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A LAGRANGIAN APPROACH FOR THE
COMPRESSIBLE NAVIER-STOKES EQUATIONS

by Raphaël DANCHIN

Abstract. — Here we investigate the Cauchy problem for the barotropic
Navier-Stokes equations in Rn, in the critical Besov spaces setting. We improve
recent results as regards the uniqueness condition: initial velocities in critical Besov
spaces with (not too) negative indices generate a unique local solution. Apart from
(critical) regularity, the initial density just has to be bounded away from 0 and to
tend to some positive constant at infinity. Density-dependent viscosity coefficients
may be considered. Using Lagrangian coordinates is the key to our statements as
it enables us to solve the system by means of the basic contraction mapping theo-
rem. As a consequence, conditions for uniqueness are the same as for existence, and
Lipschitz continuity of the flow map (in Lagrangian coordinates) is established.
Résumé. — On étudie le problème de Cauchy pour le système de Navier-

Stokes barotrope dans Rn, avec régularité Besov critique. On affaiblit la condition
d’unicité, ce qui permet d’établir entre autres que des vitesses initiales ayant une
régularité Besov (pas trop) négative génèrent une solution unique. La densité ini-
tiale est à régularité critique et doit juste être strictement positive et tendre vers
une constante à l’infini. Les coefficients de viscosité peuvent dépendre de la den-
sité. L’usage de coordonnées lagrangiennes est la clef de toutes ces améliorations
car il permet de résoudre le système par itérations de Picard. Comme corollaire
immédiat, on obtient que les conditions pour l’unicité sont les mêmes que pour
l’existence, ainsi que la continuité de l’opérateur solution (pour le système écrit en
coordonnées lagrangiennes).

Introduction

We address the well-posedness issue for the barotropic compressible
Navier-Stokes equations with variable density in the whole space Rn (n>2):

(0.1)


∂tρ+ div(ρu) = 0,
∂t(ρu)+ div(ρu⊗ u)−2 div(µ(ρ)D(u))−∇(λ(ρ) div u)+∇(P (ρ)) = 0,
ρ||t=0 = ρ0, u||t=0 = u0.

Keywords: Compressible fluids, uniqueness, critical regularity, Lagrangian coordinates.
Math. classification: 35Q35, 76N10.



754 Raphaël DANCHIN

Above ρ = ρ(t, x) ∈ R+ stands for the density, u = u(t, x) ∈ Rn, for the
velocity field. The space variable x belongs to the whole Rn. The notation
D(u) designates the deformation tensor which is defined by

D(u) := 1
2(Du+∇u) with (Du)ij := ∂ju

i and (∇u)ij := ∂iu
j .

The pressure function P and the viscosity coefficients λ and µ are given
suitably smooth functions of the density. With no loss of generality, one
may assume that P is defined over R and vanishes at 0. As we focus on
viscous fluids, we suppose that

(0.2) α := min
(

inf
ρ>0

(λ(ρ) + 2µ(ρ)), inf
ρ>0

µ(ρ)
)
> 0,

which ensures the second order operator in the velocity equation of (0.1)
to be uniformly elliptic.
We supplement System (0.1) with the condition at infinity that u tends

to 0 and ρ, to some positive constant (that may be taken equal to 1 after
suitable normalization). The exact meaning of those boundary conditions
will be given by the functional framework in which we shall consider the
system.
In the present paper, we aim at solving (0.1) in critical functional spaces,

that is in spaces which have the same invariance with respect to time
and space dilation as the system itself (see e.g. [10] for more explanations
about this nowadays classical approach). In this framework, it has been
stated [10, 8] in the constant coefficients case that, for data (ρ0, u0) such
that

a0 := (ρ0 − 1) ∈ Ḃn/pp,1 (Rn), u0 ∈ Ḃn/p−1
p,1 (Rn)

and that, for a small enough constant c,

(0.3) ‖a0‖Ḃn/pp,1 (Rn) 6 c,

we have for any p ∈ [1, 2n):
• existence of a local solution (ρ, u) such that a := (ρ−1) ∈ Cb([0, T ];
Ḃ
n/p
p,1 ), u ∈ Cb([0, T ]; Ḃn/p−1

p,1 ) and ∂tu,∇2u ∈ L1(0, T ; Ḃn/p−1
p,1 );

• uniqueness in the above space if in addition p 6 n.
If p 6 n then the viscosity coefficients may depend (smoothly) on ρ and
the smallness condition (0.3) may be replaced by the following positivity
condition (see [5, 9]):

(0.4) inf
x∈Rn

ρ0(x) > 0.

ANNALES DE L’INSTITUT FOURIER
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Those results have been somewhat extended in [17] where it has been no-
ticed that a0 may be taken in a larger Besov space, with another Lebesgue
exponent.
The above results are based on maximal regularity estimates in Besov

spaces for the evolutionary Lamé system, and on the Schauder-Tychonoff
fixed point theorem. In effect, owing to the hyperbolicity of the density
equation, there is a loss of one derivative in the stability estimates thus
precluding the use of the contraction mapping (or Banach fixed point)
theorem. As a consequence, with this method it is found that the conditions
for uniqueness are stronger than those for existence.

Following our recent paper [14] dedicated to the incompressible density-
dependent Navier-Stokes equation, and older works concerning the com-
pressible Navier-Stokes equations (see [21, 22, 23]), we here aim at solving
System (0.1) in the Lagrangian coordinates. The main motivation is that
the mass is constant along the flow hence, to some extent, only the (para-
bolic type) equation for the velocity has to be considered. After performing
this change of coordinates, we shall see that solving (0.1) may be done by
means of the Banach fixed point theorem. Hence, the condition for unique-
ness is the same as that for the existence, and the flow map is Lipschitz
continuous. In addition, in the case of fully nonhomogeneous fluids with
variable viscosity coefficients, the analysis turns out to be simpler than in
[5, 9] even for density-dependent viscosity coefficients and in the case where
the density is not close to a constant. Indeed, our proof relies essentially
on a priori estimates for a parabolic system (a suitable linearization of the
momentum equation in Lagrangian coordinates) with rough constant de-
pending only on the initial density hence time-independent. In contrast,
in [5, 9] tracking the time-dependency of the coefficients was quite techni-
cal.
We now come to the plan of the paper. In the next section, we introduce

the compressible Navier-Stokes equations in Lagrangian coordinates and
present our main results. Section 2 is devoted to the proof of our main
existence and uniqueness result in the simpler case where the density is close
to a constant and the coefficients, density independent. In Section 3, we
treat the general fully nonhomogeneous case with nonconstant coefficients.
A great deal of the analysis is contained in the study of the linearized
momentum equation for (0.1) (see Subsection 3.1) which turns out to be a
Lamé type system with variable rough coefficients. This will enable us to
define a self-map Φ on a suitably small ball of some Banach space Ep(T ) and
to apply the contraction mapping theorem so as to solve the compressible
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756 Raphaël DANCHIN

Navier-Stokes equations in Lagrangian coordinates. In the Appendix we
prove several technical results concerning the Lagrangian coordinates and
Besov spaces.

Notation. — Throughout, the notation C stands for a generic constant
(the meaning of which depends on the context), and we sometimes write
A . B instead of A 6 CB. For X a Banach space, p ∈ [1,+∞] and
T > 0, the notation Lp(0, T ;X) or LpT (X) designates the set of measurable
functions f : [0, T ] → X with t 7→ ‖f(t)‖X in Lp(0, T ), endowed with the
norm

‖f‖Lp
T

(X) :=
∥∥ ‖f‖X ∥∥Lp(0,T ).

We agree that C([0, T ];X) denotes the set of continuous functions from
[0, T ] to X.

1. Main results

Before deriving the Lagrangian equations corresponding to (0.1), let us
introduce more notation. We agree that for a C1 function F : Rn → Rn×Rm
then divF : Rn → Rm with

(divF )j :=
∑
i

∂iFij for 1 6 j 6 m,

and that for A = (Aij)16i,j6n and B = (Bij)16i,j6n two n × n matrices,
we denote

A : B = TrAB =
∑
i,j

AijBji.

The notation adj(A) designates the adjugate matrix that is the trans-
posed cofactor matrix. Of course if A is invertible then we have adj(A) =
(detA) A−1. Finally, given some matrix A, we define the “twisted” defor-
mation tensor and divergence operator (acting on vector fields z) by the
formulae

DA(z) := 1
2
(
Dz ·A+ TA · ∇z

)
and divA z := TA : ∇z = Dz : A.

Let X be the flow associated to the vector-field u, that is the solution to

(1.1) X(t, y) = y +
∫ t

0
u(τ,X(τ, y)) dτ.

Denoting

ρ̄(t, y) := ρ(t,X(t, y)) and ū(t, y) = u(t,X(t, y))

ANNALES DE L’INSTITUT FOURIER
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with (ρ, u) a solution of (0.1), and using the chain rule and Lemma A.2
from the Appendix, we gather that (ρ̄, ū) satisfies

(1.2)


∂t(Jρ̄) = 0

ρ0∂tū−div
(

adj(DX)
(
2µ(ρ̄)DA(ū)+λ(ρ̄) divA ū Id +P (ρ̄) Id

))
= 0

with J := detDX and A := (DyX)−1. Note that one may forget any
reference to the initial Eulerian vector-field u by defining directly the “flow”
X of ū by the formula

(1.3) X(t, y) = y +
∫ t

0
ū(τ, y) dτ.

We want to solve the above system in critical homogeneous Besov spaces.
Let us recall that, for 1 6 p 6 ∞ and s 6 n/p, a tempered distribution u
over Rn belongs to the homogeneous Besov space Ḃsp,1(Rn) if

u =
∑
j∈Z

∆̇ju in S ′(Rn)

and

(1.4) ‖u‖Ḃsp,1(Rn) :=
∑
j∈Z

2js‖∆̇ju‖Lp(Rn) <∞.

Here (∆̇j)j∈Z denotes a homogeneous dyadic resolution of unity in Fourier
variables —the so-called Littlewood-Paley decomposition (see e.g. [1],
Chap. 2 for more details on the Littlewood-Paley decomposition and Besov
spaces).
Loosely speaking, a function belongs to Ḃsp,1(Rn) if it has s derivatives

in Lp(Rn). In the present paper, we shall mainly use the following classical
properties:

• the Besov space Ḃn/pp,1 (Rn) is a Banach algebra embedded in the set
of continuous functions going to 0 at infinity, whenever 1 6 p <∞;

• the usual product maps Ḃn/p−1
p,1 (Rn) × Ḃ

n/p
p,1 (Rn) in Ḃ

n/p−1
p,1 (Rn)

whenever 1 6 p < 2n;
• Let F : I → R be a smooth function (with I an open interval of R

containing 0) vanishing at 0. Then for any s > 0, 1 6 p 6 ∞ and
interval J compactly supported in I there exists a constant C such
that

(1.5) ‖F (a)‖Ḃsp,1(Rn) 6 C‖a‖Ḃsp,1(Rn)

TOME 64 (2014), FASCICULE 2



758 Raphaël DANCHIN

for any a ∈ Ḃsp,1(Rn) with values in J. In addition, if a1 and a2 are
two such functions and s = n/p then we have

(1.6) ‖F (a2)− F (a1)‖
Ḃ
n/p
p,1 (Rn) 6 C‖a2 − a1‖Ḃn/pp,1 (Rn).

