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HYPERBOLIC MEASURE OF MAXIMAL ENTROPY
FOR GENERIC RATIONAL MAPS OF Pk

by Gabriel VIGNY

Abstract. — Let f be a dominant rational map of Pk such that there exists
s < k with λs(f) > λl(f) for all l. Under mild hypotheses, we show that, for A
outside a pluripolar set of Aut(Pk), the map f ◦ A admits a hyperbolic measure
of maximal entropy log λs(f) with explicit bounds on the Lyapunov exponents.
In particular, the result is true for polynomial maps hence for the homogeneous
extension of f to Pk+1. This provides many examples where non uniform hyperbolic
dynamics is established.

One of the key tools is to approximate the graph of a meromorphic function by
a smooth positive closed current. This allows us to do all the computations in a
smooth setting, using super-potentials theory to pass to the limit.
Résumé. — Soit f une application rationnelle dominante de Pk telle qu’il existe

s < k avec λs(f) > λl(f) pour tout l. Sous des hypothèses raisonnables, nous
montrons que, pour A hors d’un ensemble pluripolaire de Aut(Pk), l’application
f◦A admet une mesure hyperbolique d’entropie maximale log λs(f) avec des bornes
explicites sur les exposants de Lyapunov. En particulier, le résultat est vrai pour
les applications polynomiales et donc pour l’extension homogène de f à Pk+1. Cela
donne de nombreux exemples où la dynamique non uniformément hyperbolique est
prouvée.

Un des outils principaux est l’approximation du graphe d’une application mé-
romorphe par un courant positive fermé lisse. Cela permet de faire les calculs dans
un cadre lisse et on utilise la théorie des super-potentiels pour passer à la limite.

1. Introduction

Let f : Pk → Pk be a dominant meromorphic map of the projective
space Pk (i.e. a rational map). We are interested in the ergodic properties
of f . More precisely, we want to construct a measure of maximal entropy
that we want to compute and then study its properties (ergodicity, mixing,

Keywords: Complex dynamics, meromorphic maps, Super-potentials, entropy, hyperbolic
measure.
Math. classification: 37Fxx, 32H04, 32Uxx.



646 Gabriel VIGNY

hyperbolicity ... ). This is a natural yet difficult question in dynamics and
the tools of complex analysis and complex geometry often allow to answer
that question more easily.
Such study starts with the computation of the dynamical degrees. For

0 6 l 6 k, let Ll and Lk−l be generic linear subspaces of Pk of codimension
l and k − l. Then the number

λl(f) := Card(f−1(Ll) ∩ Lk−l) = Card(Ll ∩ f(Lk−l))

is well defined and does not depend on the choice of Li as it is defined in
cohomology. In particular, if ω denotes the Fubini-Study form on Pk then
we also have

λl(f) :=
∫
Pk

f∗(ωl) ∧ ωk−l =
∫
Pk

ωl ∧ f∗(ωk−l).

The sequence (λl(fn)) satisfies λl(fn+m) 6 λl(fn)λl(fm) so we can define
the l-th dynamical degree as (see [29])

dl(f) := lim
n→+∞

(λl(fn))1/n.

The degree dl measures the asymptotic spectral radius of the action of f∗
on the cohomology group H l,l(Pk). When λl(fn) = λl(f)n for all n, we say
that f is l-algebraically stable ([17]). The last degree dk is the topological
degree. The sequence of degrees is increasing up to a rank s and then it is
decreasing (see [23]).
Assume that one of the dynamical degree ds of f is greater than the

others. Such map is said to be cohomologically hyperbolic. It is conjec-
tured (see [25]) that there exists a measure of maximal entropy log ds.
That measure should be hyperbolic (no Lyapunov exponent is zero) and
the saddle points should be equidistributed along that measure (that last
point is out of the scope of the article). Such statement has been proved
in the cases where the highest dynamical degree is the topological degree
([26]), for Hénon mappings (see e.g. [2]), regular birational maps ([12]),
polynomial-like and horizontal-like maps ([10, 11]) ... That gives large fam-
ilies of examples where hyperbolic dynamics is established. Still, the result
is not known is general and there are natural families for which it is left to
be done: birational mappings of P2, polynomial mappings of Ck (k > 3),
and more generally rational mappings of Pk for which the highest dynami-
cal degree is not the topological degree (and from now on, that will be the
case we are in).
A fruitful approach toward that direction has been initiated by Bedford

and Diller for a birational map f on a projective surface X in [1]. They
define a geometric condition on the indeterminacy sets I(f) and I(f−1)
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under which they can construct the wanted measure (the computation of
the entropy was done in [20]). Then they show that, in the case where X
is P2 that condition is generic in the following sense: for any f satisfying
that condition and any A outside a pluripolar set of Aut(P2) then f ◦
A also satisfies that geometric condition. In [9], the authors showed that
there exist examples that do not satisfy that condition and gave a more
general condition that is still not always satisfied. Finally, in the articles [7,
8], the authors generalize that idea to the case of a meromorphic map
of a projective surface (under a more general integral condition); whereas
that gives new families where the program is fulfilled (notably polynomial
mappings of C2) it is yet not general. Indeed, a recent work of Buff gives
examples where that condition is not satisfied ([3]). Getting more and more
general conditions in hopping to finally get all the existing meromorphic
maps seems to be a failing approach as one always seems to find maps
that are a "little bit more pathologic" (that might simply be due to the
fact that the above conjecture is false). Still, that approach gives large
families of map for which we understand fairly well the chaotic dynamics.
Furthermore, pluripolar sets are of zero Lebesgue measure, so for a given
map f , though we may not be able to construct the right measure for f ,
we are able to do so for arbitrarily small approximations of f (that is a
map f ◦Aε where Aε is close to the identity in Aut(Pk)).

This was one of the motivations of De Thélin and the author in [5] where
we were interested in dynamics in higher dimension. We considered the
family of birational maps f of Pk such that dim(I(f)) = k − s − 1 and
dim(I(f−1)) = s− 1, for some 1 6 s 6 k− 1 (when k = 2, that gives every
birational maps but the situation is more complex when k > 3). We gave a
geometric condition on I(f) and I(f−1) analogous to Bedford-Diller’s con-
dition under which we constructed a measure of maximal entropy. Then, we
showed that for any A outside a pluripolar set of Aut(Pk), f◦A satisfies that
condition (we do not need that f itself satisfies the condition). A natural
question is to prove the same statement for rational maps (not necessarily
birational) with no hypothesis on the dimension of the indeterminacy sets.
This is exactly the aim of the article. A difference is that we no longer

look for a condition that ensures the existence of the right measure, we
directly try to construct the measure and we show we can succeed out-
side a pluripolar set. We denote by Cq the convex cone of positive closed
currents of bidegree (q, q) and mass 1. The main results of the article can
be summed up in the following theorem (see below for notions related to
super-potentials theory).
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648 Gabriel VIGNY

Theorem 1.1. — Let f be a dominant rational map of Pk.

1. Outside a countable union of analytic sets of A ∈ Aut(Pk), the map
fA := f ◦A satisfies λs(fnA) = λs(f)n for all n and s.

2. Assume that ∃s < k with λs(f) > λl(f) for all l < s. Then outside
a pluripolar set of A ∈ Aut(Pk), for any smooth form Ωs ∈ Cs, the
sequence of currents λs(f)−n(fnA)∗(Ωs) converges in the Hartogs’ sense
to the Green current T+

s,A which is f∗A-invariant.
3. Assume that ∃s < k, with λs(f) > λl(f) for all l. Then outside a

pluripolar set of A ∈ Aut(Pk), for any smooth form Ωk−s ∈ Ck−s, the
sequence of currents λs(f)−n(fnA)∗(Ωk−s) converges in the Hartogs’
sense to the Green current T−s,A which is (fA)∗-invariant. Furthermore,
the measure νA := T+

s,A ∧ T
−
s,A is well defined in the sense of super-

potentials.
4. If in addition the map f satisfies dim(I(f)) = k − s− 1 or I(f) ⊂ H

for a hyperplane H then outside a pluripolar set of Pk the measure
νA is an invariant measure of maximal entropy log λs(f) which is
hyperbolic.

5. Assume that f is a polynomial map of Ck, then the points 1, 2, 3 and
4 are true replacing Aut(Pk) with Aff(Ck), the affine automorphisms
of Ck.

An important remark is that for polynomial maps, the inderminacy set
is always contained in the hyperplane at infinity so point 4 and 5 holds
for polynomial mappings as soon as ∃s < k, with λs(f) > λl(f). Then
starting with a rational map f of Pk, though we might not have point 4
in Theorem 1.1 for f , we do have it for any homogeneous extension f̃ of
f to Pk+1. Since f is a factor of f̃ , it means that though we might not
be able to approximate f by hyperbolic maps in the orbit under Aut(Pk),
we can approximate a more complex dynamics (f̃) but in a bigger space
(Aut(Pk+1) or Aff(Ck+1)).

Observe also that the case of birational maps of P3 is covered by Theo-
rem 1.1: as dim(I(f±1)) 6 1, if λ1(f) > λ2(f) then we apply it directly, if
λ2(f) > λ1(f) then we apply it to f−1.
Let us explain the approach of the article and how it differs from the one

in [5]. For birational maps of [5], the hypothesis on the dimension of the
indeterminacy sets implies that if ∪i∈N(f−1)i(I+)∩ I− = ∅ then the maps
is algebraically stable, ds = ds = δk−s is the highest dynamical degree and
f∗(ωs) = f∗(ω)s (d is the algebraic degree of f , δ the algebraic degree of
f−1). We then considered the following condition on f

ANNALES DE L’INSTITUT FOURIER



GENERIC DYNAMICS OF RATIONAL MAPS 649

(1.1)
{∑

n∈N
1
dsn

∫
fn(I−) uf

∗(ω)s−1 > −∞∑
n∈N

1
δ(k−s)n

∫
f−n(I+) u

′f∗(ω)k−s−1 > −∞,

where u (resp. u′) is a quasi-potential of f∗(ω) (resp. f∗(ω)). Then, under
(1.1) we were able to construct the Green currents and a (mixing) hyper-
bolic measure of maximal entropy using Theorem 1 in [5] and the results
of [4].
We then showed that (1.1) is given by a decreasing sequence of some

quasi-plurisubharmonic function gn on Aut(Pk) and then we provide exam-
ples in the orbit of f to show that g := limn gn 6≡ −∞ (these examples also
showed that the condition giving algebraic stability was satisfied outside a
countable union of analytic sets). To give the expression of such function
gn, we see it as the push-forward on Pk of some current in Aut(Pk) × Pk.
A key point to make the computations was that, thanks to the hypothesis
on the dimension of I+ and I−, such current was smooth outside a set of
codimension 2 in Aut(Pk) (Lemma 3.3.2) hence the computation of the ddc
of the currents was just the trivial extension of its ddc wherever it is well
defined ([6, Chapter III Corollary 4.11]).
Dealing with higher dimension with no control on I(f) is the main diffi-

culty of the article. In order to deal with such currents, we use the theory
of super-potentials of Dinh and Sibony ([17]). Though the general strat-
egy is similar, some serious obstructions appear that force us to make deep
changes. First of all, the indeterminacy sets I and I ′ (see the definition later
on though at this point the reader may think of them as I+ and I−) do
intersect in general. Hence, algebraic stability cannot be given by a simple
condition of the form of "∪i∈N(f−1)i(I+) ∩ I− = ∅" (they should be such
condition taking into account that the intersection of the different strati-
fications of I− and their images with I+ are transverse but it would not
be of any use). Instead, we proceed inductively and show that, under alge-
braic conditions, we can defined (fn)∗([M ]) with (fn)∗([M ]) = (f∗)n([M ])
for a given analytic set M of codimension s. Providing explicit examples
where algebraic stability holds (the spirit of such examples follows ideas
of Dinh), we then show that outside a countable union of analytic sets of
A ∈ Aut(Pk), pull-backs and push-forwards are well defined in the sense of
super-potentials.

