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SPHERICAL VARIETIES AND WAHL’S CONJECTURE

by Nicolas PERRIN

Abstract. — Using the theory of spherical varieties, we give a type indepen-
dent very short proof of Wahl’s conjecture for cominuscule homogeneous varieties
for all primes different from 2.
Résumé. — En utilisant les variétés sphériques, nous donnons, en toute carac-

téristique impaire, une preuve courte et uniforme de la conjecture de Wahl pour
les variétés homogènes cominuscules.

1. Introduction

Let V be a smooth projective variety and let L andM be two line bundles
on V . It is natural to consider the so called Gaussian map:

H0(V × V, I∆ ⊗ L�M
)
−→ H0(V,Ω1

V ⊗ L⊗M
)
,

where I∆ is the ideal of the diagonal in V × V , where L �M is the ex-
ternal product on V × V and the map is induced by the restriction map
I∆ → I∆/I2

∆ ' Ω1
V . Wahl studied this map in detail. In particular in [20]

he conjectured that the Gaussian map should be surjective for V a projec-
tive rational homogeneous variety and L and M any ample line bundles.
This conjecture was proved by Kumar in characteristic 0 in [10]. Laksh-
mibai, Mehta and Parameswaran [11] considered the situation in positive
characteristic and proved that the following conjecture (now called LMP-
conjecture) implies Wahl’s conjecture in positive characteristic. From now
on in the introduction, the base field k is algebraically closed of positive
characteristic p.

Conjecture 1.1. — Let V be a rational projective homogeneous vari-
ety, let X = V × V and let X̃ be the blowing-up of the diagonal ∆ in X.
Then X̃ is Frobenius split compatibly with the exceptional divisor E.

Keywords: Frobenius splitting, spherical varieties, Wahl’s conjecture.
Math. classification: 14M27, 14M15, 20G10.



740 Nicolas PERRIN

This conjecture is equivalent to the existence of a splitting on V × V

with maximal multiplicity along the diagonal (see [11] for more on this).
This conjecture has been considered by several authors (see for exam-
ple [15], [12], [5], [13], [18]). In particular Brown and Lakshmibai in [5]
proved this conjecture for minuscule homogeneous varieties using Repre-
sentation Theoretic techniques and a case by case analysis.
In this paper we give a new proof of LMP-conjecture and therefore

of Wahl’s conjecture for cominuscule homogeneous varieties (see Defini-
tion 4.1) using the theory of spherical varieties. Let V be a cominuscule ho-
mogeneous variety and let X̃ be the blow-up of the diagonal in X = V ×V .

Theorem 1.2. — Assume that p 6= 2, then X̃ is Frobenius split com-
patibly with the exceptional divisor.

Since any minuscule homogeneous variety is cominuscule for some other
group this also implies the result in the minuscule case. The advantages of
this proof is that it is mainly geometric, it completely avoids the case by
case analysis in [5] and it is very short.

One of the main arguments is to use a consequence of results of Littel-
mann: If V is cominuscule, then X = V × V is spherical. Using this and
a result of Brion and Inamdar [3], a very simple proof of Theorem 1.2 is
given in Section 2 for large primes and in particular in characteristic 0. This
result might have been known to Inamdar as a remark at the end of the
paper [15] seems to indicate. We thank Niels Lauritzen for pointing this to
us.
To obtain the result for all odd primes, we need to do a parabolic

induction from a symmetric variety and use a result of de Concini and
Springer [6].

Acknowledgement. — I want to thank Michel Brion for useful email
exchanges on the subject in particular for the reference [6] and Martí Lahoz
Vilalta for useful discussions. I also thank the referee for valuable comments
especially corrections and simplifications for the proofs of Corollaries 3.2
and 3.3.

2. Very simple proof for large primes

In this section we give a very short proof of Theorem 1.2 for large primes.
Here we assume that the base field k is of characteristic 0. Write V = G/P

with G semisimple and P a parabolic subgroup. Write X = V × V , write
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WAHL’S CONJECTURE 741

X̃ for the blow-up of the diagonal and E for the exceptional divisor. The
following is a consequence of results of Littelmann [14].