From now on, we shall omit Rn in the notation for Besov spaces. We
shall obtain the existence and uniqueness of a local-in-time solution (ρ̄, ū)
for (1.2), with ā := ρ̄− 1 in C([0, T ]; Ḃn/pp,1 ) and ū in the space

Ep(T ) :=
{
v ∈ C([0, T ]; Ḃn/p−1

p,1 ), ∂tv,∇2v ∈ L1(0, T ; Ḃn/p−1
p,1 )

}
·

That space will be endowed with the norm

‖v‖Ep(T ) := ‖v‖
L∞
T

(Ḃn/p−1
p,1 ) + ‖∂tv,∇2v‖

L1
T

(Ḃn/p−1
p,1 ).

Let us now state our main result.

Theorem 1.1. — Let 1 < p < 2n and n > 2. Let u0 be a vector-field in
Ḃ
n/p−1
p,1 . Assume that the initial density ρ0 satisfies a0 := (ρ0 − 1) ∈ Ḃn/pp,1

and

(1.7) inf
x
ρ0(x) > 0.

Then System (1.2) has a unique local solution (ρ̄, ū) with (ā, ū) ∈ C([0, T ];
Ḃ
n/p
p,1 ) × Ep(T ). Moreover, the flow map (a0, u0) 7−→ (ā, ū) is Lipschitz

continuous from Ḃ
n/p
p,1 × Ḃ

n/p−1
p,1 to C([0, T ]; Ḃn/pp,1 )× Ep(T ).

In Eulerian coordinates, this result recasts in:

Theorem 1.2. — Under the above assumptions, System (0.1) has a
unique local solution (ρ, u) with u ∈ Ep(T ), ρ bounded away from 0 and
(ρ− 1) ∈ C([0, T ]; Ḃn/pp,1 ).

Let us make a few comments concerning the above assumptions.
• We expect the Lagrangian method to improve the uniqueness con-
ditions given in e.g. [10] for the full Navier-Stokes equations. We
here consider the barotropic case for simplicity.

• The condition 1 6 p < 2n is a consequence of the product laws
in Besov spaces. It implies that the regularity exponent for the
velocity has to be greater than −1/2 (to be compared with −1 for
the homogeneous incompressible Navier-Stokes equations). It would
be interesting to see whether introducing a modified velocity as in
B. Haspot’s works [16, 17] allows to consider different Lebesgue
exponents for the Besov spaces pertaining to the density and the
velocity so as to go beyond p = 2n for the velocity.

ANNALES DE L’INSTITUT FOURIER



COMPRESSIBLE NAVIER-STOKES EQUATIONS 759

• The regularity condition over the density is stronger than that for
density-dependent incompressible fluids (see [14]). In particular, in
contrast with incompressible fluids, it is not clear that combining
Lagrangian coordinates and critical regularity approach allows to
consider discontinuous densities.

• Owing to the fact that the density satisfies a transport equation,
we do not expect Lipschitz continuity of the flow map in high norm
for the Eulerian formulation to be true.

2. The simple case of almost homogeneous
compressible fluids

As a warm up and for the reader convenience, we here explain how local
well-posedness may be proved for the system in Lagrangian coordinates in
the simple case where:

(1) The viscosity coefficients are constant,
(2) The density is very close to one.

Let µ′ := λ + µ. Keeping in mind the above two conditions and using the
fact that the first equation of (1.2) implies that

(2.1) J(t, ·)ρ̄(t, ·) ≡ ρ0,

with J := |detDX| and

(2.2) X(t, y) := y +
∫ t

0
ū(τ, y) dτ,

we rewrite the equation for the Lagrangian velocity as (recall that A :=
(DX)−1):

∂tū−µ∆ū−µ′∇div ū(2.3)
= (1− ρ0)∂tū+ 2µ div

(
adj(DX)DA(ū)−D(ū)

)
+ λ div

(
adj(DX) divA ū−div ū Id

)
− div

(
adj(DX)P (J−1ρ0)

)
.

The left-hand side of the above equation is the linear Lamé system with
constant coefficients, the solvability of which may be easily deduced from
that of the heat equation in the whole space (see e.g. [1], Chap. 2 or [13]).
We get:

Proposition 2.1. — Let the viscosity coefficients (µ, µ′) ∈ R2 satisfy
µ > 0 and µ + µ′ > 0. Let p ∈ [1,∞] and s ∈ R. Let u0 ∈ Ḃsp,1 and

TOME 64 (2014), FASCICULE 2



760 Raphaël DANCHIN

f ∈ L1(0, T ; Ḃsp,1). Then the Lamé system

(2.4)

∂tu− µ∆u− µ′∇ div u = f in (0, T )× Rn

u|t=t0 = u0 on Rn

has a unique solution u in C([0, T ); Ḃsp,1) such that ∂tu,∇2u ∈ L1(0, T ; Ḃsp,1)
and the following estimate is valid:
(2.5)
‖u‖L∞

T
(Ḃsp,1)+ min(µ, µ+ µ′)‖∇2u‖L1

T
(Ḃsp,1) 6 C(‖f‖L1

T
(Ḃsp,1)+‖u0‖Ḃsp,1)

where C is an absolute constant with no dependence on µ, µ′ and T.

In the rest of this section, we drop the bars on the Lagrangian velocity
field. Granted with the above proposition, we define a map Φ: v 7→ u on
Ep(T ) where u stands for the solution to

(2.6) ∂tu− µ∆u− µ′∇ div u
= I1(v, v) + 2µdiv I2(v, v) + λ div I3(v, v)− div I4(v)

with initial data u0 and

I1(w) = −a0∂tw,

I2(v, w) = adj(DXv)DAv (w)−D(w),
I3(v, w) = divAv w adj(DXv)− divw Id,

I4(v) = adj(DXv)P (J−1
v ρ0).

Note that any fixed point of Φ is a solution in Ep(T ) to (2.3). We claim
that the existence of such points is a consequence of the standard Banach
fixed point theorem in a suitable closed ball of Ep(T ).

First step: estimates for I1, I2, I3 and I4

Throughout we assume that for a small enough constant c,

(2.7)
∫ T

0
‖Dv‖

Ḃ
n/p
p,1

dt 6 c.

It is obvious that

(2.8) ‖I1(w)‖
L1
T

(Ḃn/p−1
p,1 ) 6 ‖a0‖M(Ḃn/p−1

p,1 )‖∂tw‖L1
T

(Ḃn/p−1
p,1 )

where the multiplier normM(Ḃsp,1) for Ḃsp,1, is defined by

(2.9) ‖f‖M(Ḃsp,1) := sup ‖ψf‖Ḃsp,1 .

The supremum is taken over those functions ψ in Ḃsp,1 with norm 1.

ANNALES DE L’INSTITUT FOURIER
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Next, taking advantage of the fact that Ḃn/pp,1 is an algebra if 1 6 p <∞,
of (A.12), (A.13) and (2.7), we readily get

(2.10) ‖I2(v, w)‖
L1
T

(Ḃn/pp,1 ) + ‖I3(v, w)‖
L1
T

(Ḃn/pp,1 )

6 C‖Dv‖
L1
T

(Ḃn/pp,1 )‖Dw‖L1
T

(Ḃn/pp,1 ).

As regards the pressure term (that is I4(v)), we use the fact that under
assumption (2.7), we have, by virtue of the composition inequality (1.5)
and of flow estimates (see (A.9) and (A.11)),

(2.11) ‖I4(v)‖
L∞
T

(Ḃn/pp,1 ) 6 C
(
1 + ‖Dv‖

L1
T

(Ḃn/pp,1 )

)(
1 + ‖a0‖Ḃn/pp,1

)
.

Second step: Φ maps a suitable closed ball in itself

At this stage, one may assert that if v ∈ Ep(T ) satisfies (2.7) then the
right-hand side of (2.6) belongs to L1(0, T ; Ḃn/p−1

p,1 ). Hence Proposition 2.1
implies that Φ(v) is well defined and maps Ep(T ) to itself. However it is
not clear that it is contractive over the whole set Ep(T ). So we introduce
uL the “free solution” to

∂tuL − µ∆uL − µ′∇ div uL = 0, uL|t=0 = u0.

Proposition 2.1 guarantees that uL belongs to Ep(T ) for all T > 0.
We claim that if T is small enough (a condition which will be expressed

in terms of the free solution uL) and if R is small enough (a condition
which will depend only on the viscosity coefficients and on p, n and P ) then
v ∈ B̄Ep(T )(uL, R) implies that (2.7) is fulfilled and that u ∈ B̄Ep(T )(uL, R).
Indeed ũ := u− uL satisfies

∂tũ− µ∆ũ− µ′∇div ũ = I1(v) + 2µdiv I2(v, v)
+λ div I3(v, v)− div I4(v),

ũ|t=0 = 0.

So Proposition 2.1 yields(1)

‖ũ‖Ep(T ) . ‖I1(v)‖
L1
T

(Ḃn/p−1
p,1 ) + ‖I2(v, v)‖

L1
T

(Ḃn/pp,1 )

+ ‖I3(v, v)‖
L1
T

(Ḃn/pp,1 ) + T‖I4(v)‖
L∞
T

(Ḃn/pp,1 ).

(1)For simplicity, we do not track the dependency of the coefficients with respect to µ
and µ′.

TOME 64 (2014), FASCICULE 2
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Inserting inequalities (2.8), (2.10) and (2.11), we thus get:

‖ũ‖Ep(T ) . ‖Dv‖2L1
T

(Ḃn/pp,1 )
+ ‖a0‖M(Ḃn/p−1

p,1 )‖∂tv‖L1
T

(Ḃn/p−1
p,1 )

+ T (1 + ‖a0‖Ḃn/pp,1
).

That is, keeping in mind that v is in B̄Ep(T )(uL, R),

‖ũ‖Ep(T ) 6 C
(
‖a0‖M(Ḃn/p−1

p,1 )(R+ ‖∂tuL‖L1
T

(Ḃn/p−1
p,1 )) + ‖DuL‖2L1

T
(Ḃn/pp,1 )

+R2 + T (1 + ‖a0‖Ḃn/pp,1
)
)
.

So we see that if T satisfies

CT (1 + ‖a0‖Ḃn/pp,1
) 6 R/2 and(2.12)

‖DuL‖L1
T

(Ḃn/pp,1 ) + ‖∂tuL‖L1
T

(Ḃn/p−1
p,1 ) 6 R

then we have

‖ũ‖Ep(T ) 6 2C‖a0‖M(Ḃn/p−1
p,1 ) +R+ 2CR2 +R/2.

Hence there exists a small constant η = η(n, p) such that if

(2.13) ‖a0‖M(Ḃn/p−1
p,1 ) 6 η,

and if R has been chosen small enough then u is in B̄Ep(T )(uL, R). Of
course, taking R and T even smaller ensures that (2.7) is satisfied for all
vector-field of B̄Ep(T )(uL, R).

Third step: contraction properties

We claim that under Conditions (2.13) and (2.12) (with a smaller R if
needed), the map Φ is 1/2-Lipschitz over B̄Ep(T )(uL, R). So we are given
v1 and v2 in B̄Ep(T )(uL, R) and denote

u1 := Φ(v1) and u2 := Φ(v2).

Let X1 and X2 be the flows associated to v1 and v2. Set Ai = (DXi)−1

and Ji := detDXi for i = 1, 2. The equation satisfied by δu := u2 − u1
reads

∂tδu− µ∆δu− µ′∇div δu = δf := δf1 + div δf3 + 2µdiv δf4 + λ div δf5

ANNALES DE L’INSTITUT FOURIER
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with

δf1 := −a0∂tu,

δf3 := adj(DX1)P (ρ0J
−1
1 )− adj(DX2)P (ρ0J

−1
2 ),

δf4 := adj(DX2)DA2(u2)− adj(DX1)DA1(u1)−D(δu),

δf5 := adj(DX2)TA2 : ∇u2 − adj(DX1)TA1 : ∇u1 − div δu Id .