In a second part, we construct the Green currents and their intersection.
Instead of giving a condition (1.1), we directly try to construct the measures
and currents, we show we can succeed outside a pluripolar set. For that,
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the idea is to consider the rational map

F̃ : Aut(Pk)× Pk → Aut(Pk)× Pk

(A, z) 7→ (A, fA(z)),

and to show that ds(f)−n(F̃ ∗)n(ωs) is well defined and that its slices con-
verges (outside a pluripolar set of Aut(Pk)) to the Green current of fA in
the sense of super-potentials. For that we want to compute the value of the
slice of a quasi-potential of ds(f)−n(F̃ ∗)n(ωs) at a smooth form of Ck−s+1.
Then we want to show that it defines a DSH function computing its ddc
and providing examples where it is finite (using the same kind of examples
as above). The difficulty lies in the fact that such ddc is not a priori clearly
defined since we have no control on the singularities of F̃ (contrary to [5]).
To overcome that problem, we regularize the map F̃ in the following sense:
we approximate its graph by a smooth positive closed current. Though we
do not have a map anymore, we preserve the cohomology and we keep the
functional properties of the pull-back and push-forward. Then all the com-
putations make sense and we pass to the limit for F̃ using pluripotential
theory. We believe that idea can be used in other cases. In a last section,
we prove points 4 and 5 in Theorem 1.1. We use Theorem 1 in [5] to show
that the entropy of fA is log λs(f), the hyperbolicity is obtained thanks to
the results of [4]. As above, the idea is to prove that the desired properties
are obtained under DSH conditions. We need the additional hypotheses of
point 4 on the indeterminacy sets to construct examples that satisfy these
conditions. In an independent paragraph, we explain how knowing the en-
tropy and hyperbolicity of the homogeneous extension f̃ gives the entropy
and hyperbolicity of f using the theory of the entropy of a skew-product.

Acknowledgements. — I am grateful to De Thélin for numerous conver-
sations where he convinced me that the results of the paper were achievable
and for explaining how Corollary 3 in [4] could be used here.

Notations and preliminaries

In what follows, f : Pk → Pk denotes a meromorphic map. Such a map
is holomorphic outside an analytic subset I(f) of codimension > 2 in Pk.
It can be written in homogeneous coordinates as [P0 : · · · : Pk] where the
Pi are homogeneous polynomials of algebraic degree d in the (z0, . . . , zk)
variable, with gcdi(Pi) = 1. Let Γ denote the closure of the graph of the
restriction of f to Pk \I(f). This is an irreducible analytic set of dimension
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k in Pk × Pk. Let π1 and π2 denote the canonical projections of Pk × Pk
on the factors. The indeterminacy set I(f) is also the set of points z ∈ Pk
such that dim π−1

1 (z) ∩ Γ > 1. We sometimes write I instead of I(f). We
assume that f is dominant, that is, π2(Γ) = Pk. The second indeterminacy
set of f is the set I ′ of points z ∈ Pk such that dim π−1

2 (z) ∩ Γ > 1. Its
codimension is also at least equal to 2. If A is a subset of Pk, define

f(A) := π2(π−1
1 (A) ∩ Γ) and f−1(A) := π1(π−1

2 (A) ∩ Γ).

We will need to distinguish between the direct image of A by f iterated n
times (that we denote (fn)(A)) and the direct image iterated n times of A
by f (that we denote (f)n(A)). We use the same notations for preimages.
If f is holomorphic, both notions coincide. That does not need to be the
case if f is meromorphic.
We need to define pull-back and push-forward of positive closed currents.

Recall that if S is a positive closed current of bidegree (s, s), we denote
its mass ‖S‖ :=

∫
S ∧ ωk−s. Define formally for a current S on Pk, not

necessarily positive or closed, the pull-back f∗(S) by

(1.2) f∗(S) := (π1)∗
(
π∗2(S) ∧ [Γ]

)
.

This makes sense if the wedge-product π∗2(S)∧ [Γ] is well defined, in partic-
ular, when S is smooth. We will be particularly interested in the case where
S is the current of integration on an analytic set. Similarly, the operator
f∗ is formally defined by

(1.3) f∗(R) := (π2)∗
(
π∗1(R) ∧ [Γ]

)
.

We need in the article the theory of super-potentials ([17] for proofs, or the
appendix of [5]). The formalism of super-potentials allows to extend the
calculus of potentials to the case of general bidegree. Recall that if T ∈ Cq,
it is cohomologous to a fixed smooth form Ωq ∈ Cq, hence we can write it
T = Ωq+ddcUT where UT is a quasi-potential of T . A super-potential UT of
T is then the function defined for smooth S ∈ Ck−q+1 by UT (S) = 〈UT , S〉.
This definition can be extended to arbitrarily elements of Ck−q+1 making
UT a quasi-plurisubharmonic function on Ck−q+1 (according to the notion
of structural variety on Ck−q+1).

In particular, the notion of pull-back and push-forward can be extended
to f∗-admissible elements of Cq (resp. f∗-admissible elements of Ck−q) that
is elements whose super-potentials are finite at λ(fs−1)f∗(R) for some R
smooth in Ck−s+1 (resp. at λ(fs+1)f∗(R) for some R smooth in Cs+1). For
smooth forms in Cq, the notions of pull-back and push-forward coincide
with the ones given by (1.2) and (1.3) and super-potentials extend that

TOME 64 (2014), FASCICULE 2
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notion to admissible elements by pluri-subharmonicity along the structural
varieties.
Finally, recall that the group Aut(Pk) of automorphisms of Pk is

PGl(Ck+1). In particular, it is a Zariski dense open set in P(k+1)2−1(C).
For A ∈ Aut(Pk) and l 6 k, one has that λl(f ◦ A) = λl(A ◦ f) = λl(f)
(the quantity λl(f) is defined in the beginning of the introduction). This
explain why we choose to consider such perturbations of f . Indeed, it could
seem that a natural way to approximate f would be to slightly change the
polynomials Pi (where f = [P0 : · · · : Pk]). But such perturbation gives
generically a holomorphic map as the common zero set of k + 1 polynomi-
als in Pk is generically empty. On the contrary, our choice ensures that we
stay in the same family.

For h in the orbit of f , we use the notation Lh := λq(f)−1h∗ (resp.
Λh := (λk−q)−1h∗ = (λ−q (f))−1h∗) for the normalized pull-back (resp.
push-forward) in the sense of super-potentials acting on h∗-admissible ele-
ments of Cq (resp. h∗-admissible elements of Ck−q). We simply write L and
Λ instead of Lf and Λf .

2. Algebraic stability is dense

The purpose of the section is to prove the following theorem (which gives
the first point of Theorem 1.1). We do not assume here that λs(f) is greater
than the other λl(f). The results of the section remain true for a meromor-
phic correspondence but we state them in the case of a meromorphic map
for simplicity. Let Ωq ∈ Cq be a fixed smooth form, we denote by ULh(Ωq)
(resp. UΛh(Ωq)) a super-potential of Lh(Ωq) (resp. Λh(Ωq)).

Theorem 2.1. — For all n, there exists a Zariski dense open set Zn,s
of elements h in the orbit of f for which

1. λs(hm) = λs(h)m = λs(f)n for all m 6 n,
2. (h∗)m = (hm)∗ and (h∗)m = (hm)∗ for all smooth forms in Cs and
Ck−s in the sense of super-potentials,

3. If UT is a super-potential of T smooth in Cs, then the following ULn
h

(T )
is a super-potential of Lnh(T ) on smooth forms

ULn
h

(T ) =
∑
i6n

(
ds−1

ds

)i
ULh(Ωs) ◦ Λih +

(
ds−1

ds

)n
UT ◦ Λnh,(2.1)
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4. If US is a super-potential of S smooth in Ck−s, then the following
UΛn

h
(S) is a super-potential of Λnh(S) on smooth forms

UΛn
h

(S) =
∑
i6n

(
ds+1

ds

)i
UΛh(Ωs) ◦ Lih +

(
ds+1

ds

)n
US ◦ Lnh.(2.2)

Furthermore, the intersection ∩n∈NZn,s contains an open set Y.

We denote dim(I) := m and dim(I ′) := m′. We consider the set C1 :=
π−1

2 (I ′) ∩ Γ (it is the critical set for (π2)|Γ, the second projection of (Pk)2,
and an exceptional set of Γ). It is an analytic subset of Γ so it has dimension
dim(C1) 6 k − 1. Similarly, we consider C′1 := π−1

1 (I) ∩ Γ which is an
analytic set of dimension 6 k − 1. In particular, for p ∈ I ′ generic, we
have dim(π−1

2 (p) ∩ Γ) = dim(C1) −m′ 6 k − 1 −m′. For r ∈ {dim(C1) −
m′, . . . ,dim(C1)}, we consider

I ′r :=
{
p ∈ I ′, dim(π−1

2 (p) ∩ Γ) = r
}
.

Then I ′r is a (possibly empty) locally analytic set of dimension6 dim(C1)−r
(which is less than k− 1− r) and ∪r′>rI ′r′ is an analytic set. Similarly, for
r ∈ {dim(C′1)−m, . . . ,dim(C′1)}, we consider

Ir :=
{
p ∈ I, dim(π−1

1 (p) ∩ Γ) = r
}
.

Then Ir is a (possibly empty) locally analytic set of dimension6 dim(C′1)−r
(which is less than k − 1− r) and ∪r′>rIr′ is an analytic set.

Recall that ifM is an analytic set then for any ε > 0, there exists a δ > 0
such that if Uδ is a δ-neighborhood of M then f−1(Uδ) is contained in a
ε-neighborhood of f−1(M). The same result holds for direct image.

Lemma 2.2. — Let M be an analytic set of codimension s such that
for all r ∈ {dim(C1) − m′, . . . ,dim(C1)}, M ∩ ∪r′>rI ′r′ is empty if
dim(∪r′>rI ′r′) 6 s − 1 and of dimension dim(∪r′>rI ′r′) − s if not. Assume
also that no component of π−1

2 (M) ∩ Γ is contained in C′1.
1. Then f−1(M) is an analytic set of codimension s such that

codim(f−1(M) ∩ I(f)) > s+ 1. For all analytic set M ′ ⊂M of codi-
mension > s+ 1, then codim(f−1(M ′)) > s+ 1.

2. The positive closed current f∗([M ]) of bidegree (s, s) is well defined,
depends continuously on [M ] in the sense of currents and is equal to
[f−1(M)] (counting with multiplicity). Hence, we have that λs(f) =
‖f∗([M ])‖ × ‖[M ]‖−1.