Theorem 2.1. — If P is cominuscule, then X and X̃ are spherical for
the diagonal action of G.

Actually G/P × G/P is G-spherical if and only if P is minuscule or
cominuscule, see [17]. We may thus apply the following result (see [3, The-
orem 1]) to X̃ and E.

Theorem 2.2. — For Z a G-spherical variety, its reduction Zp modulo
a prime p is Frobenius split compatibly with all closed G-stable subvarieties
for all but finitely many p.

Corollary 2.3. — The variety X̃p is Frobenius split compatibly with
Ep for all but finitely many p.

3. Frobenius splitting of symmetric varieties

In this section we extend results of de Concini and Springer [6] on Frobe-
nius splitting of wonderful compactifications to any symmetric varieties.
The results we obtain are probably well known to the experts but we could
not find a reference for them. We assume from now on that the base field k
has positive characteristic p 6= 2.
Recall that for L a connected reductive group, a closed subgroup K is

called spherical if L/K has a dense orbit of a Borel subgroup BL of L.
An embedding of L/K is a normal L-variety equivariantly containing L/K
as an open orbit. An embedding is called simple if it contains a unique
closed L-orbit and toroidal if the BL-stable divisors containing an L-orbit
are L-stable. We refer to [9] for further results on spherical embeddings.

From now on in this section, we fix L a connected semisimple algebraic
group of adjoint type and θ a group involution on L. Let Lθ be the subgroup
of θ-invariant elements. We have NL(Lθ) = Lθ (see [8, Corollary 1.3]).
Write (Lθ)0 for the connected component containing the identity element
in Lθ and let K be a subgroup such that (Lθ)0 ⊂ K ⊂ Lθ. Then L/Lθ

is a homogeneous symmetric variety and therefore a spherical variety (see
[19]) thus L/K is also spherical. It is actually symmetric for the universal
covering L̃ of L (see Remark 3.5). We want to extend Frobenius splitting
results for embeddings of L/Lθ obtained by de Concini and Springer to
embeddings of L/K. We fix some notation. Let TL be a maximal torus of
L containing a split maximal torus S (i.e. a maximal torus such that θ|S

TOME 64 (2014), FASCICULE 2



742 Nicolas PERRIN

acts as the inverse) and let BL be a Borel subgroup of L containing TL.
Recall from [4, Theorem 4.1.15], that for any parabolic subgroup Q− of L,
there is a unique BL-canonical splitting τL/Q− ∈ H0(L/Q−, ω1−p

L/Q−). We
recall the following results from [6].

Proposition 3.1. — Let L be of adjoint type and θ be a group invo-
lution of L.
(ı) There exists a unique simple smooth projective toroidal embedding Y

of L/Lθ.
(ıı) There exist a parabolic subgroupQ of L containing BL, an open affine

subset Y0 of Y which meets all the L-orbits and Z a closed subvariety of
Y0 such that:

• The Levi subgroup L(Q) of Q containing TL acts on Z and its
derived subgroup D(L(Q)) acts trivially on Z so that Z is a toric
variety for a quotient of L(Q)/D(L(Q));

• The multiplication map Ru(Q)× Z→ Y0 is an isomorphism.

(ııı) Let Q− be the parabolic subgroup opposite to Q with respect to TL.
Then the unique closed orbit in Y is isomorphic to L/Q− and the pull-back
map Pic(Y)→ Pic(L/Q−) is injective.

(ıv) The irreducible L-stable divisors (Yi)i∈I in Y are smooth with nor-
mal crossing and any L-orbit closure is the intersection of a unique sub-
family (Yi)i∈J with J ⊂ I of irreducible L-stable divisors.

(v) Write ∂Y for the union of the divisors (Yi)i∈I, we have the formula
ωY(∂Y)|L/Q− = ωL/Q− .

(vı) The BL-canonical splitting τL/Q− ∈ H0(L/Q−, ω1−p
L/Q−) can be lifted

through the restriction map to a BL-semiinvariant τY∈H0(Y, ωY(∂Y)1−p).

