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ON CUSPS AND FLAT TOPS

by Neil DOBBS

Abstract. — Non-invertible Pesin theory is developed for a class of piecewise
smooth interval maps which may have unbounded derivative, but satisfy a property
analogous to C1+ε. The critical points are not required to verify a non-flatness
condition, so the results are applicable to C1+ε maps with flat critical points. If
the critical points are too flat, then no absolutely continuous invariant probability
measure can exist. This generalises a result of Benedicks and Misiurewicz.
Résumé. — La théorie de Pesin est développée pour une classe d’applications

de l’intervalle, lisses par morceaux. On n’exclut ni des singularités de la dérivée,
ni que les points critiques soit plats. On prend comme hypothèse que la dérivée
satisfasse à une condition liée à celle de la régularité Hölder.

Nos résultats s’appliquent à des transformations de l’intervalle de classe C1+ε.
Comme conséquence, on démontre l’absence de mesure de probabilité invariante
et absolument continue par rapport à la mesure de Lebesgue, lorsque les points
critiques sont trop plats. Cela étend un résultat de Benedicks et Misiurewicz.

1. Introduction

The ergodic theory of real one-dimensional dynamical systems has been
a topic of intense study in recent decades. Especially, much progress has
been made for smooth maps of the interval with non-flat critical points ([25,
21, 6, 7] to cite a few), and the theory underlying such dynamical systems
is now well-understood. In this work we aim to develop some aspects of
the theory beyond the smooth, non-flat setting. The principal results are
Theorems 1.1, 1.5, 1.6 and 4.1.

1.1. Smooth maps with flat tops

For smooth maps without a non-flatness condition on the critical points,
results are limited. Benedicks and Misiurewicz ([3]) showed that under a

Keywords: Lyapunov exponent, Pesin theory, absolutely continuous invariant measures,
interval dynamics, flat critical points.
Math. classification: 37E05, 37D25.



572 Neil DOBBS

non-recurrence condition, unimodal maps with negative Schwarzian deriva-
tive have an ergodic, absolutely continuous, invariant, probability measure
(acip) if and only if the logarithm of the derivative is Lebesgue-integrable
(see [13] for the recent exponential family analogue of this result and [34]
for statistical properties of the maps considered in [3]). Thunberg, in [33],
showed Benedicks-Carleson type results for unimodal families of maps with
critical behaviour like exp(−|x|−α) for α < 1/8. He asked whether for α > 1
no acip can exist.
For maps with non-flat critical points (that is, with critical behaviour

like |x|l for some l > 1) the log of the derivative is integrable. The maps
considered by Thunberg have flat critical points, and the log of the deriva-
tive is integrable if and only if α < 1. Then by [3] no acip exists when both
α > 1 and the critical point is non-recurrent. Non-recurrence is historically
a very important condition, but it is quite restrictive, see [31, 2].

For the maps considered in [3], Lebesgue measure is ergodic, so any acip
necessarily has positive entropy, and thus positive Lyapunov exponent —
see Ruelle’s inequality below.

We drop the non-recurrence condition and the negative Schwarzian con-
dition, extending the only if part of Benedicks and Misiurewicz’s result to
more general C1+ε maps:

Theorem 1.1. — Let f : I → I be a C1+ε map of the compact interval I
which is piecewise monotone. Suppose f has an ergodic acip µ with positive
Lyapunov exponent. Then the support of µ is a finite union of intervals on
which ∫

log |Df(x)|dx > −∞, (1.1)

where integration is with respect to Lebesgue measure.

Definition 1.2. — If A ⊂ R, we say a function g : A→ R is piecewise
monotone if and only if there is a finite collection Q of pairwise disjoint
intervals, whose union contains A, such that for each Q ∈ Q, the restriction
g|Q of g to Q is monotone (and not necessarily strictly monotone). We call
such a Q a finite partition into intervals of monotonicity.

Since the derivative is bounded in the smooth setting,
∫

log |Df |dµ ∈
[−∞,+∞), and in particular it exists. Ruelle’s inequality for C1 maps
([29]) gives

hµ 6 max
(

0,
∫

log |Df |dµ
)
,

where hµ denotes the entropy of µ, so one can replace positive Lyapunov
exponent by positive metric entropy in the hypotheses, if one so desires.

ANNALES DE L’INSTITUT FOURIER
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Both our proof and that of [3] are based on showing that the density of
the hypothetical acip is bounded away from zero. In the non-recurrent Mi-
siurewicz setting, one then shows that the first return time to a sufficiently
small critical neighbourhood is integrable if and only if (1.1) holds. On the
other hand, for C2 unimodal maps whose periodic points are all hyperbolic
repelling, if the critical point is recurrent then the return time to a critical
neighbourhood is always integrable. In particular, the techniques of [3] do
not work in the recurrent general setting.
The following corollary responds to the question of Thunberg.

Corollary 1.3. — Let gb be a map from the unimodal family

x 7→ −1 + b
(

1− e−1−|x|−α
)
.

If α > 1 then no ergodic acip with positive Lyapunov exponent exists.

Proof. — Were such a measure to exist, its support would contain an
interval, by Theorem 1.1, and so would necessarily contain the critical point
at 0. Then Theorem 1.1 would imply that log |Dgb(x)| is integrable with
respect to Lebesgue measure. But log |Dgb(x)| = h(x) − |x|−α, where h is
some function integrable with respect to Lebesgue measure. If α > 1 then
|x|−α is not integrable. �

1.1.1. On hypotheses and limitations

For these results, ergodicity is not strictly necessary. As per [21], if one
just supposes that µ is absolutely continuous and that µ almost every point
has positive (pointwise) Lyapunov exponent, then one can use the ergodic
decomposition theorem and continue similarly. In the interest of brevity
and clarity we do not do this here.
The assumption that the acip has positive Lyapunov exponent is not

wholly unnatural. If there exists a δ > 0 such that almost every point
is contained in arbitrarily small intervals each mapped with universally
bounded distortion by some iterate of f onto some interval of length δ, then
it is not hard to show (with a density point argument) that any absolutely
continuous measure actually has positive metric entropy, and that there
are at most a finite number of such measures. Then, by Ruelle’s inequality,
the measure has positive Lyapunov exponent. Let us say that such maps
have the large scale property.
In the non-flat setting, it is known that Lebesgue measure is ergodic

[24, 4], and that any acip must have positive entropy. Outside the non-
flat setting (and in particular for the unimodal family considered here),

TOME 64 (2014), FASCICULE 2
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this is unknown and difficult. There may conceivably be maps with acips
with negative or zero Lyapunov exponents. However, it should be possible
to construct maps from the above unimodal family which have the large
scale property, even if α > 1, by controlling the rate of recurrence of the
critical point. For such maps, Lebesgue measure would be conservative and
ergodic, but no acip would exist.
While such maps probably exist, we do not believe that there is a positive

measure set of parameters for which Lebesgue measure is conservative. We
call a unimodal map hyperbolic if it has an attracting periodic orbit with a
basin of attraction whose complement is (uniformly) hyperbolic repelling.
For hyperbolic unimodal maps, Lebesgue almost every point lies in the
basin of attraction, and Lebesgue measure is not conservative.

Conjecture 1.4. — Consider the unimodal family

gb : x 7→ −1 + b
(

1− e−1−|x|−α
)
.

If α > 1, then for Lebesgue almost every b, the map gb is hyperbolic.

In the theorem, we suppose that f is piecewise monotone. We need this
hypothesis to find a finite generating partition (see Proposition 6.1). Since
the partition we find is finite, its entropy is finite. Without assuming finite-
ness of the number of turning points, it may be possible to find an infinite
generating partition with finite entropy and other good properties, but we
have not succeeded in doing so. Note that we do not exclude f having
an infinity of inflection points, or, a priori, f having an interval of critical
points, so it is a little more general than assuming that the set of critical
points is finite.

1.2. Maps with unbounded derivative

The second goal of the paper is to develop non-invertible Pesin theory
for a class of maps with discontinuities and unbounded derivative. Maps
with unbounded derivative are of interest due to their links with the Lorenz
map. See [32] and [23] for a discussion of this and [1] and [9] for existence
results for absolutely continuous, invariant, probability measures. An early,
general and very powerful result is by Rychlik [30].

In the following section we shall introduce a new class of maps called cusp
maps. This class of maps will include all C1+ε maps. For piecewise C1+ε

maps whose critical points verify a non-flatness condition, Pesin theory was
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studied by Ledrappier in [21]. Given a measure with positive Lyapunov ex-
ponent, he showed existence of the unstable manifold in the natural exten-
sion, and several results which follow from it. The non-flatness hypothesis,
used repeatedly in his proofs, means that we cannot use his results in the
proof of Theorem 1.1.
In Theorem 4.1, whose statement is overly technical for this introduction,

we show existence of the unstable manifold for cusp maps. Even for C1+ε

maps our result is stronger than that of Ledrappier since we do not assume
non-flatness of critical points. Moreover our proof is more direct. For C1+ε

maps one can also, with some work, deduce this result from [26]; however
the proof in that higher-dimensional setting is considerably more complex.
This will allow us to prove Theorem 1.1.
In [11], the author gave a Cr version of Ledrappier’s unstable manifold

theorem and used it to prove Cr conjugacy results. We shall also state a
Cr version here, but shall refer to [11] for the proof.