Once again, bounding δu in Ep(T ) stems from Proposition 2.1, which
ensures that

(2.14) ‖δu‖Ep(T ) . ‖δf1‖L1
T

(Ḃn/p−1
p,1 )+T‖δf3‖L∞

T
(Ḃn/pp,1 )+

5∑
i=4
‖δfi‖L1

T
(Ḃn/pp,1 ).

In order to bound δf1 we just have to use the definition of the multiplier
spaceM(Ḃn/p−1

p,1 ). We get

(2.15) ‖δf1‖L1
T

(Ḃn/p−1
p,1 ) 6 ‖a0‖M(Ḃn/p−1

p,1 )‖∂tδu‖L1
T

(Ḃn/p−1
p,1 ).

Next, using the decomposition

δf3 = (adj(DX1)−adj(DX2))P (ρ0J
−1
2 )+adj(DX1)(P (ρ0J

−1
1 )−P (ρ0J

−1
2 )),

together with composition inequalities (1.5), (1.6) and (A.19), and product
laws in Besov space yields

(2.16) ‖δf3‖L∞
T

(Ḃn/p−1
p,1 ) . T (1 + ‖a0‖Ḃn/pp,1

)‖Dδv‖
L1
T

(Ḃn/pp,1 )

Finally, we have

δf5 = (adj(DX2)− adj(DX1))TA2 : ∇u2 + adj(DX1)T(A2 −A1) : ∇u2

+ (adj(DX1)TA1 − Id) : ∇δu,

whence, by virtue of (A.9), (A.10), (A.18) and (A.19),

(2.17) ‖δf5‖L1
T

(Ḃn/pp,1 ) . ‖Dδv‖L1
T

(Ḃn/pp,1 )‖Du2‖L1
T

(Ḃn/pp,1 )

+ ‖Dδu‖
L1
T

(Ḃn/pp,1 )‖Dv1‖L1
T

(Ḃn/pp,1 ).

Bounding δf4 works exactly the same. So we see that if Conditions (2.12)
and (2.13) are satisfied (with smaller η and larger C if need be) then we
have

‖δu‖Ep(T ) 6
1
2‖δv‖Ep(T ).

Hence, the map Φ: B̄Ep(T )(uL, R) 7→ B̄Ep(T )(uL, R) is 1/2-Lipschitz. There-
fore, Banach’ fixed point theorem ensures that Φ admits a unique fixed
point in B̄Ep(T )(uL, R). This completes the proof of existence of a solution
in Ep(T ) for System (1.2).
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A tiny variation over the proof of the contraction properties yields unique-
ness and Lipschitz continuity of the flow map. We eventually get:

Theorem 2.2. — Assume that p ∈ [1,∞) and that n > 1. Let u0

be a vector-field in Ḃ
n/p−1
p,1 . Assume that the initial density ρ0 satisfies

a0 := (ρ0 − 1) ∈ Ḃn/pp,1 . There exists a constant c depending only on p and
on n such that if

(2.18) ‖a0‖M(Ḃn/p−1
p,1 ) 6 c

then System (1.2) has a unique local solution (ρ̄, ū) with (ā, ū) ∈ C([0, T ];
Ḃ
n/p
p,1 ) × Ep(T ). Moreover, the flow map (a0, u0) 7−→ (ā, ū) is Lipschitz

continuous from B
n/p
p,1 × Ḃ

n/p−1
p,1 to C([0, T ]; Ḃn/pp,1 )× Ep(T ).

In Eulerian coordinates, this result recasts in:

Theorem 2.3. — Under the above assumptions with n > 2 and p < 2n,
System (0.1) has a unique local solution (ρ, u) with density bounded away
from vacuum and a ∈ C([0, T ]; Ḃn/p−1

p,1 ) and u ∈ Ep(T ).

We do not give here more details on how to complete the proof of The-
orem 2.2 and its Eulerian counterpart, Theorem 2.3, as it will done in the
next section under much more general assumptions.

3. The fully nonhomogeneous case

For treating the general case where ρ0 only satisfies (1.7), just resorting
to Proposition 2.1 is not enough because the term I1(v, v) in the r.h.s.
of (2.6) need not be small. One has first to establish a similar statement
for a Lamé system with nonconstant coefficients. More precisely, keeping
in mind that ρ = J−1

u ρ0 (we still drop the bars for notational simplicity),
we recast the velocity equation of (1.2) in:

Lρ0(u) = ρ−1
0 div

(
I2(u, u) + I3(u, u) + I4(u, u) + I5(u)

)
with

(3.1) Lρ0(u) := ∂tu− ρ−1
0 div

(
2µ(ρ0)D(u) + λ(ρ0) div u Id

)
and

I1(v, w) := (1− Jv)∂tw

I2(v, w) := (adj(DXv)− Id)
(
µ(J−1

v ρ0)(DwAv + TAv∇w)

+ λ(J−1
v ρ0)( TAv : ∇w) Id

)
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I3(v, w) := (µ(J−1
v ρ0)− µ(ρ0))(DwAv + TAv∇w) + (λ(J−1

v ρ0)

− λ(ρ0))( TAv : ∇w) Id

I4(v, w) := µ(ρ0)
(
Dw(Av − Id) + T(Av − Id)∇w

)
+ λ(ρ0)( T(Av − Id) : ∇w) Id

I5(v) := − adj(DXv)P (ρ0J
−1
v ).

Therefore, in order to solve (1.2) locally, it suffices to show that the map

(3.2) Φ: v 7−→ u

with u the solution toLρ0(u) = ρ−1
0 div

(
I2(v, v) + I3(v, v) + I4(v, v) + I5(v)

)
,

u|t=0 = u0

has a fixed point in Ep(T ) for small enough T.
As a first step, we have to study the properties of the linear Lamé oper-

ator Lρ0 . This is done in the following subsection.

3.1. Linear parabolic systems with rough coefficients

As a warm up, we consider the following scalar heat equation with vari-
able coefficients:

(3.3) ∂tu− a div(b∇u) = f.

We assume that

(3.4) α := inf
(t,x)∈[0,T ]×Rn

(ab)(t, x) > 0.

Let us first consider the smooth case.

Proposition 3.1. — Assume that a and b are bounded functions sat-
isfying (3.4) and such that b∇a and a∇b are in L2(0, T ; Ḃn/pp,1 ) for some
1 < p < ∞. There exist two constants κ = κ(p) and C = C(s, n, p) such
that the solutions to (3.3) satisfy for all t ∈ [0, T ],

‖u‖L∞t (Ḃsp,1) + κα‖u‖L1
t (Ḃ

s+2
p,1 )

6
(
‖u0‖Ḃsp,1 + ‖f‖L1

t (Ḃsp,1)
)

exp
(C
α

∫ t

0
‖(b∇a, a∇b)‖2

Ḃ
n/p
p,1

dτ
)

whenever −min(n/p, n/p′) < s 6 n/p.
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Proof. — We first rewrite the equation for u as follows:

∂tu− div(ab∇u) = f − b∇a · ∇u,

then localize the equation in the Fourier space, according to Littlewood-
Paley decomposition:

∂tuj − div(ab∇uj) = fj − ∆̇j(b∇a · ∇u) +Rj

with uj := ∆̇ju, fj := ∆̇jf and Rj := div([∆̇j , ab]∇u).
Next, we multiply the above equation by uj |uj |p−2 and integrate over

Rn. Taking advantage of Lemma 8 in the appendix of [12] (here 1 < p <∞
comes into play) and of Hölder inequality, we get for some constant cp
depending only on p:

1
p

d

dt
‖uj‖pLp + cpα22j‖uj‖pLp

6 ‖uj‖p−1
Lp

(
‖fj‖Lp + ‖∆̇j(b∇a · ∇u)‖Lp + ‖Rj‖Lp

)
,

which, after time integration, leads to

(3.5) ‖uj‖L∞t (Lp) + cpα22j‖uj‖L1
t (Lp)

6 ‖u0,j‖Lp + ‖fj‖L1
t (Lp) +

∫ t

0

(
‖∆̇j(b∇a · ∇u)‖Lp + ‖Rj‖Lp

)
dτ.

According to Lemmas A.5 and A.6 in Appendix, there exist a positive
constant C and some sequence (cj)j∈Z with ‖c‖`1(Z) = 1, satisfying

(3.6) ‖∆̇j(b∇a · ∇u)‖Lp + ‖Rj‖Lp

6 Ccj2−js
(
‖b∇a‖

Ḃ
n/p
p,1

+ ‖a∇b‖
Ḃ
n/p
p,1

)
‖∇u‖Ḃsp,1 .

Then inserting (3.6) in (3.5), multiplying by 2js and summing up over j
yields

(3.7) ‖u‖L∞t (Ḃsp,1) + cpα‖u‖L1
t (Ḃ

s+2
p,1 )

6 ‖u0‖Ḃsp,1 + ‖f‖L1
t (Ḃsp,1) + C

∫ t

0
‖(b∇a, a∇b)‖

Ḃ
n/p
p,1
‖u‖Ḃs+1

p,1
dτ.

From the interpolation inequality

(3.8) ‖u‖Ḃs+1
p,1
6 ‖u‖1/2

Ḃsp,1
‖u‖1/2

Ḃs+2
p,1

,
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we gather that

C‖(b∇a, a∇b)‖
Ḃ
n/p
p,1
‖u‖Ḃs+1

p,1

6
αcp
2 ‖u‖Ḃ

s+2
p,1

+ C2

2αcp
‖(b∇a, a∇b)‖2

Ḃ
n/p
p,1
‖u‖Ḃsp,1 .

So plugging this in (3.7) and applying Gronwall lemma completes the proof
of the proposition. �

In the rough case where the coefficients are only in Ḃ
n/p
p,1 , the above

proposition has to be modified as follows:

Proposition 3.2. — Let a and b be bounded positive and satisfy (3.4).
Assume that b∇a and a∇b are in L∞(0, T ; Ḃn/p−1

p,1 ) with 1 < p <∞. There
exist three constants η, κ and C such that if for some m ∈ Z we have

inf(t,x)∈[0,T ]×Rn Ṡm(ab)(t, x) > α/2,(3.9)

‖(Id−Ṡm)(b∇a, a∇b)‖
L∞
T

(Ḃn/p−1
p,1 ) 6 ηα(3.10)

then the solution to (3.3) satisfies for all t ∈ [0, T ],

‖u‖L∞t (Ḃsp,1) + ακ‖u‖L1
t (Ḃ

s+2
p,1 ) 6

(
‖u0‖Ḃsp,1 + ‖f‖L1

t (Ḃsp,1)
)

· exp
(C
α

∫ t

0
‖Ṡm(b∇a, a∇b)‖2

Ḃ
n/p
p,1

dτ
)

whenever

(3.11) −min(n/p, n/p′) < s 6 n/p− 1.

