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VECTOR FIELDS, SEPARATRICES
AND KATO SURFACES

by Adolfo GUILLOT (*)

To the memory of Marco Brunella

Abstract. — We prove that a singular complex surface that admits a complete
holomorphic vector field that has no invariant curve through a singular point of the
surface is obtained from a Kato surface by contracting some divisor (in particular,
it is compact). We also prove that, in a singular Stein surface endowed with a
complete holomorphic vector field, a singular point of the surface where the zeros of
the vector field do not accumulate is either a quasihomogeneous or a cyclic quotient
singularity. We give new proofs of some results concerning the classification of
compact complex surfaces admitting holomorphic vector fields. Our proofs rely in
a combinatorial description of the vector field on a resolution of the singular point
based on previous work of Rebelo and the author.
Résumé. — On prouve qu’un espace analytique complexe de dimension deux

admettant un champ de vecteurs complet qui n’a pas de séparatrice passant par un
point singulier de la surface s’obtient à partir d’une surface de Kato en effondrant
un diviseur (en particulier, l’espace est compact). On prouve que, dans un espace
analytique de Stein de dimension deux muni d’un champ de vecteurs complet, un
point singulier de l’espace qui est un point d’équilibre isolé du champ est soit une
singularité quasi-homogène, soit une singularité de Klein. On redémontre quelques
résultats concernant la classification des surfaces complexes compactes admettant
des champs de vecteurs holomorphes. Les preuves reposent sur des travaux récents
de Rebelo et de l’auteur donnant une description combinatoire des champs de
vecteurs complets.

1. Introduction

In the realm of ordinary differential equations in the complex domain,
Briot and Bouquet studied the differential equations of the form

∂y

∂x
= f(x, y)
g(x, y) ,
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1332 Adolfo GUILLOT

where f and g are holomorphic functions vanishing at the origin and with-
out common factors. They gave conditions guaranteeing the existence of
holomorphic solutions y(x) such that y(0) = 0 [3]. The problem of Briot
and Bouquet can be stated, more generally, as the problem of the existence
of curves φ : (C, 0) → (C2, 0) that are tangent to the foliation generated
by the one-form

(1.1) f(x, y)dx− g(x, y)dy,

with the original problem corresponding to curves of the form φ(x) =
(x, y(x)). A definitive solution to the problem of Briot and Bouquet was
given by Camacho and Sad [8], who proved the existence of invariant curves
for every foliation of the form (1.1). The theorem of Camacho and Sad mo-
tivated the quest for extensions of their result to other ambient spaces and
foliations by leaves of other dimensions.
For foliations defined in normal complex analytic spaces of dimension

two, Camacho proved that a separatrix through a singular point p exists if
the dual graph of the exceptional divisor of a resolution of p is a tree [7].
In the same article, Camacho exhibited foliations without separatrices in
germs of singular analytic surfaces. In contrast to the situation in (C2, 0),
not every foliation on a singular analytic surface is locally induced by a
vector field, so we may ask the following question, attributed to Gómez-
Mont: Does a vector field in a singular surface have a separatrix passing
through the singular point?
Natural examples answering negatively this question arise from holo-

morphic vector fields on intermediate Kato surfaces. Kato surfaces are
non-singular compact complex surfaces; they are minimal, non-Kähler and
belong to the class VII in the Enriques-Kodaira Classification. They were
introduced by Kato [18] and, among them, we find intermediate ones [11].
Intermediate Kato surfaces have a divisor D (the maximal reduced divisor
of rational curves) having connected support and a negative-definite inter-
section form. Some of these admit a holomorphic vector field X. By the
negative-definiteness of its intersection form, D is preserved by X. These
vector fields are well-understood and we know that, close to D, there are
no singularities of X off D and that any germ of curve invariant by the
vector field is contained in D [12, Lemme 2.2]. Hence, when contracting D
to a point p, we obtain a two-dimensional complex analytic space endowed
with a holomorphic vector field having an isolated equilibrium point at p
which does not have a separatrix. (By the compactness of the space, this
vector field is complete).

ANNALES DE L’INSTITUT FOURIER



VECTOR FIELDS, SEPARATRICES AND KATO SURFACES 1333

These examples of vector fields without separatrices in complex analytic
spaces of dimension two are unique within the class of vector fields in
compact ones (it is probably easy to deduce this from the classification
of holomorphic vector fields on compact complex surfaces [13, Thm. 0.3]).
Our main result affirms that they are also unique within the larger class of
complete vector fields:

Theorem A. — Let S be a connected, normal, irreducible, complex,
two-dimensional analytic space with a singularity at p ∈ S and let X be a
complete holomorphic vector field on S. If the foliation induced by X has
no separatrix through p, the minimal resolution of S at p is a Kato surface.

We stress the fact that the only global assumption on the surface is
the completeness of the vector field and that the compactness of S is a
consequence of our result. It also implies that p is the only singular point
of S and that p is an isolated equilibrium point of X.

Theorem A guarantees the existence of separatrices for complete vec-
tor fields on two-dimensional analytic spaces which are, for example, not
compact. For Stein spaces, this result can be strengthened:

Theorem B. — Let S be a normal, irreducible complex two-dimensio-
nal Stein space and X a complete holomorphic vector field on S. Let p be
a singular point of S that is an isolated equilibrium point of X. Either

• there are either one or two separatrices of X through p and (S, p)
is a cyclic quotient singularity; or

• there is an infinite number of separatrices of X through p and X

induces an action of C∗.

The classification of holomorphic vector fields on compact complex sur-
faces was achieved by Dloussky, Oeljeklaus and Toma in [13, Thm. 0.3]. The
last piece in this classification is given by vector fields in Kato surfaces. The
natural way in which Kato surfaces appear in the proof of Theorem A will
allow us to give an alternative proof of some parts of the classification of
holomorphic vector fields on compact complex surfaces, as suggested by
Matei Toma. In a relatively self-contained manner and without relying on
the Enriques-Kodaira Classification, we will, by borrowing some arguments
from [10], prove the following result:

Theorem C. — Let X be a non-trivial holomorphic vector field with
zeros on the minimal compact complex surface S inducing an effective
action of C. At least one of the following holds:

(1) S is rational or ruled.

TOME 64 (2014), FASCICULE 3



1334 Adolfo GUILLOT

(2) X has a first integral.
(3) There is an effective divisor Z in S such that Z2 = 0.
(4) S is a Kato surface.

Our results are based in a local analysis of the vector field in a neighbor-
hood of some invariant divisors of the surface (the exceptional divisor of
a resolution in Theorems A and B, the maximal invariant divisor in The-
orem C), where we use the notion of semicompleteness to exploit, locally,
the completeness assumption on the vector field. We make extensive use
of the “bimeromorphic” theory of semicomplete vector fields on surfaces
developed jointly with Rebelo in [17].

This article is organized as follows. In Section 2 we will recall some
standard facts about vector fields and foliations on complex surfaces and
analytic spaces (the reader is however supposed to be familiar, for example,
with the material discussed in the first Chapter of [4] and in [1, Ch. I, §8]).
We also discuss semicomplete vector fields on surfaces based mainly on [17].
Section 3 describes the combinatorics of semicomplete vector fields in the
neighborhood of divisors containing cycles. Theorem A will be proved in
Section 4. It relates the resolution of a singularity admitting a semicom-
plete vector field without separatrices to the construction of Kato surfaces.
Theorems B and C will be respectively proved in Sections 5 and 6.

The author heartily thanks Patrick Popescu-Pampu, Julio Rebelo, José
Seade, Jawad Snoussi, Matei Toma, Meral Tosun and the anonymous ref-
eree.

