
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Peter FIEBIG & Geordie WILLIAMSON

Parity sheaves, moment graphs and the p-smooth locus of Schubert varieties
Tome 64, no 2 (2014), p. 489-536.

<http://aif.cedram.org/item?id=AIF_2014__64_2_489_0>

© Association des Annales de l’institut Fourier, 2014, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie de cet article sous quelque forme que
ce soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2014__64_2_489_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Ann. Inst. Fourier, Grenoble
64, 2 (2014) 489-536

PARITY SHEAVES, MOMENT GRAPHS AND THE
p-SMOOTH LOCUS OF SCHUBERT VARIETIES

by Peter FIEBIG & Geordie WILLIAMSON

Abstract. — We show that the Braden-MacPherson algorithm computes the
stalks of parity sheaves. As a consequence we deduce that the Braden-MacPherson
algorithm may be used to calculate the characters of tilting modules for algebraic
groups and show that the p-smooth locus of a (Kac-Moody) Schubert variety co-
incides with the rationally smooth locus, if the underlying Bruhat graph satisfies
a GKM-condition.
Résumé. — On montre que l’algorithme de Braden-MacPherson calcule les

fibres des faisceaux de parité. On en déduit que l’algorithme de Braden-MacPherson
peut être utilisé pour calculer les caractères des modules basculants pour les groupes
algébriques. Finalement, on montre que le lieu p-lisse d’une variété de Schubert
coïncide avec son lieu rationnellement lisse, si le graphe de Bruhat sous-jacent
satisfait une condition dite GKM.

1. Introduction

In Lie theory, one of the most successful methods to calculate represen-
tation theoretic data (such as character formulae, decomposition numbers
or Jordan-Hölder multiplicities) is to find a geometric or topological in-
terpretation of the problem. In many examples one obtains representation
theoretic information from the stalks of intersection cohomology complexes
on an associated algebraic variety (for example the flag variety, the nilpo-
tent cone, or the group itself).

In the most successful applications of this approach (the Kazhdan-Lusztig
conjecture, canonical bases, character sheaves . . . ) the representation the-
oretic objects under consideration are assumed to be defined over a field of

Keywords:Modular representation theory, equivariant cohomology, moment graphs, con-
structible sheaves, tilting modules, Schubert varieties, p-smooth locus.
Math. classification: 20C20, 22E47, 55N33, 55N91, 14M15.



490 Peter FIEBIG & Geordie WILLIAMSON

characteristic 0. In this case the decomposition theorem often allows one
to recursively calculate the stalks of intersection cohomology complexes,
hence solving (or at least providing a combinatorial algorithm to solve) the
representation theoretic problem.
However, recently a number of authors have pointed out that geometry

also has something to say about modular representation theory (see [24] for
a survey). In this article we are motivated by the following two examples
of this phenomenon:

• For a ring k, the geometric Satake equivalence (cf. [33]) provides
an equivalence of tensor categories between equivariant perverse k-
sheaves on the affine Grassmannian and rational representations of
the Langlands dual group scheme over k.

• In [15] and [17] a certain category of sheaves of k-vector spaces on
an affine flag variety was related to representations of the k-Lie
algebra associated to the Langlands dual root system. Here k is
assumed to be a field whose characteristic is required to be at least
the associated Coxeter number. The relation is then used to give a
new proof of Lusztig’s conjecture on the simple rational characters
for reductive groups in almost all characteristics.

In [23] (motivated by ideas of Soergel [34] together with a desire to better
understand such relationships) a new class of sheaves, the “parity sheaves”,
was introduced. These are certain constructible sheaves on a stratified al-
gebraic variety, which satisfy a parity vanishing condition with respect to
stalks and costalks. It was shown that, under some additional assumptions,
the indecomposable parity sheaves are parametrized in the same way as the
intersection cohomology complexes. If the coefficients are of characteristic
0 the decomposition theorem often implies that the indecomposable par-
ity sheaves are isomorphic to intersection cohomology complexes (up to a
shift).

In positive characteristics this needs no longer be true. However, with
coefficients of positive characteristic parity sheaves are often easier to work
with than intersection cohomology complexes. Moreover, for some represen-
tation theoretic applications they may even form their natural replacement.
For example,

• the category considered in [15, 17] turns out to be the category of
parity sheaves,

• under the geometric Satake equivalence (and under some mild and
explicit assumptions on the characteristic of k) the parity sheaves
correspond to tilting modules for the Langlands dual group (cf. [22]).
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PARITY SHEAVES AND MOMENT GRAPHS 491

In the above results, fundamental representation theoretic data is encoded
in the stalks of the indecomposable parity sheaves. It is therefore an im-
portant problem to find an algorithm for their calculation.
For an appropriately stratified complex algebraic variety X with torus

action Braden and MacPherson [7] describe an algorithm for calculating
the stalks of intersection cohomology complexes with coefficients in a field
of characteristic 0 (using localisation techniques in equivariant cohomology
developed by Goresky, Kottwitz and MacPherson [19]). The torus action
has, by assumption, only finitely many fixed points and one-dimensional
orbits. The structure of the one-skeleton of the torus action can be encoded
in the “moment graph” of the variety:

• the vertices and edges are given by the torus fixed points and one-
dimensional orbits respectively, with a one-dimensional orbit inci-
dent to those fixed points in its closure,

• each edge is labelled by a character of the torus determining an
isomorphism of the orbit with C∗ (this is defined only up to a sign).

Braden and MacPherson then describe an algorithm (using only com-
mutative algebra) to produce a “sheaf” on the moment graph, and show
that its stalks agree with those of the equivariant intersection cohomology
complex. Thus the (a priori extremely difficult) computation of the stalks
of the intersection cohomology complex may (in principle) be carried out
in an elementary way.

Now, the Braden-MacPherson algorithm makes sense with coefficients in
an arbitrary field k, or even in a local ring. However, simple examples show
that it does not compute the stalks of intersection cohomology complexes
when the coefficients are not of characteristic 0. The central result of this
paper is the following:

Theorem 1.1. — Suppose that the pair (X, k) satisfies the GKM-
condition (cf. Section 4.7). Then the Braden-MacPherson algorithm com-
putes the stalks of indecomposable parity sheaves.

In the theorem, k denotes a complete local principal ideal domain. If
k is a field, then the GKM-condition may be stated simply: one requires
that, for all pairs of one-dimensional orbits having a common torus fixed
point in their closure, the corresponding characters do not become linearly
dependent modulo k. This condition can easily be read off the associated
moment graph.
In the course of the proof of the above result we provide a version of

localisation theorem of [19] with coefficients in a ring, i.e. we show that

TOME 64 (2014), FASCICULE 2



492 Peter FIEBIG & Geordie WILLIAMSON

the hypercohomologies of certain equivariant sheaves on X are given by
the global sections of associated moment graph sheaves (see Theorem 4.4).
For complete local rings we then show that the Braden-MacPherson algo-
rithm yields the objects associated to parity sheaves (see Theorem 6.10).
In contrast to the proof of Braden-MacPherson, our arguments are more
elementary, as we do not need the theory of mixed Hodge modules. As in
characteristic 0 the decomposition theorem implies that the parity sheaves
are intersection cohomology complexes up to a shift, we obtain a new proof
of their result.
Applying the above theorem to the affine Grassmannian and using the

Satake equivalence, we obtain:

Theorem 1.2. — Suppose that p > h+ 1, where h denotes the Coxeter
number of our datum. On the moment graph of the affine Grassmannian
and with coefficients in the ring of p-adic integers, the Braden-MacPherson
algorithm calculates the characters of tilting modules of the Langlands dual
group over Fp.

The moment graph of the affine Grassmannian is GKM for a field k if
and only if k is of characteristic 0. We avoid this complication by using the
p-adic integers in the above theorem.
We apply the multiplicity one result of [16] to obtain a description of the

p-smooth locus of Schubert varieties. Recall that an n-dimensional algebraic
variety X is p-smooth if for all x ∈ X one has an isomorphism of graded
vector spaces

H•(X,X r {x},Fp) ∼= H•(Cn,Cn r {0},Fp).

The p-smooth locus of X is the largest open p-smooth subvariety. One
similarly defines rationally smooth, and the rationally smooth locus by
replacing Fp by Q above. If X is rationally (resp. p-) smooth it satisfies
Poincaré duality with rational (resp. Fp-) coefficients. Here is our result:

Theorem 1.3. — Let G be the moment graph of a (Kac-Moody) Schu-
bert variety X and suppose that (G,Fp) is a GKM-pair. Then the p-smooth
locus of X coincides with its rationally smooth locus.

In the finite dimensional case, the GKM-condition is always satisfied if
p 6= 2 and if, in addition, p 6= 3 in G2. This answers a (stronger version of)
a question of Soergel (cf. [34]). In fact, we prove the above theorem for a
larger class of varieties with an appropriate torus action for fields k that
satisfy the GKM-condition.
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PARITY SHEAVES AND MOMENT GRAPHS 493

The smooth and rationally smooth locus of Schubert varieties has been
the subject of much investigation by a number of authors. See for example
[1], [10], [13], [14] and [29]. It is a result known as Peterson’s theorem that
the smooth and rationally smooth locus agree in simply-laced type, which
immediately implies the above theorem. However, there are examples in
non-simply-laced types of small rank where the 2-smooth and 3-smooth
locus do not agree with the rationally smooth locus.
Lastly let us remark that results of this paper (in particular Section 8.5)

are used in an essential way in the paper [25], which shows that Kumar’s
criterion for the rational smoothness of Schubert varieties can be extended
to provide a criterion for p-smoothness. In particular, the main result of [25]
provides a means to determine the p-smooth locus when the underlying
moment graph is not GKM, complementing Theorem 1.3. On may also use
Theorem 1.3 together with the results of [25] to obtain a novel proof of
Peterson’s theorem.

Acknowledgements. — We would like to thank Daniel Juteau and Olaf
Schnürer for useful conversations and Michel Brion for useful correspon-
dence. P.F. gratefully acknowledges the support of the Landesstiftung
Baden-Württemberg as well as the DFG-Schwerpunkt 1388 “Represen-
tation Theory”. Both authors gratefully acknowledge the support of the
Newton Institute in Cambridge, where parts of this paper were written.

2. Equivariant sheaves

In this section we recall the construction of the bounded equivariant de-
rived category Db

G(X, k) that is associated to a topological group G, a ring
of coefficients k and a G-space X. To a suitable continuous G-equivariant
map f : X → Y one associates the push-forward functors

f∗, f! : Db
G(X, k)→ Db

G(Y, k)

and the pull-back functors

f∗, f ! : Db
G(Y, k)→ Db

G(X, k)

satisfying a Grothendieck formalism. We then recall the equivariant co-
homology H•G(F) of X with coefficients in F ∈ Db

G(X, k) and, finally,
the Mayer-Vietoris sequence associated to an open G-stable covering X =
U ∪ V .
We will be mainly concerned with the following situation: G will either

be a complex algebraic torus, i.e. G ∼= (C×)r for some r > 0, endowed with
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494 Peter FIEBIG & Geordie WILLIAMSON

its metric topology, or its compact subtorus (S1)r. The space X will be a
complex algebraic variety with an algebraic G-action, and endowed with
its metric topology. The main reference for the following is [5].