Proof. — Take M as in the lemma, we prove the first point. We have
that π−1

2 (M) ∩ Γ is an analytic set which is of codimension s outside C1.

TOME 64 (2014), FASCICULE 2
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For r > dim(C1)− s+ 1, we have that dim(I ′r) < s hence π−1
2 (M ∩ I ′r) = ∅.

Now, for r such that dim(C1)−m′ 6 r 6 dim(C1)− s, we have that

dim(π−1
2 (M ∩ I ′r) ∩ Γ) 6 dim(C1)− r + k − s− k + r 6 k − s− 1.

That implies that π2(M) ∩ Γ is an analytic set of codimension s. Pushing-
forward by π1 (and keeping track of the multiplicity), we have that f−1(M)
is indeed an analytic set of dimension s as π2(M) ∩ Γ * C′1 and
codim(f−1(M)∩I(f)) > s+1. For the second part of that point, takeM ′ of
codimension > s+1. Then, outside I(f), it is clear that codim(f−1(M ′)) >
s + 1 and the previous argument shows that codim(f−1(M ′) ∩ I(f)) >
codim(f−1(M) ∩ I(f)) > s+ 1.

Now, for the second point, we have that [π−1
2 (M) ∩ Γ] is a well defined

positive closed current of bidegree (s, s) as the current of integration on
an analytic set of codimension s. Consider Γ′ := Γ \ (C′1 ∪ C1), it is a com-
plex manifold as the graph of a map. The first point of the lemma gives
that [π−1

2 (M) ∩ Γ] is equal to the trivial extension of [π−1
2 (M) ∩ Γ′] (be-

cause π−1
2 (M) ∩ (C1 ∪ C′1) is of codimension > s + 1 and both currents

coincide outside a set of zero mass for them.). Furthermore, the fiber of
π2 restricted to Γ′ are either finite sets or empty. Theorem 1.1 in [16] im-
plies that (π2)∗|Γ′([M ]) = [π−1

2 (M) ∩ Γ′] is a well defined positive closed
current on Γ′ (that is it depends continuously on [M ] for the topology of
current: if (Rn) is a sequence of smooth currents converging to [M ] then
(π2)∗|Γ′(Rn) converges to (π2)∗|Γ′([M ])). In particular, [π−1

2 (M)∩Γ] depends
continuously onM . Pushing-forward by (π1)∗ gives that f∗([M ]) is well de-
fined, depends continuously on M in the sense of currents and is equal to
[f−1(M)] (again, we keep track of the multiplicity). Now we deduce that
λs(f) = ‖f∗([M ])‖ × ‖[M ]‖−1 (that would be true if [M ] was a smooth
current and we can conclude by continuity). �

Similarly, one can prove:

Lemma 2.3. — Let N be an analytic set of dimension s such that for all
r ∈ {dim(C′1)−m, . . . ,dim(C′1)}, N ∩ ∪r′>rIr′ is empty if dim(∪r′>rIr′) 6
k − s− 1 and of dimension s+ dim(∪r′>rIr′)− k if not. Assume also that
no component of π−1

1 (N) ∩ Γ is contained in C1.

1. Then f(N) is an analytic set of dimension s such that dim(f(N) ∩
I ′(f)) 6 s− 1. For all analytic set N ′ ⊂ N of dimension 6 s− 1, then
dim(f(N ′)) 6 s− 1.

2. The positive closed current of bidegree (k − s, k − s) f∗([N ]) is well
defined, depends continuously on [N ] in the sense of currents and is
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equal to [f(N)] (counting the multiplicity). Furthermore, we have that
λs(f) = ‖f∗([N ])‖ × ‖[N ]‖−1.

In order to simplify the exposition, we need the following ad hoc defini-
tion.

Definition 2.4. — An analytic set of codimension s (resp. dimension s)
is said to be f∗-compatible (resp. f∗-compatible) if it satisfies the hypothe-
ses of Lemma 2.2 (resp. Lemma 2.3).

A crucial point for a process in dynamics is that it needs to be iterated.
Recall that Ωs ∈ Cs and Ωk−s+1 ∈ Ck−s+1 are fixed smooth elements.

Proposition 2.5.
1. Let M be an analytic set of codimension s. Assume that for all

0 6 m 6 n−1, (f−1)m(M) is f∗-compatible. Then, movingM a little,
we can assume that it is (fn)∗-compatible and f−n(M) = (f−1)n(M)
(counting the multiplicity) up to a set of codimension > s + 1. Con-
sequently, λs(fn) = λs(f)n.

2. The same result holds for direct images, replacing f∗-compatibility
with f∗-compatibility.

3. Assume that there also exists an analytic set F of dimension s − 1
satisfying (F ∪ f(F )) ∩ (∪06m6n−1(f−1)m(M)) = ∅. Then for any
smooth T ∈ Cs and j 6 n− 1, Lj(T ) is f∗-admissible and (fn)∗(T ) =
(f∗)n(T ) in the sense of super-potentials. If UT is a super-potential of
T smooth, then the following ULn(T ) is a super-potential of Ln(T ) on
smooth forms

ULn(T ) =
∑
i6n

(
ds−1

ds

)i
UL(Ωs) ◦ Λi +

(
ds−1

ds

)n
UT ◦ Λn.

4. Similarly, let N be an analytic set of dimension s such that for all
0 6 m 6 n − 1, (f)m(N) is f∗-compatible. Assume that there exists
an analytic set E of codimension s + 1 satisfying (E ∪ f−1(E)) ∩
(∪06m6n−1(f)m(N)) = ∅. Then for any smooth S ∈ Ck−s and j 6
n − 1, Λj(S) is f∗-admissible and (fn)∗(S) = (f∗)n(S) in the sense
of super-potentials. If US is a super-potential of S smooth, then the
following UΛn(S) is a super-potential of Λn(S) on smooth forms

UΛn(S) =
∑
i6n

(
ds+1

ds

)i
UΛ(Ωk−s) ◦ Li +

(
ds+1

ds

)n
US ◦ Ln.

Proof. — Lemma 2.2 gives that (f−1)n(M) is an analytic set of codi-
mension s and mass λs(f)n‖[M ]‖. Since f∗-compatibility is generic and
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depends continuously on analytic sets, we can indeed take an analytic set
M1 close to M such that (f−1)m(M1) is f∗-compatible for m 6 n− 1 and
(fn)∗-compatible. Since ∪m6n−1(f)m(I ′) ⊃ I ′(fn), we have that

(f−1)−n(M1 ∩ (∪m6n−1(f)m(I ′))c) = (fn)−1(M1 ∩ (∪m6n−1(f)m(I ′))c)

(with multiplicity). We claim thatM1∩(∪m6n−1(f)m(I ′)) is of codimension
> s+ 1. It is by hypothesis for I ′, we check it for f(I−). We have that

M1 ∩ f(I ′) ⊂ f|Ic(f−1(M1) ∩ I ′) ∪ (M1 ∩ π2(C′1)).

Thus, codim(M1∩f(I ′)) > k+1 (the image of a set of codimension > s+1
by a holomorphic map is again of codimension > s + 1 and codim(M1 ∩
π2(C′1)) > s+ 1 by hypothesis). The proof is similar for M1 ∩ (f)m(I ′).

Lemma 2.2 implies that (f−1)n(M1∩(∪m6n−1(f)m(I ′)) is of codimension
> s+ 1. Thus (fn)−1(M1) coincides with (f−1)n(M1) outside a set where
(f−1)n(M1) has zero mass. That implies that λs(fn) > λs(f)n. As the
other inequality always stands, the equality λs(fn) = λs(f)n follows from
the last point of Lemma 2.2 and the first point is proved. The proof of the
second point is the same.
We now prove the third point by induction on n (which is clear for

n = 0). So assume the third point is true for n − 1. We can choose small
neighborhoods U of M and V of F such that (f−1)m−1(U) ∩ f(V ) = ∅.
Let R be a smooth element of Ck−s+1 with support in V (for example a
regularization of Vol(F )−1[F ] using an approximation of the identity in
PGL(Ck+1)).
Any current T ′ ∈ Cs with support in U is such that (f∗)n−1(T ′) has

support in (f−1)m(U) hence we can choose a quasi-potential of (f∗)n−1(T ′)
as a form with C1 coefficients outside U . In particular, its super-potentials
are finite at Λ(R). That gives that the current Ln−1(T ′) is f∗-admissible.
In particular, for T smooth, we have that Ln−1(T ) is moreH-regular than

Ln−1(T ′) hence it is also f∗-admissible. If Un−1 denotes a super-potential
of Ln−1(T ), then we have that

ULn(T ) = UL(Ωs) + ds−1

ds
Un−1 ◦ Λ

on smooth forms. A symmetric argument implies that for any smooth form
R ∈ Ck−s+1, then Λj(R) is well defined in the sense of super-potentials for
j 6 n (though we do not claim that (f∗)j(R) = (f j)∗(R)). In particular,
the induction’s hypothesis shows that

ULn(T ) =
∑
i6n

(
ds−1

ds

)i
UL(Ωs) ◦ Λi + (ds−1

ds
)nUT ◦ Λn
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on smooth forms. The same proof gives the result for direct image. �

Taking the intersection over all n ∈ N, the above theorem means that
algebraic stability is generic in the orbit of f under Aut(Pk) (it stands
outside a countable union of analytic varieties). We now provide explicit
examples in the orbit of f to show that it is not empty.

Let E−k−s and E+
s be two linear subspaces of complex dimension k − s

and s that are respectively f∗-compatible and f∗-compatible with E−k−s ∩
E+
s = {p} reduced to a point. We can then choose E−k−s−1 ⊂ E−k−s and

E+
s−1 ⊂ E+

s two linear subspaces of Pk of complex dimension k − s and s
with p /∈ E+

s−1∪E
−
k−s−1. By Lemmas 2.2 and 2.3, we have that f−1(E−k−s−1)

and f(E+
s−1) have complex dimension k − s − 1 and s − 1. We claim that

we can assume that

f−1(E−k−s) ∩ E
+
s−1 = ∅ and f(E+

s ) ∩ E−k−s−1 = ∅
f−1(E−k−s−1) ∩ E+

s = ∅ and f(E+
s−1) ∩ E−k−s = ∅.

Indeed, each of these conditions is generic and can be achieved by moving
either E+

s and E+
s−1 or E−k−s and E

−
k−s−1. We can choose the homogeneous

coordinates [z0 : · · · : zk] such that

E−k−s = {z0 = · · · = zs−1 = 0} and E+
s = {zs+1 = · · · = zk = 0}

E−k−s−1= {z0 = · · · = zs−1 = zs = 0} and E+
s−1= {zs = · · · = zk = 0}.