2. Generalities

2.1. Vector fields and foliations

Let S be complex (non-singular) surface and X a holomorphic vector
field in S. Around every point q in S, X may be locally written as fY
where f is a holomorphic function and Y is a holomorphic vector field with
isolated singularities, well-defined up to multiplication by a non-vanishing
holomorphic function. The locally defined vector field Y defines a globally
well-defined foliation F , the foliation induced by X, that will be denoted
by FX whenever we need to stress its relation to X. If Y (p) 6= 0, we say
that p is a regular point of F and we say that p is a singularity of F

ANNALES DE L’INSTITUT FOURIER
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otherwise. The foliation F is said to be reduced in Seidenberg’s sense if
the linear part of Y at a singularity p of F is non-nilpotent and, if it
has two non-vanishing eigenvalues, if their ratio is not a positive rational.
Seidenberg’s Theorem affirms that every foliation may be brought, in a
locally finite number of blowups, to one where every singularity is reduced
(see, for example, [9]). We say that the curve γ ⊂ S with reduced equation g
is invariant by X if g divides X ·g. Moreover, if X = fY and g divides Y ·g
we say that γ is invariant by F (if a curve is invariant by F it is also
invariant by X but the converse need not be true). In this last case, if g is
irreducible and f = grh with g and h relatively prime, we say that r ∈ Z
is the order of X along γ, and write ord(X, γ) = r.
If C is a compact curve invariant by F , its self-intersection can be calcu-

lated by means of the Camacho-Sad formula: for each singularity p1, . . . , pm,
of F lying in C the Camacho-Sad index, CS(F , C, pi) ∈ C, is defined and
the Camacho-Sad formula yields C · C =

∑
i CS(F , C, pi) [8].

The vector field X endows the foliation F with a leafwise affine structure
(with singularities) varying holomorphically in the transverse direction:
every curve γ invariant by F inherits from X an affine structure (with
singularities) [17, Prop. 8]. In the case where the vector field does not vanish
along the curve, the charts of this structure are given by the inverses of
the local solutions of the vector field [17, §3.1]. The affine structure affects
every point p ∈ γ with a ramification index ind(C, p) ∈ C∗ ∪ {∞} [17,
Def. 4], whose value is 1 except for a discrete (with the plaque topology)
set of points in γ, the singularities of the affine structure. If C is a compact
curve invariant by F of Euler characteristic χ(C), we have, for the above
indexes, the Poincaré-Hopf relation [17, Prop. 5]:

(2.1) χ(C) =
∑
p∈C

1− 1
ind(C, p) .

For vector fields, we have the following definition [17, Def. 16]:

Definition 2.1. — A holomorphic vector field X on a surface S is said
to be reduced if the induced foliation FX is reduced in Seidenberg’s sense
and if for every point p, the union of all the curves containing p that are
invariant by X is a curve with normal crossings. A couple (X,D) of a
holomorphic vector field X and a divisor D invariant by X is said to be
minimal good if X is reduced in a neighborhood of D, if every irreducible
component of D is non-singular and if no exceptional curve of the first

TOME 64 (2014), FASCICULE 3



1336 Adolfo GUILLOT

kind belonging to D may be collapsed while keeping X reduced and the
corresponding divisor non-singular.

Every holomorphic vector field may be transformed, by a locally finite
number of blowups, to a reduced one (combine Seidenberg’s Theorem with
the resolution of embedded curves in surfaces).

2.2. Vector fields in analytic spaces

Let (S,$) be a germ of irreducible, reduced, complex-analytic two-dimen-
sional space. By a holomorphic vector field on (S,$) we mean, indistinctly,
either a derivation of the local ring OS,$ or, for an embedding j : (S,$)→
(Cn, 0), the restriction to j(S) of a holomorphic vector field in Cn tangent
to j(S) [24, §3]. By the following Proposition (obtained with the help of
Jawad Snoussi), a holomorphic vector field on (S,$) is also equivalent to
a holomorphic vector field on a resolution.

Proposition 2.2. — Let X be a holomorphic vector field in the germ
of two-dimensional irreducible analytic space (S,$). Let M : (Sµ, Dµ) →
(S,$) be the minimal resolution. There exists a holomorphic vector fieldXµ

in Sµ such that M∗Xµ = X.

Proof. — Zariski proved that a resolution of (S,$) may be obtained by
alternating two procedures: normalization and the blowing up of singular
points in normal surfaces (see [27] for the algebraic case, [2] for the analytic
one). In order to prove the existence of a resolution where the preimage
of the vector field extends holomorphically to the exceptional divisor, it
suffices to show that these two procedures transform holomorphic vector
fields into holomorphic ones.
We begin with normalization. Suppose, up to separating the irreducible

components of S, that S is irreducible at $. Let O be the local ring of
holomorphic functions at $, F its field of fractions and O ⊂ F the integral
closure ofO. Let d : O → O be the derivation induced byX. This derivation
extends to dF : F → F . Since O is a Noetherian integral domain contain-
ing Q, a theorem of Seidenberg [26] guarantees that dF (O) ⊂ O. Hence,
if π : (S,$) → (S,$) is the normalization, there exists a holomorphic
vector field in (S,$) mapping to X via π. This proves that normalization
transforms holomorphic vector fields into holomorphic ones.
Let us now deal with blowups. Suppose that S is normal at the singu-

lar point $ and let j : (S,$) → (Cn, 0) be an embedding. Let Y be a

ANNALES DE L’INSTITUT FOURIER
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holomorphic vector field in (Cn, 0) that restricts to j∗X in j(S). Since S
is normal at $, 0 is an isolated singularity of j(S) and must be preserved
by Y . Hence, Y vanishes at the origin of Cn. Upon blowing up the latter, Y
extends as a holomorphic vector field to the exceptional divisor. This proves
that the blowup of singular points in normal analytic surfaces transforms
holomorphic vector fields into holomorphic ones.
In consequence, in Zariski’s resolution of (S,$), X is transformed as a

holomorphic vector field. Since the minimal resolution of (S,$) may be
obtained from Zariski’s one by contracting exceptional curves of the first
kind and since this procedure maps holomorphic vector fields to holomor-
phic ones, the Proposition is proved. �

Definition 2.3. — Let X0 be a germ of holomorphic vector field in
the germ of normal two-dimensional analytic space (S0, $). A resolution
π : (S,D,X) → (S0, $,X0) is a resolution π : (S,D) → (S0, $) and a
holomorphic vector field X on S, reduced in the sense of Definition 2.1,
such that π∗(X) = X0. A resolution π : (S,D,X)→ (S0, $,X0) is said to
be minimal good if (X,D) is minimal good in the sense of Definition 2.1.

Proposition 2.4. — Let X0 be a germ of holomorphic vector field in
the germ of normal two-dimensional analytic space (S0, $). Then it admits
a minimal good resolution π : (S,D,X) → (S0, $,X0) in the sense of
Definition 2.3.

Proof. — Let π : (S,D)→ (S0, $) be a resolution of the analytic space.
By Proposition 2.2, there exists a holomorphic vector field X on S such
that π∗X = X0. We may, by performing finitely many blowups, make
the resulting vector field on S reduced in the sense of Definition 2.1 and,
afterwards, desingularize, if necessary, the irreducible components of D.
If the resulting resolution is not minimal good, it may be rendered so
by suitably collapsing some of the (finitely many) irreducible components
of D. �

2.3. Semicompleteness in manifolds

In open manifolds, characterizing complete holomorphic vector fields is
not an easy task. In [21], Rebelo introduced the class of semicomplete
holomorphic vector fields, a class containing complete vector fields that is,
in many senses, better behaved.
A holomorphic vector field X in a complex manifold M induces an or-

dinary differential equation in the complex domain. The existence and

TOME 64 (2014), FASCICULE 3



1338 Adolfo GUILLOT

uniqueness theorem for such equations guarantees that for every initial
condition p ∈ M there exists some domain U ⊂ C, 0 ∈ U , and a map φ :
(U, 0) → (M,p) solving the differential equation. The vector field is com-
plete if for every p ∈ M we can find a solution φ : (C, 0) → (M,p). There
are essentially two (not independent) conditions that a vector field must
fulfill in order to be complete:

• The analytic continuation of the solutions of the induced differential
equation should not present multivaluedness (this allows for each
solution to be defined in a maximal subset of C).

• This maximal subset of C must be C.

Semicomplete vector fields are those satisfying the first condition. One of
their main properties is that semicomplete vector fields remain semicom-
plete when restricted to any open subset. In particular, it makes perfect
sense to speak of germs of semicomplete vector fields, or to study semicom-
plete vector fields in the neighborhood of a curve, establishing local and
semi-local obstructions for a vector field to be complete.

Germs of semicomplete holomorphic vector fields may be described up
to biholomorphism by a list of local models, as done in [15], [22] and [23].
Semicompleteness is preserved by the bimeromorphic transformations pre-
serving the holomorphicity of the vector field [17, Cor. 12], and it thus
makes sense to speak about local models for germs of reduced semicom-
plete holomorphic vector fields. These local models were reobtained and
refined in [17, §5] and are presented in Table 2.1.

