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SPHERICAL VARIETIES AND WAHL’S CONJECTURE

by Nicolas PERRIN

ABSTRACT. — Using the theory of spherical varieties, we give a type indepen-
dent very short proof of Wahl’s conjecture for cominuscule homogeneous varieties
for all primes different from 2.

RESUME. En utilisant les variétés sphériques, nous donnons, en toute carac-
téristique impaire, une preuve courte et uniforme de la conjecture de Wahl pour
les variétés homogenes cominuscules.

1. Introduction

Let V' be a smooth projective variety and let L and M be two line bundles
on V. It is natural to consider the so called Gaussian map:

HY(VxV,IA® LEM) — H°(V,Q, ® L® M),

where Zx is the ideal of the diagonal in V x V', where L X M is the ex-
ternal product on V' x V and the map is induced by the restriction map
Ia — In/I% ~ Qi,. Wahl studied this map in detail. In particular in [20]
he conjectured that the Gaussian map should be surjective for V' a projec-
tive rational homogeneous variety and L and M any ample line bundles.
This conjecture was proved by Kumar in characteristic 0 in [10]. Laksh-
mibai, Mehta and Parameswaran [11] considered the situation in positive
characteristic and proved that the following conjecture (now called LMP-
conjecture) implies Wahl’s conjecture in positive characteristic. From now
on in the introduction, the base field k is algebraically closed of positive
characteristic p.

CONJECTURE 1.1. — Let V be a rational projective homogeneous vari-
ety, let X =V x V and let X be the blowing-up of the diagonal A in X.
Then X is Frobenius split compatibly with the exceptional divisor FE.

Keywords: Frobenius splitting, spherical varieties, Wahl’s conjecture.
Math. classification: 14M27, 14M15, 20G10.



740 Nicolas PERRIN

This conjecture is equivalent to the existence of a splitting on V x V'
with maximal multiplicity along the diagonal (see [11] for more on this).
This conjecture has been considered by several authors (see for exam-
ple [15], [12], [5], [13], [18]). In particular Brown and Lakshmibai in [5]
proved this conjecture for minuscule homogeneous varieties using Repre-
sentation Theoretic techniques and a case by case analysis.

In this paper we give a new proof of LMP-conjecture and therefore
of Wahl’s conjecture for cominuscule homogeneous varieties (see Defini-
tion 4.1) using the theory of spherical varieties. Let V' be a cominuscule ho-
mogeneous variety and let X be the blow-up of the diagonal in X =V x V.

THEOREM 1.2. — Assume that p # 2, then X is Frobenius split com-
patibly with the exceptional divisor.

Since any minuscule homogeneous variety is cominuscule for some other
group this also implies the result in the minuscule case. The advantages of
this proof is that it is mainly geometric, it completely avoids the case by
case analysis in [5] and it is very short.

One of the main arguments is to use a consequence of results of Littel-
mann: If V is cominuscule, then X = V X V is spherical. Using this and
a result of Brion and Inamdar [3], a very simple proof of Theorem 1.2 is
given in Section 2 for large primes and in particular in characteristic 0. This
result might have been known to Inamdar as a remark at the end of the
paper [15] seems to indicate. We thank Niels Lauritzen for pointing this to
us.

To obtain the result for all odd primes, we need to do a parabolic
induction from a symmetric variety and use a result of de Concini and
Springer [6].

Acknowledgement. — 1 want to thank Michel Brion for useful email
exchanges on the subject in particular for the reference [6] and Marti Lahoz
Vilalta for useful discussions. I also thank the referee for valuable comments
especially corrections and simplifications for the proofs of Corollaries 3.2
and 3.3.

2. Very simple proof for large primes

In this section we give a very short proof of Theorem 1.2 for large primes.
Here we assume that the base field k is of characteristic 0. Write V = G/P
with G semisimple and P a parabolic subgroup. Write X =V x V, write
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WAHL’S CONJECTURE 741

X for the blow-up of the diagonal and FE for the exceptional divisor. The
following is a consequence of results of Littelmann [14].

THEOREM 2.1. — If P is cominuscule, then X and X are spherical for
the diagonal action of G.

Actually G/P x G/P is G-spherical if and only if P is minuscule or
cominuscule, see [17]. We may thus apply the following result (see [3, The-
orem 1]) to X and E.