2.1. The equivariant derived category of a G-space

We fix a topological group G. A G-space is a topological space endowed
with a continuous G-action. There always exists a contractible G-space
with a topologically free G-action. We fix one of those and call it EG. For
any G-space X we can now define the quotient XG := X×GEG of X×EG
by the diagonal G-action. Then we have two maps

X × EG
p

{{vvvvvvvvv
q

$$JJJJJJJJJ

X XG.

The map q on the right is the canonical quotient map and p is the projection
onto the first factor.
Now we fix a ring of coefficients k. For any topological space Y we denote

by D(Y, k) the derived category of sheaves of k-modules on Y . By Db(Y, k)
we denote the full subcategory of objects with bounded cohomology. For
a continuous map f : Y → Y ′ we then have the push-forward functor
f∗ : D(Y, k)→ D(Y ′, k) and the pull-back functor f∗ : D(Y ′, k)→ D(Y, k)
(see [35]).

Definition 2.1. — The equivariant derived category of sheaves on X
with coefficients in k is the full subcategory DG(X, k) of D(XG, k) that
contains all sheaves F for which there is a sheaf FX ∈ D(X, k) such that
q∗F ∼= p∗FX .

We denote by Db
G(X, k) ⊂ DG(X, k) the full subcategory of objects with

bounded cohomology, i.e. of objects that are contained in Db(XG, k).
It turns out that the categories DG(X, k) and Db

G(X, k) are independent
of the choice of EG. Since p is a trivial fibration with contractible fibre
EG, the functor p∗ : D(X, k) → D(X × EG, k) is a full embedding. We
deduce that for F ∈ DG(X, k) the sheaf FX ∈ D(X, k) appearing in the
definition above is unique up to unique isomorphism, so the map F 7→ FX
even extends to a functor For: DG(X, k)→ D(X, k).
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2.2. The equivariant functor formalism

In order to ensure that all the functors that we introduce in the following
exist we assume that X is a complex algebraic variety endowed with its
metric topology, and that G is a Lie group acting continuously on X.

If f : X → Y is a continuous G-equivariant map then we get an induced
map fG := f ×G id : XG → YG and corresponding functors f∗G, fG∗, f !

G and
fG! between the categories Db(XG, k) and Db(YG, k). (Some care is needed
in the definition of f !

G and fG! because XG and YG are not locally compact
in general. In [5] this problem is overcome by considering XG as a direct
limit of locally compact spaces. It is also possible to prove the existence
and basic properties of f !

G in a relative setting, see [2].) It turns out that
all four functors induce functors between the subcategories Db

G(X, k) and
Db
G(Y, k). By abuse of notation we denote these functors by the symbols

f∗, f∗, f ! and f!.
For a G-stable subvariety i : Y ↪→X and a sheaf F ∈ Db

G(X, k) we define

FY := i∗F .

So FY is an object in Db
G(Y, k).

2.3. Equivariant cohomology

The equivariant cohomology H•G(X, k) of X with coefficients in k is the
(ordinary) cohomology of the space XG, i.e.

H•G(X, k) := H•(XG, k).

In particular, the equivariant cohomology of a point is the cohomology of
the classifying space

BG := ptG = EG×G pt = EG/G

of G.
Now let F ∈ Db

G(X, k). The equivariant cohomology HG
•(F) of X with

coefficients in F is defined as follows. We denote by π : X → pt the map
to a point. Then we have the object π∗F ∈ Db

G(pt, k) ⊂ Db(BG, k) and we
define

HG
•(F) := H•(π∗F),

where on the right we have the ordinary cohomology of BG with coefficients
in the sheaf π∗F . This is naturally a graded module over H•G(pt, k) =
H•(BG, k), so equivariant cohomology is a functor

HG
• : Db

G(X, k)→ H•G(pt, k) -modZ .

TOME 64 (2014), FASCICULE 2
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Here and in the following we denote by A -modZ the category of Z-graded
modules over a Z-graded ring A. For a graded A-module M =

⊕
n∈ZMn

and l ∈ Z we denote by M [l] the graded module obtained by a shift such
that M [l]n = Ml+n for all n ∈ Z.
Let i : Y ↪→X be a locally closed G-stable subvariety and F ∈ Db

G(X, k).
The adjunction morphism id→ i∗i

∗ yields a morphism F → i∗i
∗F = i∗FY .

After applying equivariant cohomology this yields a homomorphism

HG
•(F)→ HG

•(i∗FY ) = HG
•(FY )

of H•G(pt, k)-modules. We call such a homomorphism a restriction homo-
morphism.

2.4. The Mayer-Vietoris sequence

We will often make use of the equivariant Mayer-Vietoris sequence. Note
that the equivariant statement is a straightforward consequence of the non-
equivariant one (see, for example, [27, 2.6.28]).

Proposition 2.2. — Let X = U ∪ V where U, V ⊂ X are open and
G-stable. Then, given any F ∈ Db

G(X, k), we have a long exact sequence
of equivariant cohomology

· · · → Hj−1
G (FU∩V )→ HjG(F)→HjG(FU )⊕HjG(FV )→

→ HjG(FU∩V )→ Hj+1
G (F)→ · · · .

2.5. The case of a torus

Let us suppose now that G = T is a complex torus, i.e. a topological
group isomorphic to (C×)r for some r > 0, endowed with the metric topol-
ogy.
For n > 0 we consider the space (Cn r {0})r together with the T -action

given by
(t1, . . . , tr) · (x1, . . . , xr) = (t1 · x1, . . . , tr · xr).

The embeddings Cn r {0} → Cn+1 r {0} that map (z1, . . . , zn) to (z1, . . . ,

zn, 0) define a direct system

· · · → (Cn r {0})r → (Cn+1 r {0})r → · · ·

of T -spaces. The direct limit (C∞r{0})r := lim(Cnr{0})r is a contractible
space together with a topologically free T -action, hence can be chosen as a
model for ET .
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We denote by X∗(T ) the character lattice Hom(T,C×) of T . Let

Sk := S(X∗(T )⊗Z k)

be the symmetric algebra over the free k-moduleX∗(T )⊗Zk, graded in such
a way that X∗(T ) ⊗Z k ⊂ Sk is the homogeneous component of degree 2.
Then the Borel homomorphism (cf. [8, §1, Example 2], [21, §1.7 and §1.8])
gives a canonical identification

Sk
∼→ H•(BT, k) = H•T (pt, k).

2.6. An attractive proposition

Now let X be a complex T -variety. Recall that a T -fixed point x ∈ X is
called attractive if all weights of T on the tangent space to X at x lie in
an open half space of X∗(T ) ⊗Z R. If this is the case then one can find a
one parameter subgroup α : C× → T and a T -stable open neighbourhood
U of x such that

(2.1) lim
z→0

α(z) · y = x for all y ∈ U .

If, in addition, X is connected and affine, then x is the unique T -fixed point
of X and (2.1) holds for all y ∈ X. In particular, the smallest T -stable open
neighbourhood of x ∈ X is X itself.
Suppose for the remainder of this section that X is connected and affine,

and that x ∈ X is an attractive fixed point. We denote by i : {x} → X the
inclusion and by π : X → {x} the projection. If we apply the functor π∗
to the natural transformation id → i∗i

∗ we get a natural transformation
π∗ → π∗i∗i

∗. Since π ◦ i is the identity, we get a natural morphism

π∗ → i∗

of functors from Db
T (X, k) to Db

T ({x}, k).
The goal of the rest of this section is to prove the following (for similar

statements in the non-equivariant or “weakly equivariant” setting see [37,
Proposition 1] and [6, Theorem 1]):

Proposition 2.3. — Suppose that X is connected and affine and that
x ∈ X is an attractive fixed point. Then the morphism of functors π∗ → i∗

is an isomorphism.

TOME 64 (2014), FASCICULE 2
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We begin with some lemmata. Suppose we have a pair of Cartesian
squares

F̃
ĩ //

q

��

X̃ //

q

��

π̃ // F̃

q

��
F

i // X //π // F

such that q is smooth and surjective, and π ◦ i = id (and hence π̃ ◦ ĩ = id).
The adjunctions (π∗, π∗) and (π̃∗, π̃∗) give morphisms of functors

π∗ → i∗ and π̃∗ → ĩ∗.

Lemma 2.4. — Let F ∈ Db(X, k). Then π∗F → i∗F is an isomorphism
if and only if π̃∗q∗F → ĩ∗q∗F is an isomorphism.

Proof. — Because q is surjective, π∗F → i∗F is an isomorphism if and
only if q∗π∗F → q∗i∗F is an isomorphism. Now q∗i∗F ∼→ ĩ∗q∗F and
q∗π∗F

∼→ π̃∗q
∗F by smooth base change. Via these canonical isomorphisms

we obtain a map
π̃∗q
∗F → ĩ∗q∗F

This is the same map (up to isomorphism) as that coming from the mor-
phism π̃∗ → ĩ∗ (cf. [5, Theorem 1.8].) �

Now suppose a torus T contracts a variety X onto a fixed locus F ⊂ X.
Consider the diagram

X

π

��

X × ET
poo q //

π

��

X ×T ET

π

��
F

i

OO

F × ET
poo

i

OO

q // F ×T ET

i

OO .

Both p and q are smooth, and so applying the above lemma twice we see
that, given F ∈ Db

T (X, k), we have that π∗F → i∗F is an isomorphism in
Db
T (F, k) if and only if π∗ For(F)→ i∗ For(F) is.
Given a G-space X, let us call F ∈ Db(X, k) naively equivariant if we

have an isomorphism m∗F → p∗F where m and p denote the action and
projection maps

G×X
m //
p

// X.

Note that, if G acts freely on X then pullback along X → X/G allows us
to view any F ∈ Db(X/G, k) as a naively equivariant sheaf on X. Note
also that if F is naively equivariant for a group G, then it is also naively
equivariant for any subgroup H ⊂ G.
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Lemma 2.5. — Suppose that F ∈ Db
G(X, k). Then For(F) is naively

equivariant for G.