With unstable manifold in hand, we use regularly returning (or nice) in-
tervals to give simple proofs of the dynamical volume lemma in Proposition
6.2 and of the existence of a Pesin partition in Proposition 7.1, compare
[17] and [21].

Given a transformation g, we denote by M(g) the collection of ergodic
g-invariant probability measures. If f is a cusp map, µ ∈M(f) and χµ :=∫

log |Df |dµ exists, then we call χµ the Lyapunov exponent of µ. For cusp
maps, χµ could be +∞ or (which we do not exclude) −∞, or it need not
exist at all. In Section 11 there is an example of a cusp map with a measure
of maximal entropy with Lyapunov exponent +∞.

The paper culminates with the proof of the following result.

Theorem 1.5. — Let f be a cusp map which is piecewise monotone.
Suppose µ is an ergodic, invariant, probability measure for f with positive
finite Lyapunov exponent χµ. The following conditions are equivalent:

(1) µ is absolutely continuous with respect to Lebesgue measure;
(2) hµ = χµ;
(3) the density of µ with respect to Lebesgue measure is bounded from

below by a positive constant on an open interval;
(4) µ is generated by a full expanding induced Markov map with inte-

grable return time.

Proof. — Follows immediately from Corollary 8.2 and Propositions 8.3
and 9.2. �

TOME 64 (2014), FASCICULE 2
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We refer to Section 9 for the definition of a full expanding induced
Markov map. The set on which the density is bounded away from zero
is often large, see Lemma 8.4 and Theorem 8.5.

Ledrappier [21] showed equivalence between 1 and 2 for C1+ε maps with
non-flat critical points. Bruin [5] showed equivalence of all four conditions
in the case of unimodal maps with non-flat critical points and negative
Schwarzian derivative. There is a recent related result in [8] for multimodal
maps with non-flat critical points and negative Schwarzian derivative. The-
orem 1.5 represents a substantial improvement.
We assume existence and finiteness of the Lyapunov exponent. As we

have already stated, it need not exist. In Proposition 11.1, we construct
benign examples of cusp maps with acips for which the Lyapunov exponent
does not exist. We also show that cusp maps can have acips despite the
presence of smooth parabolic fixed points, and that there are cusp maps for
which the measure of maximal entropy has positive but infinite Lyapunov
exponent.

The only reference measure we consider is Lebesgue measure. In the
setting of holomorphic dynamics in [12], we consider more general confor-
mal measures and invariant measures absolutely continuous with respect to
them. It would be interesting to have similar results for conformal measures
in the interval setting; we do not attempt this here.

1.2.1. An alternative hypothesis: Positive entropy

There is an alternative to assuming that the derivative should tend to
0 or ±∞ at the boundary of the domain of definition of the cusp map.
We use the distortion bound and this assumption to guarantee that, when
we pull back a small enough ball along a typical branch, we do not meet
a discontinuity. An alternative approach is to assume positive entropy (as
well as positive, finite, Lyapunov exponent).
Assuming positive entropy, we extend our results to a broader class of

maps with a slightly more restrictive hypothesis on the measure. The The-
orem 4.1 referred to in the following result says that along most inverse
branches there is an interval that can be pulled back with good distortion
control:

Theorem 1.6. — Let f :
⋃d
j=1 Ij → I be a piecewise monotone map, a

C1 diffeomorphism on each subinterval Ij of the compact interval I, which
satisfies the conditions (2.1) and (2.2). Suppose µ ∈ M(f) has positive,
finite Lyapunov exponent and positive entropy.
Then the conclusions of Theorem 4.1 hold.

ANNALES DE L’INSTITUT FOURIER
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Since it was only in the proof of Theorem 4.1 that the assumption on the
derivative at the boundary of the domain of definition was used, the other
results also hold:

Theorem 1.7. — Let f :
⋃d
j=1 Ij → I be a piecewise monotone map,

a C1 diffeomorphism on each Ij , satisfying the conditions (2.1) and (2.2).
Suppose µ ∈ M(f) has positive, finite Lyapunov exponent and positive
entropy.
Then the conclusions of Theorem 1.5 and Propositions 6.1, 6.2 and 7.1

hold.

The assumption of positive entropy allows one to use the lift of the
measure in the Hofbauer tower (or Markov extension) to study recurrence
in the natural extension, and in particular to prove a result, Proposition
10.1, about existence of unstable fibres.

Proposition 10.1 is a topological (and metric) result. It does not give any
information on distortion or lack thereof. For that we use positivity of the
Lyapunov exponent.

For piecewise-monotone maps with bounded derivative, preceding results
include [15, 16, 18, 20, 19].

1.3. Structure of the paper

The paper is structured as follows. In the next section we introduce the
class of cusp maps. Then we prove some elementary distortion estimates.
In Section 4 we define the natural extension and prove existence of the
unstable manifold. In Section 5 we show the existence of useful regularly
returning intervals. We then use these intervals to find a finite generating
partition with good Markov properties and prove the dynamical volume
lemma in Section 6. In Section 7 we show the existence of a Pesin parti-
tion of the natural extension. All results up to here are for an arbitrary
ergodic invariant probability measure with positive finite Lyapunov expo-
nent. In Section 8 we start the study of absolutely continuous measures
and prove Theorem 1.1. In the following section we study induced Markov
maps. Then in Section 10 we outline the proofs of Theorem 1.6 and Propo-
sition 10.1. To finish up, in Section 11 we present some cusp maps conjugate
to the Chebyshev map x 7→ 4x(1 − x) and look at some of their invariant
measures.

TOME 64 (2014), FASCICULE 2
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2. Definition of cusp maps

Our goal is to develop the ergodic theory for piecewise smooth interval
maps with singularities where the derivative, on at least one side, may tend
to infinity.

For continuous maps with two smooth monotone branches, if the norm
of the derivative tends to infinity as one approaches the turning point, the
turning point is called a cusp. This leads us to introduce the following
definitions. Throughout the paper, we shall denote by I a non-degenerate
compact interval.

Definition 2.1. — A map f :
⋃
j Ij → I is a basic cusp map if (Ij)j

is a finite or countable collection of pairwise disjoint open subintervals of
I such that f is a C1 diffeomorphism from each interval (pj , qj) := Ij onto
its image f(Ij) and such that the following limits exist and equal either 0
or ±∞:

lim
x→p+

j

Df(x), lim
x→q−

j

Df(x).

Notice that f is defined on a union of open intervals, a fact that is used
repeatedly throughout the paper. For example, it implies that, given an
interval U , fn is a diffeomorphism on each connected component of f−n(U),
and each of these connected components is open. Choosing intervals to be
open in the definition simplifies life later on, and from a measure-theoretical
point of view, not having boundary points is unimportant.
We also note that the domain of definition of f may have gaps, that is,

the closure of the domain of definition need not be the entire interval I.
Let A ⊂ R. Recall that a differentiable map g : A → R is C1+ε with

constants C and ε if, for all x, x′ in A,

|Dg(x)−Dg(x′)| 6 C|x− x′|ε.

Definition 2.2. — A basic cusp map f :
⋃
j Ij → I is a cusp map

(with constants C, ε) if there exist constants C, ε > 0 such that, on each Ij ,
• for all x, x′ such that |Dfj(x)|, |Dfj(x′)| 6 2,

|Dfj(x)−Dfj(x′)| 6 C|x− x′|ε; (2.1)

• for all x, x′ such that |Dfj(x)|, |Dfj(x′)| > 2−1,∣∣∣∣ 1
Dfj(x) −

1
Dfj(x′)

∣∣∣∣ 6 C|x− x′|ε. (2.2)

ANNALES DE L’INSTITUT FOURIER
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Figure 2.1. Some cusp maps.

One can check that poles of the form xα where 0 < α < 1 (these are
poles of root type) satisfy this latter relation. In figure 2.1 we present (the
graphs of) some cusp maps.

Definition 2.3. — A continuous map g : I → I which is C1 on all but
a countable set S and for which g|I\(S∪Crit) is a cusp map will also be called
a cusp map. We use Crit to denote the set of critical points of g|I\S .

Since all our results will be for ergodic probability measures with positive
finite Lyapunov exponent, the distinction between the continuous map and
its restriction to I \ (S ∪ Crit) will be of no importance.