THEOREM 2.2. — For Z a G-spherical variety, its reduction Z, modulo
a prime p is Frobenius split compatibly with all closed G-stable subvarieties
for all but finitely many p.

COROLLARY 2.3. — The variety )N(p is Frobenius split compatibly with
E, for all but finitely many p.

3. Frobenius splitting of symmetric varieties

In this section we extend results of de Concini and Springer [6] on Frobe-
nius splitting of wonderful compactifications to any symmetric varieties.
The results we obtain are probably well known to the experts but we could
not find a reference for them. We assume from now on that the base field k
has positive characteristic p # 2.

Recall that for L a connected reductive group, a closed subgroup K is
called spherical if L/K has a dense orbit of a Borel subgroup By, of L.
An embedding of L/K is a normal L-variety equivariantly containing L/K
as an open orbit. An embedding is called simple if it contains a unique
closed L-orbit and toroidal if the Bp-stable divisors containing an L-orbit
are L-stable. We refer to [9] for further results on spherical embeddings.

From now on in this section, we fix I a connected semisimple algebraic
group of adjoint type and @ a group involution on L. Let L? be the subgroup
of f-invariant elements. We have Nz (L) = LY (see [8, Corollary 1.3]).
Write (L?)° for the connected component containing the identity element
in L% and let K be a subgroup such that (L) ¢ K < L. Then L/L?
is a homogeneous symmetric variety and therefore a spherical variety (see
[19]) thus L/K is also spherical. It is actually symmetric for the universal
covering L of L (see Remark 3.5). We want to extend Frobenius splitting
results for embeddings of L/L? obtained by de Concini and Springer to
embeddings of L/K. We fix some notation. Let Ty, be a maximal torus of
L containing a split maximal torus S (i.e. a maximal torus such that 6|s
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742 Nicolas PERRIN

acts as the inverse) and let By, be a Borel subgroup of L containing T7,.
Recall from [4, Theorem 4.1.15], that for any parabolic subgroup @~ of L,
there is a unique Bp-canonical splitting 77,0~ € H%L/Q’,wi?é_). We

recall the following results from [6].

PROPOSITION 3.1. — Let L be of adjoint type and 6 be a group invo-
Iution of L.

(1) There exists a unique simple smooth projective toroidal embedding 'Y
of L/LY.

(1) There exist a parabolic subgroup Q of L containing By, an open affine
subset Yo of Y which meets all the L-orbits and Z a closed subvariety of
Y such that:

e The Levi subgroup L(Q) of @ containing Ty, acts on Z and its
derived subgroup D(L(Q)) acts trivially on Z so that Z is a toric
variety for a quotient of L(Q)/D(L(Q));

e The multiplication map R, (Q) x Z — Yo is an isomorphism.

(1) Let Q~ be the parabolic subgroup opposite to Q@ with respect to T7,.
Then the unique closed orbit inY is isomorphic to L/Q~ and the pull-back
map Pic(Y) — Pic(L/Q™) is injective.

(1v) The irreducible L-stable divisors (Y;);c1 in Y are smooth with nor-
mal crossing and any L-orbit closure is the intersection of a unique sub-
family (Y;)iey with J C I of irreducible L-stable divisors.

(v) Write Y for the union of the divisors (Y;)ic1, we have the formula
wy (0Y)|1/q- =wr/q--

(v1) The Br-canonical splitting 77,/o- € HO(L/Q*,wEg,) can be lifted
through the restriction map to a Br-semiinvariant Ty € H° (Y, wy (9Y)!17P).

Proof.

(1) and (1v) are proved in [6, Theorem 3.9]. (1) is proved in [6, Propo-
sition 3.8]. (m) is proved in [6, Theorem 3.9 and Theorem 4.2]. (v) is
simply adjunction formula. For (v1) the result is not stated in [6] but
follows from their results. Write M = H°(Y,wy(0Y)'"P) and M" =
HO(L/QﬂwEg,). The representation M” trivially has a good filtration
(see [4, Definition 4.2.4] for the definition of good filtrations). By [6, Propo-
sition 5.7] and since p is odd, the restriction map M — M" is surjec-
tive. We need to prove that this map is again surjective on B -invariants.
By [6, Theorem 5.10], the restriction map M — M" is the first step of a
good filtration of M and the kernel M’ of this map also admits a good
filtration. By properties of good filtrations (see [4, Definition 4.2.4 and