In particular, we have
• The sets f−1(E−k−s) and f−1(E−k−s−1) (resp. f(E+

s ) and f(E+
s−1) )

are analytic sets of dimension k−s and k−s−1 (resp. s and s−1).
• For every ε > 0, there exist δ-neighborhoods O− and O−1 (resp.
O+ and O+

1 ) of E−k−s and E−k−s−1 (resp. E+
s and E+

s−1) such that
f−1(O−) and f−1(O−1 ) (resp. f(O+) and f(O+

1 )) are contained in
a ε-neighborhood of f−1(E−k−s) and f−1(E−k−s−1) (resp. f(E+

s ) and
f(E+

s−1)).
• Finally, choosing δ small enough, f−1(O−)∩O+

1 = ∅ and f−1(O−1 )∩
O+ = ∅ (resp. f(O+) ∩ O−1 = ∅ and f(O+

1 ) ∩ O− = ∅).
Let Aα be the element of Aut(Pk) defined by

Aα([z0 : z1 : · · · zs−1 : zs : zs+1 : · · · : zk]) =

[α−1z0 : α−1z1 : · · ·α−1zs−1 : zs : αzs+1 : · · · : αzk]

where 1 > α > 0. Choose α1 small enough so that A−1
α1

(f−1(O−)) b O−.
This is possible because f−1(O−)∩{zs = · · · = zk = 0} = ∅. Similarly, we
can assume that A−1

α1
(f−1(O−1 )) b O−1 . Similarly, choose α2 small enough
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so that Aα2(f(O+)) b O+ and Aα2(f(O+
1 )) b O+

1 . Now consider the map g
defined as

g := Aα2 ◦ f ◦Aα1 .

The following properties are then satisfied
• g−1(O−) b O− and g−1(O−1 ) b O−1 ,
• g(O+) b O+ and g(O+

1 ) b O+
1 .

The example we have constructed is in the orbit of f under the group
Aut(Pk)2 but it is of no concern since f and Aα2 ◦ f ◦A−1

α2
are conjugated.

Observe that the previous hypotheses are stable under small perturbations
(that is conjugating with c in a sufficiently small neighborhood of the iden-
tity in Aut(Pk)). We deduce that:

Lemma 2.6. — There exist analytic sets E−k−s, E
−
k−s−1 (resp. E+

s and
E+
s−1) of dimension k−s, k−s−1, (resp. s and s−1) and δ-neighborhoods
O− and O−1 (resp. O+ and O+

1 ) of E−k−s and E
−
k−s−1 (resp. E+

s and E+
s−1)

and an open set Y in the set of parameters such that for c ∈ Y and fc :=
f ◦ c, we have

• The sets f−1
c (E−k−s) and f−1

c (E−k−s−1) (resp. fc(E+
s ) and fc(E+

s−1))
are analytic sets of dimension k−s and k−s−1 (resp. s and s−1).

• O− ∩ O+
1 = ∅ and O−1 ∩ O+ = ∅.

• f−1
c (O−) b O− and f−1

c (O−1 ) b O−1 (resp. fc(O+) b O+ and
fc(O+

1 ) b O+
1 ).

We can now apply Proposition 2.5 to such an fc with M = E−k−s, F =
E+
s−1 (and N = E+

s , E = E−k−s−1) and any n. It proves Theorem 2.1.
We denote in what follows dq = λq(f) the generic dynamical degree in

the orbit of f .

3. Green currents in the generic case

From now on, we assume that the dynamical degree ds is strictly larger
than ds−1 (hence we have 1 < d1 < · · · < ds). Let W := Aut(Pk). It is a
Zariski dense open set in the projective space W̃ = Pl where l = (k+1)2−1.
Let c denote the homogeneous coordinate on W̃ . When c ∈ W , we write
fc instead of f ◦ c. We can extend the notation for c ∈ W̃ . Of course,
in that case fc is not a dominant meromorphic map and it might not be
defined. For convenience, we denoteX := W̃×Pk, it has complex dimension
(k + 1)2 + k − 1.
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Consider the rational map

F̃ : X → X

(c, z) 7→ (c, fc(z)).

Observe that F̃ acts as the identity on W̃ . Let Πi denote the canonical
projections of X = W̃×Pk to its factor for i = 1, 2. In X, let ωi := Π∗i (ωFS)
be the pull-back of the Fubini-Study form by the projection for i = 1, 2.
That way, ω1 + ω2 is a Kähler form on X. Let Γ̃ be the graph of F̃ in X2

and let Pi, i = 1, 2, denote the projection from X2 to its factors. We denote
ωi,j := P ∗i (ωj).
Define T̃ := d−1

s [Γ̃] which is a positive closed current onX×X of bidegree
((k+1)2+k−1, (k+1)2+k−1). Let Ω̃ :=

∑
a+b+c+d=(k+1)2+k−1ma,b,c,dω

a
1,1∧

ωb1,2∧ωc2,1∧ωd2,2 be a smooth form cohomologous to T̃ . Such Ω̃ exists and is
positive since X is a product of projective spaces. One can then consider a
negative quasi-potential Ṽ of T̃ (that is ddcṼ = T̃ − Ω̃) given by Theorem
2.3.1 in [17].
We consider a sequence (T̃m) of smooth positive closed currents such

that
• each T̃m is cohomologous to T̃ ,
• T̃m → T in the sense of currents,
• one can choose negative quasi-potentials Ṽm of T̃m such that for

all smooth positive closed currents S of bidegree ((k + 1)2 + k,

(k + 1)2 + k) in X2, one has that 〈Ṽm, S〉 decreases to 〈Ṽ , S〉.
Some remarks are in order here. Such sequence of currents has been explic-
itly constructed in [17] where the authors restricts themselves to the case
of Pk for simplicity. In order to construct (T̃m), one uses a convolution by
a radial approximation of the identity in Aut(X2) (more precisely, a poly-
radial approximation). The last property is proved as in Proposition 3.1.6
in [17]. Extending the formalism of super-potentials to X2, we can extend
that property to the case where S is not smooth. Finally, that property
implies the Hartogs’ convergence of the sequence T̃m to T̃ . We need some
notations. For a current R in X, we denote L̃(R) := (P1)∗(P ∗2 (R)∧ T̃ ) and
Λ̃(R) := (P2)∗(P ∗1 (R) ∧ T̃ ) (in the cases where these currents make sense)
and L̃m(R) := (P1)∗(P ∗2 (R) ∧ T̃m) and Λ̃m(R) := (P2)∗(P ∗1 (R) ∧ T̃m). We
have the lemma:

Lemma 3.1. — Let Ωq be smooth positive closed current of bidegree
(q, q) in X. Then one can choose negative quasi-potentials Ũ and Ũm of
L̃(Ωq) and L̃m(Ωq) and Ũ ′ and Ũ ′m of Λ̃(Ωq) and Λ̃m(Ωq) such that
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• For all positive smooth forms S of bidegree (l− q + 1, l− q + 1) on
X, we have that 〈Ũm, S〉 decreases to 〈Ũ , S〉.

• For all positive smooth forms R of bidegree (l− q+ 1, l− q+ 1) on
X, we have that 〈Ũ ′m, R〉 decreases to 〈Ũ ′, R〉.

Proof. — Let Ũ and Ũm be the negative quasi-potentials defined by

Ũ := (P1)∗(P ∗2 (Ωq) ∧ Ṽ ) and Ũm := (P1)∗(P ∗2 (Ωq) ∧ Ṽm).

Since ddc commutes with pull-back and push-forward we have indeed that
ddcŨ = L̃(Ωq)−(P1)∗(P ∗2 (Ωq)∧Ω̃) and ddcŨm = L̃m(Ωq)−(P1)∗(P ∗2 (Ωq)∧
Ω̃). The first part of the lemma follows from the choice of T̃m and Ṽm. The
proof of the second point is the same. �

We shall now change the choice of the quasi-potentials. One of the inter-
ests of the theory super-potentials lies in the fact that although it is defined
at some point using quasi-potentials, it does not depend on the choice of
the quasi-potentials (up to a normalization). So we choose instead Ũ and
Ũm equal to the Green quasi-potentials of L̃(Ωq) and L̃m(Ωq) (see [17,
Theorem 2.3.1]).
Recall that Cs is the set of normalized positive closed currents of bidegree

(s, s) in Pk. Consider a smooth Ωs ∈ Cs (we will take more specific Ωs later
on). Consider Ωs := Π∗2(Ωs). Then Ωs is a smooth positive closed current of
bidegree (s, s) in X. We apply the above lemma to Ωs. That gives negative
quasi-potentials Ũ and Ũm of L̃(Ωs) and L̃m(Ωs). We let U and Um be
the associated super-potentials. For c ∈ W , recall that Lc and Λc are the
corresponding normalized pull-back and push-forward operators.
We will need some tools on slicing theory and on convergence of DSH

functions. Recall some facts on slicing first (see [22] or [18, p. 483]). Let
λW be the standard volume form on W . Let ψ(c′) be a positive smooth
function with compact support in a chart of W containing c such that∫
ψλW = 1. Define ψε(c′) := ε−2lψ(ε−1c′) and ψc,ε(c′) := ψε(c′ − c). The

measures ψc,ελW approximate the Dirac mass at c. Let T be a current on
X. For every smooth test form Ψ on X one defines the slice of T at c ∈W
as

(3.1) 〈T,Π1, c〉(Ψ) := lim
ε→0
〈T ∧Π∗1(ψc,ελW ),Ψ〉

when 〈T,Π1, c〉 exists. This property holds for all choice of ψ. Conversely,
when the previous limit exists and is independent of ψ, it defines the cur-
rent 〈T,Π1, c〉 and one says that 〈T,Π1, c〉 is well defined (similarly for
〈Ũ ,Π1, c〉).

Restating results of Dinh and Sibony, we have the lemma:
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Lemma 3.2. — Let T be a positive closed current of bidegree (q, q) onX
of super-potential UT , then outside a pluripolar set of W , one has that

• The slice 〈T,Π1, c〉 is a well defined positive closed current on Pk.
• The function γk−q+1 7→ UT (Π∗2(γk−q+1)∧[c′ = c]) is finite and equal
to a super-potential of 〈T,Π1, c〉 on smooth forms;

• If (Tm) is a sequence of positive closed currents on X which con-
verges in the Hartogs’ sense to T , then the slices 〈Tn,Π1, c〉 con-
verges to 〈T,Π1, c〉 in the Hartogs’ sense.

• Finally, 〈L̃(Ωq),Π1, c〉 = dq

ds
Lc(Ωq).

Proof. — The first point is proved in [15]. For the second point, we con-
sider a smooth form γk−q+1 of bidegree (k− q+ 1, k− q+ 1). The quantity
UT (Π∗2(γk−q+1) ∧ [c′ = c]) is well defined by the theory of super-potentials
(allowing the value −∞). The set of c where it is equal to −∞ is pluripolar:
else we can construct a probability measure µ on W with bounded super-
potential such that UT (Π∗2(γk−q+1)∧P ∗1 (µ)) = −∞, a contradiction. Now,
if UT (Π∗2(γk−q+1) ∧ [c′ = c]) 6= −∞ for one smooth form γk−q+1, then it
is true for any other smooth form as any smooth form is more H-regular
than γk−q+1. Observe now that for c such that UT (Π∗2(γk−q+1)∧ [c′ = c]) is
finite, we have that the quantity is equal to 〈〈UT ,Π1, c〉,Π∗2(γk−q+1)〉 (here,
UT is a quasi-potential of T ) : that follows from the definition of slicing.
Hence, UT (P ∗2 (γk−q+1) ∧ [c′ = c]) defines a super-potential of 〈T,Π1, c〉 on
smooth forms.
The previous point means that T and [c′ = c] are wedgeable. The third

point follows from Proposition 4.2.6 in [17] as H-convergence is preserved
by wedge-product.
For the last point, the result is clear outside any neighborhood of I(fc)

as L̃(Ωq) is continuous there. The result follows as the mass in a small
neighborhood of I(fc) can be taken arbitrarily small since the mass of
Lc(Ωq) is 1 (observe that a neighborhood of I(fc) is also a neighborhood
of I(fc′) for c′ close to c). �

Recall some fact on dsh functions. We say that a function is quasi
plurisubharmonic (qpsh for short) on W̃ if is locally the difference of a
plurisubharmonic function and a smooth function.
We say that a measure is PLB if the qpsh functions are integrable for

that measure. Let µ be such a measure (any measure given by a smooth
distribution for example). We have the following lemma (see Proposition
2.4 in [14]).
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Lemma 3.3. — The family of qpsh functions in W̃ such that ddcψ >
−ω1 and one of the two following conditions

max
W̃

ψ = 0 or
∫
ψdµ = 0

is bounded in L1(ν) and is bounded from above.