We are also interested in some analogue to Cr maps. We want a condition
which is satisfied by higher derivatives Dif of f and which holds for all
poles of root type. What appeared naturally and suffices to prove nice Cr
distortion properties for induced Markov maps is the following.

Definition 2.4. — Let r ∈ {2, 3, . . .}. A cusp map f :
⋃
j Ij → I is a

Cr cusp map (with constants p, C) if there exist constants C, p > 1 such
that, for each j,

• fj is Cr on Ij ;
• for all x ∈ Ij such that 0 < |Dfj(x)| 6 2, and for all i such that

2 6 i 6 r, |Dif(x)| < C;

TOME 64 (2014), FASCICULE 2
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• for all x ∈ Ij with |Dfj(x)| > 2, and for all i such that 2 6 i 6 r,

|Dif(x)|
|Df(x)|p < C; (2.3)

If f is a Cr cusp map for all integers r > 1 then f is a C∞ cusp map.

Definition 2.5. — Let f : I → I. A pole (at p) is an interval (p, p+ε) ⊂
I such that |ε| > 0, f is C1 on (p, p+ ε) and

lim
h→0+

|Df(p+ hε)| =∞.

3. Distortion estimates

We deduce some simple distortion estimates, culminating in Lemma 3.3
which roughly speaking says that the distortion is well-bounded on a ball
of radius depending polynomially on the derivative.

In the following two lemmas, one can think of φ as Df if Df is small, or
as 1

Df if Df is big.

Lemma 3.1. — Let c, C, ε > 0 be positive constants. Let φ : A → R
satisfy |φ(x)− φ(x′)| 6 C|x− x′|ε for all x, x′ ∈ A.

Then, if x, x′ ∈ A and |φ(x)| > c,

1− Cc2 |x− x′|ε

c3 6
φ(x′)
φ(x) 6 1 + Cc2 |x− x′|ε

c3 . (3.1)

Proof. — We have |φ(x)− φ(x′)| 6 C|x− x′|ε and |φ(x)| > c. Thus

|φ(x)− φ(x′)|
|φ(x)| 6 C

|x− x′|ε

c
= Cc2 |x− x′|ε

c3 .

One recovers (3.1) upon rewriting the left-hand side as
∣∣∣1− φ(x′)

φ(x)

∣∣∣ and using
the triangle inequalities. �

Lemma 3.2. — Let C, ε > 0 be constants. There exists a constant c0,
depending on C, ε and satisfying 0 < c0 < log 2, with the following property:
If φ : A → R satisfies |φ(x) − φ(x′)| 6 C|x − x′|ε for all x, x′ ∈ A, and

if c satisfies 0 < c 6 c0, then for all x, x′ ∈ A such that |x− x′|ε < c3 and
|φ(x)| > c,

|log |φ(x)| − log |φ(x′)|| 6 c |x− x
′|ε

c3 < c. (3.2)
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Proof. — There exists a constant a0, with 0 < a0 < log 2, such that
log
(
1− a

2
)
> −a for all a satisfying 0 < a < a0. Choose c0 with 0 < c0 < a0

and Cc0 < 1
2 . Then by Lemma 3.1, for c, x such that 0 < c 6 c0 and

|φ(x)| > c,

1− c2
|x− x′|ε

c3 6 1−Cc2 |x− x′|ε

c3 6
φ(x′)
φ(x) 6 1+Cc2 |x− x′|ε

c3 6 1+ c

2
|x− x′|ε

c3 .

Taking logs and using c 6 c0 < a0,

−c |x− x
′|ε

c3 6 log
(
φ(x′)
φ(x)

)
6 c
|x− x′|ε

c3 ,

as required. �

Lemma 3.3. — Let f :
⋃
j Ij → I be a cusp map with constants C, ε.

There exists a constant c0 > 0 such that if c satisfies 0 < c < c0 and
x, x′ ∈

⋃
j Ij satisfy |x − x′|ε < c3 and c < |Df(x)| < c−1, then x and x′

are in the same component of the domain of definition of f and

|log |Df(x)| − log |Df(x′)|| 6 c |x− x
′|ε

c3 < c. (3.3)

Proof. — Let c0 be given by Lemma 3.2. Fix x ∈
⋃
j Ij and c with

0 < c < c0, such that c < |Df(x)| < c−1. Let A denote the connected
component of

{x′ ∈ B(x, c(3/ε)) : 2−1|Df(x)| < |Df(x′)| < 2|Df(x)|}

containing x; in particular A is contained in a connected component of the
domain of definition of f . If |Df(x)| 6 1, set φ := |Df |, otherwise set
φ := |Df |−1. By Lemma 3.2, we have

| log |Df(x)| − log |Df(x′)|| 6 c |x− x
′|ε

c3 < c < log 2

for all x′ ∈ A. It follows immediately that A = B(x, c(3/ε)). �

4. Unstable Manifold

We define the natural extension as per [22]. Let

Y := {y = (y0y1y2 . . .) : f(yi+1) = yi ∈ I}.

Define F−1 : Y → Y by F−1((y0y1 . . .)) := (y1y2 . . .). Then F−1 is invert-
ible with inverse F : F−1(Y )→ Y . The projection Π : Y → I is defined by
Π : y = (y0y1 . . .) 7→ y0. Then Π◦F = f ◦Π. Given any measure µ ∈M(f)

TOME 64 (2014), FASCICULE 2
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there exists a unique F -invariant measure µ such that Π∗µ = µ. Moreover
µ ∈M(F ) and µ ∈M(F−1) (see [28]).

We call the triplet (Y, F, µ) the natural extension of (f, µ) (it is also
called the Rohlin extension or the canonical extension).
Let us remark that invariant probability measures give no mass to the

sets of points x for which there is an n > 0 such that fn(x) is not defined,
nor do they give mass to the set of x for which there exists an n > 0 and
no solution x′ to fn(x′) = x. Thus, Fn(y) is defined for all n ∈ Z for µ
almost every y ∈ Y .

Theorem 4.1. — Let f :
⋃
j Ij → I be a cusp map. Suppose µ ∈M(f)

has positive finite Lyapunov exponent χ =
∫

log |Df | dµ > 0. Denote by
(Y, F, µ) the natural extension of (f, µ).

Then there exists a measurable function α on Y , 0 < α < 1/2 almost
everywhere, such that for µ almost every y ∈ Y there exists a set Vy ⊂ Y

with the following properties:
• y ∈ Vy and ΠVy = B(Πy, α(y));
• for each n > 0, fn : ΠF−nVy → ΠVy is a diffeomorphism (in
particular it is onto);

• for all y′ ∈ Vy
∞∑
i=1

∣∣log |Df(ΠF−iy′)| − log |Df(ΠF−iy)|
∣∣ < log 2;

• for each η > 0 there exists a measurable function ρ on Y , 0 <

ρ(y) <∞ almost everywhere, such that

ρ(y)−1en(χ−η) < |Dfn(ΠF−ny)| < ρ(y)en(χ+η).

In particular, |ΠF−nVy| 6 ρ(y)e−n(χ−η).

The above theorem is sufficient for the purposes of this paper. A stronger
version is possible:

Theorem 4.2. — Supplementarily to Theorem 4.1, there exists mea-
surable γ1 <∞ µ-almost everywhere such that for all y′ ∈ Vy,

∞∑
i=1

∣∣log |Df(ΠF−iy′)| − log |Df(ΠF−iy)|
∣∣ 6 γ1(y)|Πy −Πy′|ε.

If f is also a Cr cusp map for some integer r > 2, then there exists a
measurable function γr, with γr(y) < ∞ µ-almost everywhere, such that
for all n and all i = 1, 2, . . . , r − 1,

1
|Dfn(Πf−ny)|

∣∣Di log |Dfn(Πf−ny)|
∣∣ 6 γr(y).

ANNALES DE L’INSTITUT FOURIER
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Proof. — We refer to Proposition 2.11 of [11] for the proof. Our definition
of Cr cusp maps allows that proof to be applied directly. The full proof for
cusp maps is also available in [10]. �

The rest of this section is devoted to the proof of Theorem 4.1. It will be
broken up into several lemmas. The strategy is as follows. We have shown
in Lemma 3.3 that we have a good distortion bound on

B
(
x,min(c3/ε

0 , |Df(x)|±3/ε)
)

for some constant c0. Next we show that the derivative |Df(ΠF−ny)| along
backwards orbits is bounded from below by a sub-exponential sequence al-
most everywhere. This allows us to define a slowly-shrinking sequence of
balls on which one has (slow-) exponentially good distortion. Positive Lya-
punov exponent will then imply that the pullbacks of some small ball will
always land inside the sequence of balls with exponentially good distortion
bounds, so the total distortion will be summable.
Proof. — We will need to swallow up some constants. Fix δ > 0 such

that δ < η, (χ− 3δ) > 3δ/ε. Subsequently fix N > 0 large enough that, for
all n > N , the following inequalities hold:

2−1 log 2 +
∑
m>N

e−mδ < log 2; (4.1)

e−nδ < c0; (4.2)

2e−n(χ−δ) < 2−1e−(n+1)δ(1+3/ε), (4.3)

where c0 comes from Lemma 3.3.