ANNALES DE L’INSTITUT FOURIER



WAHL’S CONJECTURE 743

Exercise 4.2.E.5]) we have for p the highest weight of M” the equal-
ity dim M%) = dim M}, ®*) + dim MP*) where M"*) denotes the
Byp-semiinvariants of weight p in M (note that this also follows from [7,
Part (iv) in Proposition p. 121]). This proves the result. O

COROLLARY 3.2. — Let Y be an embedding of L/ K.
(1) There exists a toroidal embedding Y' of L/K and equivariant mor-

phisms Y <y —Ts vy with p projective.
(1) Let 7: Y' — Y as in (1). There exist an open affine subset Yy of Y’
which meets all the L-orbits and Z' a closed subvariety of Yy such that:

e The Levi subgroup L(Q) of Q containing Ty, acts on Z' and its
derived subgroup D(L(Q)) acts trivially on Z' so that Z' is a toric
variety for a quotient of L(Q)/D(L(Q));

e The multiplication map R, (Q) x Z' — Y{ is an isomorphism.

(1) There exists morphisms 7: Y’ — Y and p: Y — Y as in (1) with
Y’ smooth. If Y is complete, we may choose Y’ complete as well.

(1v) Assume Y complete and let w: Y’ — Y as in (1) with Y’ complete.
Any closed orbit O in'Y’ is isomorphic to L/Q~.

(v) Let m: Y’ — Y as in (1) and assume that Y’ is smooth. Then the
irreducible L-stable divisors (Y/);c; in Y are smooth with normal crossing
and any L-orbit closure is the intersection of a unique subfamily (Y/);cr
with J' C I’ of irreducible L-stable divisors.

(vi) Let m: Y/ — Y as in (1) and assume that Y’ is smooth. Write 9Y”
for the union of the divisors (Y/)icr, we have the formula wy(9Y') =
W*wy(aY).

Proof.

(1) Take for Y the normalisation of the closure of the diagonal embedding
of L/K inY x Y. Note that if Y is projective, so is Y. (1) Set ¢/ = K/K
andy = L9/L%. Let Y] = 7= (Y,) which is therefore Q-stable. Let Z' =
7 Y(Z) and let Z” =Ty, -y be the closure of the T -orbit in Y. The map
7 being L-equivariant we get from the isomorphism R, (Q) X Z — Y, an
isomorphism R, (Q) x Z' — Yj. The equivariance of = implies the equality
LYy =Y'. Furthermore, since 7(y") =y, the orbit T}, -y’ is contained in Z’
which is closed in Yjj so we have the inclusion Z”/ C Z’. But the isomorphism
R,(Q) x Z' — Yy and the fact that Y] is reduced, irreducible and normal
imply that Z’ is reduced, irreducible and normal. In particular, since Z” and
Z' have the same dimension we deduce Z"” = Z’. Therefore Z’ is also a toric
variety as claimed. (11) Since any toroidal variety with a morphism Y/ —Y
as in (1), has locally the structure of a toric variety by (1), this follows from
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classical results on toric varieties (see for example [16, Section 1.5]). (1v)
This comes from (un). (v) The L-orbit structure is the one of a smooth toric
variety via the isomorphism given in (11). The result follows. (vi) We first
prove the following result: Every non trivial element in the group L?/K
has order 2. In particular the order of L?/K is prime to the characteristic.
We thank the referee for the statement and the proof of this fact. We may
assume that K = (L?)? since LY/K is a quotient of L/(L?)?. Let S be a
maximal #-split torus in L, i.e. a torus S such that 6(s) = s~! for all s € S
and maximal for this property. By a result of Vust [19, Proposition 7], we
have LY = KS%. The group morphism S — Lf/K is therefore surjective.
But since S = {s € S| s> = 1}, the result follows.