Proof. — Consider the quotient map q : X × EG → X ×G EG. Then
q∗F is naively equivariant for G. Then smooth base change applied to
the projection p : X × EG → X yields that For(F) = p∗q

∗F is naively
equivariant for G. �

We can now prove the attractive proposition:
Proof of Proposition 2.3. — The above arguments reduce the proof of

the above to showing that, if F ∈ Db(X, k) is naively equivariant for the
action of a one dimensional torus which contracts X onto x ∈ X, then
π∗F → i∗F is an isomorphism. But this is a special case of [6, Theorem 1]
(see also [37, Proposition 1] for a version of this argument in the `-adic
context). �

3. The localisation homomorphism

Throughout this section we assume that k is a unique factorisation do-
main and that X is a normal complex algebraic variety (endowed with its
metric topology), acted upon algebraically by a complex torus T ∼= (C×)r.
In addition, we assume the following:
(A1) The torus acts on X with only finitely many zero- and one-

dimensional orbits and the closure of each one-dimensional orbit
is smooth.

(A2) X admits a covering by open affine connected T -stable subvarieties,
each of which contains an attractive (hence unique) fixed point.

Note that, by a result of Sumihiro (see [38, 28]), X has a covering by open
affine T -stable subvarieties, hence (A2) is automatically satisfied if X is
proper and each T -fixed point is attractive.
Let XT ⊂ X be the subspace of T -fixed points and F ∈ Db

T (X, k). The
restriction homomorphism associated to the inclusion XT ↪→X,

HT
•(F)→ HT

•(FXT ),

is called the localisation homomorphism.
As XT is a finite set we have HT

•(FXT ) =
⊕

x∈XT HT
•(Fx). Following

the ideas of [11] and [19] we will show that for certain choices of X, k and
F the localisation map is injective and give an explicit description of its
image. This is conveniently phrased in terms of moment graphs (cf. [7]),
as it turns out that this image is determined by the restriction of F to the
one-dimensional T -orbits in X.

TOME 64 (2014), FASCICULE 2



500 Peter FIEBIG & Geordie WILLIAMSON

3.1. One-dimensional orbits

Suppose that E⊂X is a one-dimensional T -orbit. Then E∼=T/ StabT (x)
for any x ∈ E. Now StabT (x) is the kernel of a character αE ∈ X∗(T )
which is well-defined up to a sign. From now on we fix a choice of αE for
each one-dimensional orbit E in X. Nothing that follows depends on this
choice.
As before we denote by Sk the Z-graded symmetric algebra of the free

k-module X∗(T ) ⊗Z k and identify it with the T -equivariant cohomology
of a point with coefficients in k. Given α ∈ X∗(T ) we often abuse notation
and denote by α as well the image of α⊗ 1 ∈ X∗(T )⊗Z k in Sk.
Now αE acts as zero on H•T (E, k) (see, for example, [21, Section 1.9]).

As H•T(FE) is a H•T (E, k)-module, we conclude:

Lemma 3.1. — For any one-dimensional T -orbit E in X and any F ∈
Db
T (X, k) we have αE H•T(FE) = 0.

3.2. The localisation theorem – part I

For any closed connected subgroup Γ of T we let XΓ be the subset of
Γ-fixed points in X. Let us fix a closed subspace Z ⊂ X which is a discrete
union

Z = XΓ1 t · · · tXΓn

of the fixed points in X of finitely many connected subtori Γ1, . . . ,Γn ⊂ T .
We set

PZ :=
{
αE ∈ X∗(T )

∣∣∣∣E is a one-dimensional
T -orbit in X r Z

}
and define

sZ :=
∏
α∈PZ

α ∈ Sk.

In addition to (A1) and (A2) we assume from now on:
(A3) for each one-dimensional orbit E in X the image of αE ∈ X∗(T ) is

non-zero in Sk.
(Of course this condition is vacuous if the characteristic of k is 0.)

We now come to the first part of the localisation theorem. In the char-
acteristic 0 case it is due to Goresky, Kottwitz and MacPherson (cf. [19]).
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Theorem 3.2. — Assume that the assumptions (A1), (A2) and (A3)
hold and let F ∈ Db

T (X, k). Suppose that HT
•(F) is a graded free Sk-

module. Then the restriction homomorphism

HT
•(F)→ HT

•(FZ)

is injective and becomes an isomorphism after inverting sZ ∈ Sk, i.e. after
applying the functor · ⊗Sk Sk[1/sZ ].

The proof of the theorem will take up the rest of this section. We follow
Brion’s account [8, Section 2] of the characteristic 0 case quite closely, but
at points some additional care is needed.
Let K ∼= (S1)r ⊂ T ∼= (C×)r be the maximal compact subtorus of T .

We can regard X as a K-space via restriction of the action. This yields a
functor

resTK : Db
T (X, k)→ Db

K(X, k).
As T/K is contractible, for any equivariant sheaf G ∈ Db

T (X, k) restriction
gives an isomorphism

H•T (G) ∼→ H•K(resTK G).

In particular, we have a canonical isomorphism H•K(pt, k) ∼= Sk. In the
following we write H•K(G) for H•K(resTK G). Hence, for the proof of Theo-
rem 3.2, it is enough to consider the restriction homomorphism

H•K(F)→ H•K(FZ)

and to show that it is injective and becomes an isomorphism after invert-
ing sZ .
Before we prove this we need a couple of preliminary results. We state

them for the K-equivariant cohomology, however all lemmata except Lem-
ma 3.5 are true with T in place of K.
First we assume that X = V is a finite dimensional T -module. Let

P ⊂ X∗(T ) be the characters occurring in V and s =
∏
χ∈P χ ∈ Sk their

product. Here is the first step towards the localization theorem.

Lemma 3.3. — If F ∈ Db
K(V r {0}, k) then H•K(F) is annihilated by a

power of s.

Proof. — Fix an isomorphism

(3.1) V ∼= Cχ1 ⊕ Cχ2 ⊕ · · · ⊕ Cχm
where χ1, χ2, . . . , χm ∈ P . (Here, given χ ∈ X∗(T ), Cχ denotes the one-
dimensional T -module with character χ.) We will use this isomorphism to
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write elements of V as (xj)16j6m. For any 1 6 i 6 m consider the subset

Ui =
{

(xj) ∈ V | xi 6= 0
}
.

Projection gives us an equivariant map πi : Ui → C×χi . By Lemma 3.1,
the equivariant cohomology H•K(G) = H•K(πi∗G) of each G ∈ Db

K(Ui, k) is
annihilated by χi.
However, V r{0} is covered by the sets Ui for 1 6 i 6 m and the Mayer-

Vietoris sequence allows us to conclude that H•K(F) is annihilated by a
power of s. �

Now let Z ⊂ X be as before. From the above we deduce the second step:

Lemma 3.4. — If F ∈ Db
K(X r Z, k) then H•K(F) is annihilated by a

power of sZ .

Proof. — First we assume that X is affine and connected and contains
an attractive fixed point. In this case Z is necessarily of the form XΓ for
a closed subtorus Γ ⊂ T . We recall an argument due to Brion (cf. [1,
Proposition 3.2.1-1], or the proof of Theorem 17 in [8]) which constructs a
finite T -equivariant map

π : X → V,

where V is a T -module with weights corresponding bijectively to the one-
dimensional orbits of T in X. Brion’s construction is as follows:

For each one-dimensional orbit E ⊂ X, E is smooth and hence isomor-
phic, as a T -space, to CαE . For each such orbit we may find a regular
function πE : X → CαE such that the restriction of πE to E is an equivari-
ant isomorphism of affine spaces. Taking the direct sum over all such πE
yields a map

X
π→ V :=

⊕
E

CαE .

We claim that π is finite. Because x ∈ X is attractive, we can find a rank
one subtorus of T inducing a positive grading on the regular functions on
X. By the graded Nakayama lemma π is finite if and only if π−1(0) is finite.
If π−1(0) is not finite, then it contains a one-dimensional T -orbit (again by
the attractiveness of x), but this contradicts the construction.
Now let V Γ ⊂ V be the subspace of Γ-fixed points. Because each fibre

of π is finite and π is equivariant it follows that π−1(V Γ) = XΓ. Choose a
decomposition

V = V ′ ⊕ V Γ

of T -modules and let V → V ′ denote the projection. We get an induced
map

π′ : X rXΓ → V ′ r {0}
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and the result follows from Lemma 3.3 because

H•K(F) ∼= H•K(π′∗F).

Hence we proved the lemma in the case of affine X.
By our assumption (A2), the general case follows from the Mayer-Vietoris

sequence. �

Lemma 3.5. — For any equivariant sheaf F ∈ Db
K(X, k) we have an

isomorphism
H•K(FZ) ∼= lim

→
H•K(FU ),

where the direct limit takes place over all K-stable open neighbourhoods
U of Z.

Proof. — By assumption X has a covering by open subvarieties, all iso-
morphic to closed subvarieties of affine spaces with linear T -actions. Thus
we may choose a basis of open neighbourhoods {Ui}i∈I of Z which are
K-stable. (This is where we need the compactness of K.)
Now we may write EK as a countable direct limit of (finite dimen-

sional) manifolds with free K-action (for example, by taking EK = ET

as in Section 2.5). Hence XK can be written as a countable union of com-
pact subsets. Because XK is regular, we conclude that XK is paracompact
(cf. [12, Theorem 6.5] and [32, Section 5.8] ). It is straightforward to see
that {(Ui)K}i∈I give a basis of open neighbourhoods of ZK . It then follows
from [27, Remark 2.6.9] that we have an isomorphism

H•K(FZ) = H•(FZK ) ∼= lim
→

H•(F(Ui)K ) = lim
→

H•K(FU )

as claimed. �

Now we are ready to prove Theorem 3.2.
Proof. — Let F ∈ Db

T (X, k) and assume that H•T (F) is free as an Sk-
module. We have to show that the restriction map

H•K(F)→ H•K(FZ)

is injective, and becomes an isomorphism after inverting sZ .
Let U be an open K-stable neighbourhood of Z ⊂ X. We have inclusions

U
j
↪→ X

i←↩ X r U

and hence a distinguished triangle:

i!i
!F → F → j∗j

∗F [1]→ .
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Applying Lemma 3.4 (and remembering that i∗ ∼= i!) we deduce that
H•K(i!i!F) is annihilated by a power of sZ . As H•K(F) is free, the restric-
tion map H•K(F)→ H•K(FU ) is injective. It also follows that it becomes an
isomorphism after inverting sZ .

To finish the proof, note that, by Lemma 3.5,

H•K(FZ) ∼= lim
→

H•K(FU ).

Because H•K(F)→ H•K(FU ) is injective for all U it follows that H•K(F)→
H•K(FZ) is injective. Lastly, this map becomes an isomorphism after in-
verting sZ because the direct limit commutes with tensor products. �

4. The image of the localisation homomorphism

We are now going to describe the image of the localisation homomor-
phism under a certain further restriction on the ring k which is called the
GKM-condition. For this it is convenient to use the language of sheaves on
moment graphs. We start by recalling the main definitions and construc-
tions in the theory of moment graphs. In particular, we define the Z-graded
category G -modZ

k of k-sheaves on a moment graph G and associate to any
such sheaf F its space of global sections Γ(F ).
To a T -space X with finitely many zero and one-dimensional orbits we

associate a moment graph GX and define a functor

W : Db
T (X, k)→ GX -modZ

k

between Z-graded categories. We then show that under some assumptions
on F ∈ Db

T (X, k), the equivariant cohomology of X with coefficients in F
coincides with the space of global sections of W(F), i.e.