Proof. — Given the new assumptions, it is natural to replace (3.6) by
the inequality

(3.12) ‖∆̇j(b∇a · ∇u)‖Lp + ‖Rj‖Lp

6 Ccj2−js
(
‖b∇a‖

Ḃ
n/p−1
p,1

+ ‖a∇b‖
Ḃ
n/p−1
p,1

)
‖∇u‖Ḃs+1

p,1
,

which may be obtained by taking σ = 1 and ν = 1 in Lemmas A.5 and A.6.
However, when bounding Rj , in addition to (3.11), one has to assume that
p 6 n. Also, as it involves the highest regularity of u, we cannot expect to
absorb this “remainder term” any longer, unless a∇b and b∇a are small in
Ḃ
n/p−1
p,1 (which would correspond to the case that has been treated in the

previous section). So we rather rewrite the heat equation as follows:

∂tu− div(Ṡm(ab)∇u)

= f + div((Id−Ṡm)(ab)∇u)− Ṡm(b∇a) · ∇u− (Id−Ṡm)(b∇a) · ∇u.

TOME 64 (2014), FASCICULE 2



768 Raphaël DANCHIN

Now, using the infimum bound for Ṡm(ab) and arguing as for proving (3.5),
we get

‖uj‖L∞t (Lp) + cpα22j‖uj‖L1
t (Lp)

6 ‖u0,j‖Lp + ‖fj‖L1
t (Lp) +

∫ t

0
‖∆̇j div((Id−Ṡm)(ab)∇u)‖Lp dτ

+
∫ t

0

(
‖∆̇j(Ṡm(b∇a) · ∇u)‖Lp + ‖∆̇j((Id−Ṡm)(b∇a) · ∇u)‖Lp

+ ‖ div([Ṡm(ab), ∆̇j ]∇u)‖Lp
)
dτ.

The idea is to apply the procedure of the “smooth” case for the low fre-
quency part of the coefficients (that is the part containing Ṡm) and the
“perturbation” approach for the other part. More precisely, appealing to
Lemmas A.5 and A.6, we get under Condition (3.11) and for some sequence
(cj)j∈Z with ‖c‖`1(Z) = 1:

‖∆̇j div((Id−Ṡm)(ab)∇u)‖Lp . cj2−js‖(Id−Ṡm)(ab)‖
Ḃ
n/p
p,1
‖∇u‖Ḃs+1

p,1
,

‖∆̇j(Ṡm(b∇a) · ∇u)‖Lp . cj2−js‖Ṡm(b∇a)‖
Ḃ
n/p
p,1
‖∇u‖Ḃsp,1 ,

‖∆̇j((Id−Ṡm)(b∇a) · ∇u)‖Lp . cj2−js‖(Id−Ṡm)(b∇a)‖
Ḃ
n/p−1
p,1

‖∇u‖Ḃs+1
p,1

,

‖ div([Ṡm(ab), ∆̇j ]∇u)‖Lp . cj2−js‖Ṡm∇(ab)‖
Ḃ
n/p
p,1
‖∇u‖Ḃsp,1 .

Let us plug those four inequalities in the above inequality for uj . After
multiplying by 2js and summing up over j, we get

‖u‖L∞t (Ḃsp,1) + cpα‖u‖L1
t (Ḃ

s+2
p,1 )

6 ‖u0‖Ḃsp,1 + ‖f‖L1
t (Ḃsp,1) + C

(
‖(Id−Ṡm)(ab)‖

L∞t (Ḃn/pp,1 )

+ ‖(Id−Ṡm)(b∇a)‖
L∞t (Ḃn/p−1

p,1 )

)
‖u‖L1

t (Ḃ
s+2
p,1 )

+ C

∫ t

0
‖Ṡm(a∇b, b∇a)‖

Ḃ
n/p
p,1
‖∇u‖Ḃsp,1 dτ.

It is clear that, under Condition (3.10), the second line may be absorbed
by the left-hand side. Hence the desired inequality follows from the inter-
polation inequality (3.8), exactly as in the smooth case. �

We now look at the following Lamé system with nonconstant coefficients:

(3.13) ∂tu− 2a div(µD(u))− b∇(λ div u) = f.
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Note that u and f are valued in Rn. We assume throughout that the fol-
lowing uniform ellipticity condition is satisfied:
(3.14)

α := min
(

inf
(t,x)∈[0,T ]×Rn

(aµ)(t, x), inf
(t,x)∈[0,T ]×Rn

(2aµ+ bλ)(t, x)
)
> 0.

Let us first study the “smooth case”:

Proposition 3.3. — Assume that a, b, λ and µ are bounded func-
tions satisfying (3.14) and such that a∇µ, b∇λ, µ∇a and λ∇b are in
L2(0, T ; Ḃn/pp,1 ) for some 1 < p < ∞. There exists a constant C such that
the solutions to (3.13) satisfy for all t ∈ [0, T ],

‖u‖L∞t (Ḃsp,1) + α‖u‖L1
t (Ḃ

s+2
p,1 ) 6 C

(
‖u0‖Ḃsp,1 + ‖f‖L1

t (Ḃsp,1)
)

· exp
(C
α

∫ t

0
‖(µ∇a, a∇µ, λ∇b, b∇λ)‖2

Ḃ
n/p
p,1

dτ
)

whenever −min(n/p, n/p′) < s 6 n/p.

Proof. — We introduce the following functions:

d := |D|−1 div u and Ω := |D|−1 curlu with (curlu)ij := ∂iu
j − ∂jui.

Owing to the use of homogeneous Besov space, and because the Fourier
multipliers A(D) := |D|−1 div and B(D) := |D|−1 curl are of degree 0, it
is equivalent to estimate u or (d,Ω) in L∞T (Ḃsp,1)∩L1

T (Ḃs+2
p,1 ). So the basic

idea is to show that d and Ω satisfy heat equations similar to (3.3). More
precisely, applying A(D) to (3.13) yields

(3.15) ∂td− (2aµ+ bλ)∆d = A(D)(f + 2a∇µ ·D(u) + b∇λ div u)
+ [A(D), aµ]∆u+ [A(D), aµ+ bλ]∇ div u.

Given Condition (3.14), we see that arguing exactly as for proving (3.7)
and because A(D) maps Ḃsp,1 in itself,

‖d‖L∞t (Ḃsp,1) + κα‖d‖L1
t (Ḃ

s+2
p,1) 6 ‖d0‖Ḃsp,1 +‖A(D)f‖L1

t (Ḃsp,1)

+ C

∫ t

0
‖2a∇µ ·D(u) + b∇λ div u‖Ḃsp,1dτ

+ C

∫ t

0
‖[A(D), aµ]∆u+ [A(D), aµ+ bλ]∇div u‖Ḃsp,1 dτ

+ C

∫ t

0
‖∇(2aµ+ bλ)‖

Ḃ
n/p
p,1
‖∇u‖Ḃsp,1 dτ.
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Note that applying Lemma A.7 with σ = s−1, ν = 0 and Lemma A.5 with
σ = s and ν = 0 yields

‖[A(D), aµ]∆u‖Ḃsp,1 6 C‖∇(aµ)‖
Ḃ
n/p
p,1
‖∆u‖Ḃs−1

p,1
,

‖a∇µ ·D(u)‖Ḃsp,1 6 C‖a∇µ‖Ḃn/pp,1
‖∇u‖Ḃsp,1 ,

and analogous estimates for [A(D), aµ+ bλ]∇ div u and b∇λ div u.
Similarly, the vorticity part Ω of u satisfies

∂tΩ− aµ∆Ω = B(D)(f + 2a∇µ ·D(u) + b∇λ div u)
+ [B(D), aµ]∆u+ [B(D), aµ+ bλ]∇ div u.

So arguing exactly as for bounding d, and resorting to the interpolation
inequality (3.8) and to Gronwall lemma, we easily get the desired inequality.
It is just a matter of following the proof for the case of the heat equation.

�

Let us finally focus on the “rough case” where the coefficients of (3.13)
are only in L∞T (Ḃn/pp,1 ).

Proposition 3.4. — Let a, b, λ and µ be bounded functions satisfy-
ing (3.14). Assume that a∇µ, b∇λ, µ∇a and λ∇b are in L∞(0, T ; Ḃn/p−1

p,1 )
for some 1 < p < ∞. There exist two constants η and κ such that if for
some m ∈ Z we have
(3.16)

min
(

inf
(t,x)∈[0,T ]×Rn

Ṡm(2aµ+ bλ)(t, x), inf
(t,x)∈[0,T ]×Rn

Ṡm(aµ)(t, x)
)
>
α

2 ,

(3.17) ‖(Id−Ṡm)(µ∇a, a∇µ, λ∇b, b∇λ)‖
L∞
T

(Ḃn/p−1
p,1 ) 6 ηα

then the solutions to (3.13) satisfy for all t ∈ [0, T ],

‖u‖L∞t (Ḃsp,1) + α‖u‖L1
t (Ḃ

s+2
p,1 ) 6 C

(
‖u0‖Ḃsp,1 + ‖f‖L1

t (Ḃsp,1)
)

· exp
(C
α

∫ t

0
‖Ṡm(µ∇a, a∇µ, λ∇b, b∇λ)‖2

Ḃ
n/p
p,1

dτ
)

whenever −min(n/p, n/p′) < s 6 n/p− 1.

Proof. — As for the heat equation, we split the coefficients of the system
into a smooth (but large) low frequency part and a rough (but small) high
frequency part. It turns out to be more convenient to work directly on
the equations for d and Ω. More precisely, as regards d, we write (starting
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from (3.15) and denoting c := 2aµ+ bλ) that

∂td− div(c∇d) = −∇c · ∇d+A(D)(f + 2a∇µ ·D(u) + b∇λ div u)
+ [A(D), aµ]∆u+ [A(D), aµ+ bλ]∇ div u,

whence, denoting dj := ∆̇jd,

∂tdj − div(Ṡmc∇dj) = div([∆̇j , Ṡmc]∇d) + ∆̇j

(
div((Id−Ṡm)c∇d)

− Ṡm∇c · ∇d− (Id−Ṡm)∇c · ∇d
)

+ ∆̇jA(D)
(
f + 2Ṡm(a∇µ) ·D(u)

+ 2(Id−Ṡm)(a∇µ) ·D(u) + Ṡm(b∇λ) div u+ (Id−Ṡm)(b∇λ) div u
)

+ ∆̇j

([
A(D), Ṡm(aµ)

]
∆u+

[
A(D), Ṡm(aµ+ bλ)

]
∇ div u

+ [A(D), (Id−Ṡm)(aµ)]∆u+ [A(D), (Id−Ṡm)(aµ+ bλ)]∇ div u
)
.

Under Condition (3.11), Lemmas A.5, A.6 and A.7 imply that

‖ div([∆̇j , Ṡmc]∇d)‖Lp . cj2−js‖Ṡm∇c‖Ḃn/pp,1
‖∇d‖Ḃsp,1 ,

‖∆̇j div((Id−Ṡm)c∇d)‖Lp . cj2−js‖(Id−Ṡm)c‖
Ḃ
n/p
p,1
‖∇d‖Ḃs+1

p,1
,

‖∆̇j(Ṡm∇c · ∇d)‖Lp . cj2−js‖Ṡm∇c‖Ḃn/pp,1
‖∇d‖Ḃsp,1 ,

‖∆̇j((Id−Ṡm)∇c · ∇d) . cj2−js‖(Id−Ṡm)∇c‖
Ḃ
n/p−1
p,1

‖∇d‖Ḃs+1
p,1

,

‖∆̇j [A(D), Ṡm(aµ)]∆u‖Lp . cj2−js‖∇Ṡm(aµ)‖
Ḃ
n/p
p,1
‖∆u‖Ḃs−1

p,1
,

‖∆̇j [A(D), (Id−Ṡm)(aµ)]∆u‖Lp . cj2−js‖∇(Id−Ṡm)(aµ)‖
Ḃ
n/p−1
p,1

‖∆u‖Ḃsp,1 ,

and similar estimates for

∆̇jA(D)(Ṡm(a∇µ) ·D(u)), ∆̇jA(D)((Id−Ṡm)(a∇µ) ·D(u)),
∆̇jA(D)(Ṡm(b∇λ) div u), ∆̇jA(D)((Id−Ṡm)(b∇λ) div u),

∆̇j [A(D), Ṡm(aµ+ bλ)]∇ div u, ∆̇j [A(D), (Id−Ṡm)(aµ+ bλ)]∇div u.
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The curl part Ω of the velocity may be treated in the same way. Therefore
we get

‖u‖L∞t (Ḃsp,1) + α‖u‖L1
t (Ḃ

s+2
p,1 )

. ‖u0‖Ḃsp,1 + ‖f‖L1
t (Ḃsp,1)

+
∫ t

0
‖Ṡm(a∇µ, µ∇a, b∇λ, λ∇b)‖

Ḃ
n/p
p,1
‖u‖Ḃs+1

p,1
dτ

+
∫ t

0
‖(Id−Ṡm)(a∇µ, µ∇a, b∇λ, λ∇b)‖

Ḃ
n/p−1
p,1

‖u‖Ḃs+2
p,1

dτ.