In this Table we have the local model of every reduced semicomplete vec-
tor field X and, for every curve invariant by FX , the order of X along the
curve, the ramification index of the affine structure and the Camacho-Sad
index of FX . We do not claim that every vector field having such a local
model is semicomplete, but rather that every germ of reduced semicom-
plete vector field has, in convenient coordinates, one of the local models
appearing in the Table. Let us comment briefly its contents.

The first three lines correspond to points where the foliation is non-
singular. The vector field may have a zero of arbitrary order along one leaf
and zeros up to order two along a curve transverse to the foliation. At
an affine regular point (called simply regular in [17]), the induced affine
structure is non-singular (it has ramification index equal to 1).
The next three lines correspond to the local models where the induced

foliation has an isolated singularity, induced by a vector field with no
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zero eigenvalues. The singular non-degenerate case corresponds to the case
where the vector field has an isolated singularity and the other two, to the
cases where there are zeros of the vector field along (at least) one of the
separatrices of the foliation. In these two cases, the ramification indexes of
the affine structures of the separatrices are simultaneously finite or infinite.
For the finite ramification points, the local model is a true normal form (in
the sense that it has no inessential parameters) and all these germs are
semicomplete. Furthermore, at such points, the orders of X over the two
separatrices C1 and C2 and the ramification indices of the affine structures
at their intersection point p satisfy the reciprocity relation

(2.2) ord(X,C1)ind(C2, p) + ord(X,C2)ind(C1, p) = −1.

The affine structure may be non-singular for a separatrix through a finite
ramification point (the case where one of the ramification indices is equal
to 1 is not excluded).

The last line corresponds to the case where the foliation is generated by a
holomorphic vector field with isolated singularity having one vanishing and
one non-vanishing eigenvalue (the saddle-node case). The singularity of the
vector field is necessarily isolated [22, Lemme 3.2] and semicompleteness
imposes serious constrains at the level of the foliation, as established in [23,
Thm. 4.1], providing the local model appearing on the Table.

An important fact behind the classification of local models is that, for
a curve γ invariant by FX , the previously mentioned affine structure is
uniformizable (in the complement of the singular points and as a curve
with an affine structure, γ is the quotient of a subset of C by a group of
affine transformations) if X is semicomplete in a neighborhood of γ [17,
§3.2]. This implies that, for every p ∈ γ, ind(γ, p) ∈ Z∗∪{∞} [17, Prop. 6].

In particular, if X is semicomplete and if C is a compact curve invariant
by FX , from the Poincaré-Hopf relation (2.1), χ(C) > 0. If C is an elliptic
curve, the ramification index is everywhere equal to 1 (the affine structure
has no singularities). If C is a rational curve with an affine structure having
singularities at the points p1, . . . , pr ∈ C and ind(C, pj) = ij , by the above
formula,

(2.3)
r∑
j=1

1
ij

= r − 2.

In this case, we will say that the affine structure is of type (i1, . . . , ir).
The only possible types of uniformizable affine structures are (−1), (n,−n)
for n > 2, (∞,∞), (2, 2,∞), (2, 3, 6), (2, 4, 4), (3, 3, 3) and (2, 2, 2, 2). Let

TOME 64 (2014), FASCICULE 3
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type local model ord ind CS
affine
regular yq

∂

∂x
q 1 0

single zero f(x, y)xyq ∂
∂x

q ∞ 0

double zero f(x, y)x2yq
∂

∂x
q −1 0

singular
non-degenerate

x(λ+ · · · ) ∂
∂x

+ y(µ+ · · · ) ∂
∂y

λ/µ /∈ Q+

x = 0
0 ∞ λ/µ

y = 0
0 ∞ µ/λ

finite
ramification

xpyq
(
mx

∂

∂x
− ny ∂

∂y

)
pm− qn = 1

x = 0
p n −m/n

y = 0
q −m −n/m

infinite
ramification xpyq

(
x[q + · · · ] ∂

∂x
− y[p+ · · · ] ∂

∂y

) x = 0
p ∞ −q/p

y = 0
q ∞ −p/q

saddle-node f(x, y)
(
x[1 + νy] ∂

∂x
+ y2 ∂

∂y

)
ν ∈ Z

x = 0
0 −1 ν

y = 0
0 ∞ 0

Table 2.1. Local models of reduced holomorphic vector fields. In these,
p, q > 0, m,n > 0,λ, µ ∈ C∗ and f is a non-vanishing holomorphic
function. In the first three, the invariant curve is given by {y = 0}.

us sketch a proof of this. Since 1/ij 6 1/2, the left hand side of (2.3) is
smaller or equal than r/2 , which implies that r/2 > r− 2 and thus r 6 4.
For r = 4, equality holds and thus ij = 2 for every i. For r = 3, if 1/i1 6 0,
1/i2 + 1/i3 > 1 (but i−1

2 and i−1
3 are at most equal to 1/2) and we must

have i1 = ∞, i2 = 2, i3 = 2. The remaining cases are straightforward and
dealt with in the same way.
The only uniformizable affine structures in rational curves globally in-

duced by holomorphic vector fields are those of type (∞,∞), if the vector
field has two singular points, and (−1), if it has only one. Rational curves

ANNALES DE L’INSTITUT FOURIER
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endowed with an affine structure of type (n,−n) will be simply called ra-
tional orbifolds of order n and by rational orbifolds of order 1 we will refer
to those of type (−1).

Remark 2.5. — Rational orbifolds are the only uniformizable affine
structures on curves having at least one singularity with a negative rami-
fication index.

2.4. Semicompleteness in analytic spaces

The notion of semicomplete vector field, defined originally for manifolds,
extends directly to analytic spaces. Semicompleteness is, again, preserved
under restrictions to open subsets.

Let S0 be a two-dimensional analytic space and X0 a vector field in S0.
Let$ ∈ S0 be a singular point. By the previous remark,X0 is semicomplete
in S0 \{$} if it is semicomplete in S0. Let π : (S,D,X)→ (S0, $,X0) be a
resolution. Since π|S\D : S \D → S0 \{$} is a biholomorphism mapping X
to X0, X is semicomplete in S \D if and only if X0 is semicomplete in S0 \
{$}. For a vector field defined in a manifold, its multivaluedness locus (the
subset where it fails to be semicomplete) is open [17, Cor. 12]. Hence, X
will be semicomplete in S \D if and only if it is semicomplete in S.

Hence, if X0 is semicomplete in S0 then X is semicomplete in S, and
may be studied with the tools previously described.

3. Cycles of invariant curves in semicomplete vector fields

We will begin by studying the nature of the divisors that are invariant
by a semicomplete vector field and that do not have other invariant curves.
Recall that, to a divisor D in a surface, we may associate a dual graph,
consisting of a vertex for each irreducible component and an edge for each
point of intersection of two irreducible components.

Proposition 3.1. — Let S be a non-singular surface, X a reduced
semicomplete holomorphic vector field on S and D ⊂ S a connected divisor
invariant by FX such that (X,D) is minimal good. Let Γ be the dual graph
of D. If Γ has a cycle and every curve invariant by FX intersecting D is
contained in D, then:

• Every irreducible component of D is rational.
• The cycle in Γ is unique.

TOME 64 (2014), FASCICULE 3
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• If Γ reduces to the cycle,D supports an effective divisor of vanishing
self-intersection.

• If Γ does not reduce to the cycle, the only vertices in Γ with degree
greater than two have degree three and belong to the cycle. Every
irreducible component of D is, as a curve with an affine structure,
a rational orbifold.

In the aim of resorting solely to the items of the previous section, we
could not help overlapping with some of the arguments and results in [17].