H•T(F) = Γ(W(F)).

4.1. Sheaves on moment graphs

Let Y ∼= Zr be a lattice of finite rank.

Definition 4.1. — An (unordered) moment graph G over Y is given
by the following data:

• A graph (V, E) with set of vertices V and set of edges E .
• A map α : E → Y r {0}.
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We assume that two vertices of a moment graph are connected by at
most one edge.

Let G = (V, E , α) be a moment graph. We write E : x—— y for an edge E
that connects the vertices x and y. If we also want to denote the label
α = α(E) of E, then we write E : x α——— y. As before we denote by
Sk = S(Y ⊗Z k) the symmetric algebra of Y over k, which we consider
as a graded algebra with Y ⊗Z k sitting in degree 2.

Definition 4.2. — A k-sheaf M on a moment graph G is given by the
following data:

• a graded Sk-module M x for any vertex x ∈ V,
• a graded Sk-module ME with α(E)ME = 0 for any E ∈ E ,
• a homomorphism ρx,E : M x →ME of graded Sk-modules for any
vertex x lying on the edge E.

For a k-sheaf M on G and l ∈ Z we denote by M [l] the shifted k-
sheaf with stalks M [l]x = (M x)[l], M [l]E = (ME)[l] and shifted ρ-
homomorphisms. A morphism f : M → N between k-sheaves M and
N on G is given by a collection of homomorphisms of graded Sk-modules
fx : M x → N x and fE : ME → N E for all vertices x and edges E that
are compatible with the maps ρ, i.e. such that the diagram

M x

ρM
x,E

��

fx // N x

ρN
x,E

��
ME

fE // N E

commutes for all vertices x that lie on the edge E. We denote by G -modZ
k

the category whose objects are k-sheaves on G and whose morphisms are the
morphisms between k-sheaves. It is Z-graded by the functor M 7→M [1].

4.2. Sections of sheaves and the structure algebra

The structure algebra over k of a moment graph G is

Zk =
{

(zx) ∈
∏
x∈V

Sk

∣∣∣∣ zx ≡ zy mod α(E)
for all edges E : x—— y

}
.

Coordinatewise addition and multiplication makes Zk into an Sk-algebra.
The product in the above definition should be considered as the product
in the category of Z-graded Sk-modules. This means that

∏
x∈V Sk is Z-

graded with homogeneous component of degree n being
∏
x∈V(Sk)n. Then

Zk is a Z-graded subalgebra.
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Let M by a k-sheaf on G. For any subset I of V we define the space of
sections of M over I by

Γ(I,M ) :=

(mx) ∈
∏
x∈I

M x

∣∣∣∣∣∣
ρx,E(mx) = ρy,E(my)
for all edges E : x—— y

with x, y ∈ I

 .

Coordinatewise multiplication makes Γ(I,M ) into a Zk-module (as
α(E)ρx,E(mx) = 0 for any edge E with vertex x). Again it is a graded
module when the product is taken in the category of graded Sk-modules.

We call the space Γ(M ) := Γ(V,M ) the space of global sections. If
I ⊂ J are two subsets of V, then the canonical projection

⊕
x∈J M x →⊕

x∈IM x induces a restriction map Γ(J ,M )→ Γ(I,M ).

4.3. The costalks of a sheaf

Let M be a k-sheaf on G and let x be a vertex. Then we define the
costalk Mx of M at x to be the Sk-module

Mx :=
{
m ∈M x | ρx,E(m) = 0 for all edges E that contain x

}
.

We can identify Mx in an obvious way with the kernel of the restriction
homomorphism Γ(V,M )→ Γ(V r {x},M ).

4.4. The moment graph associated to a T -variety

To a complex T -variety X satisfying (A1) we associate the following
moment graph GX = (V, E , α) over the lattice X∗(T ):

• We set V := XT .
• The vertices x and y, x 6= y, are connected by an edge if there is a

one-dimensional orbit E such that E = E ∪ {x, y}. We denote this
edge by E as well.

• We let α(E) = αE ∈ X∗(T ) be the chosen character.
Note that only those one-dimensional orbits E in X give rise to an edge

that pick up two distinct fixed points in their closure.

4.5. The functor W

Suppose that E ⊂ X is a one-dimensional T -orbit, and suppose that
x ∈ E is a fixed point in its closure. Let F be an object in Db

T (X, k). Then
the restriction homomorphism

H•T(FE∪{x})→ H•T(Fx)
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is an isomorphism by the attractive Proposition 2.3. Hence we can de-
fine a homomorphism ρx,E from H•T(Fx) to H•T(FE) by composing the
inverse of the above homomorphism with the restriction homomorphism
H•T(FE∪{x})→ H•T(FE):

ρx,E : H•T(Fx) ∼← H•T(FE∪{x})→ H•T(FE).

Now we can define the functor W. To an equivariant sheaf F ∈ Db
T (X, k)

on X we associate the following k-sheaf W(F) on GX :
• For a vertex x ∈ V we set W(F)x := H•T(Fx).
• For a one-dimensional orbit E we set W(F)E := H•T(FE) (note that
αE H•T(FE) = 0 by Lemma 3.1).

• In case that x ∈ E we let ρx,E : W(F)x → W(F)E be the map
constructed above.

This construction clearly extends to a functor W : Db
T (X, k)→ GX -modZ

k .

4.6. The case X = P1

Suppose that T acts linearly on P1 via a non-trivial character α. In this
case the moment graph is

0 α—— ∞.
For F ∈ Db

T (P1, k) the sheaf W(F) consists of the stalks H•T(F0), H•T(F∞)
and the space H•T(FC×) together with the maps

H•T(F0)
ρ0,C×−→ H•T(FC×)

ρ∞,C×←− H•T(F∞).

A consequence of the Mayer-Vietoris sequence is the following lemma.

Lemma 4.3. — Let F ∈ Db
T (P1, k). Then the image of the restriction

homomorphism H•T(F) → H•T(F0) ⊕ H•T(F∞) is {(z0, z∞) | ρ0,C×(z0) =
ρ∞,C×(z∞)}.

4.7. The localisation theorem – part II

Now we assume that X satisfies the assumptions (A1), (A2) and (A3).
Let F ∈ Db

T (X, k). If HT
•(F) is a free Sk-module, then Theorem 3.2

shows that we can view HT
•(F) as a submodule of

⊕
x∈XT HT

•(Fx) =⊕
x∈XT W(F)x. The space of global sections Γ(W(F)) is a submodule of

this direct sum as well. In this section we want to prove that these two
submodules coincide.
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We need some more notation. For α ∈ X∗(T ) let us define Xα to be the
subvariety of all T -fixed points in X and all one-dimensional orbits E ⊂ X
such that kα∩ kαE 6= 0. Then X0 = XT for all rings k, but in general Xα

depends on the ring k. We define

Pα :=
{
αE ∈ X∗(T )

∣∣∣∣E is a one-dimensional
T -orbit in X rXα

}
and

sα :=
∏

αE∈Pα
αE ∈ Sk.

We need some additional assumptions on our data:
(A4a) For any α ∈ X∗(T ) the space Xα is a disjoint union of points and

P1’s.
(A4b) If E is a one-dimensional T -orbit and n ∈ Z is such that αE is

divisible by n in X∗(T ), then n is invertible in k.
Note that (A4a) and (A4b) imply that the greatest common divisor of sα
for all α ∈ X∗(T ) is 1. For the proof of the next theorem we will only need
this fact, but we need the stronger statements (A4a) and (A4b) later. Note
also that (A4a) guarantees that we can apply Theorem 3.2 with Z = Xα

and sZ = sα.
Let GX be the moment graph associated to X. For α ∈ X∗(T ) we denote

by GαX the moment graph obtained from GX by deleting all edges E with
kαE ∩ kα = 0. Then (A4a) is equivalent to:
(A4a)′ The moment graph GαX is a (discrete) union of moment graphs with

only one or two vertices.
Now we can state the second part of the localisation theorem.

Theorem 4.4. — Suppose that (A1), (A2), (A3), (A4a) and (A4b) hold.
Let F ∈ Db

T (X, k) and suppose that HT
•(F) and HT

•(FXT ) are free Sk-
modules. Then

HT
•(F) = Γ(W(F))

as submodules of
⊕

x∈XT HT
•(Fx) =

⊕
x∈XT W(F)x.

For the proof of the above statement we use similar arguments as the
ones given in [8], [11] or [19]. Again we follow [8, §2] closely.

Proof. — As a first step let F ∈ Db
T (X, k) be any sheaf and α ∈ X∗(T ).

Let Γα(W(F)) be the sections of the sheaf W(F) on the moment graph GαX
(so we only consider the edges E with kαE ∩ kα 6= 0). By (A3),

Γ(W(F)) =
⋂

α∈X∗(T )

Γα(W(F)).
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By (A4a), Xα is a discrete union of points and P1’s. Hence, if we denote
by rα : H•T(FXα)→ H•T(FXT ) the restriction map, then Lemma 4.3 yields
Γα(W(F)) = rα(H•T(FXα)). Hence:

Γ(W(F)) =
⋂

α∈X∗(T )

rα(H•T(FXα)).

So we have to show that H•T(F) =
⋂
α∈X∗(T ) rα(H•T(FXα)).

Clearly H•T(F) is contained in the intersection
⋂
α∈X∗(T ) rα(H•T(FXα)).

Hence it remains to show that if f ∈ H•T (FXT ) is in rα(H•T(FXα)) for all
α ∈ X∗(T ), then f is contained in H•T (F).
By Theorem 3.2 the injection i : H•T(F)→ H•T(FXT ) becomes an isomor-

phism after inverting s0. By assumption, H•T (F) is a free Sk-module. We
choose a basis e1, . . . , em for H•T (F) and denote by e∗1, . . . , e

∗
m ∈

Hom(H•T (F), Sk) the dual basis. Because i becomes an isomorphism af-
ter inverting s0, we can find ẽ∗1, . . . , ẽ∗m ∈ HomSk(H•T (FXT ), Sk[1/s0]) such
that e∗j = ẽ∗j ◦ i for 1 6 j 6 m. Note that f is in H•T(F) if and only if ẽ∗j (f)
is contained in Sk for 1 6 j 6 m.
By Theorem 3.2, the map

H•T (F) ↪→ H•T (FXα)

becomes an isomorphism after inverting sα. As f is contained in H•T (FXα),
we conclude ẽ∗j (f) ∈ Sk[1/sα] for any 1 6 j 6 m. Hence,

ẽ∗j (f) ∈
⋂

α∈X∗(T )

Sk[1/sα].