We now proceed with the proof of (v1). The varieties Z and Z’ are toric
varieties for two tori T and T”. These groups are quotients of T of the
same dimension and we have a finite morphism 77 — T. Let N and N’
be the groups of cocharacters of T and T”. Induced by 7" — T, we have
a morphism N’ — N whose cokernel is torsion of order |LY/K]|. By [16,
Chapter 3], the natural morphisms Oz ®z N — Tz and Oz ®z N’ — Ty
induded by the action of T and 7" induce isomorphisms onto their images:
Oz @z N ~ Tz(—1log0Z) and Oy ®z N’ ~ Tz/(—logdZ) where 0Z and
0Z' are the unions of T-divisors and T”-divisors respectively and where
T7z(—1og 0Z) and Tz (—logdZ) denote the sheaves of logarithmic vector
fields i.e. derivations of Oz (resp. Oz:) preserving the ideal sheaf of 0Z
(resp. 0Z'). This induces a commutative diagram

Oy @7 N’ —= > TZ/(* log 8Z’)

l |

Oz @z N —" 1*(Tz(—1og 0Z)).

Taking the top exterior power and because |L?/K]| is prime to the char-
acteristic, we get an isomorphism wz/ (0Z') ~ m*wz(0Z). Thanks to the
isomorphisms Y] ~ R,(Q) x Z’ and Yy ~ R,(Q) x Z we get an iso-
morphism wyy (9Yy) ~ m*wy,(9Yo) and by L-invariance this implies the
result. g

COROLLARY 3.3. — Any complete embedding of L/K admits a Bj,-
canonical splitting compatible with all closed L-stable subvarieties.

Proof. — Let Y be such an embedding and let Y’ be a smooth and com-

plete embedding with morphisms Y L Yy’ ——>7Y as in Corollary 3.2
(m). By [4, Lemma 1.1.8]) it is enough to prove this result for Y.
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Let 7/~ € HO(L/Q’,wES_) be the unique Bp-semi-invariant sec-
tion. By Proposition 3.1 (v1) this element lifts to a Bp-semiinvariant 7y
in H(Y,wy(0Y)!P). But by Corollary 3.2 (v1) we have wy(9Y’) =
m*wy (0Y) therefore if O ~ L/Q~ is a closed orbit of Y’, we have a com-
mutative diagram

HO(Y, w0y (9Y)7) ——= H(L/Q™,w; /5 )

HY(O,wy?).

HO(Y/, Wy (8Y’)1*p)

The image 7, of Ty is a Bp-semiinvariant element in H%(Y”, wy/(0Y’)1~P)
with 74 |0 = 7/q-. If (Yi)ier are the irreducible L-stable divisors and if
o; is the canonical section of Oy (Y;), multiplying with [],, 0?71 yields an
element in H°(Y’,wy,?). By recursive application of [4, Exercise 1.3.E.4]
and the fact that a closed L-orbit O in Y” is isomorphic to L/Q~ and is
split by 7y-|0 = 71/~ the result follows. O

COROLLARY 3.4. — Let L' be a connected reductive group, let §' be
an involution on L' and let K' be a subgroup such that (L’QI)O C K' C
Np (L’G,). Then any embedding of L' /K" is By-canonically Frobenius split
compatibly with all closed L'-subvarieties with By a Borel subgroup of L.

Proof. — Let L be the adjoint group of L'. We have a quotient o: L' — L
by the center and 6" descends to an involution 6 on L. Write K = o(K'),
then U((L/O/)O) = (L%)° therefore we have (LY)° ¢ K c Np(L%) = LY.
The last inclusion as well as the last equality follows, since L is adjoint,
from [8, Corollary 1.3]: For G connected reductive with an involution 6 and
for g € G there is an equivalence between
90(9)~" € Z(G)
90(9)~" € Za(G?)

g € Na(G?)
g9 € Na((G”)°).
Since L'/K' ~ L/K the result follows from Corollary 3.3. O

Remark 3.5. — Let L be of adjoint type, # an involution and K a
subgroup such that (L?)° ¢ K < LY. Let o: L — L be the universal
cover of L. Then any involution ¢ on L lifts to an involution 6 in L and
L% is connected while o= (LY) = N (L) (see the above equivalence or [8,
Corollary 1.3]). Let K = o~ *(K), then we have " c K c Ni(flé) and
L/K ~ L/K so that L/K is a symmetric variety for L.

TOME 64 (2014), FASCICULE 2



746 Nicolas PERRIN

4. Structure of the open orbit

Let T be a maximal torus of a connected semisimple group G and let W
be the associated Weyl group. Recall that if w": G,, — G is a cocharacter
of T, we may define a parabolic subgroup P,v of G as follows:

Pov = {g eG/ }ij%wv(t)ng(t)*l exists}.