At every point of D, the vector field is locally of one of the forms appear-
ing in Table 2.1. The only singularities of D in the reduced semicomplete
vector field X are normal crossings where the two local branches are con-
tained in different irreducible components. Each of these irreducible com-
ponents is either a rational or an elliptic curve, following the discussion
in §2.3. By hypothesis, Γ is connected and every edge joins two different
vertices. Let Γ0 be a cycle of Γ of the form

(3.1) C0
p0— C1

p1— · · · pl−1— Cl = C0,

meaning that the irreducible components of Γ0 are C0 . . . , Cl−1 and that Ci
intersects Ci+1 transversely at the point pi. For each pi, the local model is
either a finite ramification, an infinite ramification, a singular non-degene-
rate point or a saddle-node. One of the following holds:

• There is a point pi where the local model of X is either a finite
ramification point or a saddle-node. In both cases, the intersec-
tion point has a negative ramification index for one of the invariant
curves. Suppose that ind(C1, p0) < 0. Hence (Remark 2.5), C1 is
a rational orbifold and ind(C1, p1) > 0. From Table 2.1, p1 is nec-
essarily a finite ramification point and ind(C2, p1) < 0. Continuing
this argument we conclude that every Ci is a rational orbifold and
that the local model of X at every pi is a finite ramification point.

• The local model of X at p0 is an infinite ramification point (Ta-
ble 2.1). This means that X vanishes along C1 and thus p1 is neces-
sarily an infinite ramification point. Continuing this argument, we
conclude that pi is an infinite ramification point for every i.

• The local model of X at pi is a singular non-degenerate point for
every i.

In the last two cases, for every i, Ci has two points of ramification index∞
and is thus of type (∞,∞).
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Hence, in all cases, Ci is a rational curve. Moreover, for every i and
every q ∈ Ci, q /∈ {pi, pi−1},

(3.2) ind(Ci, q) > 0.

Consider, within Γ, the path C1
q1— E2

q2— · · · ql−1— El such that C1 ∈
Γ0 but E2 /∈ Γ0. Since ind(C1, q1) > 0, q1 is a finite ramification point
and ind(E2, q1) < 0. Hence, (Remark 2.5) E2 is a rational orbifold. This
implies that ind(E2, q2) > 0. Continuing this argument, we conclude that
ind(En, qn−1) < 0. In particular, En cannot belong to a cycle: since Γ is
connected, the cycle in Γ is unique.

If Γ reduces to the cycle. Suppose that Γ is of the form (3.1). Let ki =
−C2

i . We have, by the minimal good hypothesis on (X,D), two cases:
• ki > 2 for every i. If ki > 2 for some i, the intersection matrix of D

is negative-definite.
• l = 2 and k0 = 1.

Either every irreducible component of Γ is a rational orbifold or every
irreducible component of Γ is of type (∞,∞). From (3.2), for q ∈ Ci,
q /∈ {pi, pi−1}, ind(Ci, q) > 0. We claim that q is an affine regular point.
The only other local model inducing a positive ramification index is, ac-
cording to Table 2.1, a finite ramification point. However, such points have
always a second separatrix, proving our claim. In particular, the only singu-
lar points of FX are the intersection points of two irreducible components
of D and, for q ∈ Ci, q /∈ {pi, pi−1}, ind(Ci, q) = 1.

If Ci is a rational orbifold for every i, let µi > 0 denote its type. Since
for every q /∈ {pi, pi−1}, ind(Ci, q) = 1, we must have (up to changing
the orientation of the cycle), ind(Ci, pi) = µi and ind(Ci, pi−1) = −µi.
According to the Camacho-Sad formula and the local form of the finite
ramification points, for every i,

(3.3) µi−1 − kiµi + µi+1 = 0.

If Γ is a cycle of rational curves of type (∞,∞) and X is an infinite ram-
ification at every point, if µi = ord(X,Ci) (µi > 0), the Camacho-Sad
relation at pi reads (3.3). If Γ is a cycle of rational curves of type (∞,∞)
and X is singular non-degenerate at each point, if µi ∈ C∗ is the eigenvalue
of the restriction of X to Ci at pi, −µi is the eigenvalue of the restriction
of X to Ci at pi−1. The Camacho-Sad formula at pi gives again (3.3).
As a system of l linear equations in the l variables µi, the system (3.3)

is given by the intersection matrix of D and cannot have any non-trivial
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solution unless the matrix is not negative definite, this is, unless ki = 2
for every i or l = 2 and k0 = 1. In the first case, for Z =

∑
i Ci, we

have Z2 = 0. In the second case, the equations read µ0 = 2µ1 and k1µ1 =
2µ0 and thus k1 = 4: for Z = 2C0 + C1, Z2 = 0. This finishes the proof of
Proposition 3.1 when Γ reduces to the cycle.

If Γ does not reduce to the cycle. We have the following Lemma:

Lemma 3.2. — Let S be a (non-singular) surface,X a reduced semicom-
plete vector field in S and T ⊂ S be a divisor invariant by FX whose dual
graph is a tree. Let γ0 6⊂ T be a germ of curve invariant by FX intersect-
ing T transversely at some point p0 in the irreducible component C1 ⊂ T

and such that∞ > ind(γ0, p0) > 1. Suppose that T has no other separatrix.
Then, every irreducible component of T is a rational orbifold and,

• if ind(γ0, p0) = 1, T may be collapsed to a non-singular point, where
the vector field is still reduced;

• if ind(γ0, p0) > 1 and (X,T ) is minimal good, T has no branching
points.

Proof. — Let Cn+1 ⊂ T represent a vertex of degree one (extremal ver-
tex) in Γ′, the dual graph of T . Let C1

p1— C2
p2— · · · pn— Cn+1 be the unique

monotone path joining C1 to Cn+1. Since ∞ > ind(γ0, p0) > 0, the local
model of X at p0 is a finite ramification and ind(C1, p0) < 0. This implies
(Remark 2.5) that C1 is a rational orbifold, that ind(C1, p1) > 0, and that
the local model of X at p1 is a finite ramification. By repeating this argu-
ment, we conclude that all the vertices in Γ′ are rational orbifolds, that the
local model of X at the intersection of two irreducible components of Γ′ is
a finite ramification and that the local model of X at the other points is
an affine regular one.
We will begin by proving the Lemma in the particular case where Γ′

has no branching points. We will thus suppose that T has the form C1
p1—

C2
p2— · · · pn— Cn+1, with Ci a rational orbifold of type mi (we neces-

sarily have mn+1 = 1). Let m0 = ind(γ0, p0). Let ki = −C2
i . From the

Camacho-Sad formula and the fact that the Camacho-Sad index of a finite
ramification point is strictly negative, ki > 0. If ki = 1 for some i (if Ci
is an exceptional curve of the first kind), it may be blown down. After
blowing down this curve, the length of T decreases and all the hypothesis
are still satisfied. In this way, we may continue blowing down the excep-
tional curves of the first kind until T is collapsed to a point (necessarily
an affine regular one) or until ki > 2 for every i. In order to prove the
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Lemma in this particular case, we must prove that, when ki > 2 for ev-
ery i, m0 > 1. If n = 0, the self-intersection of C1 is −m0/m1 = −m0 and
thusm0 > 1. If n > 0, the Camacho-Sad relations givemiki = mi−1 +mi+1
for 1 6 i 6 n and mn+1kn+1 = mn (this is, kn+1 = mn). Adding these
equations, we obtain

n∑
i=1

miki = m0 +m1 + 2
n−1∑
i=2

mi +mn +mn+1.

From this and mn+1 = 1, 1 + m0 − m1 − mn =
∑n
i=1(ki − 2)mi > 0.

Since mn = kn+1 > 2, m0 > m1 and thus m0 > 1. This proves the Lemma
when Γ′ has no branching points.
For the general case, let Cj be a vertex of degree δj > 2. Suppose, further-

more, that any monotone path from C1 to a vertex of degree one passing
through Cj meets no vertices of degree strictly greater than 2 after Cj .
Beyond Cj , Γ′ is given by connected trees Γ′1, . . . ,Γ′δj−1 within Γ′, repre-
senting divisors intersecting Cj at the points q1, . . . , qδj−1. By hypothesis,
the trees Γ′i have no branching points and, by the particular case of the
Lemma (applied to the divisor represented by Γ′i and the invariant curve
given by the germ of Cj at qi), ind(Cj , qi) > 1. But since Cj is a rational
orbifold, it only has one point of ramification index greater than one and
hence δj = 2. This contradiction proves the Lemma. �

Let us come back to the proof of Proposition 3.1. Since Γ0 is the unique
cycle, Γ is obtained from Γ0 by attaching some trees. Let C0 be an irre-
ducible component belonging to the cycle, let p0 ∈ C0 and suppose that a
tree T is attached to C0 at p0. By the previous Lemma (applied to T and
the invariant curve C0 intersecting T at p0), ind(C0, p0) > 1 and, since C0
cannot be of type (∞,∞), it is a rational orbifold. This implies that all
irreducible components of the cycle are rational orbifolds and that at the
intersection points of two irreducible components, we have a finite rami-
fication point. By the Lemma, the only vertices in Γ with degree greater
than two have degree three and belong to the cycle. This finishes the proof
of Proposition 3.1.