Obviously the last term may be absorbed by the left-hand side if η is small
enough in (3.17) and the last-but-one term may be handled by interpo-
lation according to (3.8). So applying Gronwall lemma yields the desired
inequality. �

For the sake of completeness, we still have to justify the existence of a
solution to (3.13). More precisely, we want to establish the following result:

Proposition 3.5. — Let p be in (1,+∞). Let a, b, λ and µ be bounded
functions satisfying (3.14). Assume in addition that there exist some con-
stants ā, b̄, λ̄ and µ̄ such that

(3.18) 2āµ̄+ b̄λ̄ > 0 and āµ̄ > 0,

and such that a− ā, b− b̄, µ− µ̄ and λ− λ̄ are in C([0, T ]; Ḃn/pp,1 ). Finally,
suppose that

(3.19) lim
m→+∞

‖(Id−Ṡm)(a− ā, b− b̄, λ− λ̄, µ− µ̄)‖
L∞
T

(Ḃn/pp,1 ) = 0.

Then for any data u0 ∈ Ḃsp,1 and f ∈ L1(0, T ; Ḃsp,1) with s satisfying (3.11),
System (3.13) admits a unique solution u ∈ C([0, T ]; Ḃsp,1)∩L1(0, T ; Ḃs+2

2,1 ).
Besides, the estimates of Proposition 3.4 are fulfilled for all large enough
m ∈ Z.

Proof. — The proof is based on the continuity method as explained in
e.g. [19] (and used in [11] in a similar context as ours). For θ ∈ [0, 1], we
introduce the following second order operator Pθ acting on vector-fields u
as follows:

Pθu := −2aθ div(µθD(u))− bθ∇(λθ div u),
where aθ := (1 − θ)ā + θa, bθ := (1 − θ)b̄ + θb, and so on. We claim that
one may find some m ∈ Z independent of θ such that for all θ ∈ [0, 1], the
conditions (3.16) and (3.17) are satisfied by aθ, bθ, µθ and λθ. Indeed, we
notice that

aθ − ā = θ(a− ā).
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Hence, for all θ ∈ [0, 1],

‖(Id−Ṡm)(aθ − ā)‖
L∞
T

(Ḃn/pp,1 ) 6 ‖(Id−Ṡm)(a− ā)‖
L∞
T

(Ḃn/pp,1 ),

and similar properties hold for bθ, λθ and µθ. In particular, owing to the
continuous embedding of Ḃn/pp,1 in the set of continuous bounded functions,
and to (3.19), we deduce that there exists somem ∈ Z so that the ellipticity
condition (3.16) is satisfied by operator Pθ for all θ ∈ [0, 1].

Likewise, we have for instance

µθ∇aθ = θ(1− θ)µ̄∇a+ θ2µ∇a

and similar relations for the other coefficients. Hence one may find some
large enough m so that (3.17) is satisfied for all θ ∈ [0, 1]. In addition, the
above relation shows that

‖Ṡm(µθ∇aθ)‖Ḃn/pp,1
6 µ̄‖Ṡm∇a‖Ḃn/pp,1

+ ‖Ṡm(µ∇a)‖
Ḃ
n/p
p,1

.

Hence all the terms appearing in the exponential term of the estimate in
Proposition 3.4 may be bounded by a constant depending only on m and
on the coefficients a, b, λ and µ. As a conclusion, one may thus find some
constant C independent of θ such that any solution w of

∂tw − Pθw = g, w|t=0 = w0

satisfies

(3.20) ‖w‖L∞
T

(Ḃsp,1) + α‖w‖L1
T

(Ḃs+2
p,1 ) 6 C

(
‖w0‖Ḃsp,1 + ‖g‖L1

T
(Ḃsp,1)

)
.

After this preliminary work, one may start with the proof of existence
(uniqueness follows from the estimates of Proposition 3.4). Let E be the set
of those θ in [0, 1] such that for every data u0 and f (as in the statement
of the theorem), System

(3.21) ∂tu− Pθu = f, u|t=0 = u0

has a solution u in the set F sp (T ) := C([0, T ]; Ḃsp,1) ∩ L1(0, T ; Ḃs+2
p,1 ).

Note that according to Proposition 2.1, the set E contains 0 hence is
nonempty. So it suffices to find a fixed ε > 0 such that for all θ0 ∈ E , we
have

(3.22) [θ0 − ε, θ0 + ε] ∩ [0, 1] ⊂ E .

So let us fix some θ0 ∈ E , u0 ∈ Ḃsp,1, f ∈ L1(0, T ; Ḃsp,1) and v ∈ F sp (T ) and
consider the solution u to the system

∂tu− Pθ0u = f + (Pθ − Pθ0)v
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with θ ∈ [0, 1] such that |θ− θ0| 6 ε. Given that θ0 is in E , the existence of
u in F sp (T ) is granted if (Pθ − Pθ0)v ∈ L1(0, T ; Ḃsp,1). So let us first check
this: we have

(Pθ − Pθ0)v = (θ − θ0)
(

2aθ0 div
(
(µ̄− µ)D(v)

)
+ 2(ā− a) div(µθD(v))

+ bθ0∇
(
(λ̄− λ) div v

)
+ (b̄− b)∇

(
λθ div v

))
.

Under Condition (3.11), one may thus conclude thanks to product esti-
mates in Besov spaces (see Lemma A.5) that (Pθ −Pθ0)v ∈ L1(0, T ; Ḃsp,1).
Furthermore

‖(Pθ − Pθ0)v‖Ḃsp,1 6 Cε
(

(ā+ ‖aθ0 − ā‖Ḃn/pp,1
)‖µ− µ̄‖

Ḃ
n/p
p,1

+ (µ̄+ ‖µθ − µ̄‖Ḃn/pp,1
)‖a− ā‖

Ḃ
n/p
p,1

+ (b̄+ ‖bθ0 − b̄‖Ḃn/pp,1
)‖λ− λ̄‖

Ḃ
n/p
p,1

+ (λ̄+ ‖λθ − λ̄‖Ḃn/pp,1
)‖a− ā‖

Ḃ
n/p
p,1

)
‖Dv‖Ḃs+1

p,1
.

The coefficients may be bounded in terms of the initial coefficients a, b, λ
and µ. Hence, applying (3.20) we get for some constant independent of θ0
and of θ,

‖u‖L∞
T

(Ḃsp,1) + α‖u‖L1
T

(Ḃs+2
p,1 ) 6 C

(
ε‖v‖L1

T
(Ḃs+2
p,1 ) + ‖w0‖Ḃsp,1 + ‖f‖L1

T
(Ḃsp,1)

)
.

Taking ε small enough, it becomes clear that the linear map Ψθ : v 7→ u

is contractive on the Banach space F sp (T ). Hence it has a (unique) fixed
point u ∈ F sp (T ). In other words, u satisfies (3.21).
Given that E is nonempty and that ε is independent of θ0, one may

now conclude that 1 is in E . Therefore, there exists a solution u ∈ F sp (T )
to (3.13). �

Remark 3.6. — Under the assumptions of the above proposition, the
constructed solution u satisfies ∂tu ∈ L1(0, T ; Ḃsp,1). Indeed, it suffices to
notice that

∂tu = f+(ā+(a−ā)) div(µ̄+(µ−µ̄)D(u))+(b̄+(b− b̄))∇(λ̄+(λ−λ̄) div u),

and to use Lemma A.5 together with the facts that ∇u is in L1(0, T ; Ḃs+1
p,1 ).

Moreover we have

‖∂tu‖L1
T

(Ḃsp,1) 6 C
(
‖u0‖Ḃsp,1 + ‖f‖L1

t (Ḃsp,1)
)

· exp
(C
α

∫ t

0
‖Ṡm(µ∇a, a∇µ, λ∇b, b∇λ)‖2

Ḃ
n/p
p,1

dτ
)
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where C may depend also on the norm of a− ā, b− b̄, λ− λ̄ and µ− µ̄ in
L∞(0, T ; Ḃn/pp,1 ).

3.2. Proof of Theorem 1.1

As we want to consider (possibly) large velocities, we introduce, as in the
almost homogeneous case the free solution to the Lamé system correspond-
ing to ρ ≡ 1, that is the vector-field uL in Ep(T ), given by Proposition 2.1,
satisfying(2)

L1uL = 0, u|t=0 = u0.

We claim that the Banach fixed point theorem applies to the map Φ defined
in (3.2) in some closed ball B̄Ep(T )(uL, R) with suitably small T and R.

Denoting ũ := u− uL, we see that ũ has to satisfy

(3.23)


Lρ0 ũ = ρ−1

0 div
(
I2(v, v) + I3(v, v) + I4(v, v)

+I5(v)
)

+ (L1 − Lρ0)uL,
ũ|t=0 = 0.

If the right-hand side is in L1(0, T ; Ḃn/p−1
p,1 ) and if there exists some m ∈ Z

so that (3.16) and (3.17) are fulfilled then Proposition 3.5 and Remark 3.6
ensure the existence of ũ in Ep(T ). Now, the existence of m so that

min
(

inf
x
Ṡm

(
2µ(ρ0)

ρ0
+ λ(ρ0)

ρ0

)
, inf
x
Ṡm

(µ(ρ0)
ρ0

))
>
α

2

and∥∥∥(Id−Ṡm)
(µ(ρ0)

ρ2
0
∇ρ0,

µ′(ρ0)
ρ0
∇ρ0,

λ(ρ0)
ρ2

0
∇ρ0,

λ′(ρ0)
ρ0
∇ρ0

)∥∥∥
Ḃ
n/p−1
p,1

6 ηα.

is ensured by the fact that all the coefficients (minus some constant) belong
to the space Ḃn/pp,1 which is defined in terms of a convergent series and
embeds continuously in the set of bounded continuous functions. The study
of the right-hand side of (3.23) will be carried out below.

(2)See (3.1) for the definition of operator L1.