Proof.
(ı) and (ıv) are proved in [6, Theorem 3.9]. (ıı) is proved in [6, Propo-

sition 3.8]. (ııı) is proved in [6, Theorem 3.9 and Theorem 4.2]. (v) is
simply adjunction formula. For (vı) the result is not stated in [6] but
follows from their results. Write M = H0(Y, ωY(∂Y)1−p) and M ′′ =
H0(L/Q−, ω1−p

L/Q−). The representation M ′′ trivially has a good filtration
(see [4, Definition 4.2.4] for the definition of good filtrations). By [6, Propo-
sition 5.7] and since p is odd, the restriction map M → M ′′ is surjec-
tive. We need to prove that this map is again surjective on BL-invariants.
By [6, Theorem 5.10], the restriction map M → M ′′ is the first step of a
good filtration of M and the kernel M ′ of this map also admits a good
filtration. By properties of good filtrations (see [4, Definition 4.2.4 and
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Exercise 4.2.E.5]) we have for µ the highest weight of M ′′ the equal-
ity dimM

(BL)
µ = dimM ′µ

(BL) + dimM ′′µ
(BL) where M

(BL)
µ denotes the

BL-semiinvariants of weight µ in M (note that this also follows from [7,
Part (iv) in Proposition p. 121]). This proves the result. �

Corollary 3.2. — Let Y be an embedding of L/K.
(ı) There exists a toroidal embedding Y ′ of L/K and equivariant mor-

phisms Y Y ′
π //poo Y with p projective.

(ıı) Let π : Y ′ → Y as in (ı). There exist an open affine subset Y ′0 of Y ′
which meets all the L-orbits and Z ′ a closed subvariety of Y ′0 such that:

• The Levi subgroup L(Q) of Q containing TL acts on Z ′ and its
derived subgroup D(L(Q)) acts trivially on Z ′ so that Z ′ is a toric
variety for a quotient of L(Q)/D(L(Q));

• The multiplication map Ru(Q)× Z ′ → Y ′0 is an isomorphism.
(ııı) There exists morphisms π : Y ′ → Y and p : Y ′ → Y as in (ı) with

Y ′ smooth. If Y is complete, we may choose Y ′ complete as well.
(ıv) Assume Y complete and let π : Y ′ → Y as in (ı) with Y ′ complete.

Any closed orbit O in Y ′ is isomorphic to L/Q−.
(v) Let π : Y ′ → Y as in (ı) and assume that Y ′ is smooth. Then the

irreducible L-stable divisors (Y ′i )i∈I in Y ′ are smooth with normal crossing
and any L-orbit closure is the intersection of a unique subfamily (Y ′i )i∈J′
with J ′ ⊂ I ′ of irreducible L-stable divisors.
(vı) Let π : Y ′ → Y as in (ı) and assume that Y ′ is smooth. Write ∂Y ′

for the union of the divisors (Y ′i )i∈I′ , we have the formula ωY ′(∂Y ′) =
π∗ωY(∂Y).

Proof.
(ı) Take for Y ′ the normalisation of the closure of the diagonal embedding

of L/K in Y ×Y. Note that if Y is projective, so is Y ′. (ıı) Set y′ = K/K

and y = Lθ/Lθ. Let Y ′0 = π−1(Y0) which is therefore Q-stable. Let Z ′ =
π−1(Z) and let Z ′′ = TL · y′ be the closure of the TL-orbit in Y ′0 . The map
π being L-equivariant we get from the isomorphism Ru(Q) × Z → Y0 an
isomorphism Ru(Q)×Z ′ → Y ′0 . The equivariance of π implies the equality
L·Y ′0 = Y ′. Furthermore, since π(y′) = y, the orbit TL ·y′ is contained in Z ′
which is closed in Y ′0 so we have the inclusion Z ′′ ⊂ Z ′. But the isomorphism
Ru(Q)× Z ′ → Y ′0 and the fact that Y ′0 is reduced, irreducible and normal
imply that Z ′ is reduced, irreducible and normal. In particular, since Z ′′ and
Z ′ have the same dimension we deduce Z ′′ = Z ′. Therefore Z ′ is also a toric
variety as claimed. (ııı) Since any toroidal variety with a morphism Y ′ → Y
as in (ı), has locally the structure of a toric variety by (ıı), this follows from