So far, we have not proved that the last possibility of Proposition 3.1
may actually happen. As we will see later (Remark 4.4), such vector fields
and divisors are exactly the ones appearing in Kato surfaces. For the time
being, let us exhibit two cases related to this last possibility where all the
combinatorial data may be realized:
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a)

i type Ci ord(X,Ci) C2
i

0 3 1 −3
1 2 1 −2
2 1 0 −3

b)

i type Ci ord(X,Ci) C2
i

0 2 1 −5
1 3 2 −1
2 1 0 −2

Table 3.1. Some admissible combinatorics for D

Example 3.3. — In the simplest case, the cycle is formed by two curves,
C0 and C1 and there is only one tree (consisting of one curve, C2) attached
to, say, C0. For the values of the types, the orders and the self-intersections
in Table 3.1, the reciprocity relation (2.2) holds at the three points of in-
tersection. In both cases, C2 is a rational orbifold of type 1 attached to C0
at a point of ramification index −1 for C2 and greater than one for C0.
Within C0, at the points of intersection with C1, one of the ramification
indices is negative and the other one equals 1. In both cases, the intersec-
tion form is negative definite. In the second case, C1 may be contracted
to a point and the cycle reduces to a curve with a node (although, in
this case, the vector field will no longer be minimal good in the sense of
Definition 2.1).

Remark 3.4. — In Lemma 3.2, X need not be semicomplete, but only
be so in a neighborhood of each invariant divisor. The same conclusion
(with the same proof) holds.

4. Vector fields without separatrices and Kato surfaces

Theorem A will be proved in this Section. We begin by recalling the
construction of Kato surfaces, following Kato [18] and Dloussky [11]. Let Ŝ
be a non-singular surface and D̂ a divisor in Ŝ that may be contracted to
a non-singular point π̂ : (Ŝ, D̂) → (C2, 0). Let q ∈ D̂ and consider a germ
of biholomorphism σ̂ : (C2, 0) → (Ŝ, q). To the Kato data (π̂, σ̂), we may
associate a Kato (compact complex) surface in the following way. Let ε > 0
be sufficiently small. Let

(4.1) Bε = {(z, w); |z|2 + |w|2 < ε}, Σε = ∂Bε.

The manifold-with-boundaryM = π̂−1(Bε∪Σε)\ σ̂(Bε), has two boundary
components, π̂−1(Σε) and σ̂(Σε). When identifying the first to the second
by σ̂ ◦ π̂, we obtain a compact complex surface K (independent of ε). Upon
contracting the exceptional curves within K we obtain a minimal compact
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complex surfaceK0. This is the Kato surface associated to (π̂, σ̂). If a vector
field X̂ is defined in Ŝ and if (σ̂ ◦ π̂)∗X̂ = X̂, the surface K is naturally
endowed with a holomorphic vector field Z, which induces a holomorphic
vector field Z0 in K0. In this case, f̂ = π̂ ◦ σ̂ : (C2, 0) → (C2, 0) preserves
the vector field π̂∗X̂ in (C2, 0).
In the case where q belongs to the smooth part of D̂ (which is the case

that will concern us), each irreducible component of the support of D̂ is,
in a natural way, associated to an irreducible curve in K. The components
of D̂ that do not contain q are naturally embedded in the surface K. The
component C of D̂ that contains q gives rise to a curve in K, obtained by
gluing, via σ̂, C \ σ̂(Bε) with σ̂−1(C). There are no further algebraic curves
in K.

In order to prove Theorem A, we will start by establishing its germified
version:

Theorem 4.1. — Let (S0, $) be a germ of singular surface and X0 be
a semicomplete holomorphic vector field in (S0, $). If the foliation induced
by X0 has no separatrix through $ then there exists a Kato surface K0,
with maximal reduced divisor of rational curves D, a vector field Y0 in K0
and a minimal resolution π : (K0, D)→ (S0, $) such that π∗(Y0) = X0.

Let us begin the proof of this Theorem. Let π : (S,D,X)→ (S0, $,X0)
be a minimal good resolution in the sense of Definition 2.3. Let Γ be the
dual graph of D. The vector field X is semicomplete in a neighborhood
of D, as discussed in §2.4. By Camacho’s theorem [7], since FX0 has no
separatrix through p, Γ has at least one cycle, Γ0. Since D may be col-
lapsed to a singular point, its intersection form is negative definite. Hence,
by Proposition 3.1, every irreducible component of D is rational, Γ has
a unique cycle and Γ contains, beyond the cycle, some trees that do not
ramify and that are attached to the cycle (and thus D resembles the max-
imal divisor of rational curves in an intermediate Kato surface). From the
combinatorial description of (S,X,D) done in the previous Section, we will
construct a Kato data (π̂, σ̂) and an embedding of the minimal resolution
of (S0, $) into the corresponding Kato surface. The reader is invited to
have in mind the divisors and vector fields of Example 3.3.

Let C0 be an irreducible component of D corresponding to a vertex
of degree three in the dual graph (it belongs to the cycle and there is a
tree attached to it). The affine structure makes C0 a rational orbifold. By
Lemma 3.2, the point in C0 where the tree is attached has ramification
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index greater than one. There is thus a point p ∈ C0 such that ind(C0, p) =
1 and such that there exists an irreducible component C1 of D that belongs
to the cycle and that intersects C0 at p (there is a third point in C0 where
the affine structure has negative ramification index and where C0 intersects
an irreducible component of D belonging to the cycle: the case where this
irreducible component is still C1 is not excluded). Let C2, . . . , Cn be the
remaining irreducible components of D.
There are coordinates (x, y) around p where X is given by

xnymn−1
(
−mx ∂

∂x
+ y

∂

∂y

)
,

where n = ord(C0, p) and m = −ind(C1, p). In these coordinates, C0 is
defined by x = 0 and C1 by y = 0. Let ψ : (S, p) → (C2, 0) be the
holomorphic (non-invertible) mapping given by ψ(x, y) = (xym, y). If (z, w)
are coordinates around (C2, 0) and if Y = zn∂/∂w, ψ∗X = Y .
For each irreducible component Ci of D let Ui be a small (real) tubular

neighborhood of Ci. In the disjoint union tiUi identify the points that are
equal in S except those in the connected component of U0∩U1 containing p.
Let S] denote the resulting surface, π] : S] → S the natural immersion
and X] the vector field in S] induced by X. Let C]i ⊂ S] be the compact
curve coming from Ci in Ui and, for i ∈ {0, 1}, let p]i ∈ S] be the preimage
of p coming from Ui. The support of the reduced divisor

∑
C]i has no cycles.

There are two separatrices for X] that are not contained in the divisor. One
of them, γ1, comes from C1 ∩ U0 and passes through p]0 ∈ S]. The other,
γ0, comes from C0 ∩ U1 and passes through p]1.
Consider, in a neighborhood of p]0, the mapping ψ0 = ψ ◦ π]. It is a

biholomorphism in the complement of the separatrix γ1. Let Ŝ be the sur-
face obtained by from S] by removing γ1 and gluing back a neighborhood
of the origin of C2 via ψ0. We will denote by q ∈ Ŝ be the point corre-
sponding to the origin in C2 and by σ̂ : (C2, 0) → (Ŝ, q) the tautological
mapping. The surface Ŝ has a naturally defined vector field X̂ obtained
by the identification of X] in S] \ γ1 and Y on C2 (after the surgery, the
vector field around q is affine regular). Let κ : S] → Ŝ be the induced
map (it collapses γ1 to a point and is an embedding in restriction to the
complement of this curve). Let Ĉi = κ(C]i ) and define γ̂0 and p̂1 similarly.
Let D̂ = ∪ni=0Ĉi.
We affirm that D̂ may be contracted to a non-singular point in a surface.