But
⋂
α∈X∗(T ) Sk[1/sα] = Sk as the greatest common divisor of all sα is 1.

Hence ẽ∗j (f) ∈ Sk, which is what we wanted to show. �

5. Equivariant parity sheaves

In the following sections we consider equivariant parity sheaves on a
stratified variety, which were introduced in [23]. It turns out that the equi-
variant cohomology of such a sheaf is free over the symmetric algebra, so by
the results in the previous sections it can be calculated by moment graph
techniques. We determine the corresponding sheaves on the moment graph
explicitly: we show that these are the sheaves that are constructed by the
Braden-MacPherson algorithm (cf. [7]).

For all of the above, we need an additional datum: a stratification of the
variety.
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5.1. Stratified varieties

We assume from now that the T -variety X is endowed with a stratifica-
tion

X =
⊔
λ∈Λ

Xλ

by T -stable subvarieties Xλ. We write Db
T,Λ(X, k) for the full subcategory

of Db
T (X, k) consisting of objects which are constructible with respect to

this stratification. In addition to the assumptions (A1) and (A2) we assume:

(S1) For each λ ∈ Λ there is a T -equivariant isomorphism Xλ
∼= Cdλ ,

where Cdλ carries a linear T -action.
(S2) The category Db

T,Λ(X, k) is preserved under Grothendieck-Verdier
duality. (This is satisfied, for example, if the stratification is Whit-
ney.)

By (A1) and (A2) each stratum Xλ contains a unique fixed point. We
denote this fixed point by xλ.

The topology of X gives us a partial order on the set Λ: We set λ 6 µ

if and only if Xλ ⊂ Xµ. We use the following notation for an arbitrary
partially ordered set Λ: For λ ∈ Λ we set {> λ} := {ν ∈ Λ | ν > λ} and we
define {6 λ}, {> λ}, etc. in an analogous fashion.

Definition 5.1. — Let K be a subset of Λ.

• We say that K is open, if for all γ ∈ K, λ ∈ Λ with λ > γ we have
λ ∈ K, i.e. if K =

⋃
γ∈K{> γ}.

• We say that K is closed if Λ rK is open, i.e. if K =
⋃
γ∈K{6 γ}.

• We say that K is locally closed if it is the intersection of an open
and a closed subset of Λ.

For a subset K of Λ the set K+ :=
⋃
γ∈K{> γ} is the smallest open

subset containing K, and K− :=
⋃
γ∈K{6 γ} is the smallest closed subset

containing K. The subset K is locally closed if K = K− ∩ K+.
For any subset K of Λ we define

XK =
⊔
γ∈K

Xγ ⊂ X.

If K is open (closed, locally closed), then XK is an open (closed, locally
closed, resp.) subvariety in X. In particular, for any λ ∈ Λ the subvariety
X6λ := X{6λ} is closed. For F ∈ Db

T,Λ(X, k) we define FK := FXK .

ANNALES DE L’INSTITUT FOURIER



PARITY SHEAVES AND MOMENT GRAPHS 511

5.2. Equivariant parity sheaves

For λ ∈ Λ we denote by iλ : Xλ → X the inclusion. We now give the
definition of an equivariant parity sheaf on X:

Definition 5.2. — Let ? either denote the symbol ∗ or the symbol !,
and let P ∈ Db

T (X, k).
• P is ?-even (resp. ?-odd) if for all λ ∈ Λ the sheaf i?λP is a direct

sum of constant sheaves appearing only in even (resp. odd) degrees.
• P is even (resp. odd) if it is both ∗-even and !-even (both ∗-odd

and !-odd, resp.).
• P is parity if it may be written as a sum P = P0⊕P1 with P0 even
and P1 odd.

Note that, by assumption (S1), for all λ ∈ Λ, all T -equivariant local
systems on Xλ are trivial and we have

H•T (Xλ, k) = H•T (pt, k) = Sk.

Hence, we have the following classification of indecomposable parity sheaves
(see [23, Theorem 2.9]):

Theorem 5.3. — Suppose that k is a complete local ring. For all λ ∈
Λ there exists, up to isomorphism, at most one indecomposable parity
sheaf P(λ) extending the equivariant constant sheaf kXλ . Moreover, any
indecomposable parity sheaf is isomorphic to P(λ)[i] for some λ ∈ Λ and
some integer i.

Note that in this paper (in contrast to [23]) we normalise indecompos-
able parity sheaves in such a way that the restriction of P(λ) to Xλ is
the constant sheaf in degree 0. Also, in [23] parity sheaves are considered
with respect to an arbitrary “pariversity” † : Λ → Z/2Z. In this paper we
only consider parity sheaves with respect to the constant pariversity, which
corresponds to the above definition.

Proposition 5.4. — Let λ ∈ Λ and assume that P(λ) exists. We have
D(P(λ)) ∼= P(λ)[2dλ] where D denotes the Verdier duality functor and dλ
denotes the complex dimension of Xλ.

Proof. — This is a simple consequence of the above theorem, together
with the fact that D preserves parity and the fact that DkXλ ∼= kXλ [2dλ].

�
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5.3. Short exact sequences involving parity sheaves

Let Q be a parity sheaf on X and let J ⊂ Λ be an open subset with
closed complement I = ΛrJ . Denote by j : XJ → X and i : XI → X the
corresponding inclusions. Consider the distinguished triangle

(5.1) i!i
!Q → Q→ j∗j

∗Q [1]→ .

Lemma 5.5.
(1) The above triangle gives rise to a short exact sequence

0→ H•T(i!Q)→ H•T(Q)→ H•T(QJ )→ 0.

(2) Let P be another parity sheaf on X. Then the above triangle gives
rise to a short exact sequence

0→ Hom•(i∗P, i!Q)→ Hom•(P,Q)→ Hom•(PJ ,QJ )→ 0.

Proof. — We may assume without loss of generality that Q is even. Then
the distinguished triangle in equation (5.1) is a distinguished triangle of !-
even sheaves. If P (resp. Q′) is ∗-even (resp. !-even) then an induction
(see [23, Corollary 2.8]) shows that Hom(P,Q′[n]) = 0 for odd n. Then (2)
follows and part (1) is the case P = kX . �

5.4. Further properties of equivariant parity sheaves

The following properties of the equivariant cohomology of parity sheaves
will be useful when we come to relate parity sheaves and Braden-
MacPherson sheaves in the next section.

Proposition 5.6. — Suppose that P is an equivariant parity sheaf
on X. Then the following holds:

(1) For any open subset J of Λ the equivariant cohomology H•T(PJ ) is
a free Sk-module.

(2) For any open subset J of Λ the restriction homomorphism
H•T(P)→ H•T(PJ ) is surjective.

(3) Assume that (A4b) holds and suppose that E ⊂ Xλ is a one-
dimensional T -orbit. Then the restriction map

ρλ,E : H•T(Pxλ)→ H•T(PE)

is surjective with kernel αE H•T(Pxλ).
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Proof. — Note that (2) has already been shown in the previous lemma.
For (1), first note that if we choose an open subset J ⊂ Λ then PJ is
a parity sheaf on XJ . Hence it is enough to show that H•T(P) is a free
Sk-module. Choose x ∈ Λ minimal, let I = {x} and J = Λr{x}. We have
an exact sequence

0→ H•T(i!P)→ H•T(P)→ H•T(PJ )→ 0.

As P is a parity sheaf, i!P is a direct sum of constant sheaves and so
H•T(i!P) is a free Sk-module. Using induction we can assume that H•T(PJ )
is a free Sk-module. Hence H•T(P) is free.
Let us prove (3). Since E ∪ {xλ} is contained in Xλ, the restriction of P

to E ∪ {xλ} is isomorphic to a sum of shifted constant sheaves. Hence it is
enough to show that if T acts on C via the character α 6= 0 such that n is
invertible in k if α is divisible by n in X∗(T ), then the map

ρ0,C× : H•T ({0}, k)→ H•T (C×, k)

identifies with the canonical quotient map Sk → Sk/αSk. With charac-
teristic 0 coefficients this is proved in [21, Section 1.10]. The divisibility
assumption guarantees that the argument given there also works with co-
efficients in k. �

5.5. Obtaining parity sheaves via resolutions

Up until now we have only discussed various properties of parity sheaves,
without discussing their existence. We now show that the existence of cer-
tain proper morphisms to the varietiesXλ guarantees the existence of parity
sheaves.
Assume that, for all λ ∈ Λ, there exists a T -variety X̃λ and a proper

surjective morphism of T -varieties

πλ : X̃λ → Xλ

such that:
(R1) each X̃λ is smooth and admits a T -equivariant closed embedding

X̃λ ↪→ P(V ) for some T -module V ,
(R2) the fixed point set X̃λ

T
is finite,

(R3) πλ∗kX̃λ is constructible with respect to the stratification Λ (that is,
πλ∗kX̃λ

∈ Db
T,Λ(X, k)).

Note that we do not assume that the morphisms πλ are birational.
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Theorem 5.7. — Assume that k is a complete local principal ideal
domain. With the above assumptions we have:

(1) For all λ ∈ Λ there exists an indecomposable parity sheaf P(λ) ∈
Db
T (X, k) with support equal to Xλ and such that P(λ)Xλ ∼= kXλ .

(2) For all µ 6 λ the restriction homomorphism

H•T(P(λ))→ H•T(P(λ)xµ)

is surjective.
(3) The cohomology H•T(P(λ)) is self-dual of degree 2 dimXλ. That is,

Hom•Sk(H•T(P(λ)), Sk) ∼= H•T(P(λ))[2 dimXλ].

Before proving the theorem we state and prove two propositions. For
this we need some more notation. Given a T -variety Z we write ωZ for
the T -equivariant dualising sheaf in Db

T (Z, k). Note that, up to reindexing,
H•T(ωZ) is the T -equivariant Borel-Moore homology of Z.
Let us fix µ 6 λ and set F := π−1

λ (xµ). We have:

Proposition 5.8.
(1) H•T(ωF ) and H•T(ω

X̃λ
) are free Sk-modules concentrated in even

degrees.
(2) The canonical map H•T(ωF ) → H•T(ω

X̃λ
) is a split injection of Sk-

modules.

Proof. — As xµ is attractive, there exists a one parameter subgroup
γ : C× → T which contracts an open neighbourhood of xµ in X onto xµ as

z ∈ C× goes to 0. Moreover, we can choose γ such that X̃λ

C×
= X̃λ

T
.

Now consider the Bialynicki-Birula’s minus decomposition of X̃λ

T
with

respect to γ. That is, for each x ∈ X̃λ

T
set

Y −x :=
{
y ∈ X̃λ | lim

z→∞
γ(z) · y = x

}
.