We say that a function u is dsh if can be written outside a pluripolar set
as the difference of two qpsh functions. Then ddcu = T+ − T− where T±
are positive closed (1, 1)-currents of same mass.

For such a u, define

‖u‖DSH :=
∣∣∣∣∫ udµ

∣∣∣∣+ min ‖T±‖

where the minimum is taken on all T± positive closed such that ddcu =
T+ − T−. From a sequence of dsh functions uniformly bounded in DSH-
norm, one can extract a weakly converging subsequence (in the sense of
currents with the norm of the limit bounded by the bound).

Lemma 3.4. — Let (gn) be a bounded sequence of dsh functions on W .
Then, we can extract a converging subsequence in DSH that converges
outside a pluripolar set. Then g(x) is dsh and ‖g‖DSH 6 C.

Proof. — Write gn = g+
n − g−n where g±n are qpsh functions such that

‖g±n ‖L1 is uniformly bounded (for the Lebesgue measure). Up to extract-
ing, we can assume that (g±n ) converges outside a pluripolar set to g±

(Proposition 3.9.4 in [11]). �

• Action of L̃m and L̃ on the cohomology. As T̃m and T̃ are cohomol-
ogous, L̃ and L̃m coincide on the cohomology. We study the action of L̃
on ωi1 ∧ ωs−i2 . We have that L̃(ωi1 ∧ ωs−i2 ) is a positive closed form. Since
L̃ acts trivially on W̃ we have that L̃(ωi1 ∧ ωs−i2 ) = ωi1 ∧ L̃(ωs−i2 ). We can
write it in cohomology (that is up to a ddc-exact form)

L̃(ωi1 ∧ ωs−i2 ) = ωi1 ∧
j=s−i∑
j=0

Cj,s−iω
j
1 ∧ ω

s−i−j
2 ,

where the Ci are non negative numbers (since X is a product of projective
space). We claim that

C0,s−i = ds−i
ds

.

Indeed, Lemma 3.2 implies that for c generic we have 〈L̃(ωs−i2 ),Π2, c〉 =
1
ds
f∗c (ωs−i2 ) and then C0,s−i is just L̃(ωs−i2 ) evaluated at [c′ = c] ∧ ωk−s2 .
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The matrix M̃ of L̃ on the basis (ωi1 ∧ ωs−i2 ) is then the matrix with non
negative coefficients 

1 0 · · · · · · 0

? ds−1
ds

. . .
...

...
. . . ds−2

ds

. . .
...

...
. . . . . . 0

? · · · · · · ? d0
ds


.

Using Perron-Frobénius theorem gives an eigenvector associated to the
eigenvalue 1 with positive coefficients. In other words, one can choose a
positive closed form Ωs such that L̃(Ωs) = Ωs+ddcUs and L̃m(Ωs) = Ωs+
ddcUs,m. Renormalizing, the form Ωs can be written as ωs2 +

∑
i>1 aiω

i
1 ∧

ωs−i2 . Taking Ωs (which is cohomologous to ωs2) and Ω′s any smooth form
cohomologous to

∑
i>1 aiω

i
1 ∧ ωs−i2 with no component of bidegree higher

than (s − 1, s − 1) in the z variable (z is the dynamical variable, i.e. the
coordinate on the Pk factor), one can choose instead

Ωs := Ωs + Ω′s.

Similarly, the action of Λ̃ on the basis (ωi1 ∧ ωk−s−i2 )i=0..k−s is given by
the matrix 

1 0 · · · · · · 0

? ds+1
ds

. . .
...

...
. . . ds+2

ds

. . .
...

...
. . . . . . 0

? · · · · · · ? dk

ds


.

In order to see it, one can work with the dual basis (ωl−i1 ∧ ωs+i2 )i=0..k−s

and use that the adjoint of Λ̃ is L̃.
Since L̃(Ωs) = L̃(Ωs) + L̃(Ω′s), we have Us = Ũ + Ũ ′s where Ũ ′s is the

Green quasi-potential of L̃(Ω′s) (recall that Ũ is a quasi-potential of L̃(Ωs)).
Then Ũ ′s is a form with no components of bidegree higher than (s−2, s−2)
in the z variable. So bidegree arguments imply that 〈Us,Π1, c〉 = 〈Ũ ,Π1, c〉
defines a super-potential ULc(Ωs) of Lc(Ωs).

• Construction of a function that tests the convergence of the
Green current. We fix N ∈ N. Let m = (m1,m2, . . . ,mN ) ∈ NN . We
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define

gmN := (Π1)∗(
N∑
j=1

L̃mN
· · · L̃mj+1(Us,mj ) ∧ β̃k−s+1)

where β̃k−s+1 = Π∗2(βk−s+1) and βk−s+1 is a positive closed current of
bidegree (k − s + 1, k − s + 1) in Pk and Us,mj is a quasi-potential of
L̃mj (Ωs).

Our aim is to prove the following proposition.

Proposition 3.5.
1. There exist positive closed currents T±n,m on W̃ and a constant C

independent of n and m such that

ddcgmn = T+
n,m − T−n,m

with ‖T±n,m‖ 6 C.
2. Letting mN → ∞, . . . ,m1 → ∞ in that order, we have that the

functions (gmn ) converge outside a pluripolar set to the function gn
defined for c ∈ ∩n∈NZn,s by

gn(c) =
∑
j6n

(
ds−1

ds

)j
ULc(Ωs)(Λjc(βk−s+1)),(3.2)

where ULc(Ωs) is the super-potential of Lc(Ωs) given on smooth forms
by the quasi-potential 〈Us,Π1, c〉.

• Computation of ddcgmN . As every object in the definition of gmN is
smooth, its ddc is well defined (that is the very reason we introduced the
regularization of the graph). Furthermore, ddc commutes with pull-back
and push-forward

ddcgmN = (Π1)∗(
N∑
j=1

L̃mN
· · · L̃mj+1(ddcUs,mj

) ∧ β̃k−s+1)

= (Π1)∗(
N∑
j=1

L̃mN
· · · L̃mj+1(L̃mj

(Ωs)− Ωs) ∧ β̃k−s+1)

= (Π1)∗(L̃mN
· · · L̃m1(Ωs) ∧ β̃k−s+1)− (Π1)∗(Ωs ∧ β̃k−s+1).

Hence, writing

T+
N,m := (Π1)∗(L̃mN

· · · L̃m1(Ωs) ∧ β̃k−s+1)

T−N,m := (Π1)∗(Ωs ∧ β̃k−s+1),
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we can write ddcgmN as the difference of two positive closed currents T+
N,m−

T−N,m. Since T−N,m does not depends on N and m, its mass is constant. Now
T+
N,m has the same mass as T−N,m since they are cohomologous. That proves

the first point of Proposition 3.5.
• Proof of the convergence of gmN (c). We can write that

gmN (c) =
N∑
j=1

L̃mN
· · · L̃mj+1(Us,mj

) ∧ β̃k−s+1 ∧ [c′ = c]

=
N∑
j=1
〈Ũs,mj

, Λ̃mj+1 · · · Λ̃mN
(β̃k−s+1 ∧ [c′ = c])〉.

Letting mN →∞, we have that, for c ∈ ∩n∈NZn,s, Λ̃mN
(β̃k−s+1 ∧ [c′ = c])

converges in the sense of currents to Π∗2(ds−1
ds

Λc(βk−s+1))∧ [c′ = c] (we can
prove the convergence in the Hartogs’ sense but we do not need it). Hence

〈Ũs,mj
, Λ̃mj+1 · · · Λ̃mN

(β̃k−s+1 ∧ [c′ = c])〉 →

〈Ũs,mj
, Λ̃mj+1 · · · Λ̃mN−1(Π∗2(ds−1

ds
Λc(βk−s+1)) ∧ [c′ = c])〉.

We let mN−1, . . . ,mj+1 go to ∞ and we have that the previous quantity

converges to 〈Ũs,mj
,
(
ds−1
ds

)j
Π∗2(Λjc(βk−s+1)) ∧ [c′ = c]〉 (at each step, all

the objects but one are smooth so the convergence is clear). Now we let
mj →∞, Hartogs’ convergence of L̃mj

(Ωs) implies that the previous quan-

tity converges to 〈Us,
(
ds−1
ds

)j
Π∗2(Λjc(βk−s+1)) ∧ [c′ = c]〉. Thanks to the

remark at the end of the paragraph where we computed the action on the
cohomology, this can be rewritten as

(
ds−1
ds

)j
ULc(Ωs)(Λjc(βk−s+1)) . That

proves Proposition 3.5.
• Construction of the Green current for an open set in the space
of parameters. We show now that the gmN are uniformly bounded in Y.
See Lemma 2.6 for the notations. We shall take for that specific Ωs, Ω′s
and βk−s+1. Let Ωs be a smooth positive closed current in Cs with support
in O−. Let Ω′s be a smooth positive closed current with support disjoint
from Y (that can easily be done by choosing instead of ω1 a smooth ap-
proximation of a hyperplane not meeting Y, restricting Y if necessary).
Let βk−s+1 be a smooth positive closed current in Ck−s−1 with support in
O+

1 . Observe that by construction of L̃m and Λ̃m, we have that for m large
enough Supp(L̃m(Ωs)), Supp(L̃m(Ω′s)) and Supp(Λ̃m(β̃k−s+1)) are close to
Supp(L̃(Ωs)), Supp(L̃(Ω′s)) and Supp(Λ̃(β̃k−s+1)).
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In particular for c ∈ Y, we have that L̃mj
(Ωs) = L̃mj

(Ωs) and it has
support in O− × Y. Lemma 2.3.5 in [17] implies that there is a constant
C > 0 (that does not depend on mj) such that

‖Us,mj
‖C1(O+

1 ×Y) 6 C.