TOME 64 (2014), FASCICULE 2



744 Nicolas PERRIN

classical results on toric varieties (see for example [16, Section 1.5]). (ıv)
This comes from (ıı). (v) The L-orbit structure is the one of a smooth toric
variety via the isomorphism given in (ıı). The result follows. (vı) We first
prove the following result: Every non trivial element in the group Lθ/K

has order 2. In particular the order of Lθ/K is prime to the characteristic.
We thank the referee for the statement and the proof of this fact. We may
assume that K = (Lθ)0 since Lθ/K is a quotient of L/(Lθ)0. Let S be a
maximal θ-split torus in L, i.e. a torus S such that θ(s) = s−1 for all s ∈ S
and maximal for this property. By a result of Vust [19, Proposition 7], we
have Lθ = KSθ. The group morphism Sθ → Lθ/K is therefore surjective.
But since Sθ = {s ∈ S | s2 = 1}, the result follows.
We now proceed with the proof of (vı). The varieties Z and Z ′ are toric

varieties for two tori T and T ′. These groups are quotients of T of the
same dimension and we have a finite morphism T ′ → T. Let N and N ′

be the groups of cocharacters of T and T ′. Induced by T ′ → T, we have
a morphism N ′ → N whose cokernel is torsion of order |Lθ/K|. By [16,
Chapter 3], the natural morphisms OZ ⊗Z N→ TZ and OZ′ ⊗Z N

′ → TZ′

induded by the action of T and T ′ induce isomorphisms onto their images:
OZ ⊗Z N ' TZ(− log ∂Z) and OZ′ ⊗Z N

′ ' TZ′(− log ∂Z) where ∂Z and
∂Z ′ are the unions of T-divisors and T ′-divisors respectively and where
TZ(− log ∂Z) and TZ′(− log ∂Z) denote the sheaves of logarithmic vector
fields i.e. derivations of OZ (resp. OZ′) preserving the ideal sheaf of ∂Z
(resp. ∂Z ′). This induces a commutative diagram

OZ′ ⊗Z N
′ ∼ //

��

TZ′(− log ∂Z ′)

��
OZ′ ⊗Z N ∼ // π∗(TZ(− log ∂Z)).

Taking the top exterior power and because |Lθ/K| is prime to the char-
acteristic, we get an isomorphism ωZ′(∂Z ′) ' π∗ωZ(∂Z). Thanks to the
isomorphisms Y ′0 ' Ru(Q) × Z ′ and Y0 ' Ru(Q) × Z we get an iso-
morphism ωY ′0 (∂Y ′0) ' π∗ωY0(∂Y0) and by L-invariance this implies the
result. �

Corollary 3.3. — Any complete embedding of L/K admits a BL-
canonical splitting compatible with all closed L-stable subvarieties.

Proof. — Let Y be such an embedding and let Y ′ be a smooth and com-
plete embedding with morphisms Y Y ′

π //poo Y as in Corollary 3.2
(ııı). By [4, Lemma 1.1.8]) it is enough to prove this result for Y ′.

ANNALES DE L’INSTITUT FOURIER
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Let τL/Q− ∈ H0(L/Q−, ω1−p
L/Q−) be the unique BL-semi-invariant sec-

tion. By Proposition 3.1 (vı) this element lifts to a BL-semiinvariant τY
in H0(Y, ωY(∂Y)1−p). But by Corollary 3.2 (vı) we have ωY ′(∂Y ′) =
π∗ωY(∂Y) therefore if O ' L/Q− is a closed orbit of Y ′, we have a com-
mutative diagram

H0(Y, ωY(∂Y)1−p) //

��

H0(L/Q−, ω1−p
L/Q−)

H0(Y ′, ωY ′(∂Y ′)1−p) // H0(O, ω1−p
O ).