Lemma 4.3. — For µ almost every y, there exists n(y) > N such that
for all n > n(y),

2e−nδ < |Df(ΠF−ny)| < enδ/2
and

en(χ−δ) 6 |Dfn(ΠF−ny)| 6 en(χ+δ).

Proof. — The first holds because the limit of (1/n) log |Dfn(ΠF−ny)|
exists for almost all y; the second because it equals χ. �

Lemma 4.4. — Let Bn := B(ΠF−ny, 2−1e−n3δ/ε). For all n > n(y), Bn
is contained in the domain of definition of f and, for all x, x′ ∈ Bn,

|log |Df(x)| − log |Df(x′)|| < e−nδ.

Proof. — Follows from Lemmas 3.3, 4.3. �

Lemma 4.5. — For n > n(y), f(Bn+1) ⊃ B(ΠF−ny, 2e−n(χ−δ)).
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Proof. — By the preceding lemmas, |Df(x)| > e−(n+1)δ on Bn+1, so
f(Bn+1) ⊃ B(ΠF−ny, 2−1e−(n+1)3δ/εe−(n+1)δ). Then use (4.3). �

Lemma 4.6. — Suppose n > n(y) and V is an open ball containing Πy
with |V | < 1 and suppose Vn is such that Vn 3 ΠF−ny and fn : Vn → V

is a diffeomorphism with distortion bounded by some r with 0 < r < log 2,
i.e.,

|log |Dfn(x)| − log |Dfn(x′)|| < r < log 2
for all x, x′ ∈ Vn. Then there exists Vn+1 3 ΠF−(n+1)y such that the map
fn+1 : Vn+1 → V is a diffeomorphism with distortion bounded by

r + e−(n+1)δ.

Proof. — We have that |Dfn(ΠF−ny)| > en(χ−δ) so, by the distortion
bound on fn, |Vn| < 2e−n(χ−δ) and Vn ⊂ f(Bn+1). The result follows. �
Now let V be a sufficiently small ball centred on Πy that there exists a

set Vn(y) 3 ΠF−n(y)(y) such that fn(y) : Vn(y) → V is a diffeomorphism
and for all x, x′ ∈ Vn(y),

n(y)−1∑
i=0

∣∣log |Df(f i(x))| − log |Df(f i(x′))|
∣∣ 6 (1/2) log 2.

For 0 6 n < n(y) define Vn := fn(y)−n(Vn(y)). For n > n(y), define Vn
inductively using Lemma 4.6. For any n > 0, for any x, x′ ∈ Vn, we have
n−1∑
i=0

∣∣log |Df(f i(x))| − log |Df(f i(x′))|
∣∣ 6 (1/2) log 2 +

∞∑
j=n(y)

e−nδ < log 2.

Define Vy as the set of y′ ∈ Y such that ΠF−n(y′) ∈ Vn for all n > 0. Let
α(y) be the radius of V . Note that one can choose [n(y) minimal, so it is
measurable, and then] V [maximal] so that α is measurable. The existence
of ρ is easy, by ergodicity. This completes the proof of Theorem 4.1. �

5. Regularly returning intervals

The following lemma is simple and known. We include the proof for
completeness and as an introduction to the arguments we will use later on,
concerning points ‘going to the large scale’.

Lemma 5.1. — Let f be a cusp map and suppose µ ∈M(f) has positive
finite Lyapunov exponent χµ.

ANNALES DE L’INSTITUT FOURIER



ON CUSPS AND FLAT TOPS 585

Inside any interval U of positive measure, there are positive measure
intervals W ⊂ V and n large such that fn maps W diffeomorphically onto
V with |Dfn|W | > 2. The closure of the set of repelling periodic points has
full (µ-) measure. The closure of the collection of inverse images (i.e. the
closure of the backward orbit) of some periodic point has full measure.

Proof. — Let U be an open interval of positive measure. Let (Y, F, µ) be
the natural extension for (f, µ). Modulo a set of µ-measure zero one can
write

Π−1U =
⋃
k>0
{y ∈ Π−1U : α(y) > 1

k
, ρ(y) < k},

where the functions come from Theorem 4.1, for η < χµ a small positive
constant. There is therefore a k0 > 2 such that the set

B := {y ∈ Π−1U : α(y) > 1
k0
, ρ(y) < k0}

is of positive µmeasure, i.e., µ(B) > 0, and of course Π(B) ⊂ U . Then there
is an open interval V ⊂ U such that |V | < k−1

0 and µ(B ∩ Π−1V ) > 0.
Set VB := B ∩ Π−1V . By ergodicity, almost every point y ∈ Y enters
VB infinitely often, at times nj(y), say. Then Πy is contained in intervals
Wj of size less than k0e

−nj(χ−η) mapped by fnj with uniformly bounded
distortion onto V . Taking y ∈ Π−1V and nj large, by the Intermediate
Value Theorem there is a periodic point p inWj ⊂ V ⊂ U and, by bounded
distortion, it is repelling.
Similarly, almost every point in I is contained in arbitrarily small inter-

vals which get mapped onto V , so we conclude that the closure of the set
of inverse images of p has full measure.

�

Now we shall prove a general lemma which we were unable to find in the
literature.

We say that a set V is a one-sided neighbourhood of a point p if it
contains a small interval (p, p+ ε) for some non-zero real ε.

Lemma 5.2. — Let f :
⋃n
j=1 Uj → U be a piecewise continuous map,

continuous on each (pairwise disjoint) open interval Uj , for which f|UJ
extends to a continuous map on the compact interval Uj for each j.

Suppose µ is an ergodic, invariant, probability measure, and W ⊂ f(W )
is an interval of positive measure. Then there exists k such that
µ(fk(W )) = 1.

Proof. — Let Y denote the boundary set ∂(
⋃
j Uj) which is finite. Let

Wj =
⋃j
i=0 f

i(W ) = f j(W ). Since Y is finite, there is an N such that for
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all j > N , Wj \WN does not form a one-sided neighbourhood of any point
in Y .

Suppose j > N and V is a connected component of Wj \ Y . Suppose
there is some k > 1 such that fk(V ) ∩WN 6= ∅ and let l be the least such
k. Then f l|V is continuous.
For each connected component V of WN \ Y , let nV be the minimal

k > 1 such that fk(V ) ∩WN 6= ∅ if such a k exists; otherwise set nV = 0.
Let M be the maximum of the nV , noting that WN has a finite number of
connected components. Let X be a connected component of Wj for some
j > M . Suppose X does not contain a connected component of WM . Let
y ∈ X and let l > 1 be minimal such that y ∈ f l(V ), where V is some
component of WN \ Y . Then l > M . In particular, nV = 0, so f i(y) /∈WN

for all i > 0. This holds for each y ∈ X. Therefore f i(X) ∩WN = ∅ for all
i > 0. By ergodicity, X then has null measure.
Let V1, . . . , Vr denote the connected components of WM . For j >M and

1 6 k 6 r, let V jk denote the connected component of Wj containing Vk.
These are the only connected components of Wj which may have positive
measure.
Let W∞ =

⋃
j>0 Wj . We shall say that a point x has the one-sided prop-

erty ifW∞ contains arbitrarily small, nested, one-sided neighbourhoods Jk
of the x, such that each Jk has positive measure, Jk 6⊂ Wj for any j < ∞
and |Jk| → 0.