Slicing implies that

‖〈Us,mj
,Π1, c〉‖C1(O+

1 ) 6 C,

for c ∈ Y.
Since Λ̃mj+1 · · · Λ̃mN

(β̃k−s+1 ∧ [c′ = c]) has support in O+
1 and mass

(ds−1
ds

)n, we deduce that there exists a constant C0 independent of m and
n (providing that m is large enough with respect to n) such that gmn is
uniformly bounded by C0 for c in Y.
• Construction of the Green current outside a pluripolar set. Take
µ a smooth measure with support in Y. Such µ is PLB and is the one
we use to define the DSH-norm. Then n being fixed, we have that the
sequence of functions gmn is uniformly bounded in DSH, we can assume that
it converges (in DSH). In particular, its limit g′n is DSH with ‖g′n‖DSH 6 C
by Proposition 3.5 and g′n = gn by Lemma 3.4. In particular, the sequence
(gn) is uniformly bounded in DSH. Since the sequence of (non positive)
functions gn is decreasing (and well defined outside a pluripolar set), we
have that it converges for c outside a pluripolar set to g(c) in R− ∪ {∞}.
On the other hand, we can extract a weakly converging sequence in DSH
to a limit g′. Extracting if necessary, we can assume that the convergence
holds outside a pluripolar set by Lemma 3.4. In particular, g = g′ outside
a pluripolar set. Hence, g is finite outside a pluripolar set (removing if
necessary the pluripolar set (∩n∈NZn,s)c, we assume from now on that this
pluripolar set contains it).
The sum

gn =
∑
j6n

(
ds−1

ds

)j
ULc(Ωs)(Λjc(.)),

defines a super-potentials of Lnc (Ωs) by Theorem 2.1. In here, the func-
tion gn is extended in addition to the parameter c to a second argument,
namely the input current βk−s+1. One of the key points of super-potential
theory, is that the finiteness of gn at βk−s+1 implies the finiteness of gn at
any current more H-regular than βk−s+1 and in particular for all smooth
forms. The sequence is decreasing and outside a pluripolar set, it does not
converge to −∞. Outside that set, the convergence of the sequence implies
the convergence in the Hartogs’ sense of the sequence of currents (Lnc (Ωs))
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(see Corollary 3.2.7 in [17]). We denote its limit by T+
s,c that we call the

Green current of order s of fc. Observe that the convergence of (Lnc (Ωs))
in the Hartogs’ sense to T+

s,c implies the convergence of (Lnc (Θs)) in the
Hartogs’ sense to T+

s,c for any other smooth form Θs ∈ Cs (that is because
any smooth form is more H-regular than any other current).
The current T+

s,c is f∗c -invariant (in the sense of super-potentials) since the
convergence of the series giving gn(c) (see (3.2)) implies the convergence of∑

26i

(
ds−1

ds

)i
ULc(Ωs) ◦ Λic(βk−s+1).

Factorizing, we get that
∑

16i

(
ds−1
ds

)i
ULc(Ωs) ◦ Λic(Λc(βk−s+1)) converges

hence a super-potential of T+
s,c is finite at Λc(βk−s+1). That means that T+

s,c

is f∗c -admissible (see Definition 5.1.4 in [17]) and Lc(T+
s,c) is well defined.

Now, Ln+1
c (Ωs) = LcL

n
c (Ωs) converges in the Hartogs’ sense to T+

s,c and
Proposition 5.1.8 in [17] implies that it also converges to Lc(T+

s,c). Thus
T+
s,c = Lc(T+

s,c) and T+
s,c is f∗c -invariant. In particular, we have proved

Theorem 3.6. — There exists a pluripolar set P of W such that for
any c /∈ W for any smooth form Ωs ∈ Cs, the sequence of currents Lnc (Ωs)
converges in the Hartogs’ sense to the Green current T+

s,c which is f∗c -
invariant.

Now assume that furthermore, s is such that ds > ds+1 > · · · > dk so
ds is the highest degree. In other words, we have that generic maps in the
orbit of f are cohomologically hyperbolic. Doing the same thing for Λc, we
obtain:

Theorem 3.7. — There exists a pluripolar set P of W such that for
any c /∈ W for any smooth form Ωk−s ∈ Ck−s, the sequence of currents
Λnc (Ωk−s) converges in the Hartogs’ sense to the Green current T−s,c which
is (fc)∗-invariant.

• Wedge product of T+
s,c and T−s,c outside a pluripolar set. We now

prove:

Proposition 3.8. — Outside a pluripolar set, the currents T+
s,c and T−s,c

are wedgeable so the probability measure T+
s,c ∧ T−s,c is well defined.

Proof. — Recall that T+
s,c and T−s,c are wedgeable if a super-potential of

T+
s,c is finite at Ω1 ∧ T−s,c for one smooth form Ω1 ∈ Cs. Let βk−s ∈ Ck−s be

a smooth form. We will choose particular Ω1 and βk−s later. Consider the
lemma:
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Lemma 3.9. — The sequence of functions

g′n,m(c) =
∑
i6n−1

(ds−1

ds

)i
ULc(Ωs)(Λic(Ω1 ∧ Λmc βk−s))

is a sequence of DSH functions uniformly bounded in n and m for the DSH
norm that converges outside a pluripolar set when n → ∞ to UT+

s,c
(Ω1 ∧

Λmc βk−s).

Assume the lemma is proved, then we have that UT+
s,c

(Ω1 ∧ Λmc βk−s)
defines a bounded sequence of DSH functions. When m→∞, it converges
outside a pluripolar set to UT+

s,c
(Ω1 ∧ T−s,c) since Λmc βk−s converges to T−s,c

in the Hartogs’ sense. Hence UT+
s,c

(Ω1 ∧ T−s,c) 6= −∞ outside a pluripolar
set and the proposition is proved. �

Proof. — Proof of the lemma In order to control the DSH norm of g′n,m,
we need to compute its ddc. That is done exactly as in the proof of Proposi-
tion 3.5 replacing L̃ and Λ̃ by their smooth approximations in order to deal
with smooth objects and using Ω1 ∧ Λnc (βk−s) instead of βk−s+1 (where
βk−s = βk−s + · · · is the eigenvector of Λ̃ associated to 1). So, all there
is left is to construct a PLB measure µ for which ‖g′n,m‖L1(µ) is uniformly
bounded. As in the previous section, that will be achieved by constructing
an example stable by perturbations for which we have uniform estimates
in the convergence of g′n,m.
We use the notations and results of Lemma 2.6. We consider parameters

c ∈ Y. As in the previous paragraph, we take Ωs ∈ Cs a smooth current
with support in O−. We take βk−s ∈ Ck−s any smooth form with support
in O+. In particular, Λmc (βk−s) has support in O+ for all m.
Let H be the hyperplane spanned by E−s−1 and E−k−s−1. Let Ω1 be a

smooth element of C1 with support in a small neighborhood of H. Choosing
that neighborhood small enough, we have that Ω1∧Λmc (βk−s) is a probabil-
ity measure with support in O+

1 . In particular, for c ∈ Y, ULc(Ωs)(Λic(Ω1 ∧
Λmc (βk−s))) = 〈ULc(Ωs),Λic(Ω1 ∧ Λmc (βk−s))〉 as ULc(Ωs) is smooth on the
support of Λic(Ω1 ∧ Λmc (βk−s)). For c ∈ Y, we have that

‖〈Us,Π1, c〉‖C1(O+
1 ) 6 C.

Hence ∣∣∣∣∣
(
ds−1

ds

)i
ULc(Ωs)(Λic(Ω1 ∧ Λmc (βk−s)))

∣∣∣∣∣ 6 C
(
ds−1

ds

)i
.

That implies that |ULn
c (Ωs)(βk−s+1)| is uniformly bounded by a constant C0

in Y where C0 does not depend on n,m. Again, we take for µ any smooth
measure with support in Y. �
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In particular, we have proved points 2 and 3 in Theorem 1.1.
Remark 3.10.
1. Hartogs’ regularity implies that, for c generic, Lnc (Ωs) and Λmc (Ωk−s)

are wedgeable for any smooth Ωs and Ωk−s and n,m.
2. It does not follows from the proposition that the measure T+

s,c∧T−s,c is
invariant. Indeed, we have not proved that it does not charge I(fc). If
not, such measure would hold little interest for the dynamics of fc. So,
in the next section, we will show a (stronger) property of invariance
(namely the quasi-potential of T+

1,c, the Green current of order 1 is
integrable with respect to T+

s,c ∧ T−s,c).

4. Green measure in the generic case

In that section, we assume again that ds is the largest (generic) dynamical
degree. Our purpose is to prove the following which will give point 4 in
Theorem 1.1.

Theorem 4.1. — Let f be such that dim(I(f)) = k − s − 1 or I ⊂ H

for a hyperplane H. Then there exists a pluripolar set P of W such that
for any c /∈ W the Green currents T+

s,c and T−s,c are well defined, wedge-
able. Furthermore, the measure νc := T+

s,c ∧ T−s,c is an invariant probability
measure that integrates log dist(, I(fc)) of maximal entropy log ds.
The Lyapunov exponents χ1 > χ2 > · · · > χk of νc are well defined and

we have the estimates

χ1 > · · · > χs >
1
2 log ds

ds−1
> 0

0 > 1
2 log ds+1

ds
> χs+1 > · · · > χk > −∞.

In particular, the measure νc is hyperbolic.

• Strategy of the proof. We shall construct the measure of maximal
entropy using a theorem of De Thélin and the author ([5]).

Theorem 4.2. — Consider the sequence of measures

νc,n := 1
n

n−1∑
i=0

(f ic)∗
(

(fnc )∗ωs ∧ ωk−s

λl(fnc )

)
.

Assume that there exists a converging subsequence νc,ψ(n) → νc with

(H) : lim
n→+∞

∫
log d(x, I)dνc,ψ(n)(x) =

∫
log d(x, I(fc))dνc(x) > −∞.

Then νc is an invariant measure of metric entropy = log ds.
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Observe that in ([5]), we define νc for s not necessarily associated to the
highest dynamical degree and then we only have that νc is an invariant
measure of metric entropy > log ds. But in our case, the other inequality
always stands by [13].
The estimates on the Lyapunov exponents follows from Corollary 3

in [4].
Observe that in that theorem, one requires that log dist(x,A) ∈ L1(νc)

where A = Cfc
∪Ifc

(recall that Cfc
is the critical set of fc). But in our case,

we only have that log dist(x, Ifc
) ∈ L1(νc). Despite that fact, one still has

the hyperbolicity of the measure allowing the value −∞ for the negative
Lyapunov exponents. Indeed, the stable manifolds were obtained in [4] by
composing forward graph transforms for f−1 along νc-generic orbits. In the
non-integrable case, one can produce them by performing backward graph
transforms for f itself. Then, once the stable manifolds are constructed,
volume estimates are obtained by the slicing arguments of [4] (we are very
grateful to De Thélin for explaining that fact to us, one can also see [21]
where De Thélin’s arguments are checked).
Last, we do not claim that the Lyapunov exponents are constant (that

is the case if νc is ergodic), but considering a ergodic decomposition of νc,
we have that almost all the measures appearing in the decomposition are
ergodic (some could have mass on I+, but only a set of 0 measure since∫

log d(x, I(fc))dνc(x) > −∞). Similarly, almost all the measures appear-
ing in the decomposition are of maximal entropy = log ds (because entropy
is convex with respect to the measure and all of them are of entropy less
than log ds). Finally, almost all the measures appearing in the decomposi-
tion integrates log d(x, I(fc)) (same reasons). Finally, we apply Corollary
3 in [4] to each one of these generic measures of the decomposition.
In particular, Theorem 4.1 is proved if we can apply Theorem 4.2 for c

outside a pluripolar set. We are going for that to follow the strategy of [5,
Proposition 3.4.16]: one can apply Theorem 4.2 and obtain the following
writing of νc, providing we can prove the theorem:

Theorem 4.3. — let f such that dim(I(f)) = k − s − 1 or I ⊂ H

for a hyperplane H. Outside a pluripolar set, the current T+
s,c and T−s,c

are wedgeable. So the intersection T+
s,c ∧ T−s,c is a well defined probability

measure νc and the quasi-potential of T+
1,c, the Green current of order 1, is

integrable with respect to that measure.