Note that P,v contains 7. Any parabolic subgroup containing 7" can be
defined this way and there exists a unique minimal cocharacter w), such
that P = PWIVD .

DEFINITION 4.1. — A parabolic subgroup containing T is cominuscule™)
if its associated cocharacter w), satisfies |[(w), )| < 1 for any root a.

Let P be a parabolic subgroup, let wg be the longest element in W and
set H = PN PY.

DEFINITION 4.2.

(1) Let w" = w}, + wo(w),) and let R = Pyv be the parabolic subgroup
associated to w".

(1) Let L be the Levi subgroup of R containing T and let Ur be the
unipotent radical of R.

(1) Define (P,P') = (LN P,L.N P").

Remark 4.3. — The parabolic subgroups P and P are cominuscule and
opposite in L. This was the main motivation for the above definition.

PRrROPOSITION 4.4.

(1) The parabolic subgroup R contains H.

(11) The cocharacter wy + w%, is orthogonal to all roots of L.

Proof.

(1) This is obvious by definition.

(n) Note that the roots of L are the roots a such that (wp,a) =
—(@ pug , ). The result follows. O

Set p: G/H — G/R and let K = PN P. We assume from now on that

P is cominuscule.

PROPOSITION 4.5.

(1) The morphism p is locally trivial with fibre L/ K.

(1) There is an involution @ of L such that K = (L%)° and L?/K is of
order at most 2.

(1) The notion of minuscule weight is introduced in [2, Chapter VI.1 Exercice 24], the
notion of cominuscule weight is the dual notion for the duality of root systems.

ANNALES DE L’INSTITUT FOURIER
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Proof.

(1) The map is clearly locally trivial. Its fiber is R/H. We need to prove
that the map R — L = R/Upg induces an isomorphism R/H ~ L/K. For
this it is enough to check that the roots in Ur are in H. Such a root «
satisfies, (", @) > 0. On the other hand, we have (wo(w@)),a) <1 (since
P is cominuscule) therefore (), ) = (@, a) — (wo(w}p), @) = 0. Thus «
is a root of P and by the same argument it is a root of P"° and thus of H.

(11) Take 6 to be the involution defined by conjugating with w%(fl). We
compute L°. For w € Wy, we choose a representative n,, € Np(T1) of w.
Let g € LY, by the Bruhat decomposition in L, there exist w € Wy, t € T,
scalars x, for each positive root a of L and scalars y, for each positive
root a of L with w™!(«) negative such that

9= H ua(ya)tn'w H ua(xa)a

a>0,w~ 1 (a)<0 a>0

where u,: G, — U, is an isomorphism such that zu,(7)z~! = u,(a(2)z)

for all z € T and = € G,. The elements w, t, z, y, are uniquely determined
by g. Applying 6 we get

_ (wgs0n) v v -1
9(9) - H ua(<_1) P ya)twﬁ(_l)(ww(ﬁ)(_l)) zn)
a>0,w(a)<0

[T wa (=) a).
a>0

In particular 6(g) = ¢ if and only if z, = y, = 0 for all « such that

(—1D)F* = _1 and wzj(ﬁ)i—l) = w}(—1). This is equivalent to v, =

Yo = 0 for a not a root of P and wzj(ﬁ)(—l) = w@/(—1). The latter is

equivalent to

wl,w_l ;g <wv = 7ai>
(-1 0D = ()T = i) 5 (1))

aifwp(-1)) = (~1) =

for any simple root «; of L. Note that this equality is satisfied for any
w € W so that K C LY.
We check that, modulo W+, there is at most one element w € Wi, satis-
: (wlw™ ag)) _ (wl,aq) : :
fying (—1)'"7 = (—=1)""7" for any simple root «; of L. Since we
work modulo W, we may assume that w lies in WP the set of minimal
length representatives of Wy /Ws. Let R be the root system of P. The

condition is equivalent to

w_l(ai) € Ry & a; € Rp.

TOME 64 (2014), FASCICULE 2



748 Nicolas PERRIN

We prove that this condition implies w = 1 or w = wT the maximal element
in WP, Indeed, assume that w # 1. Then there exists a simple root «;
with sq,w € WP and Sq,w < w. In particular, we have (so,w) !(a;) &
R5 ie. w (o) ¢ Rp. This implies that a; ¢ Rp. Assume furthermore
that w # wﬁ, then there exists a simple root a; with s, w € WP and
Sa,w > w. In particular, we have w™!(a;) ¢ R i.e. aj € Rp. But since P
is maximal there is a unique simple root not in 5. This implies a; = «; a
contradiction. Note that we have the additional condition wﬁ(ﬁ) =P for
the element w” to appear in L?.