Note that if the conclusion of the lemma does not hold then there exists
a point x which has the one-sided property. Suppose this is so. We must
arrive at a contradiction.
Points with the one-sided property belong to the finite set⋃r
k=1 ∂

⋃
j>M V jk . If y is in the interior of W∞, then fk(y) does not have

the one-sided property for any k > 0. Suppose x has the one-sided prop-
erty and let Jx be a corresponding one-sided neighbourhood of x. Then
there is a sequence {yn} for which f(yn) ∈ Jx and converges to x and for
which each neighbourhood of each yn has positive measure. Replacing by
a subsequence if necessary, we can assume the sequence {yn} is monotone.
Let y be its limit. Then f((yn, y)) contains (f(yn), x) ⊂ Jx. Since x has
the one-sided property, (yn, y) 6⊂ Wj for any j > 0, so y has the one-sided
property. Moreover, if yn ∈ Ui for all large n, then the continuous extension
of f to Ui maps y to x.
It follows that (the finite collection of) points having the one-sided prop-

erty are periodic, in the sense that if x, Jx are as before and Jx is sufficiently
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small then some iterate fk(Jx) is a small one-sided neighbourhood of x. We
used here that on each Ui the map f extends continuously to the boundary.
The point x is a fixed point of the continuous extension g of fk|Jx to

the closure Jx. If g(Jx) ⊂ Jx for a sequence of arbitrarily small Jx then x
must be a periodic orbit supporting the measure, by ergodicity. Suppose
the measure is not supported on a periodic orbit (the lemma is trivial
otherwise). Then x is a (one-sided, topologically-) repelling fixed point for
g. For mass to accumulate near x in Jx, there must be a point y 6= x

and arbitrarily small, positive measure, one-sided neighbourhoods Jy of y
mapped by fk onto one-sided neighbourhoods of x in Jx. But y, Jy are
not periodic in the above sense, so y does not have the one-sided property.
In particular, some sufficiently small Jy is contained in some Wj . Then
Wj+k ⊃ fk(Jy) contains some Jx, contradicting the one-sided property. �
So far, our cusp maps may have an infinite (but countable) number of

discontinuities. In the following definition and lemma, we wish to consider
maps for which the number of serious discontinuities is finite.

Definition 5.3. — We say a cusp map f :
⋃
j Ij → I has a finite

number of discontinuities if it extends to a continuous map f∗ on
⋃
j Ij \X,

where X ⊂ I \
⋃
j Ij is a finite set of points called points of discontinuity,

and X contains ∂
⋃
j Ij .

Lemma 5.4. — Let f be a piecewise monotone cusp map with a finite
number of discontinuities. Suppose µ ∈ M(f) has a positive finite Lya-
punov exponent.
Then given any interval V of positive µ-measure, there is a j > 0 such

that µ
(⋃j

k=0 f
k(V )

)
= 1.

Proof. — This follows immediately from Lemmas 5.2 and 5.1. �

Definition 5.5 ([14]). — An open interval U is regularly returning if
fn(∂U) ∩ U = ∅ for all n > 0. This is also called a nice interval in the
literature.

For a cusp map f , if A is a (necessarily open) connected component
of f−n(U) and B is a connected component of f−m(U) with m > n, it
is easy to check that either A ∩ B = ∅ or B ⊂ A, so inverse images of
regularly returning intervals are either nested or disjoint. Indeed, suppose
x ∈ ∂A∩B. Then fn(x) ∈ ∂U (since f may be discontinuous, one uses that
x ∈ B to know that fn is defined on a neighbourhood of x), but fm(x) ∈ U ,
contradiction.
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Lemma 5.6. — Let m be a non-atomic measure on I. Let Z be the set
of all x ∈ I such that there exists an open interval L with m(L) = 0 and
x ∈ ∂L. Then m(Z) = 0.

Proof. — Each open interval L such that m(L) = 0 is contained in a
maximal such interval V . All such maximal intervals are pairwise disjoint.
Thus there are at most a countable number of such maximal intervals V .
But m is non-atomic so m(∂V ) = 0 and Z is the countable union of sets of
measure zero and thus of measure zero itself. �

Proposition 5.7. — Let f be a cusp map and suppose µ ∈ M(f) is
non-atomic and has positive finite Lyapunov exponent.
Then µ-almost every point is contained in arbitrarily small regularly

returning open intervals, the boundaries of which are repelling periodic
points.

Proof. — By Lemmas 5.6 and 5.1, almost every point x is accumulated on
both sides by repelling periodic points. Take one arbitrarily close periodic
point, not in the orbit of x, on each side of x and consider the partition
defined by the orbits of these two points. The interior of each partition
element, in particular the partition element which contains x, is regularly
returning. The result follows, since the measure is non-atomic. �

6. Generating partition and the dynamical volume lemma

Given a map f and a partition P we denote by Pk the partition∨k
i=0 f

−iP, and by Pk(x) the partition element containing the point x.
Let Y, α, ρ be as per Theorem 4.1 and let γ1 be as per Theorem 4.2. Recall
that finite partitions into intervals of monotonicity are defined in Definition
1.2.

Proposition 6.1. — Let f be a cusp map and suppose µ ∈ M(f) is
non-atomic and has positive finite Lyapunov exponent χµ. Suppose there
exists a finite partition Q into intervals of monotonicity.
There exist a regularly returning interval U , constants K, ε > 0, a finite

partition P and a set X of full measure with the following properties:
• µ(A) > 0, where

A := {y ∈ Y : Πy ∈ U,α(y) > |U |, ρ(y) < K, γ1(y) < K

and dist(Πy, ∂U) > 2ε|U |};

ANNALES DE L’INSTITUT FOURIER



ON CUSPS AND FLAT TOPS 589

• P = {U, I \ U} ∨ Q;
• P is generating;
• for each x ∈ X there exists a strictly monotone increasing sequence
{nj} such that

fnj : Pnj (x)→ U

is a diffeomorphism with distortion bounded by log 2;
• dist(x, ∂Pnj (x)) > ε|Pnj (x)|;
•

lim
j→∞

j

nj
> 0 and lim

j→∞

nj
nj+1

= 1.

Proof. — There exists a K > 1 such that

B := {y ∈ Y : α(y) > K−1 and ρ(y) < K}

has positive measure. By Proposition 5.7, one can cover a set of full measure
by a countable collection of regularly returning intervals of diameter less
than K−1. Let U be one such interval such that

A0 := B ∩Π−1U

has positive measure. Now µ(∂U) = 0, so there exists a set A ⊂ A0 verifying
the first claimed property of the proposition for some ε > 0.

By the Birkhoff Ergodic Theorem, almost every y ∈ Y returns to A

at times nj(y) with limj→∞ nj/nj+1 = 1 and asymptotic frequency
limj→∞(j/nj) = µ(A). Almost every point x ∈ I is the projection of such
a point y. Define P as above. By Theorem 4.1, fnj maps Pnj (x) diffeomor-
phically onto U ; the partition elements shrink to the point x as j →∞, so
P is generating. �

With this partition we can now give a very short proof of the following
dynamical volume lemma. For maps with “bounded p-variation", this was
proven in [17]. Maps with unbounded derivative do not have bounded p-
variation. We denote by HD(µ) the Hausdorff dimension of a measure µ.

Proposition 6.2. — Let f be a cusp map and suppose µ ∈ M(f) has
positive finite Lyapunov exponent χµ. Suppose there exists a finite partition
Q into intervals of monotonicity.
Then for µ-almost every x,

lim
r→0+

logµ(B(x, r))
log r = hµ

χµ
;

in particular, HD(µ) = hµ/χµ.
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Proof. — The latter equality follows, by Frostman’s Lemma, from the
former, which we now prove. Note that if µ is atomic the proposition is
trivial. We write χ for χµ. Let (Y, F, µ) be the natural extension. Let η < χ

be a small positive constant. Let P = {P0 = U,P1, . . . , Pd} be a finite
generating partition of I, ε the constant and X the set of full measure
given by Proposition 6.1.
By ergodicity and the Shannon-McMillan-Breiman Theorem ([27] p.39),

there is a set X ′ ⊂ X of full measure such that the pointwise Lyapunov
exponent limn→∞(1/n) log |Dfn(x)| = χ and

hµ = lim
n→∞

−1
n

logµ(Pn(x))

for all x ∈ X ′. Now fix x ∈ X ′ and let nj be given by Proposition 6.1.
Set rj := dist(x, ∂Pnj (x)) and Rj = |Pnj (x)|. We have (again by Propo-

sition 6.1) that rj > εRj . Continuing,

lim
j→∞

1
nj

log rj = lim
j→∞

1
nj

logRj = −χ

and, since limj→∞
nj
nj+1

= 1,

lim
j→∞

log rj
log rj+1

= lim
j→∞

logRj
logRj+1

= 1.

Thus, if rj > r > rj+1,
logµ(B(x, r))

log r >
logµ(Pnj (x))

log rj+1
= −1

nj
logµ(Pnj (x)) −njlog rj+1

and the right-hand side tends to (hµ/χ) as j →∞.
If Rj > r > Rj+1,

logµ(B(x, r))
log r 6

logµ(Pnj+1(x))
logRj

= −1
nj+1

logµ(Pnj+1(x))−nj+1

logRj
and the right-hand side tends to (hµ/χ) as j →∞.
As r → 0 one has j →∞, so we conclude that,

lim
r→0

logµ(B(x, r))
log r = hµ

χ

as required. �

7. Existence of Pesin partition

An analogous result to the following was proven in [21] in a more re-
strictive setting, but the same proof works. However it is unnecessarily
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complicated. We provide a short proof of the existence of Pesin’s partition,
taking advantage of the properties of regularly returning intervals.