Assume the theorem is proved. Let us briefly explain how we can con-
clude. Since Lc(ω) is more H-regular than T+

1,c, we also have that νc inte-
grates a quasi-potential ULc(Ω) of Lc(ω). Now, a quasi-potential of Lc(ω)
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has singularities in log d(x, I(fc)). Hartogs’ regularities implies that
Lnc (ωs) ∧ Λmc (ωk−s) is a well defined probability measure that integrates
a quasi-potential of Lc(ω). In particular, it does not charge I(fc) and it
is (fc)∗-admissible. Replacing Ln−1

c (ωs) and Λmc (ωk−s) by sequences of
smooth currents converging in the Hartogs’ sense, we prove that

Λc(Lnc (ωs) ∧ Λmc (ωk−s)) = Ln−1
c (ωs) ∧ Λm+1

c (ωk−s).

Again, continuity of the wedge product and f∗ for the H-convergence im-
plies that νc is f∗-invariant and we can write νc,n as

1
n

n−1∑
i=0

Ln−ic (ωs) ∧ Λic(ωk−s).

It follows that νc,n converges to νc in the Hartogs’ sense and satisfies the
condition (H). Then, we can apply Theorem 4.2.
Observe also that the fact that νc integrates a quasi-potential of Lc(ω) is

equivalent to the fact that it integrates a quasi-potential of T+
1,c. Indeed, if

νc integrates a quasi-potential of Lc(ω) it is (fc)∗-invariant (see just above).
A simple recurrence shows that it integrates (f∗c )nULc(Ω) and

〈νc, ULc(Ω)〉 = 〈νc, (f∗c )nULc(Ω)〉.

The result follows by monotone convergence as a quasi-potential of T+
1,c is

given by
∑

16n
1
dn

1
(f∗c )nULc(Ω).

Proposition 3.8 already states that T+
s,c and T−s,c are wedgeable for c

generic. So we only need to prove that the potential of the Green current
of order 1 is integrable with respect to T+

s,c ∧ T−s,c or, as it was observed in
the above paragraph, that the potential of Lc(ω) is integrable with respect
to T+

s,c ∧ T−s,c. We proceed as in the previous section. Let Ω1 ∈ C1(Pk), we
consider Π∗2(Ω1) that we simply denote by Ω1. Let U1 be a quasi-potential
of 1

d1
F ∗(Ω1). Then outside a pluripolar set of c one has that Lc(Ω1) =

〈 1
d1
F ∗(Ω1),Π1, c〉 and the slice 〈U1,Π1, c〉 is a quasi-potential of Lc(Ω1) (in

fact, that is true for all c). We denote by ULc(Ω1) the associated super-
potential. Let βk−s ∈ Ck−s (we will choose a more specific βk−s later on).
Consider the lemma:

Lemma 4.4. — Let f be such that dim(I(f)) = k − s− 1 or I ⊂ H for
a hyperplane H. The sequence of functions

kn(c) = ULc(Ω1)(Lnc (Ωs) ∧ Λnc (βk−s))

is a sequence of DSH functions uniformly bounded in n for the DSH norm.
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Assume the lemma is proved. From above, we have that outside a pluripo-
lar set, Lnc (Ωs) ∧ Λnc (βk−s) converges to T+

s,c ∧ T−s,c in the Hartogs’ sense
(Proposition 4.2.6 in [17]). Hence, ULc(Ω1)(Lnc (Ωs) ∧ Λnc (βk−s)) converges
to ULc(Ω1)(T+

s,c ∧ T−s,c) by continuity of the super-potential for the Hartogs’
convergence (Remarks 3.2.4. in [17]). Then extracting weakly converging se-
quences in DSH to a limit k and using Lemma 3.4, we deduce that k 6= −∞
outside a pluripolar set. As k(c) = 〈ULc(Ω1), T

+
s,c ∧ T−s,c〉 that implies Theo-

rem 4.3.
In order to prove Lemma 4.4, we first have to control ddckn. That is

done exactly as above using the same techniques of approximation in the
Hartogs’ sense of the graph of the application F̃ . So, all there is left is to
construct is the PLB measure µ on W̃ such that ‖kn(c)‖L1(µ) are uniformly
bounded. As in the previous section, that will be achieved by constructing
an example stable by perturbations for which we have uniform estimates
in the convergence of kn. We will first do that in the case where dim(I) =
k−s−1 and then when I ⊂ H for some hyperplane H.

• Construction of an example stable by perturbations when
dim(I) = k−s−1. Recall that we constructed linear subspaces E+

s , E+
s−1,

E−k−s−1, E
−
k−s in Lemma 2.6. We can assume that I ∩ O+ = ∅ since O+

is a small neighborhood of a linear set of dimension s. As in Section 2, we
choose an element Aα in Aut(Pk) such that

• A−1
α (f−1)(O−) b O−,

• A−1
α (f−1(O−1 )) b O−1 ,

• Aα(f(O+)) b O+,
• Aα(f(O+

1 )) b O+
1 .

Consider the element g defined as

g := Aα ◦ f ◦Aα.

Observe that I(g) = A−1
α (I(f)) hence we can assume (taking α large

enough) that I(g) ⊂ O−1 . The following property are then satisfied
• g−1(O−) b O− and g−1(O−1 ) b O−1 ,
• g(O+) b O+ and g(O+

1 ) b O+
1 ,

• I(g) ⊂ O−1 .
Again, the example we have constructed is in the orbit of f under the group
Aut(Pk)2 but that is of no concern since f and Aα ◦f ◦A−1

α are conjugated.
Observe that the previous properties are stable under small perturbations,
so we can find a smooth probability measure µ with support in W such
that the above conditions are satisfied for gc = g ◦ c with c ∈ Supp(µ).
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Now, in order to prove Lemma 4.4, we choose for Ω1 any smooth form
in C1 (for example the Fubini-Study form). As before, we take for Ωs a
smooth form in Cs with support in O− and for βk−s a smooth form in
Ck−s with support in O+. In particular, Lcn(Ωs) has support in O− and
Λnc (βk−s+1) has support in O+. Thus Lnc (Ωs) ∧ Λnc (βk−s) is a probability
measure with support in O+ ∩ O−. The super-potential ULc(Ω1) is given
by a quasi-potential ULc(Ω1). Lemma 2.3.5 in [17] implies that there is a
constant C > 0 independent of c such that

‖ULc(Ω)‖C1(O+
s ∩O−k−s

) 6 C.

So arguing as above, we have that kn(c) is uniformly bounded for c ∈
Supp(µ). That gives Lemma 4.4 in the case where dim(I) = k − s− 1.

• Construction of an example stable by perturbations when I is
contained in a hyperplane. We modify the previous construction. Let H
denote a hyperplane such that I ⊂ H. Let E+

s and E−k−s be (generic) linear
subspaces of Pk of dimension s and k − s. We consider E+

s−1 := E+
s ∩ H

and E−k−s−1 := E−k−s ∩H. Then E+
s−1 and E−k−s−1 are linear subspaces of

dimension s− 1 and k − s− 1. We claim that we can assume

• E+
s ∩ E−k−s = {p} is reduced to a point and H ∩ {p} = ∅

• E+
s (resp. E−k−s) is f∗-compatible (resp. f∗-compatible)

• f(E+
s ) ∩ E−k−s−1 = ∅ and f−1(E−k−s) ∩ E

+
s−1 = ∅

We explain why the last point stands. It is generic (in the algebraic sense),
hence we only need to show that it is not empty. For that we can choose
E−k−s so that f−1(E−k−s) ∩ H is of dimension k − s − 1. Indeed the set of
Z ∈ E−k−s sent to H by f is a proper analytic set of E−k−s and is then of
dimension 6 k − s − 1. We conclude using the first point of Lemma 2.2.
Since dim(f−1(E−k−s)∩H) + dim(E+

s−1) = k− 2 < dim(H), we can assume
that f−1(E−k−s)∩E

+
s−1 = ∅. We proceed similarly for f(E+

s )∩E−k−s−1 = ∅.
We let O+ be a small neighborhood of E+

s and O− be a small neigh-
borhood of E−k−s. We can assume that H ∩ O+ ∩ O− = ∅. We choose
small neighborhoods O+

1 and O−1 of E+
s−1 and E−k−s−1. We can choose the

homogeneous coordinates [z0 : · · · : zk] such that

E−k−s = {z0 = · · · = zs−1 = 0} and E+
s = {zs+1 = · · · = zk = 0}

E−k−s−1 = {z0 = · · · = zs−1 = zs = 0} and E+
s−1 = {zs = · · · = zk = 0}

H = {zs = 0}
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As in section 2 let Aα be the element of Aut(Pk) given by

Aα
([
z0 : z1 : · · · zs−1 : zs : zs+1 : · · · : zk

])
=[

α−1z0 : α−1z1 : · · ·α−1zs−1 : zs : αzs+1 : · · · : αzk
]
.

Then for α small enough
• A−1

α (f−1)(O−) b O−,
• A−1

α (f−1(O−1 )) b O−1 ,
• Aα(f(O+)) b O+,
• Aα(f(O+

1 )) b O+
1 .

Consider the element g in Orb(f) defined as

g := Aα ◦ f ◦Aα.

Observe that I(g) = A−1
α (I(f)) ⊂ A−1

α (H) ⊂ H. Hence we can assume
that I(g) ∩ (O+ ∩ O−) = ∅. The following property are then satisfied

• g−1(O−) b O− and g(O+) b O+,
• I(g) ∩ (O+ ∩ O−) = ∅.

Observe that the previous properties are stable under small perturbations.
That defines a small open set W0 in W where the above conditions are
satisfied and we can find a smooth probability measure µ with support
in W0 such that the above conditions are satisfied for gc = g ◦ c with
c ∈ Supp(µ).

Now, in order to prove Lemma 4.4, we choose for Ω1 any smooth form
in C1 (for example the Fubini-Study form). As before, we take for Ωs a
smooth form in Cs with support in O− and for βk−s a smooth form in Ck−s
with support in O+.
In particular, for c ∈ W0, Lnc (Ωs) ∧ Λnc (βk−s) is a probability measure

with support in O+ ∩ O−. Lemma 2.3.5 in [17] implies that there is a
constant C > 0 independent of c such that

‖ULc(Ω)‖C1(O+
s ∩O−k−s

) 6 C.