TOME 64 (2014), FASCICULE 2



776 Raphaël DANCHIN

First step: Stability of B̄Ep(T )(uL, R) for small enough R and T

Proposition 3.4 and the definition of the multiplier space M(Ḃn/p−1
p,1 )

ensure that

‖ũ‖Ep(T ) 6 Ce
Cρ0,mT

(
‖(L1 − Lρ0)uL‖L1

T
(Ḃn/p−1
p,1 )(3.24)

+ ‖ρ−1
0 ‖M(Ḃn/p−1

p,1 )

(
‖I2(v, v)‖

L1
T

(Ḃn/pp,1 )

+ ‖I3(v, v)‖
L1
T

(Ḃn/pp,1 ) + ‖I4(v, v)‖
L1
T

(Ḃn/pp,1 )

+ ‖I5(v)‖
L1
T

(Ḃn/pp,1 )

))
for some constant Cρ0,m depending only on ρ0 and on m.
In what follows, we assume that T and R have been chosen so that (2.7)

is satisfied by v. Using the decomposition

(L1 − Lρ0)uL = (ρ−1
0 − 1) div

(
2µ(ρ0)D(uL) + λ(ρ0) div uL Id

)
+ div

(
2(µ(ρ0)− µ(1))D(u) + (λ(ρ0)− λ(1)) div u Id

)
,

and composition inequalities (1.5) and (1.6), we see that (L1 − Lρ0)uL ∈
L1(0, T ; Ḃn/p−1

p,1 ) and
(3.25)
‖(L1 − Lρ0)uL‖L1

T
(Ḃn/p−1
p,1 ) . ‖a0‖Ḃn/pp,1

(1 + ‖a0‖Ḃn/pp,1
)‖DuL‖L1

T
(Ḃn/pp,1 ).

Likewise, flow and composition estimates ensure that

(3.26) ‖Ii(v, w)‖
L1
T

(Ḃn/p−1
p,1 ) . (1 + ‖a0‖Ḃn/pp,1

)‖Dv‖
L1
T

(Ḃn/pp,1 )

· ‖Dw‖
L1
T

(Ḃn/pp,1 ) for i = 2, 3, 4

and that

(3.27) ‖I5(v)‖
L1
T

(Ḃn/pp,1 ) . T (1 + ‖a0‖Ḃn/pp,1
)(1 + ‖Dv‖

L1
T

(Ḃn/pp,1 )).

So plugging the above inequalities in (3.24) and keeping in mind that v
satisfies (2.7), we get after decomposing v into ṽ + uL:

‖ũ‖Ep(T ) 6 Ce
Cρ0,mT (1 + ‖a0‖Ḃn/pp,1

)2
(

(T + ‖a0‖Ḃn/pp,1
‖DuL‖L1

T
(Ḃn/pp,1 ))

+ ‖DuL‖2L1
T

(Ḃn/pp,1 )
+
(
‖DuL‖L1

T
(Ḃn/pp,1 )

+ ‖Dṽ‖
L1
T

(Ḃn/pp,1 )

)
‖Dṽ‖

L1
T

(Ḃn/pp,1 )

)
.

So, because ṽ ∈ BEp(T )(uL, R),
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‖ũ‖Ep(T ) 6 Ce
Cρ0,mT (1 + ‖a0‖Ḃn/pp,1

)2
(

(T + ‖a0‖Ḃn/pp,1
‖DuL‖L1

T
(Ḃn/pp,1 ))

+ (R+ ‖DuL‖L1
T

(Ḃn/pp,1 ))‖DuL‖L1
T

(Ḃn/pp,1 ) +R2
)
.

Therefore, if we first choose R so that for a small enough constant η,

(3.28) (1 + ‖a0‖Ḃn/pp,1
)2R 6 η

and then take T so that

(3.29) Cρ0,mT 6 log 2, T 6 R2,

‖a0‖Ḃn/pp,1
‖DuL‖L1

T
(Ḃn/pp,1 ) 6 R

2, ‖DuL‖L1
T

(Ḃn/pp,1 ) 6 R,

then we may conclude that Φ maps B̄Ep(T )(uL, R) into itself.

Second step: contraction estimates

Let us now establish that, under Condition (3.29) Φ is contractive. We
consider two vector-fields v1 and v2 in B̄Ep(T )(uL, R) and set u1 := Φ(v1)
and u2 := Φ(v2). Let δu := u2 − u1 and δv := v2 − v1. In order to prove
that Φ is contractive, it is mainly a matter of applying Proposition 3.4 to

Lρ0δu = ρ−1
0 div

(
(I2(v2, v2)− I2(v1, v1)) + (I3(v2, v2)− I3(v1, v1))

+ (I4(v2, v2)− I4(v1, v1)) + (I5(v2)− I5(v1))
)
.

So we have, given that Cρ0,mT 6 log 2,

‖δu‖Ep(T ) 6 C(1 + ‖a0‖Ḃn/pp,1
)
(
‖I2(v2, v2)− I2(v1, v1)‖

L1
T

(Ḃn/pp,1 )(3.30)

+ ‖I3(v2, v2)− I3(v1, v1)‖
L1
T

(Ḃn/pp,1 ) + ‖I4(v2, v2)

− I4(v1, v1)‖
L1
T

(Ḃn/pp,1 ) + ‖I5(v2)− I5(v1)‖
L1
T

(Ḃn/pp,1 )

)
.

In order to deal with the next term, we use the decomposition

I2(v2, v2)− I2(v1, v1 = λ(J−1
v2 ρ0)

(
TAv2 : ∇v2)(adj(DXv2)− adj(DXv1)

)
+
(
adj(DXv1)− Id

)(
λ(J−1

v2 ρ0)− λ(J−1
v1 ρ0)

)(
TAv2 : ∇v2)

+
(
adj(DXv1)− Id

)
λ(J−1

v1 ρ0)
(
( TAv2 − TAv1) : ∇v1 + TAv2 : ∇δv

)
+ terms pertaining to µ.
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Taking advantage of product laws in Besov spaces, of composition esti-
mates (1.5) and (1.6), and of the flow estimates in the appendix, we deduce
that for some constant Cρ0 depending only on ρ0:

‖I2(v2, v2)−I2(v1, v1)‖
L1
T

(Ḃn/pp,1 ) 6 Cρ0‖(Dv1, Dv2)‖
L1
T

(Ḃn/pp,1 )‖Dδv‖L1
T

(Ḃn/pp,1 ).

Similar estimates may be proved for the next two terms of the right-hand
side of (3.30). Concerning the last one, we use the decomposition

I5(v2)− I5(v1) =
(
adj(DXv1)− adj(DXv2)

)
P (J−1

v2 ρ0)

− adj(DXv1)
(
P (J−1

v2 ρ0)− P (J−1
v1 ρ0)

)
.

Hence

‖I5(v2)− I5(v1)‖
L1
T

(Ḃn/pp,1 ) 6 C(1 + ‖a0‖Ḃn/pp,1
)T‖Dδv‖

L1
T

(Ḃn/pp,1 ).

We end up with

‖δu‖Ep(T ) 6 C(1 + ‖a0‖Ḃn/pp,1
)2(T + ‖(Dv1, Dv2)‖

L1
T

(Ḃn/pp,1 )

)
‖Dδv‖

L1
T

(Ḃn/pp,1 ).

Given that v1 and v2 are in B̄Ep(T )(uL, R), our hypotheses over T and R
(with smaller η in (3.28) if need be) thus ensure that, say,

‖δu‖Ep(T ) 6
1
2‖δv‖Ep(T ).

One can thus conclude that Φ admits a unique fixed point in B̄Ep(T )(uL, R).

Third step: Regularity of the density

Granted with the above velocity field u in Ep(T ), we set ρ := J−1
u ρ0.

By construction, the couple (ρ, u) satisfies (1.2). Let us now prove that
a := ρ− 1 is in C([0, T ]; Ḃn/pp,1 ). We have

a = (J−1
u − 1)a0 + a0.

Given (A.11) and using the fact that Du ∈ L1(0, T ; Ḃn/pp,1 ), it is clear that
J−1
u − 1 belongs to C([0, T ]; Ḃn/pp,1 ). Hence a belongs to C([0, T ]; Ḃn/pp,1 ), too.

Because Ḃn/pp,1 is continuously embedded in L∞, Condition (1.7) is fulfilled
on [0, T ] (taking T smaller if needed).
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Last step: Uniqueness and continuity of the flow map

We now consider two couples (ρ1
0, u

1
0) and (ρ2

0, u
2
0) of data fulfilling the

assumptions of Theorem 1.1 and we denote by (ρ1, u1) and (ρ2, u2) two
solutions in Ep(T ) corresponding to those data. Setting δu := u2 − u1, we
see that

Lρ1
0
(δu) = (Lρ1

0
− Lρ2

0
)(u2)

+ (ρ1
0)−1 div

( 4∑
j=2

(
(I2
j (u2, u2)− I2

j (u1, u1)
)

+ (I2
5 (u2)− I2

5 (u1))
)

+ (ρ1
0)−1 div

( 4∑
j=2

((I2
j − I1

j )(u1, u1) + (I2
5 − I1

5 )(u1)
)

where Ii2, Ii3, Ii4 and Ii5 correspond to the quantities that have been defined
just above (3.2), with density ρi0. Note that those terms may be bounded
exactly as in the second step. So the only definitely new terms are (Lρ1

0
−

Lρ2
0
)(u2) and the last line. As regards (Lρ1

0
−Lρ2

0
)(u2), it may be decomposed

into

(Lρ1
0
− Lρ2

0
)(u2) =

(
(ρ1

0)−1 − (ρ2
0)−1) div

(
2µ(ρ1

0)D(u2) + λ(ρ1
0) div u2 Id

)
− (ρ2

0)−1 div
(
2(µ(ρ2

0)− µ(ρ1
0))D(u2) + (λ(ρ2

0)− λ(ρ1
0)) div u2 Id

)
.

Hence, combining composition, flow and product estimates, we get for t6T ,

‖(Lρ1
0
− Lρ2

0
)(u2)‖

L1
t (Ḃ

n/p−1
p,1 ) 6 Cρ1

0,ρ
2
0
‖δρ0‖Ḃn/pp,1

‖Du2‖
L1
t (Ḃ

n/p
p,1 ).

It is not difficult to show that the other “new" terms satisfy analogous
estimates. Hence, applying Proposition 3.4 to the system that is satisfied
by δu, we discover that for t 6 T,

‖δu‖Ep(t) 6 Cρ1
0,ρ

2
0

(
(t+ ‖(Du1, Du2)‖

L1
t (Ḃ

n/p
p,1 ))‖Dδu‖L1

t (Ḃ
n/p
p,1 )

+ ‖δu0‖Ḃn/pp,1
+ ‖δρ0‖Ḃn/pp,1

(t+ ‖(Du1, Du2)‖
L1
t (Ḃ

n/p
p,1 ))

)
.

Let us emphasize that the constant Cρ1
0,ρ

2
0
depends only on ρ2

0 through its
norm, for the integer m used in Proposition 3.4 corresponds to ρ1

0 only.
Hence if δρ0 is small enough then the above inequality recasts in

‖δu‖Ep(t) 6 Cρ1
0

(
(t+ ‖Du1‖

L1
t (Ḃ

n/p
p,1 ) + ‖δu‖Ep(t))‖δu‖Ep(t)

+ ‖δu0‖Ḃn/pp,1
+ ‖δρ0‖Ḃn/pp,1

(t+ ‖Du1‖
L1
t (Ḃ

n/p
p,1 ))

)
.

TOME 64 (2014), FASCICULE 2



780 Raphaël DANCHIN

An obvious bootstrap argument thus shows that if t, δu0 and δρ0 are small
enough then

‖δu‖Ep(t) 6 2Cρ0

(
‖δu0‖Ḃn/pp,1

+ ‖δρ0‖Ḃn/pp,1

)
.