Proposition 7.1. — Let f be a piecewise-monotone cusp map. Suppose
µ ∈ M(f) has positive finite Lyapunov exponent and denote the natural
extension (Y, F, µ). Let ξ be the measurable partition of Y defined by

ξ =
∞∨
i=0

F i(Π−1P),

where P is a partition given by Proposition 6.1. Then ξ has the following
properties:

(1) the partition ξ is increasing by F , F−1ξ > ξ, and generates;
(2) entropy of µ is given by h(µ) = H(F−1ξ/ξ);
(3) for µ almost every point y, for all k > 0, Π maps F−k(ξ(y)) injec-

tively into an interval of monotonicity of f , where ξ(y) denotes the
element of ξ containing y;

(4) for µ almost every point y, 0 <
∫
ξ(y) ∆(y, y′)dy′ < ∞, where the

integration is with respect to the natural Lebesgue measure (i.e. the
pullback of Lebesgue measure by Π|ξ(y)) on each element of ξ and

∆(y, y′) = lim
n→∞

Dfn(ΠF−ny)
Dfn(ΠF−ny′) ;

(5) let U and A be given by Proposition 6.1, so µ(A) > 0: for all y ∈ A,
Πξ(y) = U .

Proof. — Since P is finite and generating, h(f,P) = hµ. Let ζ be the
partition of Y given by ζ := {Π−1P : P ∈ P} and let ξ :=

∨∞
i=0 F

iζ. Then
ζ is a finite, generating partition of Y , and

hµ = h(F, ζ) = H(ζ|
∨
i>0

F iζ) = H(F−1ξ|ξ) = h(f,P) = hµ.

That Π maps F−kξ(y) injectively into an interval of monotonicity holds
since P is a refinement of the partition into intervals of monotonicity.
For y ∈ A, that Πξ(y) = U follows from the regularly returning property.

For almost every y ∈ Y , there is an n > 0 such that Fny ∈ A. Then
ξ(y) ⊃ F−n(ξ(Fny)), so Πξ(y) contains an open interval.
It remains to show that the integral is positive and finite, which follows as

per [21]: For clarity, let us write [F−kξ] instead of F−kξ. For all k > 0, one
has ξ(y) = F k([F−kξ](F−ky)), so the projection of the partition element
[F−kξ](F−ky) contains an open interval for almost every y. For almost
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every y, |Df(ΠF−iy)| is positive and finite for all i, and by ergodicity
there exists a k > 0 such that F−ky ∈ A. One has∫
ξ(y)

∆(y, y′)dy′ =
∫
Fk([F−kξ](F−ky))

∆(F−ky, F−ky′)
k∏
i=1

Df(ΠF−iy)
Df(ΠF−iy′)dy

′

=
k∏
i=1
|Df(ΠF−iy)|

∫
[F−kξ](F−ky)

∆(F−ky, y′)dy′.

By the distortion bound of Proposition 6.1, the last integrand is bounded
inside (2−1, 2) since [F−kξ](F−ky) ⊂ ξ(F−ky) and F−ky ∈ A. Thus the
integrals are positive and finite, completing the proof. �

8. Absolutely continuous measures

The Rohlin decomposition p(y, ·) for the measure µ with respect to the
partition ξ is a conditional probability measure on each partition element
of Y such that, for any measurable set B ⊂ Y ,

µ(B) =
∫
Y

p(y,B)dµ =
∫
Y

p(y,B ∩ ξ(y))dµ.

By Proposition 7.1, if n > 0,

nhµ = H(F−nξ/ξ) = −
∫

log p(y, [F−nξ](y))dµ. (8.1)

Proposition 8.1. — Let f be a piecewise-monotone cusp map. Suppose
µ ∈M(f) has Lyapunov exponent χµ and entropy hµ satisfying 0 < χµ =
hµ <∞. Let (Y, F, µ) be the natural extension.

Then the Rohlin decomposition for the measure µ with respect to the
partition ξ of Proposition 7.1 is given by q(y,B), for y in Y and B a
measurable subset, where

q(y,B) :=

∫
B∩ξ(y) ∆(y, y′)dy′∫
ξ(y) ∆(y, y′)dy′

. (8.2)

Proof. — The proof carries over from [21], proposition 3.6, without mod-
ification. �

Corollary 8.2. — Let f be a piecewise-monotone cusp map. Suppose
µ ∈M(f) has positive finite Lyapunov exponent χµ.
If hµ = χµ, or equivalently if HD(µ) = 1, then µ is absolutely continuous.

Proof. — Let B be a subset of zero Lebesgue measure. Then q(y,B) = 0
for all y, so µ(Π−1B) = 0 = µ(B). �
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Proposition 8.3. — Let f be a piecewise-monotone cusp map. Suppose
µ ∈M(f) has positive finite Lyapunov exponent.
If µ is absolutely continuous with respect to Lebesgue measure then there

exist ν > 0 and an open interval such that the density of µ is bounded from
below by some constant ν > 0 Lebesgue almost everywhere on the interval.

Proof. — Let ξ, A, U be given by Proposition 7.1. For all y ∈ A, Πξ(y) =
U and 2−1 6 ∆(y, y′) 6 2 if y′ ∈ ξ(y). Thus, for y ∈ A, the density of the
Rohlin decomposition on the partition element ξ(y) containing y is bounded
inside [4−1|U |−1, 4|U |−1]. Let A′ :=

⋃
y∈A ξ(y). If we set µA := µ|A′ , then

Π∗µA has support U and the density of Π∗µA is bounded inside

[4−1|U |−1µ(A′), 4|U |−1µ(A′)].

Since µA is a restriction of µ, the density of Π∗µA is less than that of µ
almost everywhere. In particular, the density of µ on U is bounded from
below by ν := 4−1|U |−1µ(A′) > 0 as required. �

Lemma 8.4. — Let g be a piecewise C1 map with an absolutely contin-
uous invariant probability measure with density ρ. Then

ρ(x) =
∑

w∈g−1x

1
|Dg(w)|ρ(w).

In particular, ρ(g(x)) > 1
|Dg(x)|ρ(x).

Proof. — This is just the change of variables formula. �

Theorem 8.5. — Let f : I → I be a piecewise-monotone cusp map
with only a finite number of discontinuities. Suppose µ ∈M(f) has positive
finite Lyapunov exponent and that µ is absolutely continuous with respect
to Lebesgue measure.
Then the support of µ is a finite union of intervals X on which µ is

equivalent to Lebesgue.
Moreover, on every compact subset of X disjoint from the forward orbit

of poles of f the density is bounded away from 0. In particular, if f has no
poles the density is bounded away from 0 on X.

Proof. — Let U be the interval given by Proposition 8.3 on which the
density is bounded away from 0. By Lemma 5.4, there exists a j > 0 such
that the closure X of

⋃j
k=0 f

kU contains the support of µ, and thus equals
the support of µ. The result then follows from Lemma 8.4. �
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Proof of Theorem 1.1. — We can apply Theorem 8.5, since f extends
to be a continuous cusp map on some larger interval. The lower bound on
the density implies that anything integrable with respect to µ is integrable
with respect to Lebesgue measure on the support of µ. �

9. Induced Markov maps

When trying to prove the existence of absolutely continuous invariant
probability measures, a standard and fruitful technique is to show the ex-
istence of an expanding induced map whose domain has full measure in
its range. One can spread the absolutely-continuous, invariant, probability
measure for the induced map to get an absolutely-continuous, invariant
measure for the original map. If the return time for such a Markov map is
integrable with respect to Lebesgue measure, then the resultant measure
is finite and can be normalised to give a probability measure.
A natural question is whether for all acips the measure can be produced

from such an induced map. Henk Bruin [5] has shown that this is the case
for unimodal maps with negative Schwarzian derivative and non-flat critical
points (this has now been extended to multimodal maps with negative
Schwarzian derivative and non-flat critical points [8]). We prove a stronger
result, dropping the condition on non-flatness of critical points, admitting
poles and weakening the condition on the number of singularities.

Definition 9.1. — Suppose I ′ ⊂ I and f : I ′ → I, where I is an inter-
val. Let {Ui} be a finite or countable collection of disjoint open subintervals
of an open interval U ⊂ I ′. We call a map φ :

⋃
i Ui → U an expanding

induced Markov map if
• φ restricted to each Ui is a diffeomorphism onto U ;
• |Dφ| > λ > 1 for some constant λ;
• there exist constants C, ε > 0 such that for each i, for all x, x′ ∈ Ui,

|Dφ(x)−Dφ(x′)| 6 C|φ(x)− φ(x′)|ε;

• there exists {ni} such that φ|Ui = fni|Ui .
If moreover U \

⋃
i Ui has zero Lebesgue measure, then we call φ full.