Then a theorem of Bialynicki-Birula ([4]) asserts that each Y −x is a locally
closed T -stable subvariety of X̃λ isomorphic to an affine space. Our choice
of γ implies that

F = π−1
λ (xµ) =

⊔
x∈FT

Y −x .

Moreover, by assumption we can find a T -equivariant embedding

X̃λ ↪→ P(V )
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and we may decompose V ∼=
⊕
Vi where Vi denotes the ith weight space

of the C∗-action on V given by γ. If we set V6i =
⊕

j6i Vj then it is
straightforward to check that the filtration

∅ ⊂ · · · ⊂ P(V6i) ⊂ P(V6i+1) ⊂ · · · ⊂ P(V )

induces filtrations of X̃λ and F by closed subvarieties such that each succes-
sive difference is a disjoint union of Bialynicki-Birula cells. A simple induc-
tion (see, for example, [18, Appendix B, Lemma 6] for the non-equivariant
case) shows that both H•T(ω

X̃λ
) and H•T(ωF ) are free Sk-modules with basis

given by the equivariant fundamental classes of closures of the Bialynicki-
Birula cells. The two statements of the lemma then follow. �

Proposition 5.9. — With notation as above we have:
(1) πλ∗kX̃λ is parity and its support is equal to Xλ.
(2) For all µ 6 λ the restriction homomorphism

H•T(πλ∗kX̃λ)→ H•T((πλ∗kX̃λ)xµ)

is surjective.

Proof. — The support claim follows from the surjectivity of πλ. We now
explain why πλ∗kX̃λ is parity. As πλ is proper and X̃λ is smooth, πλ∗kX̃λ
is self-dual up to a shift and so it is enough to show that πλ∗kX̃λ is !-
even. As πλ∗kX̃λ is constructible with respect to the Λ-stratification, it is
enough to show that, for all µ, i!xµπλ∗kX̃λ is a direct sum of constant sheaves
concentrated in even degrees, where ixµ denotes the inclusion {xµ} ↪→ X. A
devissage argument shows that this is the case if and only if H•T(i!xµπλ∗kX̃λ)
is a free Sk-module.
By proper base change i!xµπλ∗kX̃λ is isomorphic (up to a shift) to πλ∗ωF .

Hence it is enough to show that H•T(ωF ) is a free Sk-module concentrated
in even degrees. This is the case by Proposition 5.8 (1) above.
For the second statement of the proposition note that the restriction

homomorphism H•T(πλ∗kX̃λ) → H•T((πλ∗kX̃λ)xµ) is dual (again, up to a
shift) to the canonical map H•T(ωF ) → H•T(ω

X̃λ
) which is a split injection

by Proposition 5.8 (2). �

Proof of Theorem 5.7. — By Proposition 5.9, πλ∗kX̃λ ∈ Db
T (X, k) is

parity. If we let Q denote an indecomposable summand of πλ∗kX̃λ contain-
ing Xλ in its support then Q is also parity and, by Theorem 5.3, we have
QXλ ∼= kXλ [i] for some integer i. It follows that we can take P(λ) := Q[−i].
Another consequence of Theorem 5.3 is that any indecomposable parity

sheaf P(λ) occurs as a direct summand of πλ∗kX̃λ [i] ∈ Db
T (X, k) for some i.
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Hence, to show Part (2) of the theorem it is enough to check that the map

H•T(πλ∗kX̃λ)→ H•T((πλ∗kX̃λ)xµ)

is surjective. This is the case by Proposition 5.9.
By Proposition 5.4 we have DP(λ) ∼= P(λ)[2 dimXλ]. We also know that

H•T(P(λ)) is a free Sk-module by Proposition 5.8 (recall that ω
X̃λ
∼= k

X̃λ

because X̃λ is smooth). Hence

Hom•Sk(H•T(P(λ)), Sk) ∼= H•T(P(λ))[2 dimXλ].

as Xλ is proper. �

5.6. Parity sheaves and the functor W

In this section we begin discussing the relationship between parity sheaves
and the localisation functor W. In particular, we show that W is fully faith-
ful on morphisms of all degrees between parity sheaves.
For the rest of this section we assume (A1)–(A4a/b) and (S1), (S2).

Proposition 5.10. — Let P(λ) be a parity sheaf. Then the localisation
homomorphism H•T(P(λ)) → H•T(P(λ)XT ) identifies H•T(P(λ)) with the
global sections of W(P(λ)).

Proof. — In order to apply Theorem 4.4 we only need to check that
H•T(P(λ)) and H•T(P(λ)XT ) are free Sk-modules. This is the case for
H•T(P(λ)) by Proposition 5.6. For H•T(P(λ)XT ) note that because P(λ)
is parity, the restriction of P(λ) to any T -fixed point is a direct sum of
equivariant constant sheaves. �

Theorem 5.11. — The functor W is fully faithful when restricted to
parity sheaves, i.e. if P and P ′ are parity sheaves on X, then

Hom•Db
T

(X,k)(P,P
′)→ Hom•G -modZ

k
(W(P),W(P ′))

is an isomorphism.

Proof. — Without loss of generality we can assume that both P and P ′
are even. Let λ ∈ Λ be a minimal element and set J = Λr {λ}. Denote by
j : XJ = XrXλ → X the corresponding open inclusion and by i : Xλ → X

the complementary closed inclusion. Then we have a distinguished triangle

i!i
!P ′ → P ′ → j∗j

∗P ′ [1]→

which gives rise, by Lemma 5.5, to a short exact sequence

0→ Hom•(i∗P, i!P ′)→ Hom•(P,P ′)→ Hom•(PJ ,P ′J )→ 0
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of graded spaces. The map Hom•(P,P ′) → Hom•(PJ ,P ′J ) is induced by
the restriction to an open subspace, hence we can fit the above short exact
sequence into a commutative diagram
0 // Hom•(i∗P, i!P ′) //

��

Hom•(P,P ′) //

��

Hom•(PJ ,P ′J)

��

// 0

0 // K // Hom•(W(P),W(P ′)) // Hom•(W(PJ),W(P ′J)) // 0.
As PJ and P ′J are parity sheaves on XJ we can, by induction on the num-
ber of strata, assume that the vertical map on the right is an isomorphism.
Hence we can finish the proof by showing that the vertical map on the left
is an isomorphism as well.
Now K is the space of all morphisms f : W(P) → W(P ′) with fµ = 0

and fE = 0 for vertices µ and edges E of J . By Proposition 5.6, (3), it
identifies with the set of homomorphisms from the stalk W(P)λ into the
costalk W(P ′)λ. By definition we have W(P)λ = H•T(i∗P). Now let us look
at the short exact sequence

0→ H•T(i!P ′)→ H•T(P ′)→ H•T(P ′J )→ 0

given by Lemma 5.5. By Proposition 5.10, H•T(P ′) and H•T(P ′J ) can be
identified with the sections of W(P ′) over Λ and J , respectively. Hence we
may identify

H•T(i!P ′) = W(P ′)λ.
As i∗P and i!P ′ are free sheaves on Xλ, we deduce from the above that the
homomorphism Hom(i∗P, i!P ′)→ K in the commutative diagram above is
an isomorphism as well. �

6. Braden-MacPherson sheaves on a moment graph

We return now to the theory of sheaves on a moment graph. We first mo-
tivate the definition of the Braden-MacPherson sheaves by considering the
problem of extending local sections. Then we prove one of our main results,
namely that the functor W sends parity sheaves to Braden-MacPherson
sheaves.

6.1. Extending local sections

Let G = (V, E , α) be a moment graph. Suppose that each edge is given a
direction. Then, for x, y ∈ V, we set x 6 y if and only if there is a directed
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path from x to y. We assume that this determines a partial order on V,
i.e. we assume that there are no non-trivial closed directed paths. We call
this datum a directed moment graph.
Recall that we call a subset J of V open if it contains with any element

all elements that are larger in the partial order, i.e. all elements that can
be reached by a directed path. For a sheaf M and an open subset J of V
we call an element in Γ(J ,M ) a local section.

Now we want to find some conditions on M that ensure that each local
section can be extended to a global section, i.e. which ensure that the
restriction Γ(M )→ Γ(J ,M ) from global to local sections is surjective for
any open set J . For this we need the following definitions.
For a vertex x of G we define

Vδx :=
{
y ∈ V | there is an edge E : x→ y

}
.

So Vδx is the subset of vertices y that are bigger than x in the partial order
and that are connected to x by an edge. We denote by

Eδx :=
{
E ∈ E | E : x→ y

}
the set of the corresponding edges. Then there is an obvious correspondence
Eδx

∼→ Vδx (as we assume that two vertices are connected by at most one
edge). For a sheaf M and a vertex x we define the map

ux : Γ
(
{> x},M

)
→

⊕
E∈Eδx

ME

as the composition

Γ
(
{> x},M

)
⊂
⊕
y>x

M y p→
⊕
y∈Vδx

M y ρ→
⊕
E∈Eδx

ME ,

where p is the projection along the decomposition and ρ =
⊕

y∈Vδx ρy,E .
We let

M δx := ux
(
Γ({> x},M )

)
⊂
⊕
E∈Eδx

ME

be the image of this map. Moreover, we define the map

dx := (ρx,E)TE∈Eδx : M x →
⊕
E∈Eδx

ME .

The connection of the above definitions with the problem of extending local
sections is the following. Suppose that m′ ∈ Γ({> x},M ) is a section and
that mx ∈M x. Then the concatenated element (mx,m

′) ∈
⊕

y>x M y is a
section over {> x} if and only if ux(m′) = dx(mx).
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Lemma 6.1. — For a sheaf M on the moment graph G the following
are equivalent:

(1) For any open subsets J ′ ⊂ J of V the restriction map Γ(J ,M )→
Γ(J ′,M ) is surjective.

(2) For any vertex x ∈ V, the restriction map Γ({> x},M ) → Γ({>
x},M ) is surjective.

(3) For any x ∈ V, the map dx : M x →
⊕

E∈Eδx ME contains M δx in
its image.