The image τ ′Y of τY is a BL-semiinvariant element in H0(Y ′, ωY ′(∂Y ′)1−p)
with τ ′Y |O = τL/Q− . If (Yi)i∈I are the irreducible L-stable divisors and if
σi is the canonical section of OY (Yi), multiplying with

∏
i∈I σ

p−1
i yields an

element in H0(Y ′, ω1−p
Y ′ ). By recursive application of [4, Exercise 1.3.E.4]

and the fact that a closed L-orbit O in Y ′ is isomorphic to L/Q− and is
split by τ ′Y |O = τL/Q− the result follows. �

Corollary 3.4. — Let L′ be a connected reductive group, let θ′ be
an involution on L′ and let K ′ be a subgroup such that (L′θ

′
)0 ⊂ K ′ ⊂

NL′(L′θ
′
). Then any embedding of L′/K ′ is BL′ -canonically Frobenius split

compatibly with all closed L′-subvarieties with BL′ a Borel subgroup of L′.

Proof. — Let L be the adjoint group of L′. We have a quotient σ : L′ → L

by the center and θ′ descends to an involution θ on L. Write K = σ(K ′),
then σ((L′θ

′
)0) = (Lθ)0 therefore we have (Lθ)0 ⊂ K ⊂ NL(Lθ) = Lθ.

The last inclusion as well as the last equality follows, since L is adjoint,
from [8, Corollary 1.3]: For G connected reductive with an involution θ and
for g ∈ G there is an equivalence between

• gθ(g)−1 ∈ Z(G)
• gθ(g)−1 ∈ ZG(Gθ)
• g ∈ NG(Gθ)
• g ∈ NG((Gθ)0).

Since L′/K ′ ' L/K the result follows from Corollary 3.3. �

Remark 3.5. — Let L be of adjoint type, θ an involution and K a
subgroup such that (Lθ)0 ⊂ K ⊂ Lθ. Let σ : L̃ → L be the universal
cover of L. Then any involution θ on L lifts to an involution θ̃ in L̃ and
L̃θ̃ is connected while σ−1(Lθ) = NL̃(L̃θ̃) (see the above equivalence or [8,
Corollary 1.3]). Let K̃ = σ−1(K), then we have L̃θ̃ ⊂ K̃ ⊂ NL̃(L̃θ̃) and
L/K ' L̃/K̃ so that L/K is a symmetric variety for L̃.

TOME 64 (2014), FASCICULE 2



746 Nicolas PERRIN

4. Structure of the open orbit

Let T be a maximal torus of a connected semisimple group G and let W
be the associated Weyl group. Recall that if $∨ : Gm → G is a cocharacter
of T , we may define a parabolic subgroup P$∨ of G as follows:

P$∨ =
{
g ∈ G / lim

t→0
$∨(t)g$∨(t)−1 exists

}
.

Note that P$∨ contains T . Any parabolic subgroup containing T can be
defined this way and there exists a unique minimal cocharacter $∨P such
that P = P$∨

P
.

Definition 4.1. — A parabolic subgroup containing T is cominuscule(1)

if its associated cocharacter $∨P satisfies |〈$∨P , α〉| 6 1 for any root α.

Let P be a parabolic subgroup, let w0 be the longest element in W and
set H = P ∩ Pw0 .
Definition 4.2.
(ı) Let $∨ = $∨P +w0($∨P ) and let R = P$∨ be the parabolic subgroup

associated to $∨.
(ıı) Let L be the Levi subgroup of R containing T and let UR be the

unipotent radical of R.
(ııı) Define (P , P ′) = (L ∩ P,L ∩ Pw0).

Remark 4.3. — The parabolic subgroups P and P ′ are cominuscule and
opposite in L. This was the main motivation for the above definition.
Proposition 4.4.
(ı) The parabolic subgroup R contains H.
(ıı) The cocharacter $∨

P
+$∨

P
′ is orthogonal to all roots of L.