As regards the density, we have

δa = J−1
u1 δa0 + (J−1

u2 − J−1
u1 )a2

0.

Hence for all t ∈ [0, T ],

‖δa(t)‖
Ḃ
n/p
p,1
6 C(1 + ‖Du1‖

L1
t (Ḃ

n/p
p,1 ))‖δa0‖Ḃn/pp,1

‖Dδu‖
L1
t (Ḃ

n/p
p,1 ).

So we eventually get uniqueness and continuity of the flow map on a small
enough time interval. Then iterating the proof yields uniqueness on the ini-
tial time interval [0, T ]. Note that it also yields Lipschitz continuity of the
flow map for the velocity as for fixed data (ρ1

0, u
1
0), one may find some neigh-

borhood and common time interval on which all the solutions constructed
in the previous steps exist.

3.3. Proof of Theorem 1.2

For u0 ∈ Ḃn/p−1
p,1 and ρ0 ∈ (1+Ḃn/pp,1 ), the local existence for (0.1) may be

proved directly (see [5, 10]) but only under the assumption that p 6 n in the
case of nonconstant viscosity coefficients. Here we get the result (including
uniqueness) from Theorem 1.1, and under the sole assumption that p <
2n. This is a mere corollary of the following proposition which states the
equivalence of the systems (0.1) and (1.2) in our functional setting.

Proposition 3.7. — Assume that the couple (ρ, u) with (ρ − 1) ∈
C([0, T ]; Ḃn/pp,1 ) and u ∈ Ep(T ) (with 1 6 p < 2n) is a solution to (0.1)
such that

(3.31)
∫ T

0
‖∇u‖

Ḃ
n/p
p,1

dt 6 c.

Let X be the flow of u defined in (1.1). Then the couple (ρ̄, ū) := (ρ◦X,u◦
X) belongs to the same functional space as (ρ, u), and satisfies (1.2).

Conversely, if (ρ̄ − 1, ū) belongs to C([0, T ]; Ḃn/pp,1 ) × Ep(T ) and (ρ̄, ū)
satisfies (1.2) and, for a small enough constant c,

(3.32)
∫ T

0
‖∇ū‖

Ḃ
n/p
p,1

dt 6 c
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then the map X defined in (1.3) is a C1 (and in fact a locally Ḃ
n/p+1
p,1 )

diffeomorphism over Rn and the couple (ρ, u) := (ρ̄◦X−1, ū◦X−1) satisfies
(0.1) and has the same regularity as (ρ̄, ū).

Proof. — Let us first consider a solution (ρ, u) to (0.1) with the above
properties. Then, the definition of X implies that DX − Id is in C([0, T ];
Ḃ
n/p
p,1 ). In addition, Proposition A.1 ensures that (ρ̄, ū) := (ρ ◦ X,u ◦ X)

belongs to the same functional space as (ρ, u), and (A.9), (A.10), (A.11)
below imply that A− Id, adj(DX)− Id and J−1 − 1 are in C([0, T ]; Ḃn/pp,1 ).
Therefore the product laws for Besov spaces enable us to use the algebraic
relations (A.5), (A.6), (A.7) and (A.8) whenever p < 2n. Therefore (ρ̄, ū)
fulfills (1.2).
Conversely, if we are given some solution (ρ̄, ū) in C([0, T ]; (1 + Ḃ

n/p
p,1 ))×

Ep(T ) to (1.2) then one may check (see the appendix of [13]) that, under
condition (2.7), the “flow” X(t, ·) of ū defined by

(3.33) X(t, y) := y +
∫ t

0
v̄(τ, y) dτ

is a C1 diffeomorphism over Rn, and satisfies DX − Id ∈ C([0, T ]; Ḃn/pp,1 ).
Hence one may construct the Eulerian vector-field u and Eulerian density
by setting

ρ(t, ·) := ρ ◦X−1(t, ·) and u(t, ·) := u ◦X−1(t, ·).

As above, the algebraic relations (A.5), (A.6), (A.7) and (A.8) hold when-
ever p < 2n. Hence (ρ, u) is a solution to (0.1). That (ρ, u) has the desired
regularity stems from Proposition A.1. �

Proof of Theorem 1.2. — We consider data (ρ0, u0) with ρ0 bounded
away from 0, (ρ0−1) ∈ Ḃn/pp,1 and u0 ∈ Ḃn/p−1

p,1 Then Theorem 1.1 provides
a local solution (ρ̄, ū) to System (1.2) in C([0, T ]; (1 + Ḃ

n/p
p,1 )) × Ep(T ). If

T is small enough then (3.32) is satisfied so Proposition 3.7 ensures that
(ρ̄ ◦X−1, ū ◦X−1) is a solution of (0.1) in the desired functional space.
In order to prove uniqueness, we consider two solutions (ρ1, u1) and

(ρ2, u2) corresponding to the same data (ρ0, u0), and perform the La-
grangian change of variable (pertaining to the flow of u1 and u2 respec-
tively). The obtained vector-fields ū1 and ū2 are in Ep(T ) and both sat-
isfy (1.2) with the same ρ0 and u0. Hence they coincide, as a consequence
of the uniqueness part of Theorem 1.1. �
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Appendix A.

A.1. Change of coordinates

Here we establish a result of regularity concerning changes of variables
in Besov spaces. Even though this is somewhat classical (at least in nonho-
mogeneous Besov spaces), we did not find any reference in the literature of
the estimates that we need. We here give a result in general Besov spaces
Ḃsp,q, the definition of which may be found in e.g. [1].

Proposition A.1. — Let X be a globally bi-Lipschitz diffeomorphism
of Rn and (s, p, q) with 1 6 p <∞ and −n/p′ < s < n/p (or just −n/p′ <
s 6 n/p if q = 1 and just −n/p′ 6 s < n/p if q =∞).

Then a 7→ a ◦X is a self-map over Ḃsp,q in the following cases:
(1) s ∈ (0, 1),
(2) s ∈ (−1, 0] and JX−1 is in the multiplier space M(Ḃ−sp′,q′) defined

in (2.9),
(3) s > 1 and (DX − Id) ∈ Ḃn/pp,1 .

Proof. — Let us first assume that s ∈ (0, 1) and q = p. Then one may
use the classical characterization of the norm of Ḃsp,p in terms of finite
differences (see e.g. [1]) so as to write:

‖u ◦X‖Ḃsp,p(Rn) =
(∫

Rn

∫
Rn

|u(X(y))− u(X(x))|p

|y − x|n+sp dy dx
) 1
p ·

Hence performing the change of variable x′ = X(x) and y′ = X(y), we get

‖u ◦X‖Ḃsp,p(Rn) =
(∫

Rn

∫
Rn

|u(y′)− u(x′)|p

|X−1(y′)−X−1(x′)|n+sp

· JX−1(y′)JX−1(x′) dy′ dx′
) 1
p

whence

‖u ◦X‖Ḃsp,1(Rn) 6 ‖JX−1‖
2
p

L∞(Rn)‖DX‖
s+n

p

L∞(Rn)‖u‖Ḃsp,1(Rn).

The condition that s < n/p ensures in addition that u belongs to some
Lebesgue space Lp∗(Rn) with p∗ <∞ (or in the set of continuous functions
going to 0 at infinity if q = 1 and s = n/p). Hence u◦X ∈ Lp∗(Rn) too and
one may thus conclude that u ◦X ∈ Ḃsp,p(Rn). An interpolation argument
then yields the desired result for any s ∈ (0, 1) and q ∈ [1,+∞].
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The result for negative s may be achieved by duality: we have

‖u ◦X‖Ḃsp,q(Rn) = sup
‖v‖

Ḃ
−s
p′,q′

(Rn)
61

∫
Rn
v(z)u(X(z)) dz.

Now, setting x = X(z), we have∫
Rn
v(z)u(X(z)) dz =

∫
Rn
u(x)v(X−1(x)) dx,

=
∫
Rn
u(x)v(X−1(x))JX−1(x) dx,

6 ‖u‖Ḃsp,q(Rn)‖v ◦X
−1JX−1‖Ḃ−s

p′,q′
(Rn).

So the definition of the multiplier space and the first part of the lemma
allows to conclude.
Finally, let us examine the cases of larger values of s. If 1 < s < 2 then

one may write
D(u ◦X) = (Du ◦X) ·DX.

As 0 < s− 1 < 1, the first part of the proof ensures that Du ◦X ∈ Ḃs−1
p,q .

As moreover (DX− Id) ∈ Ḃn/pp,1 , the standard product laws in Besov spaces
give the result.
If 2 < s < 3 then we use the algebraic relation,

D2(u ◦X) = (D2u ◦X)(DX,DX) +D2X · (Du ◦X).

Hence the result follows from product laws and the previous result applied
with s− 1 or s− 2.
The higher values of s may be achieved by induction, and the remaining

cases (s an integer) follow by interpolation. The details are left to the
reader. �

A.2. Some properties of Lagrangian coordinates

Let us first derive a few algebraic relations involving changes of coordi-
nates. We are given a C1-diffeomorphism X over Rn. For H : Rn → Rm, we
agree that H̄(y) = H(x) with x = X(y). With this convention, the chain
rule writes

(A.1) DyH̄(y) = DxH(X(y)) ·DyX(y)

with (DxH)ij = ∂xjH
i and (DyX)ij = ∂yjX

i,
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or, denoting ∇y = TDy and ∇x = TDx,

∇yH̄(y) = (∇yX(y)) · ∇xH(X(y)).

Hence we have

(A.2) DxH(x) = DyH̄(y) ·A(y) with A(y) = (DyX(y))−1 = DxX
−1(x).

Lemma A.2. — Let K be a C1 scalar function over Rn and H, a C1

vector-field. Let X be a C1 diffeomorphism such that J := det(DyX) > 0.
Then the following relations hold true:

∇xK = J−1 divy (adj(DyX)K̄),(A.3)

divxH = J−1 divy (adj(DyX)H̄),(A.4)

where adj(DyX) stands for the adjugate of DyX.

Proof. — The first item stems from the following series of computations
(based on integrations by parts, changes of variable and (A.2)) which hold
for any vector-field φ with coefficients in C∞c (Rn):∫
∇xK(x) · φ(x) dx = −

∫
K(x) divx φ(x) dx,

= −
∫
K̄(y) divx φ(y)J(y) dy

= −
∫
J(y)K̄(y)Dyφ̄(y) : A(y) dy,

=
∫
φ̄(y) · divy (adj(DyX)K̄)(y) dy,

=
∫
φ(x)· divy (adj(DyX)K̄)(X−1(x))J−1(X−1(x)) dx.

Proving the second item is similar. �

Combining (A.2), (A.4) and (A.3), we deduce that if u : Rn → Rn and
P : Rn → R then

∆xu = J−1 divy (adj(DyX)∇xu)(A.5)

= J−1 divy (adj(DyX)TA∇yū),

∇x divx u = J−1 divy (adj(DyX) divx u)(A.6)

= J−1 divy (adj(DyX)TA : ∇yū),

∇xP = J−1 divy (adj(DyX)P̄ ).(A.7)
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Note that we will use the above relations in the case where X is the flow
of some time-dependent vector field u, defined by the relation

X(t, y) = y +
∫ t

0
u(τ,X(τ, y)) dτ for all t ∈ [0, T ].

Hence we will also have

(A.8) J ∂tρ+ div(ρu) = ∂t(Jρ̄) and J ∂t(ρu) + div(ρu⊗ u) = ∂t(Jρ̄ū).

Let us now establish some estimates for the flow Xv of some given “La-
grangian” vector field (that is Xv is defined by (3.33)).