So arguing as above, we have that kn(c) is uniformly bounded for c ∈
Supp(µ). That gives Lemma 4.4 in the case where I is contained in a
hyperplane.
We claim that in that example one also has that for any x ∈ Pk,

log dist(., x) is integrable with respect to νc for c outside a pluripolar
set (the distance being given by the Fubini-Study metric). The proof of
that claim follows the lines of the previous one. Choosing suitable coordi-
nates, we can assume that x = 0 ∈ Ck ⊂ Pk. Let [z0 : · · · : zk−1 : t] de-
note the associated homogeneous coordinates on Pk. We want to construct
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an example stable by perturbations for which νc integrates log dist(., 0)
with locally uniform estimates. The qpsh function log ‖(z0, . . . , zk−1)‖ −
log ‖(z0, . . . , zk−1, t)‖ is well defined so ddc log ‖(z0, . . . , zk−1)‖ is a well de-
fined (1, 1) current in Pk. Furthermore, log dist(., 0) ∈ L1(νc′) is equiva-
lent to log ‖(z0, . . . , zk−1)‖ − log ‖(z0, . . . , zk−1, t)‖ ∈ L1(νc′). Using super-
potential theory ([17, Lemma 4.2.8]), it is enough to prove that

UT+
c′,s

(ddc log ‖(z0, . . . , zk−1)‖ ∧ T−c′,k−s) > L

for c′ in a small neighborhood of c. Observe that ddc log ‖(z0, . . . , zk−1)‖
is a well defined (1, 1) current in Pk, since it is smooth outside a set of
dimension 0, its wedge product with any positive closed current is well
defined (see [6]). We take c ∈W0 as in the previous example:

• Let Uc,s denotes the Green quasi-potential of Lc(Ωs) of the previous
section. Then Uc,s is smooth (with locally uniform estimate near c)
in O−.

• For all n > 0 and c′ near c, Λnc′(ddc log ‖(z0, . . . , zk−1) ∧ Λnc′(βk−s))
is a well defined element of Ck−s+1 with support in O−. It is (fc′)∗-
admissible since Uc′,s is finite at that point.

• The functions

k′m(c′) :=
∑
n

ULc′ (Ωs)(Λnc′(ddc log ‖(z0, . . . , zk−1)‖ ∧ Λmc′ (βk−s)))

satisfy ddckm = T+
m−T−m with ‖T±m‖ 6 C where C does not depend

on m.
So arguing as above, we deduce the claim.

Remark 4.5. — The parameters c ∈ W0 give functions fc which are
horizontal-like maps in O+ ∩O−. Such maps were introduced by Dujardin
in dimension 2 (see [19]) and have been extensively studied by Dinh, Nguyen
and Sibony in [15, 10]. In that last article, the authors prove in the inversible
case that the measure νc is PB (of entropy log ds and hyperbolic) that
means that it integrates qpsh functions and in particular log dist(., x).

Remark 4.6. — We can extend the results of Theorem 1.1 to any map
such that "there exists linear subspaces E+

s and E−k−s of dimension s and
k − s such that, up to a linear change of coordinates, the ball in E+

s of
center p = E+

s ∩E−k−s and radius dist(p, f−1(Ek−s)∩E+
s ) does not contain

a point of I(f)". Using that condition, we leave to the reader the proof of
Theorem 1.1 for a map such that dim(I) = k − s and Vol(I) 6 k − s. In
general, that condition is not easy to verify and there is no reason for an
arbitrary map to check it.
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Question. — The following question is natural in the settings of generic
dynamics. Indeed, it is known to be false in the general case (see [9]). For
c outside a pluripolar set, is the measure νc PB (does it integrate DSH
functions)? If the answer was yes, one would deduce that the Lyapunov
exponents are generically not −∞ and that the measure νc does not charge
pluripolar sets.

• Proof of point 5 in Theorem 1.1. Observe that for polynomials, one
always have that I is contained in the hyperplane at infinity. In the previous
case, we have built an example using an element Aα that fixes H. When H
is the hyperplane at infinity, that means that Aα is an affine automorphism
of Ck. Since that example is stable under small perturbations in Aff(Ck),
we just have to compute the ddc of the different functions used in the
previous part (gn, g′n,m, kn). That is done exactly in the same way, observe
that W1 = Aff(Ck) is a Zariski dense open set in W̃1 ' Pk2+k.
• Ergodicity and mixing. Let c be a generic parameter. It is natural to
ask if the measure νc is mixing (or ergodic, but mixing is stronger). We
are able to do so under an additional hypothesis : we need that νc does
not charge I ′(fc). The strategy is classical in complex analysis so we only
sketch it:
1. One first shows that the Green current T+

s,c is extremal in the sense
that if S ∈ Cs is such that S 6 T+

s,c then S = T+
s,c.

2. One proves that, for a smooth function ϕ, ϕ ◦ fnc T+
s,c converges in the

sense of currents to c(ϕ)T+
s,c where c(ϕ) = 〈ϕ, νc〉 (at this point, one

uses that the potentials of T+
1,c are integrable with respect to νc).

3. One deduces that for ψ smooth, we have limn〈ϕ ◦ fnψ, νc〉 =
〈ϕ, νc〉〈ψ, νc〉. This would be true by the above if T−s,c was smooth
and one proceed by approximations (we need here that νc does not
charge I ′(fc)). The mixing is proved.

• Hyperbolicity of the homogeneous extension and hyperbolicity
of the map. Assume now that f is a dominating meromorphic map of Pk.
We can write it in homogeneous coordinates as f = [P0 : · · · : Pk] where the
Pi are relatively prime homogeneous polynomials of degree d. We consider
the polynomial map of Ck+1 defined as

f̃ = (P0, . . . , Pk).

Its extension to Pk+1 (still denoted as f̃) has its indeterminacy set contained
inH, the hyperplane at infinity. Hence, it satisfies the above conditions. Let
[z0 : · · · : zk : t] be the homogeneous coordinates on Pk+1. Let (d̃i)i=0..k+1
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be the generic dynamical degree in the orbit of f̃ . An easy computation
gives

d̃0 = 1, d̃i = d× di−1 for i 6= 0.

In particular, we can apply point 5 of Theorem 1.1 to f̃ .
Assume furthermore that f̃ is in fact a hyperbolic map in the sense that

it satisfies Theorem 1.1. In other words, the parameter Id ∈ Aut(Pk+1) is
not in the pluripolar set where we cannot apply the Theorem. Let ν̃ denote
the measure of maximal entropy constructed for f̃ . Observe that since 0
is an attractive fixed point, it does not belong to the support of ν̃, hence
log dist(x, 0) ∈ L1(ν̃).
The mapping f̃ = [f : td] is a skew-product over f : if π denotes the

(meromorphic) projection from Pk+1 to Pk defined by π([z0 : · · · : zk : t]) =
[z0 : · · · : zk] then f ◦ π = π ◦ f̃ . In fact, as ν̃ does not charge 0 (since it
integrates log dist(., 0)), we can work instead in the birational model Pk×P1

where the map π is holomorphic. Let ν′ := π∗ν̃. We claim that:

Theorem 4.7. — Assume that f̃ is as above, then the measure ν′ is a
hyperbolic measure of maximal entropy log ds. Assume that the measure
ν = T+

s ∧T−s is well defined, then ν is also a hyperbolic measure of maximal
entropy log ds

Proof. — Using Proposition 3.5 in [28] gives

h
ν̃
(f̃) 6 hν′(f) +

∫
Pk=H

h(f̃ , π−1(y))dν′(y),

where h(f̃ , π−1(y)) is the topological entropy of f̃ relative to the set π−1(y).
Observe that in [28], the mappings f̃ and f are continuous but that hypoth-
esis is not needed for that inequality. On the other hand, on π−1(y) ' P1

the mappings f̃y := (f̃)|π−1(y) are holomorphic maps of degree either d
or 0 (that happens when y ∈ I(f)). Then h(f̃ , π−1(y)) is the entropy of
the sequence (f̃yn

)n where yn = fn(y) (see [27] for definitions). Gromov’s
arguments on lov (see [24]) still apply in that setting and one gets that
h(f̃ , π−1(y)) 6 log d. In particular, we deduce

log ds + log d 6 hν′(f) + log d.

In other words, hν′(f) > log ds. As the other inequality always stands
(see [13]), that gives hν′(f) = log ds.
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Since log ‖(z0, . . . , zk)‖ − log ‖(z0, . . . , zk, t)‖ ∈ L1(ν̃), invariance of ν̃
implies that

log ‖f(z0, . . . , zk)‖ − d log ‖(z0, . . . , zk)‖ +
d log ‖(z0, . . . , zk)‖ − d log ‖(z0, . . . , zk, t)‖ +

d log ‖(z0, . . . , zk, t)‖ − log ‖f̃(z0, . . . , zk, t)‖ ∈ L1(ν̃).

We have that d log ‖(z0, . . . , zk, t)‖ − log ‖f̃(z0, . . . , zk, t)‖ ∈ L1(ν̃) by hy-
pothesis and d log ‖(z0, . . . , zk)‖ − d log ‖(z0, . . . , zk, t)‖ ∈ L1(ν̃), thus

log ‖f(z0, . . . , zk)‖ − d log ‖(z0, . . . , zk)‖ =

π∗(log ‖f(z0, . . . , zk)‖ − d log ‖(z0, . . . , zk)‖) ∈ L1(ν̃).

We deduce that ν′ integrates a quasi-potential of f∗(ω) hence log dist(., I).
De Thélin’s Theorem can be applied and we deduce the hyperbolicity of ν′.

By continuity of π∗, one has that

ν′ = lim
n→∞

π∗(
1

(d× ds)n
(f̃n)∗(Ωs+1) ∧ 1

(d× ds)n
(f̃n)∗(Ωk−s))

where Ωs+1 and Ωk−s are smooth elements of Cs+1(Pk+1) and Ck−s(Pk+1).
In particular, we choose Ωs+1 = π∗(ωs) ∧ Ω1 where ω is the Fubini-
Study form on Pk and Ω1 is a smooth (1, 1) form with support disjoint
from 0 (observe that π∗(ωs) is smooth away from 0). Then we have that
(f̃n)∗(Ωs+1) = π∗(fn)∗(ωs) ∧ (f̃n)∗(Ω1). Thus

π∗(
1

(d× ds)n
(f̃n)∗(Ωs+1) ∧ 1

(d× ds)n
(f̃n)∗(Ωk−s)) =

1
dns

(fn)∗(ωs) ∧ π∗(
1
dn

(f̃n)∗(Ω1) ∧ 1
(d× ds)n

(f̃n)∗(Ωk−s)).

Now, 1
dn

s
(fn)∗(ωs) converges in the Hartogs’ sense to the Green current T+

s

of f . Let T̃+
1 and T̃−k−s be the Green currents of f̃ . They are wedgeable by

hypothesis. In particular, π∗( 1
dn (f̃n)∗(Ω1)∧ 1

(d×ds)n (f̃n)∗(Ωk−s)) converges
in the Hartogs’ sense to π∗(T̃+

1 ∧ T̃
−
k−s). One easily checks that it defines

an f∗-invariant current in Ck−s(Pk). As T−s is the more H-regular invariant
current, we deduce that it is more H-regular than π∗(T̃+

1 ∧ T̃
−
k−s). Thus ν

is more H-regular than ν′ and it particular, ν integrates log dist(., I). We
can then apply as above Theorem 4.2 and Corollary 3 in [4] to compute
the entropy and prove the hyperbolicity of ν. �

Question. — Unicity of the measure of maximal entropy is expected so
it would nice to prove that ν′ = ν.
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