Proof.
(ı) This is obvious by definition.
(ıı) Note that the roots of L are the roots α such that 〈$∨P , α〉 =

−〈$∨Pw0 , α〉. The result follows. �

Set p : G/H → G/R and let K = P ∩ P ′. We assume from now on that
P is cominuscule.

Proposition 4.5.
(ı) The morphism p is locally trivial with fibre L/K.
(ıı) There is an involution θ of L such that K = (Lθ)0 and Lθ/K is of

order at most 2.
(1)The notion of minuscule weight is introduced in [2, Chapter VI.1 Exercice 24], the
notion of cominuscule weight is the dual notion for the duality of root systems.

ANNALES DE L’INSTITUT FOURIER
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Proof.
(ı) The map is clearly locally trivial. Its fiber is R/H. We need to prove

that the map R → L = R/UR induces an isomorphism R/H ' L/K. For
this it is enough to check that the roots in UR are in H. Such a root α
satisfies, 〈$∨, α〉 > 0. On the other hand, we have 〈w0($∨P ), α〉 6 1 (since
P is cominuscule) therefore 〈$∨P , α〉 = 〈$∨, α〉 − 〈w0($∨P ), α〉 > 0. Thus α
is a root of P and by the same argument it is a root of Pw0 and thus of H.

(ıı) Take θ to be the involution defined by conjugating with $∨
P

(−1). We
compute Lθ. For w ∈ WL, we choose a representative nw ∈ NL(TL) of w.
Let g ∈ Lθ, by the Bruhat decomposition in L, there exist w ∈WL, t ∈ T ,
scalars xα for each positive root α of L and scalars yα for each positive
root α of L with w−1(α) negative such that

g =
∏

α>0,w−1(α)<0

uα(yα)tnw
∏
α>0

uα(xα),

where uα : Ga → Uα is an isomorphism such that zuα(x)z−1 = uα(α(z)x)
for all z ∈ T and x ∈ Ga. The elements w, t, xα, yα are uniquely determined
by g. Applying θ we get

θ(g) =
∏

α>0,w−1(α)<0

uα((−1)〈$
∨
P
,α〉
yα)t$∨

P
(−1)($∨

w(P )(−1))−1nw

∏
α>0

uα((−1)〈$
∨
P
,α〉
xα).

In particular θ(g) = g if and only if xα = yα = 0 for all α such that
(−1)〈$

∨
P
,α〉 = −1 and $∨

w(P )(−1) = $∨
P

(−1). This is equivalent to xα =
yα = 0 for α not a root of P and $∨

w(P )(−1) = $∨
P

(−1). The latter is
equivalent to

(−1)〈$
∨
P
,w−1(αi)〉 = (−1)〈$

∨
w(P )

,αi〉 = αi($∨w(P )(−1))

= αi($∨P (−1)) = (−1)〈$
∨
P
,αi〉

for any simple root αi of L. Note that this equality is satisfied for any
w ∈WP so that K ⊂ Lθ.
We check that, modulo WP , there is at most one element w ∈WL satis-

fying (−1)〈$
∨
P
,w−1(αi)〉 = (−1)〈$

∨
P
,αi〉 for any simple root αi of L. Since we

work modulo WP , we may assume that w lies in WP the set of minimal
length representatives of WL/WP . Let RP be the root system of P . The
condition is equivalent to

w−1(αi) ∈ RP ⇔ αi ∈ RP .

TOME 64 (2014), FASCICULE 2
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We prove that this condition implies w = 1 or w = wP the maximal element
in WP . Indeed, assume that w 6= 1. Then there exists a simple root αi
with sαiw ∈ WP and sαiw < w. In particular, we have (sαiw)−1(αi) 6∈
RP i.e. w−1(αi) 6∈ RP . This implies that αi 6∈ RP . Assume furthermore
that w 6= wP , then there exists a simple root αj with sαj

w ∈ WP and
sαjw > w. In particular, we have w−1(αj) 6∈ RP i.e. αj 6∈ RP . But since P
is maximal there is a unique simple root not in RP . This implies αi = αj a
contradiction. Note that we have the additional condition wP (P ) = P

′ for
the element wP to appear in Lθ.
We proved that if wP (P ) = P

′, then Lθ = wPK ∪ K and Lθ = K

otherwise. Therefore Lθ/K is of order at most 2. Since Lθ/K is finite
and K is connected we have K = (Lθ)0. �

Remark 4.6.
(ı) Note that this proposition implies that G/H and thusX are spherical.
(ıı) In [1], we extend this construction to study B-orbit closures in prod-

ucts G/P ×G/Q with P and Q cominuscule parabolic subgroups.