The induced affine structure makes every irreducible component of D̂ a ra-
tional orbifold and the dual graph of D̂ is a tree. The arc γ̂0 intersects Ĉ1
at p̂1 and ind(γ̂0, p̂1) = 1. We are in the setting of Lemma 3.2: we have a
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tree of rational orbifolds, D̂, rooted at an invariant arc, γ̂0, whose affine
structure has a positive ramification index and there are no further sep-
aratrices of D̂. Since ind(γ̂0, p̂1) = 1, Lemma 3.2 implies that D̂ may be
collapsed to a non-singular point in a surface (we do not know a priori if
the vector field X̂ in Ŝ is still semicomplete; however, we know that it is
locally so and, by Remark 3.4, Lemma 3.2 gives still the desired result). In
a neighborhood of p̂1, the contraction of D̂ may be given by ψ ◦ π] ◦ κ−1,
which maps X̂ to Y . This establishes coordinates around the blowdown
of D̂ or, equivalently, explicits a map π̂ : (Ŝ, D̂) → (C2, 0) contracting D̂
to a point.

The couple (π̂, σ̂) is a Kato data and produces, as explained at the begin-
ning of this section, a compact surface K whose minimal model is a Kato
surface K0. Tautologically, (σ̂ ◦ π̂)∗X̂ = X̂ and hence K (resp. K0) is natu-
rally endowed with a vector field Z (resp. Z0). The complete construction
is illustrated in Figure 4.1.

surgery

unclutch

collapse

Figure 4.1. Finding the Kato data
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We will now embed S into K while mapping X to Z. Consider, for some
sufficiently small ε, the sphere Σε as in formula (4.1). In a neighborhood
of p, cut S along ψ−1(Σε) in order to produce a (non-compact) manifold-
with-boundary N with two boundary components, one corresponding to
the interior of Σε, and one corresponding to its exterior. There is a natural
identification between these two boundary components (two points in dif-
ferent boundary components are identified if they correspond to the same
point in S). There is a unique lift of N into S] that does not intersect γ1. It
is still an embedding and, moreover, remains an embedding after composi-
tion with κ. This gives an embedding j : N → Ŝ. Through this embedding,
one of the boundary components of j(N) lies within π̂−1(Σε); the other,
within σ̂(Σε). By construction, the identification of π̂−1(Σε) and σ̂(Σε) that
produces the compact surfaceK identifies tautologically the boundary com-
ponents of N . This produces an embedding i : S → K that maps X to the
globally defined vector field Z. If P : (Sµ, Dµ) → (S0, q) is the minimal
resolution, there is a map Θ : (S,D) → (Sµ, Dµ) that may be factored as
a sequence of blowdowns of exceptional curves. Upon contracting the ex-
ceptional curves in K following the same pattern, we obtain an embedding
of (Sµ, Dµ) into the Kato surface (K0, D0). This proves Theorem 4.1.

Figure 4.2. Collapsing the divisors of Example 4.2

Example 4.2. — For the divisorsD of Example 3.3, the divisors D̂, given
by Ĉ1—Ĉ0—Ĉ2, are those whose weighted dual graphs appear in Figure 4.2.
The figure describes the ways in which the successive contraction of the
exceptional curves of the first kind leads to the contraction of all of D̂. The
separatrix γ̂0 intersects the component Ĉ1, corresponding in the figure to
the leftmost vertices, and ind(γ̂0, γ̂0 ∩ Ĉ1) = 1. Table 4.1 shows, in each
case, the relevant data for the irreducible components of the divisor.

To go from Theorem 4.1, the germified version of Theorem A, to the
global one, we will use the dynamics of vector fields on Kato surfaces.
According to [12, Thm. 2.14], the maximal reduced divisor of rational
curves D0 of K0 is an attractor for the flow of Z0: every integral curve
of Z0 that is not contained in D0 contains D0 in its closure. We may pre-
cise further the way in which the integral curves of Z0 accumulate to D0
(see also [5, Ex. 2.2]):
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a)

curve type ord(X, ·) self-int.
γ̂0 — 1 —
Ĉ1 2 1 −2
Ĉ0 3 1 −1
Ĉ2 1 0 −3

b)

curve type ord(X, ·) self-int.
γ̂0 — 1 —
Ĉ1 3 2 −1
Ĉ0 2 1 −2
Ĉ2 1 0 −2

Table 4.1. Some instances of the construction

Proposition 4.3. — Let K0 be an intermediate Kato surface, D0 its
maximal reduced divisor of rational curves and Z0 a holomorphic vector
field in K0. Every neighborhood of D0 contains a neighborhood U of D0
such that if x /∈ D0 and φ : C → K is the solution of Z0 with initial
condition x then φ−1(U) ⊂ C is a connected set such that any connected
component of its complement is compact.

Proof. — Let π̂ : (Ŝ, D̂) → (C2, 0) and σ̂ be the corresponding Kato
data and let f̂ : (C2, 0)→ (C2, 0) be the germ π̂ ◦ σ̂. There exists a vector
field Y (induced by Z) such that f̂∗Y = Y . In suitable coordinates, we
may suppose that Y = zn∂/∂w for some n > 0. It has the first integral z.
Since f̂ preserves this vector field, it must be, up to a change of coordinates
(preserving Y ), of the form

(4.2) f̂(z, w) = (zk+1, znkw + τ(z)),

for some k > 1 (Favre gave normal forms for such contracting germs and
the above ones belong to the special case of Class 4 in [14]; yet, the above
formula will suffice for our needs). LetM∗ = (Bε∪Σε \ f̂(Bε))∩{z 6= 0}. It
is a manifold-with-boundary with boundary components contained in Σε
and f̂(Σε). Consider, withinM∗, the orbitOδ of Y given by z−1(δ). Suppose
that δ is small enough so that Oδ intersects the two boundary components
of M∗. Close to Σε, the flow of Y restricted to M∗ is defined in the interior
of round disks in C. Close to f̂(Σε), the solutions of Y are defined in the
exterior of round disks in C. The parametrization of Oδ induced by Y is
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thus defined in a domain Ωδ ⊂ C, which is a round disk deprived of some
disjoint round disks (more than one by holonomy considerations).
Since f̂ is a local biholomorphism away from y = 0, it identifies the

two boundary components of M∗ and produces a non-compact manifold
(without boundary) K◦. This manifold has one end and embeds naturally
into the Kato surface K0 (via the embedding π̂−1 : M∗ → Ŝ). Its image is
the complement in K0 of D0. Through this embedding, the end of K◦ gets
compactified by D0.
By (4.2), the identification of the boundary components of M∗ will map

the boundary of Oδ to the boundary of Oδk+1 in such a way that, when
gluing the parametrizations given by Z0, the outer boundary component
of Ωδ is glued to one of the inner boundary components of Ωδk+1 . Hence,
within K0 and as we approach D0, the domain where the solution of Z0 is
defined contains the union ∪iΩδ(k+1)i (see Figure 4.3).
Thus, for every neighborhood W of D0 there exists some δ > 0 such that

the image of B = π−1({z; |z| 6 δ} ∩M∗) in K0 is contained in W \ D0.
The neighborhood U of D0 given by the interior of B∪D0 has the required
properties. �

Figure 4.3. The domains in C where the solutions of the vector field
inM∗ ⊂ C2 are defined, and the identification between the boundaries
of these domains induced by f̂

Proof of Theorem A. — Let (S0, $,X0) be a triple satisfying the hy-
pothesis of Theorem A. Let π : (S,D,X)→ (S0, $,X0) be a minimal good
resolution. By Theorem 4.1 there is a (blown-up) Kato surface K with a
divisor DK and a vector field Z and there is a neighborhood U of DK such
that there is a mapping Ψ0 : U → S (the one guaranteed by Theorem 4.1).
We will suppose that U is a neighborhood like those produced by the proof
of Proposition 4.3.
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Let ΦZ : C×K → K and ΦX : C× S → S be the corresponding flows.
Since every integral curve of Z that is not contained in DK contains DK

in its closure, for each q ∈ K there is some tq ∈ C such that ΦZ(tq, q) ∈ U .
Define Ψ : K → S as

(4.3) Ψ(q) = ΦX(−tq,Ψ0 ◦ ΦZ(tq, q)).