Proof. — Clearly property (2) is a special case of property (1). Let us
prove the converse, so let us assume that (2) holds. It is enough to prove
property (1) in the special case that J = J ′ ∪ {x} for a single element x,
since we get the general case from this by induction. So let m = (my) be a
section in Γ(J r{x},M ). Since {> x} ⊂ J r{x} we can restrictm and get
a section m′ in Γ({> x},M ). By assumption there is an element mx ∈M x

such that (mx,m
′) is a section over {> x}. As x is not connected to any

vertex in J r {> x} it follows that (mx,m) is a section over J . Hence (2)
implies (1).
Let us show that (2) is equivalent to (3). Now (2) means that for any

section m over {> x} we can find mx ∈M x such that (mx,m) is a section
over {> x}. But (mx,m) is a section over {> x} if and only if dx(mx) =
ux(m). Hence, a section m over {> x} can be extended to the vertex x if
and only of ux(m) is contained in the image of dx. �

For later use we prove the following statement.
Lemma 6.2. — Let x be a vertex of G and M a sheaf on G. Then the

following are equivalent:
(1) The map Γ({> x},M )→M x is surjective.
(2) The image of the map dx : M x →

⊕
E∈Eδx ME is contained in

M δx.
Proof. — Suppose that (1) holds and let s ∈M x. Then there is a section

m of M over {> x} withmx = s. If we denote the restriction ofm to {> x}
by m′, then this means that dx(s) = ux(m′). So dx(s) is contained in the
image of ux, which is M δx.
Conversely, suppose that (2) holds and let s∈M x. Then there is a section

m′ of M over {>x} such that dx(s) = ux(m′). Hence (s,m′) is a section
over {>x}, hence s is contained in the image of Γ({>x},M )→M x. �

6.2. Braden-MacPherson sheaves
The most important class of sheaves on a moment graph is the following.
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Definition 6.3. — A sheaf B on the moment graph G is called a
Braden-MacPherson sheaf if it satisfies the following properties:

(1) For any x ∈ V, the stalk Bx is a graded free Sk-module of finite
rank and only finitely many Bx are non-zero.

(2) For a directed edge E : x→ y the map ρy,E : By → BE is surjective
with kernel α(E)By,

(3) For any open subset J of V the map Γ(B)→ Γ(J ,B) is surjective.
(4) The map Γ(B)→ Bx is surjective for any x ∈ V.

Here is a classification theorem.

Theorem 6.4. — Assume that k is a local ring and suppose that the
moment graph is such that for any vertex w the set {6 w} is finite. Then
the following holds.

(1) For any vertex w there is an up to isomorphism unique Braden-
MacPherson sheaf B(w) on G with the following properties:
• We have B(w)w ∼= Sk and B(w)x = 0 unless x 6 w.
• B(w) is indecomposable in G -modZ

k .
(2) Let B be a Braden-MacPherson sheaf. Then there are w1, . . . , wn ∈
V and l1, . . . , ln ∈ Z such that

B ∼= B(w1)[l1]⊕ · · · ⊕B(wn)[ln].

The multiset (w1, l1),. . . ,(wn, ln) is uniquely determined by B.

Remark. — We need the locality assumption on k in order to ensure
that projective covers exist in the category of graded Sk-modules.

Proof. — We first prove the existence part of statement (1). For w ∈ V
we define a sheaf B(w) by the following inductive construction:

(1) We start with setting B(w)w = Sk and B(w)x = 0 if x 66 w.
(2) If we have already defined B(w)y, then we set, for each edge

E : x→ y,

B(w)E := B(w)y/α(E)B(w)y

and we let ρy,E : B(w)y → B(w)E be the canonical map.
(3) Suppose that we have already defined B(w)y for all y in an open

subset J and suppose that x ∈ V is such that J ∪ {x} is open as
well. By step (2) we have also defined the spaces B(w)E for each
edge E : x→ y originating at x, as well as the maps ρy,E : B(w)y →
B(w)E . We now define B(w)x and the maps ρx,E for those edges
E. We can already calculate the sections of B(w) over {> x}, as
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well as the Sk-modules B(w)δx ⊂
⊕

E∈Eδx B(w)E . Now we de-
fine dx : B(w)x → B(w)δx as a projective cover in the category
of graded Sk-modules. The components of dx (with respect to the
inclusion B(w)δx ⊂

⊕
E∈Eδx B(w)E) give us the maps ρx,E .

Let us check that B(w) is indeed a Braden-MacPherson sheaf. Since
B(w)x is projective for all x ∈ V it is a graded free Sk-module and the
finiteness assumptions hold as well, so B(w) fulfills property (1). Property
(2) is assured by step (2) in the inductive construction of B(w). Property
(3) is, by Lemma 6.1, equivalent to the fact that for all x ∈ V the map
dx : B(w)x →

⊕
E∈Eδx B(w)E contains B(w)δx in its image. This is clear

by step (3). In addition, step (3) also yields that the image of dx is con-
tained in B(w)δx. By Lemma 6.2 this is equivalent to the surjectivity of
Γ({> x},B(w))→ B(w)x. We have already seen that the restriction map
Γ(B(w))→ Γ({> x},B(w)) is surjective. Hence also Γ(B(w))→ B(w)x is
surjective, hence B(w) also satisfies property (4) of a Braden-MacPherson
sheaf.
Now we prove statement (2) of the above theorem using the above ex-

plicitly defined objects B(w). Note that this also gives the uniqueness part
of statement (1), which we have not yet proven. So let B be an arbitrary
Braden-MacPherson sheaf. We prove by induction on the set of open sub-
sets J of V that there are (w1, l1),. . . ,(wn, ln) such that

BJ ∼= B(w1)J [l1]⊕ · · · ⊕B(wn)J [ln].

(Here and in the following we denote by F I the obvious restriction of a
sheaf F to the subgraph corresponding to the vertices in a subset I of V.)

So suppose that J is open, that x ∈ J is minimal and we have a decom-
position as above for J ′ = J r {x}. We get, in particular,

Γ({> x},B) ∼= Γ({> x},B(w1)[l1])⊕ · · · ⊕ Γ({> x},B(wn)[ln])

and
Bδx ∼= B(w1)δx[l1]⊕ · · · ⊕B(wn)δx[ln].

Now dx : Bx → Bδx is surjective, by property (3) of a Braden-MacPherson
sheaf and Lemma 6.1, and

⊕
B(wi)x[li] →

⊕
B(wi)δx[li] is a projective

cover by construction. Hence we have a decomposition Bx =
⊕

B(wi)x
[li] ⊕ R for some graded free Sk-module R which lies in the kernel of dx.
Each isomorphism R ∼= Sk[m1]⊕ · · · ⊕ Sk[mr] then yields an isomorphism

BJ ∼= B(w1)J [l1]⊕ · · · ⊕B(wn)J [ln]⊕B(x)J [m1]⊕ · · · ⊕B(x)J [mr],

which is our claim for J . The above construction also yields the uniqueness
of the multiset (w1, l1),. . . ,(wn, ln). �
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6.3. Directed moment graphs from stratified varieties

Suppose that X is a complex T -variety satisfying (A1). In Section 4.4 we
constructed an (undirected) moment graph GX from this datum. Suppose
now that, in addition, we are given a stratification X =

⊔
λ∈ΛXλ satisfying

(S1) and (S2). Recall that for each λ ∈ Λ we denote by xλ the unique fixed
point in Xλ. Hence we now have identifications between the set of fixed
points in X, the set Λ of strata and the set of vertices of GX .

From this we obtain a direction of each edge as follows. Suppose that
the one-dimensional orbit E contains xλ and xµ in its closure. Then either
Xλ ⊂ Xµ or Xµ ⊂ Xλ. We direct the corresponding edge of GX towards
µ in the first case, and towards λ in the second case. We denote by 6 the
partial order on the vertices of GX generated by the relation λ 6 µ if there
is an edge E : λ→ µ. The following proposition shows that this is the same
order as the one induced by the closure relations on the strata:

Proposition 6.5. — We have λ 6 µ if and only if Xλ ⊂ Xµ.

Proof. — Clearly, if λ 6 µ then Xλ ⊂ Xµ. For the converse we show:

(6.1) If Xλ ⊂ Xµ then there exists an edge
E : λ→ ν such that Xν ⊂ Xµ.

Let us assume that (6.1) holds. Then, if Xλ ⊂ Xµ, we can find a chain
λ→ ν1 → · · · → νm → µ and so λ 6 µ.

It remains to show (6.1). Let U be an affine T -stable neighbourhood of
xλ in Xµ and let Nλ ⊂ U be a T -invariant normal slice to the stratum Xλ

at xλ. Because xλ ∈ Nλ is attractive, we can find a cocharacter γ : C× → T

such that limz→0 γ(z) · x = xλ for all x ∈ Nλ. It follows that Y := (Nλ r
{xλ})/C× is a projective variety. By Borel’s fixed point theorem, T has
a fixed point on Y and hence a one-dimensional orbit on Nλ. This one-
dimensional orbit is contained in some Xν , hence connects xλ with xν . By
construction we have Xν ⊂ Xµ. �

6.4. The k-smooth locus of a moment graph

In this subsection we assume that k is a field and that the (directed)
moment graph G contains a largest vertex w. This moment graph carries
the indecomposable Braden-MacPherson sheaf B := B(w) over k.

Definition 6.6. — The k-smooth locus Ωk(G) of G is the set of all
vertices y of G such that By is a free Sk-module of (ungraded) rank 1.
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In [16] the k-smooth locus is determined for a large class of pairs (G, k).
In order to formulate the result, let B := Γ(B) be the space of global
sections of B. We consider this as a graded Zk-module.

Definition 6.7. — We say that B is self-dual of degree l ∈ Z if there
is an isomorphism

Hom•Sk(B, Sk) ∼= B[l]
of graded Zk-modules.

The following is an analogue of the assumption (A4a) for moment graphs.

Definition 6.8. — We say that the pair (G, k) is a GKM-pair if αE is
non-zero in Y ⊗Z k for any edge E and if for any distinct edges E and E′
containing a common vertex we have kαE ∩ kαE′ = 0.

Note that this can be considered, for given G, as a requirement on the
characteristic of k. The main result of [16] is the following:

Theorem 6.9 ([16, Theorem 5.1]). — Suppose that (G, k) is a GKM-
pair and that B is self-dual of degree 2l. Then we have

Ωk(G) =
{
x ∈ V

∣∣∣∣ for all y > x the number
of edges containing y is l

}
.

We are going to apply this statement later in order to study the k-smooth
locus of T -varieties.

6.5. The combinatorics of parity sheaves

Let X be a complex T -variety, k a complete local principal ideal domain.
Assume that these data satisfy the assumptions (A1)–(A4a/b), (S1), (S2)
and (R1)–(R3). We now come to the principal result of this paper.

Theorem 6.10. — Suppose that P ∈ Db
T (X, k) is a parity sheaf. Then

W(P) is a Braden-MacPherson sheaf. More precisely, W(P(λ)) ∼= B(λ).

Proof. — We have to show that W(P) satisfies the four properties listed
in Definition 6.3. If we translate this definition into our situation we see
that we have to check the following:

(1) For each x ∈ XT the cohomology H•T(Px) is a graded free module
over Sk.