Lemma A.3. — Let p ∈ [1,+∞) and v̄ be in Ep(T ) satisfying (2.7). Let
Xv be defined by (3.33). Then we have for all t ∈ [0, T ],

‖ Id− adj(DXv(t))‖Ḃn/pp,1
. ‖Dv̄‖

L1
t (Ḃ

n/p
p,1 ),(A.9)

‖ Id−Av(t)‖Ḃn/pp,1
. ‖Dv̄‖

L1
t (Ḃ

n/p
p,1 ),(A.10)

‖J±1
v (t)− 1‖

Ḃ
n/p
p,1
. ‖Dv̄‖

L1
t (Ḃ

n/p
p,1 ).(A.11)

Furthermore, if w̄ is a vector field such that Dw̄ ∈ L1(0, T ; Ḃn/pp,1 ) then

‖(adj(DXv)DAv (w̄)−D(w̄))(t)‖
Ḃ
n/p
p,1

(A.12)

. ‖Dv̄‖
L1
t (Ḃ

n/p
p,1 )‖Dw̄‖L1

t (Ḃ
n/p
p,1 ),

‖(adj(DXv) divAv (w̄)− div w̄ Id)(t)‖
Ḃ
n/p
p,1

(A.13)

. ‖Dv̄‖
L1
t (Ḃ

n/p
p,1 )‖Dw̄‖L1

t (Ḃ
n/p
p,1 ).

Proof. — Recall that (see e.g. the appendix of [14]) for any n×n matrix
C we have

(A.14) Id− adj(Id +C) =
(
C − (TrC) Id

)
+ P2(C),

where the entries of the matrix P2(C) are at least quadratic polynomials.
Applying this relation to the matrix DX(t), and using the fact that

(A.15) DXv(t, y)− Id =
∫ t

0
Dv̄(τ, y) dτ,

we deduce that

Id− adj(DXv(t)) =
∫ t

0

(
Dv̄ − div v̄ Id

)
dτ + P2

((∫ t

0
Dv̄ dτ

))
.

Given that Ḃn/pp,1 is a Banach algebra and that (2.7) holds, we readily
get (A.9).
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In order to prove (A.10), we just use the fact that, under assump-
tion (2.7), we have

(A.16) Av(t) = (Id +Cv(t))−1 =
∑
k∈N

(−1)k(Cv(t))k with Cv(t) =
∫ t

0
Dv̄ dτ,

and that Ḃn/pp,1 is a Banach algebra.
As regards (A.11), we write

Jv(t, y) = 1 +
∫ t

0
div v(τ,Xv(τ, y)) Jv(τ, y) dτ(A.17)

= 1 +
∫ t

0
(Dv̄ : adj(DXv))(τ, y) dτ.

Hence, if Condition (2.7) holds then we have (A.11) for Jv. In order to
get the inequality for J−1

v , it suffices to use the fact that

J−1
v (t, y)−1 = (1+(Jv(t, y)−1))−1−1 =

∑
k>1

(−1)k
(∫ t

0
Dv̄ : adj(DXv) dτ

)k
.

For proving (A.12), we use the decomposition

2(adj(DXv)DAv (w̄)−D(w̄)) = (adj(DXv)− Id)(Dw̄ +∇w̄)
+ (adj(DXv)− Id)

(
Dw̄ · (A− Id)

+ ( TA− Id) · ∇w̄
)
.

Hence the desired inequality stems from (A.9) and (A.10), and from the fact
that Ḃn/pp,1 is a Banach algebra. Inequality (A.13) is similar. This completes
the proof of the lemma. �

Lemma A.4. — Let v̄1 and v̄2 be two vector-fields satisfying (2.7), and
δv := v̄2 − v̄1. Then we have for all p ∈ [1,+∞) and all t ∈ [0, T ] (with
obvious notation):

(A.18) ‖A2(t)−A1(t)‖
Ḃ
n/p
p,1
. ‖Dδv‖

L1
t (Ḃ

n/p
p,1 ),

(A.19) ‖ adj(DX2(t))− adj(DX1(t))‖
Ḃ
n/p
p,1
. ‖Dδv‖

L1
t (Ḃ

n/p
p,1 ),

(A.20) ‖J±1
2 (t)− J±1

1 (t)‖
Ḃ
n/p
p,1
. ‖Dδv‖

L1
t (Ḃ

n/p
p,1 ).

Proof. — In order to prove the first inequality, we use the fact that, for
i = 1, 2, we have

Ai = (Id +Ci)−1 =
∑
k>0

(−1)kCki with Ci(t) =
∫ t

0
Dv̄i dτ.
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Hence

A2 −A1 =
∑
k>1

(
Ck2 − Ck1

)
=
(∫ t

0
Dδv dτ

)∑
k>1

k−1∑
j=0

Cj1C
k−1−j
2 .

So using the fact that Ḃn/pp,1 is a Banach algebra, it is easy to conclude
to (A.18).
The second inequality is a consequence of the decomposition (A.14) and

of the Taylor formula which ensures that, denoting δC := C2 − C1,

adj(DX2)− adj(DX1) = (Tr(δC)) Id−δC + dP2(C1)(δC)

+ 1
2d

2P2(C1, C1)(δC, δC) + · · ·

where the coefficients of P2 are polynomials of degree n− 1. As the sum is
finite and Ḃn/pp,1 is a Banach algebra, we get (A.19).
Proving the third inequality relies on similar arguments. It is only a

matter of using (A.17). The details are left to the reader. �

A.3. Commutator and product estimates

This last paragraph is devoted to the proof of commutator and product
estimates that have been used for investigating the Lamé system. Those
proofs rely on the following Bony decomposition (first introduced in [2])
for the product of two functions:

(A.21) fg = Tfg +R(f, g) + Tgf.

The paraproduct and remainder operators T and R are defined by

Tfg :=
∑

j′6j−2
∆̇j′f∆̇jg and R(f, g) :=

∑
|j′−j|61

∆̇j′f∆̇jg,

where (∆̇j)j∈Z stands for some homogeneous Littlewood-Paley decomposi-
tion.

Lemma A.5. — Let p be in [1,+∞] and the real numbers ν and σ satisfy

ν > 0 and −min
(n
p
,
n

p′

)
< σ 6

n

p
− ν.

Then the following estimate holds true for all tempered distributions f
and g over Rn:

‖fg‖Ḃσp,1 . ‖f‖Ḃn/p−νp,1
‖g‖Ḃσ+ν

p,1
.
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Proof. — The result relies on Bony decomposition (A.21). The standard
continuity results for the paraproduct and remainder operators ensure that
(see e.g. [1], Chap. 2):

‖Tfg‖Ḃσp,1 . ‖f‖Ḃ−ν∞,1‖g‖Ḃσ+ν
p,1

if ν > 0,

‖Tgf‖Ḃσp,1 . ‖g‖
Ḃ
σ+ν−n/p
∞,1

‖f‖
Ḃ
n/p−ν
p,1

if σ + ν − n/p 6 0,

‖R(f, g)‖Ḃσp,1 . ‖f‖
Ḃ
n/p−ν
p,1

‖g‖Ḃσ+ν
p,1

if σ > −min(n/p, n/p′).

So the result follows once noticed that Ḃsp,1 ↪→ Ḃ
s−n/p
∞,1 for any s ∈ R. �

Lemma A.6. — Assume that σ, ν and p are such that

(A.22) 1 6 p 6 +∞, 0 6 ν 6 n

p
and −min

(n
p
,
n

p′

)
− 1 < σ 6

n

p
− ν.

There exists a constant C depending only on ν, p, σ and n such that for
all k ∈ {1, · · · , n}, we have for some sequence (cj)j∈Z with ‖c‖`1(Z) = 1:

‖∂k[a, ∆̇j ]w‖Lp 6 Ccj2−jσ‖∇a‖Bn/p−νp,1
‖w‖Bσ+ν

p,1
for all j ∈ Z.

Proof. — Taking advantage of the Bony decomposition (A.21), we
rewrite the commutator as(3)

(A.23) ∂k([a, ∆̇j ]w) = ∂k([Ta, ∆̇j ]w)︸ ︷︷ ︸
R1
j

+ ∂kT
′
∆̇jw

a︸ ︷︷ ︸
R2
j

− ∂k∆̇jT
′
wa︸ ︷︷ ︸

R3
j

.

Arguing as in the proof of Lemma 6 in [12], we get

‖R1
j‖Lp 6 C

∑
|j′−j|64

‖∇Ṡj′−1a‖L∞‖∆̇j′w‖Lp .

Now, for ν > 0, we have

‖∇Ṡj′−1a‖L∞ 6 C2j
′ν‖∇a‖Ḃ−ν∞,1 .

Therefore, for some sequence (cj)j∈Z in the unit sphere of `1(Z),

(A.24) ‖R1
j‖Lp 6 Ccj2−jσ‖∇a‖Ḃ−ν∞,1‖w‖Ḃσ+ν

p,1
.

To deal with R2
j , we use the fact that, owing to the localization properties

of the Littlewood-Paley decomposition, we have

R2
j =

∑
j′>j−2

∂k
(
Sj′+2∆̇jw ∆̇j′a

)
.

(3)Here we use the notation T ′
uv := Tuv +R(u, v).
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Hence, using the Bernstein and Hölder inequalities,

‖R2
j‖Lp 6 C

∑
j′>j−2

‖Sj′+2∆̇jw‖L∞‖∆̇j′∇a‖Lp ,

6 C2−jσ
∑

j′>j−2
2(j−j′)(np−ν)(2j(σ+ν−np )‖∆̇jw‖L∞

)
·
(
2j
′(np−ν)‖∆̇j′∇a‖Lp

)
.

Therefore, by virtue of convolution inequalities for series and because
n/p− ν > 0,

(A.25) ‖R2
j‖Lp 6 Ccj2−jσ‖∇a‖Bn/p−νp,1

‖w‖
B
σ+ν−n

p
∞,1

.

Next, from standard continuity results, we know that the paraproduct and
the remainder map Bσ+ν

p,1 × B
n/p−ν+1
p,1 in Bσ+1

p,1 whenever σ + ν − n/p 6 0
and σ + 1 > −min(n/p, n/p′). We thus have

(A.26) ‖R3
j‖Lp 6 Ccj2−jσ‖∇a‖Bn/p−νp,1

‖w‖Bσ+ν
p,1

.

Putting Inequalities (A.24), (A.25) and (A.26) together, and using classical
embedding completes the proof of the lemma. �

Lemma A.7. — Let A(D) be a Fourier multiplier of degree 0. Then the
following estimate holds

‖[A(D), q]w‖Ḃσ+1
p,1
6 C‖q‖

Ḃ
1−ν+n/p
p,1

‖w‖Ḃσ+ν
p,1

whenever
ν > 0 and −min

(n
p
,
n

p′

)
− 1 < σ 6

n

p
− ν.

Proof. — Taking advantage once again of Bony’s decomposition, we de-
compose the commutator into

(A.27) [A(D), q]w = [A(D), Tq]w +A(D)T ′wq − T ′A(D)wq.

According to Lemma 2.99 in [1], we have for ν > 0,

‖[A(D), Tq]w‖Ḃσ+1
p,1
6 C‖∇q‖Ḃ−ν∞,1‖w‖Ḃσ+ν

p,1
.

Next, given that A(D) is a homogeneous multiplier of degree 0, it maps any
homogeneous Besov space in itself. Therefore the last two terms of (A.27)
may be just bounded according to standard continuity results for the para-
product and remainder operators. �
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