We claim that Ψ is a biholomorphism, this is, that it is (i) well-defined,
(ii) onto and (iii) one-to-one. If Vq ⊂ C is a connected neighborhood of tq
such that ΦZ(t′q, q) ∈ U for every t′q ∈ Vq then tq and t′q define the same
function in (4.3). In particular, since Φ−1

Z (U) is connected (by Proposi-
tion 4.3), the mapping is well defined. The image of Ψ is a compact set
containing a neighborhood of D that is saturated by FX and is thus open.
Hence, Ψ is onto. It remains to prove that Ψ is one-to-one. Suppose that
there are two different points in K having the same image under Ψ (they
cannot belong both to U for Ψ is one-to-one in restriction to U). If they
belong to different orbits of Z, the images of these orbits are the same one
and thus there exist two orbits of X in restriction to Ψ0(U) that get iden-
tified within S. But this is impossible because of the nature of the domains
where the flow of Z (in restriction to U) is defined (Proposition 4.3): two
such domains must intersect. If the points are in the same orbit of Z, one
of the orbits of X has a period. However, by the description of the domains
where the solution is defined (the solution is one-to-one in arbitrarily large
domains), no period may arise. This finishes the proof of Theorem A. �

We may rephrase the passage from Theorem 4.1 to Theorem A in the
following way: If K is an intermediate Kato surface with vector field X

and U is a neighborhood of the union of the rational curves in K then if Y
is a complete vector field on the surface N and i : (U,X|U ) → (N,Y ) is
an equivariant embedding, then i extends to a biholomorphism. In general,
given a semicomplete (and non-complete) holomorphic vector field X in
some n-dimensional complex manifold M , there exists a completion of X,
an n-dimensional manifold N , a complete holomorphic vector field Y on N
and an equivariant embedding i : (M,X) → (N,Y ) [20] (there may be
many of them and the manifold N may be non-Hausdorff). A remarkable
fact is that, in the present situation, the dynamics of the vector field on a
Kato surface force the uniqueness and the compactness of the completion.

Remark 4.4. — In §3, there remained the problem of understanding the
vector fields related to the last possibility of Proposition 3.1: to understand
the combinatorics that are realizable by a semicomplete vector field and, for
example, to distinguish the cases where the corresponding intersection form
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is negative definite. Theorem 4.1 and its proof establish that such divisors
are exactly the ones found in Kato surfaces admitting vector fields. By [11,
Thm. 2.27], their intersection forms are negative definite.

5. Isolated equilibrium points in Stein surfaces

The Hirzebruch-Jung or cyclic quotient surface singularity An,m is the
germ of analytic space obtained by taking the quotient of (C2, 0) under the
linear action of Z/nZ generated by

(5.1) (z, w) 7→ (ξz, ξmw),

for some primitive nth root of unity ξ and somem < n such that (m,n) = 1.
By writing

n

m
= k1 −

1

k2 −
1

. . . −
1
ks

,

we obtain a sequence of integers ki > 2. The exceptional divisor of a
minimal resolution of An,m consists of s rational curves C1, . . . Cs, such
that Ci · Ci = −ki, Ci · Cj = 1 if |i − j| = 1 and Ci · Cj = 0 otherwise.
Reciprocally, if a singularity has a resolution of this form, it is analytically
equivalent to An,m, for the relatively prime integers n and m obtained from
the sequence ki via the above continued fraction [1, Ch. III, §5].

Let us proceed to the Proof of Theorem B. Let S0, $ and X0 be, respec-
tively, a Stein surface, a singular point in S0 and a complete vector field
on S0 like in the statement Theorem B. Let π : (S,D,X)→ (S0, $,X0) be
a minimal good resolution. Every curve invariant by X intersecting D but
not contained in it (a curve coming from a separatrix of X0 at $) does so
transversely at a smooth point of D.
Let γ : (C, 0)→ (S, q) be a curve such that π◦γ is a separatrix ofX0 at$

(such a curve exists by Theorem A). The restriction of X to the image of γ
is a vector field of the form f(z)∂/∂z (with f not identically zero by hypoth-
esis). Since this vector field is semicomplete, up to a reparametrization of γ,
the vector field is either of the form z2∂/∂z or λz∂/∂z for some λ ∈ C∗ [21,
§3]. In the first case, the separatrix may be parametrized by t 7→ −t−1 and
we must conclude that the orbit of X containing γ \ {q} has trivial stabi-
lizer and is compactified by q into a rational curve within S which is not
contained in D, which is impossible (this is the only point where we use
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the Steinness assumption on S0; more generally, we may suppose that S0
does not contain rational curves). The restriction of X to every separatrix
is hence locally given by λz∂/∂z.

Let E be an irreducible component of D that is not invariant by F . By
Table 2.1 and the fact that X has no zeros near D that are not contained
in D, at every point of E, X is, in suitable coordinates, f(x, y)x∂/∂x for
some non-vanishing function f . There is thus a function λ : E → C∗
that gives, for each p ∈ E, the eigenvalue of the restriction of X to the
orbit passing through p. In the above local model, f(x, y)x∂/∂x, E is given
by x = 0 and g(y) = f(0, y). Hence, λ is constant and the flow of X,
near E, has period 2iπλ−1. This proves Theorem B in the case where not
all irreducible components of D are invariant by F .
We will henceforth assume that D is invariant by F . Let γ be a sepa-

ratrix intersecting an irreducible component C1 of D transversely at some
point p0. We may now go through the list of local models in Table 2.1 and
conclude that the only local models such that the restriction of X to γ is of
the form λz∂/∂z, such that all the zeros of X (if any) are contained in D
and such that D is invariant by F are, up to an invertible multiplicative
factor,

(1) x(λ+ · · · )∂/∂x+ y(µ+ · · · )∂/∂y, λ, µ ∈ C;
(2) x(1 + νy)∂/∂x+ y2∂/∂y, ν ∈ Z;

with the separatrix being, in both cases, the curve {y = 0} and D given
by {x = 0}.
In the first case, ind(C1, p0) = −1. We conclude that C1 is a rational

orbifold of type 1, that it has no further singularities of F and that D re-
duces to C1. A semicomplete vector field having this combinatorics in An,1
is obtained by resolving the quotient of z∂/∂z + (w+ z)∂/∂w under (5.1),
for n = −C2

1 .
In the second case, ind(C1, p0) = ∞. Since the affine structure in C1 is

induced by a non-zero vector field, C1 is of type (∞,∞) and there is thus a
point p1 ∈ C1 such that ind(C1, p1) =∞. If p1 is a singular non-degenerate
point and if D does not reduce to C1, there is a component C2 of D which
intersects C1 at p1 and which is of type (∞,∞). Continuing this argument,
we have, within D, a maximal chain of the form

(5.2) C1
p1— C2

p2— · · · ps−1— Cs,

with a point ps ∈ Cs, different from ps−1, where X vanishes, such that X
is singular non-degenerate at pi for i = 1, . . . , ps−1, such that Ci is of
type (∞,∞) for every i and such that either D reduces to the above chain
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or ps is not a singular non-degenerate point. Notice that, for every i, the
points of Ci other than pi−1 and pi have positive ramification index. By
Lemma 3.2, no separatrix or irreducible component of D may meet Ci at
these points. If D reduces to (5.2), X is singular non-degenerate at ps,
where it has another separatrix, and D is a Hirzebruch-Jung string. A
semicomplete vector field of this kind in An,m is obtained by resolving the
quotient of λz∂/∂z + w∂/∂w under the action (5.1). If D does not reduce
to (5.2), there is an irreducible component Cs+1 of D that intersects Cs
at ps. The vector field X must be a saddle-node at ps, for X is holomor-
phic and non-identically zero along Cs. The component Cs+1 must be a
rational orbifold of order 1 and have no further singularities. The divi-
sor D reduces to the Hirzebruch-Jung string C1

p1— C2
p2— · · · ps— Cs+1. A

semicomplete vector field of this kind in An,m is obtained by resolving the
quotient of z∂/∂z + (mw + zm)∂/∂w under (5.1). This finishes the proof
of Theorem B.

In the case where the flow of the vector field factors through and ac-
tion of C∗, Camacho, Movasati and Scárdua [6] proved that a holomorphic
action of C∗ on a Stein surface with a dicritical singularity is holomor-
phically and equivariantly equivalent to an algebraic action of C∗ on an
affine surface (a case widely studied by Orlik and Wagreich [19]). A dis-
cussion around normal forms for the germs vector fields in An,m coming
from non-degenerate ones in (C2, 0) may be found in the work of Sánchez-
Bringas [25].