We proved that if w?(P) = P then L = wPK UK and LY = K
otherwise. Therefore LY/K is of order at most 2. Since LY/K is finite
and K is connected we have K = (L%)°. O

Remark 4.6.

(1) Note that this proposition implies that G/H and thus X are spherical.

(1) In [1], we extend this construction to study B-orbit closures in prod-
ucts G/P x G/Q with P and @ cominuscule parabolic subgroups.

5. Proof of the main result

Let Y be a L-equivariant embedding of L/K and define Xy = G x®Y.
Choose B a Borel subgroup of G such that BR is dense in G.

PROPOSITION 5.1. — The variety Xy is B-canonically split compatibly
with its closed G-stable subvarieties.

Proof. — The intersection By, := BN L has a dense orbit in Y. Further-
more, if 7' is a maximal torus of G contained in BN R and if R~ is the
parabolic subgroup opposite to R with respect to 77 we have the inclusion
B C R~. We deduce the inclusion B~ C R where B~ is the Borel subgroup
opposite to B with respect to T”.

By Corollary 3.3, there exists a Br-canonical splitting ¢ of Y compatibly
splitting all the L-stable closed subvarieties. By [4, Proposition 4.1.10] the
splitting ¢ is also a B} -canonical splitting (where B = B~ N L is also the
Borel subgroup in L, opposite to By, with respect to T; = T'NL). Since B}
is also the quotient of B~ by the unipotent radical Ur of R the action of B,
on Y induces an action of B~ on Y and the splitting ¢ is also B~ -canonical
(see for example [4, Lemma 4.1.6]). We may therefore induce this splitting
to get a B~ -canonical splitting 1 of G x® Y which splits compatibly
the subvarieties G x® Y’ where Y’ is a closed L-stable subvariety in Y’

ANNALES DE L’INSTITUT FOURIER
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(see [4, Proposition 4.1.17 and Exercise 4.1.E.4]). Consider the morphism
q: G xB Y — G x®Y obtained by base change from G/B~ — G/R.
We have ¢.O,, 5-y = Ogxry therefore ¢ induces (see [4, Lemma 1.1.8])
a B~ -canonical splitting compatibly splitting the varieties G x® Y’. This
splitting is also a B-canonical splitting by [4, Proposition 4.1.10] again.
The fact that the G-stable closed subvarieties in Xy are of the form G x
Y’ with Y/ any L-stable closed subvariety in Y concludes the proof. a

PROPOSITION 5.2. — Any toroidal embedding of G/H is of the form
G xB®Y where Y is a toroidal embedding of L/ K.

Proof. — Let X be a toroidal embedding of G/H. We prove that the
morphism p: G/H — G/R extends to a morphism ¢: X — G/R. This
morphism is induced by a linear system containing the B-stable divisor
D obtained as the pull-back by p of the union of the Schubert B-stable
divisors in G/R. Since p is G-equivariant, this linear system also contains
the G translates of D. But X is toroidal so that the closure of D contains
no G-orbit and the linear system has no base point.

The fiber Y of ¢: X — G/R over R/R is a toroidal embedding of L/K
and X ~ G xRY. O

COROLLARY 5.3. — The variety X is Frobenius split compatibly with
the exceptional divisor E.

Proof. — By Proposition 4.5, the variety X is spherical therefore X is
also spherical. Furthermore _any spherlcal variety X admits a projective
birational morphism X — X with X toroidal (take the normalisation of
the graph of a birational transformation X --» X’ where X' is a projective
toroidal embedding of G/H — see [9, Lemma 5.2] for the existence of a
projective toroidal embedding of G/H). Note that this gives back Corol-
lary 3.2.(1). By the former two Propositions, the variety X is B-canonically
Frobenius split compatibly with its closed G-stable subvarieties, in par-
ticular compatibly with the proper transform of E. By [4, Lemma 1.1.8]
and because X is normal, we deduce that the variety X is B-canonically
Frobenius split compatibly with E. O
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