Let n(x) := ni if x ∈ Ui. If φ is full and∫
U

n(x)dx =
∑
i

ni|Ui| <∞

then we say φ has integrable return time.
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It follows easily from Proposition 6.1 that if f is a cusp map and µ ∈
M(f) has positive finite Lyapunov exponent, then there exists an expand-
ing induced Markov map such that µ(

⋂
j>0 φ

−j(U)) = µ(U) > 0 (note
that holding of the Hölder condition comes from Theorem 4.2 via the γ1
of Proposition 6.1). We want to show more than this in the case that µ is
absolutely continuous.
The Folklore Theorem (see e.g. [25]) implies that if φ is a full expanding

induced Markov map then φ has a unique absolutely continuous invariant
probability measure, ν say, whose density is bounded away from zero and
infinity on U .
If φ has integrable return time then, as is well known,∑

i

ni−1∑
j=0

f j∗ν|Ui

is a finite, ergodic, absolutely-continuous, invariant measure for f which,
when normalised, is an ergodic acip µ for f . We say µ is generated by φ.

Proposition 9.2. — Let f be a piecewise-monotone cusp map. Suppose
µ ∈ M(f) has positive finite Lyapunov exponent and that µ is absolutely
continuous with respect to Lebesgue measure.
Then µ is generated by a full expanding induced Markov map for f .

Proof. — Let A′, U be defined as per the proof of Proposition 8.3. For
y ∈ Y let r1(y) := inf{n > 1 : Fny ∈ A′}. Inductively define rk+1(y) :=
rk(y)+r(F rk(y)y) for k > 1 and set nk(x) := min{rk(y) : Π(y) = x}. These
are defined on sets of full measure, in particular for Lebesgue almost every
x ∈ U . Recall we showed that the density of Π∗µ|A′ is bounded from below
on U by some ν > 0.
By an easy generalisation of Kac’s Lemma,

∫
A′
rk(y)dµ = k for each

k > 1. Then

k >
∫
U

nk(x)dΠ∗µ|A′ > ν−1
∫
U

nk(x)dx.

In particular
∫
U
nk(x)dx <∞.

Recall that for y ∈ A′, Πξ(y) = U , and for y ∈ A, ρ(y) < K, so by
Theorem 4.1, |Dfn| > (2K)−1en(χ−η) on ΠF−nξ(y). Choose N such that
(2K)−1eN(χ−η) > 2.
Let D denote the set of x ∈ U such that nN (x) is defined. Since nN (x)

is defined almost everywhere, the Lebesgue measure of U \D is zero. For
each x ∈ D there exists y ∈ Π−1(x) such that FnN (x)y ∈ A′. Set

Ux := ΠF−rN (y)ξ(F rN (y)),
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and note that since ξ(y′) = ξ(y) for all y′ ∈ ξ(y) and since U is regularly re-
turning, Ux is a connected component of D. in particular, nN (x′) is defined
and constant on Ux. Let {Ui} be the collection of connected components
of D and mi := nN (x) for some x ∈ Ui. Then define φ :

⋃
Ui → U by

φ|Ui := fmi . This map is a full expanding induced Markov map.
Thus there is an ergodic invariant absolutely continuous invariant prob-

ability measure µ′ generated by φ. The support of µ′ coincides with that
of µ and both have positive density so by ergodicity they are equal and µ
is generated by φ. �

Theorem 9.3. — Let f be a piecewise-monotone C1+ε map.
Then f has an ergodic, absolutely continuous, invariant, probability mea-

sure with positive finite Lyapunov exponent if and only if there exists a full
expanding induced Markov map with integrable return time.

Proof. — One direction is given by Proposition 9.2. On the other hand,
if there exists an induced Markov map with integrable return time, the
measure generated by it will be an ergodic, absolutely continuous, invariant
probability measure. The entropy of the measure is positive because it is
non-invertible almost everywhere on the range of the Markov map. Then
Ruelle’s Inequality implies that the Lyapunov exponent is positive, and it
is finite because the derivative is bounded. �

Remark: There are induced Markov maps with integrable return time for
cusp maps such that the generated measure has non-integrable Lyapunov
exponent, see the section after next.

10. From Markov extension to natural extension

This section builds on the work of Hofbauer ([15]) and Keller ([19]) and
looks at the relation between their Markov extension or Hofbauer tower
and the natural extension.
Consider a piecewise-monotone map f :

⋃d
j=1 Ij → I of the interval I

defined on a collection of open intervals Ij and an invariant, ergodic, prob-
ability measure µ. As is well known, Hofbauer showed that if the entropy
hµ > 0, then µ lifts to an ergodic, conservative, f̂ -invariant probability

measure µ̂ for the corresponding Markov extension f̂ :
⋃̂d
j=1 Ij → Î.

Bruin and Todd use this in the following way: There is some interval Ĵ
at some level in the tower which has positive measure. By conservativity,
the domain of the first return map φ̂ to Ĵ has full measure. The topolog-
ical structure of the tower implies that, when chosen appropriately, φ̂ is
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a homeomorphism from each connected component of its domain onto Ĵ .
This then also holds for all iterates of φ̂. By conservativity,

⋂
n>0 φ̂

−n(Ĵ)
has the same measure as Ĵ . See section 3, and in particular subsection 3.2,
of [8] for details.
We can look at the natural extension of the Markov extension. Since it

projects onto the Markov extension which then projects onto the original
system, it is none other than the natural extension (Y, F, µ) of the original
system. Let π̂ denote the projection from Y to Î, and, as usual, Π the
projection from Y to I.
Let A ⊂ Y denote π̂−1(Ĵ). Then A has positive measure. Let Φ : A→ A

denote the first return map to A and set A∗ :=
⋂
j>0 Φ−j(A); again by

conservativity, A∗ has positive measure. The first return map Φ projects
down to the map φ̂ on Ĵ , that is, π̂ ◦ Φ = φ̂ ◦ π̂, since φ̂ is a first return
map [note that the projection down to the original system in general is not
a first return map].
Let y ∈ A∗ and yj = Φ−jy. Then φ̂j maps a neighbourhood Ŵj ⊂ Ĵ of

π̂(yj) homeomorphically onto Ĵ , so there is some kj and a corresponding
neighbourhood Wj of Πyj ∈ I mapped by fkj homeomorphically onto J ,
the projection of Ĵ , and fkj ◦Π = Π ◦ Φj on Π−1Wj .

Then for each x in J , there is a corresponding point yx ∈ Π−1x such
that for all j > 0, ΠΦ−j(yx) ∈Wj . In particular, ΠΦ−j(

⋃
x∈J y

x) = Wj . It
follows that for each k > 0, ΠF−k(

⋃
x∈J y

x) is an interval mapped homeo-
morphically by fk onto J .
We remark that almost every point y lands in A∗ at some point. Thus

the following holds.

Proposition 10.1. — Suppose f is a piecewise-monotone, piecewise-
continuous map and µ is an ergodic, invariant, probability measure with
positive entropy µ. There is a measurable function θ on Y such that for
almost every y, there exists a set Vy ⊂ Y with the following properties:

• y ∈ Vy, θ(y) > 0 and ΠVy = B(Πy, θ(y));
• for each m > 0, fm : ΠF−mVy → ΠVy is a homeomorphism (in
particular it is onto).

Now, the collection Q := {I1, . . . , Id} defines a partition of the domain
of f and f is a homeomorphism on each Ij (onto its image). If fn is a
homeomorphism from some interval W onto its image, then W is entirely
contained in one element of the partition Q. Denote by Q(x) the partition
element containing the point x.
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By Proposition 10.1, for almost every y there is a set Vy 3 y for which
ΠF−n(Vy) is mapped homeomorphically onto the open interval ΠVy by fn.
Thus ΠF−n(Vy) is entirely contained in some element of Q.
We now provide the remaining arguments needed to show Theorem 4.1.

Lemma 3.3 almost holds: one must consider the intervals Ij one at a time.
Lemma 4.3 holds unchanged. Lemma 4.4 is modified slightly taking into
account Lemma 3.3:

Lemma 10.2. — Let Bn := B(ΠF−ny, 2−1e−n3δ/ε). For all n > n(y),
for all x, x′ ∈ Bn ∩Q(ΠF−n(y)),

|log |Df(x)| − log |Df(x′)|| < e−nδ.

Lemma 4.5 becomes:

Lemma 10.3. — For n > n(y),

f(Bn+1 ∩Q(ΠF−(n+1)y)) ⊃ B(ΠF−ny, 2e−n(χ−δ)) ∩ f(Q(ΠF−(n+1)y)).

Lemma 4.6 holds under the additional assumption that

Vn ⊂ f(Q(ΠF−(n+1))).

This holds if V is a subset of ΠVy, where Vy comes from Proposition 10.1.
The remainder of the proof follows through.

11. Conjugacies with the Chebyshev map

The Chebyshev quadratic map x 7→ 4x(1− x) is a very special example
as it is smoothly conjugate on the interior of [0, 1] to a piecewise linear
map, namely the full tent map T : [0, 1]→ [0, 1]:

T (x) =
{

2x if 0 6 x 6 1
2 ;

2− 2x if 1
2 < x 6 1.