5. Proof of the main result

Let Y be a L-equivariant embedding of L/K and define XY = G×R Y .
Choose B a Borel subgroup of G such that BR is dense in G.

Proposition 5.1. — The variety XY is B-canonically split compatibly
with its closed G-stable subvarieties.

Proof. — The intersection BL := B ∩L has a dense orbit in Y . Further-
more, if T ′ is a maximal torus of G contained in B ∩ R and if R− is the
parabolic subgroup opposite to R with respect to T ′ we have the inclusion
B ⊂ R−. We deduce the inclusion B− ⊂ R where B− is the Borel subgroup
opposite to B with respect to T ′.
By Corollary 3.3, there exists a BL-canonical splitting ϕ of Y compatibly

splitting all the L-stable closed subvarieties. By [4, Proposition 4.1.10] the
splitting ϕ is also a B−L -canonical splitting (where B−L = B−∩L is also the
Borel subgroup in L, opposite to BL with respect to T ′L = T ′∩L). Since B−L
is also the quotient of B− by the unipotent radical UR of R the action of B−L
on Y induces an action of B− on Y and the splitting ϕ is also B−-canonical
(see for example [4, Lemma 4.1.6]). We may therefore induce this splitting
to get a B−-canonical splitting ψ of G ×B− Y which splits compatibly
the subvarieties G ×B− Y ′ where Y ′ is a closed L-stable subvariety in Y
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(see [4, Proposition 4.1.17 and Exercise 4.1.E.4]). Consider the morphism
q : G ×B− Y → G ×R Y obtained by base change from G/B− → G/R.
We have q∗OG×B−Y = OG×RY therefore ψ induces (see [4, Lemma 1.1.8])
a B−-canonical splitting compatibly splitting the varieties G ×R Y ′. This
splitting is also a B-canonical splitting by [4, Proposition 4.1.10] again.
The fact that the G-stable closed subvarieties in XY are of the form G×R

Y ′ with Y ′ any L-stable closed subvariety in Y concludes the proof. �

Proposition 5.2. — Any toroidal embedding of G/H is of the form
G×R Y where Y is a toroidal embedding of L/K.

Proof. — Let X be a toroidal embedding of G/H. We prove that the
morphism p : G/H → G/R extends to a morphism q : X → G/R. This
morphism is induced by a linear system containing the B-stable divisor
D obtained as the pull-back by p of the union of the Schubert B-stable
divisors in G/R. Since p is G-equivariant, this linear system also contains
the G translates of D. But X is toroidal so that the closure of D contains
no G-orbit and the linear system has no base point.
The fiber Y of q : X → G/R over R/R is a toroidal embedding of L/K

and X ' G×R Y . �

Corollary 5.3. — The variety X̃ is Frobenius split compatibly with
the exceptional divisor E.

Proof. — By Proposition 4.5, the variety X is spherical therefore X̃ is
also spherical. Furthermore, any spherical variety X̃ admits a projective
birational morphism X̂ → X̃ with X̂ toroidal (take the normalisation of
the graph of a birational transformation X̃ 99K X ′ where X ′ is a projective
toroidal embedding of G/H — see [9, Lemma 5.2] for the existence of a
projective toroidal embedding of G/H). Note that this gives back Corol-
lary 3.2.(ı). By the former two Propositions, the variety X̂ is B-canonically
Frobenius split compatibly with its closed G-stable subvarieties, in par-
ticular compatibly with the proper transform of E. By [4, Lemma 1.1.8]
and because X̃ is normal, we deduce that the variety X̃ is B-canonically
Frobenius split compatibly with E. �
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