mc, we write

µ1(g) 6 µ2(g) 6 µ3(g) 6 . . .

for the eigenvalues of Pg in (c,+∞) counted with multiplicity. We recall
that it may happen that there are only finitely many µj(g)’s.
To see that Mc is open, fix g0 ∈ Mc. Let δ > 0 be so that the circle Cδ
centered at c of radius δ contains no eigenvalue of Pg0 . By Proposition 7.3
there exists V1 ⊂ Wg0 , a neighborhood of g0, so that for all g ∈ V1

dim Fg(Cδ) = dim Fg0(Cδ) = 0.

It follows that V1 ⊂Mc.

We proceed to show the continuity of the maps

µi :Mc → R, g 7→ µi(g).

We first show the continuity of g 7→ µ1(g) at g0 ∈ Mc. Fix ε0 > 0 and
consider 0 < ε < ε0 so that the circle Cε1 centered at µ1(g0) of radius ε
contains only the eigenvalue µ1(g0) among all the eigenvalues of Pg0 . Let
δ > 0 be so that there is no eigenvalue of Pg0 in [c − δ, c]. Consider a
differentiable curve C that intersects transversally the x-axis only at the
points c− δ and µ1(g0)− ε/2.

By Proposition 7.3 there exists V2 ⊂ Wg0 , a neighborhood of g0, so that
for all g ∈ V2

dim Fg(C) = dim Fg0(C) and dim Fg(Cε) = dim Fg0(Cε).

Since dim Fg0(C) = 0, it follows that no perturbation µi(g), i > 1, belongs
to [c, µ1(g0) − ε/2]. Also, since the dimension of Fg(Cε) is preserved, it
follows that there exists j so that |µj(g)− µ1(g0)| < ε for j 6= 1. Since

µ1(g0)− ε < µ1(g) 6 µj(g) 6 µ1(g0) + ε,

it follows that for g ∈ V2 we have |µ1(g)− µ1(g0)| < ε as wanted.
The continuity of g 7→ µi(g), for i > 2, follows by induction. One should

consider a circle of radius ε centered at µi(g0) and a differentiable curve
C that intersects transversally the x-axis only at the points c − δ and
µi(g0)− ε/2.
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