We shall use it to construct some examples of cusp maps. In Theorem 1.1
and Corollary 1.3, we showed that for C1+ε maps there are no absolutely
continuous invariant measures with positive Lyapunov exponent if the crit-
ical points are too flat. Here we shall find unimodal maps with acips with
positive entropy and very flat critical points. This is strange, but a contra-
diction is avoided because these maps have singularities at the boundary
and the logarithm of the derivative is non-integrable, so the Lyapunov ex-
ponent of the acip does not exist.
Topological Chebyshev maps will also provide examples of maps whose

measures of maximal entropy have infinite Lyapunov exponent.
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Proposition 11.1. — Let TC denote the class of cusp maps or restric-
tions of cusp maps which are topologically conjugate by a conjugacy h to
the full tent map T . Let TC∞ denote the subclass of such maps such that
h is a C∞ diffeomorphism on the interior of the interval. For f ∈ TC let
µf denote the pullback by h of the acip (actually Lebesgue measure) for
T . For f ∈ TC, µf is the measure of maximal entropy. If f ∈ TC∞ then
µf is also absolutely continuous.
Then there exist
(1) f ∈ TC∞ with poles at the boundary such that the Lyapunov

exponent of µf is 2;
(2) f ∈ TC∞ such that the Lyapunov exponent of µf does not exist;
(3) f ∈ TC∞ such that f has a smooth parabolic fixed point at the

boundary and the Lyapunov exponent of µf is 2;
(4) f ∈ TC such that µf has positive infinite Lyapunov exponent.

For each α > 0 let hα be a C∞ homeomorphism of [0, 1] with the following
properties:

• |Dhα| > 0 except at 0 and at 1;
• on a neighbourhood of 0 one has hα(x) = e−x

−α ;
• the graph of h has a point of central symmetry at ( 1

2 ,
1
2 ), in other

words h(1− x) = 1− h(x).
For each α > 0 define gα : [0, 1]→ [0, 1] by

gα(x) := hα ◦ T ◦ h−1
α .

Then gα is conjugate to the tent map, symmetric and has non-zero, non-
infinite derivative everywhere except for at 0, 1

2 , and 1 (figure 11.1). Denote
1
2 by c. Of course, g(0) = 0, g(c) = 1, g(1) = 0. Let us calculate the deriva-
tive near 0. Firstly note that, near zero, h−1(x) = (− log x)− 1

α , so

Dh−1(x) = 1
α

(− log x)
−1−α
α

1
x
.

Clearly |DT | = 2. Next, Dh(x) = αx−1−αe−x
−α . Putting these together

using the chain rule,

Dgα(x) = Dh(2h−1(x))2Dh−1(x)

= α

α
2−1−α(− log x)

1+α
α e−2−α(− log x)1

2(log x)
−1−α
α

1
x

= 2−αx2−α 1
x

= 2−αx2−α−1.
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One can double-check using the conjugacy that near zero, gα(x) = x2−α .
The derivative near 1 is the same but with negative sign. We shall see soon
that there is a transition in behaviour at α = 1 which corresponds to a
cusp at 0 of root type = 1

2 .
Now let us look at the derivative near the critical point. Here Dhα 6= 0

and we can assume it is almost constant ≈ Dhα(c) =: l−1, say. If x is close
to c then h−1

α (c) is close to 1
2 too, so it gets mapped by T to a point close

to 1. We get

|Dgα(x+ c)| =
∣∣Dhα(Th−1

α (x+ c))2Dh−1
α (x+ c)

∣∣
≈ Dhα(2l|x|)2l

= α(2l|x|)−1−αe−(2l|x|)−α .

We have seen in Corollary 1.3, that at α = 1 there is some sort of a
transition in other maps with this critical behaviour (polynomial times
e−|y|

−α).
Lebesgue measure is both an acip and a measure of maximal entropy for

T . We can pull this back by hα to get the measure of maximal entropy
for gα. This measure µ is absolutely continuous since hα is smooth and is
given by dµ(x) = Dh−1

α (x)dx. Let us try integrating log |Dgα| near 0:∫
log |Dgα(x)|Dh−1(x) dx

≈
∫

(log 2−α + (2−α − 1) log x)
(

1
α

(− log x)
−1−α
α

1
x

)
dx

=
∫

log 2−αDh−1(x)− (2−α − 1) 1
α

(− log x)
−1
α

1
x
dx

= C0 +
∫
C1

1
x(− log x) 1

α

dx,

where C0 and C1 are positive constants. This last integral, well known in
France as an intégrale de Bertrand, is finite if and only if α < 1.
Near c, since Dh is approximately a positive constant, log |Dgα| will be

integrable with respect to µ if and only if it integrable with respect to
Lebesgue. It is easy to see that it is integrable with respect to Lebesgue if
and only if α < 1.

Thus gα has an absolutely continuous invariant probability measure with
finite Lyapunov exponent if α < 1. In this case, since hα is smooth ev-
erywhere bar the boundary, every periodic point p of period k satisfies
|Dfk(p)| = 2k, so the Lyapunov exponent is equal to 2.
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If α > 1 then gα has an acip whose Lyapunov exponent does not
exist. At the critical point

∫
log |Dgα|dµ is −∞; at 0 it is +∞. If we write

χ(x) and χ(x) for the lower and upper Lyapunov exponents of gα at x,
then, almost everywhere,

χ(x) 6 2 6 χ(x).

Figure 11.1. Graphs of gα, hα and fα.

Now we conjugate in the other direction. For each α > 0 define fα :
[0, 1]→ [0, 1] by

fα(x) := h−1
α ◦ T ◦ hα.

Again, fα is symmetric, conjugate to the tent map and the derivative is non-
zero and finite except possibly at 0, c, 1. In fact the norm of the derivative
is strictly positive and finite everywhere except for at c (figure 11.1). Let
us calculate Dfα near 0.

Dfα(x) = Dh−1
α (2e−x

−α
)2αx−α−1e−x

−α

= α−1(− log 2 + x−α)
−1−α
α

1
2e

x−α2αx−α−1e−x
−α

= (− log 2 + x−α)
−1−α
α x−α−1

= (1− xα log 2)
−1−α
α .

Thus Dfα(0) = 1 and there is a parabolic fixed point at zero. It is straight-
forward to check that, for all i such that 2 6 i < α+ 1, Difα(0) exists and
Difα(0) = 0. Also, fα is C∞ near zero if and only if α > 0 is a natural
number, in which case Dα+1fα(0) > 0.
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Near the critical point we have

|Dfα(c+ x)| =
∣∣Dh−1

α (Thα(x+ c))2Dhα(x+ c)
∣∣

≈ Dh−1
α (2l−1|x|)2l−1

= 2l−1α−1 (− log(l−12|x|)
)−1−α

α 2−1l|x|−1

= α−1|x|−1 (− log(l−12|x|)
)−1−α

α .

Hence the derivative does indeed tend to infinity at c. Moreover, 1
Dfα

is Cε
near c, so an extension of fα is an cusp map.

Pulling back Lebesgue measure, we get an absolutely continuous invari-
ant probability measure µ for fα with C∞ density Dh(x), despite the
existence of a smooth parabolic point in the support of µ. The
Lyapunov exponent here is integrable and equal to 2.
Now we show that there is a cusp map f in TC whose measure of maximal

entropy has infinite Lyapunov exponent. Let f : [0, 1]→ [0, 1] be a map in
TC with poles at the boundary and at the preimage c of the turning point
1
2 , such that on U a neighbourhood of zero, f(x) = xα for some α with
0 < α < 1. See figure 11.2.
Let f1 := f|[0,c] and let p,N be such that p = f−N1 (c) ∈ U and set

pn := f−n1 (p). Then
pn = p

1
αn .

On [pn+1, pn] one has αpα−1
n+1 6Df 6αp

α−1
n , and µf ([pn+1, pn] = 2−(n+N+1)

since f is conjugate to the full tent map T2. So, on [pn+1, pn],

logα+ (α− 1) 1
αn+1 log p 6 logDf 6 logα+ (α− 1) 1

αn
log p.

Subtracting logα and integrating,

(α− 1) log p
∞∑
i=0

1
αi+1 2−(i+N+1) 6 −µf ([0, p]) logα+

∫ p

0
logDf dµf

6 (α− 1) log p
∞∑
i=0

1
αi

2−(i+N+1)

so, near zero,
∫

logDf dµf is finite if α > 1
2 and positive infinite if α 6 1

2 .
By definition, the derivative is bounded away from zero, so, if α 6 1

2 , then∫
[0,1]

log |Df | dµ = +∞.

�
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Figure 11.2. Graph of f .
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