Theorem B generalizes Lemma 6.1 in [23], which affirms that a com-
plete vector field on a non-singular Stein surface has two non-vanishing
eigenvalues at an isolated equilibrium point.

6. Vector fields on compact complex surfaces

We will now proceed to the proof of Theorem C, by revisiting the strategy
developed in [12], which resorts to the local theory of semicomplete holo-
morphic vector fields and uses their local models up to biholomorphisms,
as developed in [15], [22] and [23]. On the one hand, our approach bene-
fits from the proof of Theorem A, which allows one to readily recognize
Kato surfaces. On the other, by systematically adopting the bimeromor-
phic point of view, the list of local models of semicomplete vector fields
becomes smaller (we need only consider the reduced ones). Finally, the use
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of the leafwise affine structure and its numerical invariants will allow us to
deal more effectively with the combinatorics.

Let X be a holomorphic vector field on the compact complex (not nec-
essarily minimal) surface S. If there are infinitely many compact curves
tangent to F , the latter has a first integral by a result of Jouanoulou-
Ghys [16] (the generic level curve supports a non-identically zero vector
field and is either rational or elliptic). We will henceforth suppose that
there are only finitely many algebraic curves invariant by F .
Let D be the reduced divisor supported in the union of the algebraic

curves invariant by F . Blow up as many points as necessary so that X
becomes reduced and (X,D) becomes minimal good in the sense of Defi-
nition 2.1.
All the irreducible components of D are non-singular curves which are

either rational or elliptic (for these are the only curves admitting uniformiz-
able affine structures with singularities). Furthermore, we may suppose that
all the rational curves have strictly negative self-intersection for, otherwise,
the surface would be either rational or ruled [1, Prop. 4.3].
Arguing like in [12, Lemme 2.2], if p ∈ S is a point where X(p) = 0

and if γ is a germ of curve invariant by F such that X|γ is not identically
zero, either the restriction of X to γ is equivalent to z2∂/∂z or λz∂/∂z. We
affirm that, in both cases, γ is contained in an algebraic curve. In the first
case, γ is, as discussed in the previous Section, contained in an algebraic
(rational) curve. In the second case, γ is pointwise fixed by the flow of X in
time 2iπλ−1. The set of points of S fixed by X in time 2iπλ−1 is a closed
analytic subset of S which is not all of S since X induces an effective action
of C. The curve γ is thus contained in an algebraic curve.

In particular, if C is a one-dimensional component of the locus of zeros of
X that is not invariant by F , every curve intersecting it must be algebraic
(a case that has already been ruled out). Hence, we conclude,

• that every one-dimensional component of the locus of zeros of X is
invariant by F , and

• that every germ of curve invariant by F that intersects D is con-
tained in D.

Let D0 be a connected component of D. If D0 contains a cycle then, by
Proposition 3.1, either D0 supports an effective divisor Z such that Z2 = 0
or, by Theorem A and Remark 4.4, S is a Kato surface. We will henceforth
suppose that D0 has no cycles.
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With saddle-nodes or singular non-degenerate points. If the vec-
tor field is a saddle-node at the point p0 where the irreducible compo-
nents C0, C1 of D0 intersect, ind(C1, p0) = ∞ and ind(C0, p0) = −1. The
irreducible component C0 is necessarily a rational orbifold of type 1 carry-
ing no further singular points of X. The component C1 is of type (∞,∞),
for its affine structure is induced by a non-vanishing vector field. There is
thus a point p1 ∈ C1 where X vanishes and that is either a singular non-
degenerate or a saddle-node point. If p1 is a singular non-degenerate point,
there is another component C2, intersecting C1 at p1, of type (∞,∞),
along which X does not vanish, having another singular point p2 of X.
If p1 is a saddle-node, there is another component C2 intersecting C1
at p1. Since ind(C2, p1) = −1, C2 is a rational orbifold of type 1 hav-
ing no further singularities of X. We conclude that D0 is of the form
C0

p0— C1
p1— · · · pl— Cl+1 (l > 1), with C0 and Cl+1 rational orbifolds

of type 1 and C1, . . . , Cl of type (∞,∞). The vector field X has a saddle-
node at p0 and pl and singular non-degenerate points at p1, . . . , pl−1.
Let λi ∈ C∗ be the eigenvalue of X at pi within Ci (and thus −λi is the
eigenvalue of X at pi−1 within Ci). Let ki = −C2

i and suppose that ki > 0.
By the Camacho-Sad formula, the contribution of p0 (resp. pl) to the self-
intersection of C1 (resp. Cl) is zero (hence, if l = 1, C2

1 = 0 so we will
suppose that l > 1). By the Camacho-Sad formula, k1λ1 = λ2,

(6.1) λiki = λi−1 + λi+1 for i = 2, . . . , l − 1,

and klλl = λl−1. Adding these equations, we get

(6.2)
l∑
i=1

(ki − 2)λi + λ1 + λl = 0.

Up to dividing X by λ1, we may suppose that λ1 = 1 and thus that λ2 =
k1 ∈ Z. From equation (6.1) for i = 2, we may solve for λ3 and hence λ3 ∈
Z. Continuing this argument, we conclude that λi ∈ Z. All of them must
be positive since −λi/λi+1 /∈ Q+. From equation (6.2), ki = 1 for some i.
This contradicts the minimal good character of (X,D). We conclude that
such components appear only in the case l = 1, where we find a rational
curve of vanishing self-intersection.
If there is a singular non-degenerate point p0, there are two invariant

rational curves C0, C1 through p0, whose ramification index at p0 is∞ and
such that the vector field is not identically zero along them. Thus, there is
another point p1 ∈ C2 where the affine structure has ramification index∞.
Since D0 is free of cycles, this implies that there is a chain of curves of
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type (∞,∞) which must eventually have a saddle-node, reducing this case
to the previous one.

The other cases. IfD0 contains an elliptic curve then the induced affine
structure is non-singular and hence, by Lemma 3.2, D0 reduces to an el-
liptic curve Z and there are no singularities of FX along the curve. By the
Camacho-Sad formula, Z2 = 0. In the other cases all the irreducible compo-
nents of D0 are rational curves and D0 is a tree. Label the irreducible com-
ponents C1, . . . , Cn of D0 in such a way that, in the dual graph of D0, the
subgraph generated by C1, . . . , Ck is connected for every k, this is, for ev-
ery i > 1 there is a unique `(i) < i such that Ci ·C`(i) = 1. The contribution
of Ci ∩C`(i) to the self-intersection of C`(i) (by means of the Camacho-Sad
formula) is a strictly negative rational ri = CS(FX , C`(i), Ci∩C`(i)), for we
do not have neither saddle-nodes nor singular non-degenerate points, and
all the singular points of F are either finite or infinite ramification points.
Thus, C2

j = r−1
j +

∑
k∈`−1(j) rk.

Let us show, following the proof of [12, Prop. 2.10], that this implies that
there is a divisor of vanishing self-intersection supported in D0. Let a1 =
1. Inductively, define aj+1 = −r`(j+1)a`(j+1) (notice that aj+1 > 0) and
let Z =

∑
i aiCi. Then Z2 = 0 since

Z · Cj =
∑
i

aiCi · Cj = ajC
2
j + a`(j)C`(j) · Cj +

∑
k∈`−1(j)

akCk · Cj

= aj

C2
j +

a`(j)

aj
+

∑
k∈`−1(j)

ak
aj


= aj

C2
j −

1
rj
−

∑
k∈`−1(j)

rk

 = 0.

Upon multiplying the Q-divisor Z by some positive integer, we obtain the
desired divisor. This proves Theorem C.

We could precise further the nature of the divisor of vanishing self-
intersection Z appearing in the statement of Theorem C: it is either ra-
tional or a divisor of elliptic fiber type, this is, it has the combinatorics of
the (minimal good versions of the) divisors appearing in Kodaira’s list of
singular fibers in elliptic fibrations, like in [17, Thm. A]. We will not pursue
this direction.

TOME 64 (2014), FASCICULE 3



1360 Adolfo GUILLOT

Our results may be used to give an alternative proof of Theorem 0.1
in [13], which completes the classification of minimal compact complex
surfaces admitting vector fields.
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