(2) For each one-dimensional orbit E that is contained in the stratum
associated to the fixed point x, the map

H•T(Px)→ H•T(PE)

is surjective with kernel α(E)H•T(Px).
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(3) For each open union XJ ⊂ X of strata the restriction homomor-
phism

H•T(P)→ H•T(PJ )

is surjective.
(4) For each x ∈ XT the homomorphism H•T(P) → H•T(Px) is surjec-

tive.
Part (1) follows directly from the definition of a parity sheaf, the parts
(2) and (3) are stated in Proposition 5.6. Part (4) follows from Theorem
5.7 and the fact P is the direct sum of shifted copies of P(λ)’s. The last
statement follows, as P(λ) is indecomposable if and only if W(P(λ)) is, by
Theorem 5.11. �

7. The case of Schubert varieties

We now discuss a special and important case of the general theory de-
veloped in the previous section, namely the case of Schubert varieties in
(Kac-Moody) flag varieties. For a detailed construction of these varieties
in the Kac-Moody setting the reader is referred to [30].

We fix some notation. Let A be a generalised Cartan matrix of size l
and let g = g(A) = n− ⊕ h⊕ n+ denote the corresponding Kac-Moody Lie
algebra with Weyl group W , Bruhat order 6, length function ` and simple
reflections S = {si}i=1,...,l. To A one may also associate a Kac-Moody
group G with Borel subgroup B and connected algebraic torus T ⊂ B.
Given any subset I ⊂ {1, . . . , l} one has a standard parabolic subgroup PI
containing B and standard parabolic subgroup WI ⊂ W . The set G/PI
may be given the structure of an ind-T -variety and is called a Kac-Moody
flag variety.
For each w ∈W one may consider the Schubert cell XI

w := BwPI/PI ⊂
G/PI and its closure, the Schubert variety,

XI
w =

⊔
v6w

BvPI .

Each Schubert cell is isomorphic to a (finite dimensional) affine space and
each Schubert variety is a (finite dimensional) projective algebraic variety.
The partition of G/PI into Schubert cells gives a stratification of G/PI .

The following proposition shows that the results of this article may be
applied to any closed union of finitely many B-orbits in G/PI :
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Proposition 7.1. — Let X ⊂ G/PI be a closed subset which is the
union of finitely many Schubert cells. Then X together with its stratifi-
cation into Schubert cells satisfies our assumptions (A1), (A2), (S1), (S2),
(R1), (R2) and (R3).

Proof. — The assumptions (A1), (A2), (S1) are standard properties of
Kac-Moody Schubert varieties (see [30, Chapter 7]) and (S2) follows be-
cause we have an equivalenceDb

T,Λ(X, k) ∼= Db
B(X, k). Given a Schubert va-

riety XI
w ⊂ X, let π : X̃ → XI

w denote a Bott-Samelson resolution (see [30,
7.1.3]). Then X̃ is a smooth T -variety with finitely many T -fixed points
which admits a T -equivariant closed linear embedding into a projective
space. Lastly, the variety X̃ is even a B-variety, and the map π is B-
equivariant. So properties (R1), (R2) and (R3) hold as well. �

We now describe the moment graph of G/PI . The identification of h with
the Lie algebra of T allows us to identify the lattice of characters X∗(T )
with a lattice in h∗. Moreover, under this identification, all the roots of
g(A) lie in X∗(T ). Let R ⊂ X∗(T ) denote the subset of real roots, and R+

the subset of real positive roots. Then we have a bijection

R+ ∼→ {reflections in W}
α 7→ sα.

The following proposition follows from [30, Chapter 7]:

Proposition 7.2. — We have:
• The T -fixed points are in bijection with the set W/WI :

W/WI
∼→ (G/PI)T

wWI 7→ wPI .

• There is a one-dimensional T -orbit with xWI and yWI in its closure
if and only if sαxWI = yWI for some reflection sα ∈ W in which
case T acts on this orbit with character ±α.

We complete this section by discussing what the arithmetic assumptions
(A3), (A4a) and (A4b) mean in the case of Kac-Moody flag varieties. First
note that the lattice ZR ⊂ X∗(T ) spanned by the real roots determines a
surjection of algebraic tori

s : T � T ′

so that X∗(T ′) = ZR. The action of T on G/PI is trivial on the kernel of
s and we obtain an action of T ′ on G/PI . (In the case of a finite dimen-
sional Schubert variety this corresponds to the fact that one may always
choose the adjoint form of a reductive group in order to construct the flag
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variety.) Because real roots are never divisible in ZR = X∗(T ′) it follows
that (A4b) (and hence (A3)) is always satisfied for Kac-Moody Schubert
varieties viewed as T ′-varieties.
The condition (A4a) is more subtle. If we fix a field k then condition

(A4a) is satisfied if and only if no two distinct roots in R+ become linearly
dependent modulo k. One may check that in the finite cases we have to
exclude characteristic 2 in non-simply laced types and characteristic 3 in
type G2.
In the affine case the situation is radically different. Suppose that Ĝ is

the affine Kac-Moody group associated to a semi-simple group G. Recall
that there exists a an element δ ∈ ĥ∗ such that the set of real roots of Ĝ is
equal to {α + nδ} where α ∈ h∗ is a root of G, and n ∈ Z. It follows that
condition (A3) is satisfied for Ĝ/P̂ and any parabolic subgroup P̂ 6= Ĝ if
and only if k is of characteristic 0.
However, if one restricts oneself to a fixed a Schubert variety X ⊂ Ĝ/P̂

the GKM-condition for X may yield interesting restrictions on the charac-
teristic of k (cf. [15]).

8. p-Smoothness
In this section we recall the definition and basic properties of the p-

smooth locus of a complex algebraic variety X. Our main goal is Theo-
rem 8.8 for which we need Proposition 8.6, where we show that an (a priori
weaker) condition on the stalks of the intersection cohomology complex is
enough to conclude p-smoothness.
Throughout this section all varieties will be irreducible and k denotes a

ring (assumed to be a field from Sections 8.2 to 8.4). Dimension will always
refer to the complex dimension. Given a point y in a variety Y we denote
by iy : {y} ↪→ Y its inclusion.

8.1. Smoothness and p-smoothness

If x is a smooth point of a variety X of dimension n a simple calculation
(using the long exact sequence of cohomology, excision and the cohomology
of a 2n− 1-sphere) yields

Hd(X,X r {x}, k) =
{
k, if d = 2 dimX,
0, otherwise.

The isomorphism

(8.1) Hd(i!xkX) ∼= Hd(X,X r {x}, k)
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motivates the following.

Definition 8.1. — A variety X is k-smooth if, for all x ∈ X, one has
an isomorphism

Hd(i!xkX) ∼=

{
k, if d = 2 dimX,

0, otherwise.

The k-smooth locus of X is the largest open k-smooth subvariety of X.
We define p-smooth (respectively the p-smooth locus) to mean Fp-smooth
(respectively the Fp-smooth locus).

Proposition 8.2. — We have inclusions
Q-smooth

locus ⊃ p-smooth
locus ⊃ Z-smooth

locus ⊃ smooth
locus .

Proof. — The fact that the Z-smooth locus contains the smooth locus
follows from the above discussion. For all rings k one has an isomorphism

(8.2) i!xkX
∼= i!xZX

L
⊗Z k.

As the category of Z-modules is hereditary, every object in Db({x},Z) is
isomorphic to its cohomology. It then follows from (8.2) that, for a field k,
the condition of k-smoothness is satisfied at x if and only if:

(1) Hd(i!xZX) is torsion except for d = 2n, where the free part is of
rank 1,

(2) all torsion in H•(i!xZX) is prime to the characteristic of k.
The claimed inclusions now follow easily. �

Remark. — The above proof shows that, if k is a field, then the k-
smooth locus only depends on the characteristic of k.

8.2. k-smoothness and the intersection cohomology complex

Until Section 8.4 we assume that k is a field. Let us denote by (D60(X, k),
D>0(X, k)) the standard t-structure on D(X, k) with heart Sh(X, k), the
abelian category of sheaves of k-vector spaces on X. We denote the corre-
sponding truncation and cohomology functors by τ60, τ>0 and Hd.

Let us a fix a Whitney stratification X =
⊔
λ∈ΛXλ and denote for all

λ ∈ Λ by iλ : Xλ ↪→ X the inclusion. Recall that the intersection coho-
mology complex of X, IC(X, k) ∈ D(X, k), is uniquely determined by the
properties:
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(1) i∗λIC(X, k) ∼= kXλ for the open stratum Xλ ⊂ X;
and, for all strata Xλ of strictly positive codimension,

(2) Hd(i∗λIC(X, k)) = 0 for d > codimX Xλ,
(3) Hd(i!λIC(X, k)) = 0 for d 6 codimX Xλ.

Note that under this normalisation IC(X, k) is not Verdier self-dual. Rather
DIC(X, k) ∼= IC(X, k)[2 dimX]. Conditions (2) and (3) are equivalent to
the conditions
(2*) Hd(i∗xIC(X, k)) = 0 for d > codimX Xλ,
(3*) Hd(i!xIC(X, k)) = 0 for d 6 dimX + dimXλ

for all x ∈ Xλ and strata Xλ of strictly positive codimension. (This follows
from the fact if y ∈ Y is a smooth point, then one has an isomorphism
i!ykY

∼= i∗ykY [−2 dimY ].)

Proposition 8.3. — A varietyX is k-smooth if and only if IC(X, k) ∼=
kX .

Proof. — If X is k-smooth then the constant sheaf kX satisfies (1), (2*)
and (3*) above and hence kX ∼= IC(X, k). On the other hand, if kX ∼=
IC(X, k) then DkX ∼= kX [2 dimX] and for all x ∈ X we have

i!xkX
∼= i!x(DkX)[−2 dimX] ∼= D(i∗xkX [2 dimX])

and hence

Hd(i!xkX) = H−d(i∗xkX [2 dimX]) =
{
k, if d = 2 dimX,
0, otherwise,

and so x is k-smooth. �

8.3. k-smoothness and stalks

Given a morphism f : X → Y of complex algebraic varieties we write
0f∗ for the non-derived direct image functor. The functor 0f∗ is left t-exact
with respect to the standard t-structure. Given F ∈ Sh(X, k) we have
0f∗F ∼= τ60f∗F canonically.

Lemma 8.4. — Given F ∈ D>0(X, k) and a morphism f : X → Y we
have a natural isomorphism τ60f∗F ∼= 0f∗τ60F .

Proof. — Applying f to the distinguished triangle

τ60F → F → τ>0F →
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yields a distinguished triangle

f∗τ60F → f∗F → f∗τ>0F → .

Now f∗ is left t-exact for the t-structure (D60(X, k), D>0(X, k)) and so
τ60f∗τ>0F = 0. Hence if we apply τ60 to the above distinguished triangle
we obtain the required isomorphism

0f∗τ60F = τ60f∗τ60F
∼→ τ60f∗F �

Lemma 8.5. — We have an isomorphism τ60IC(X, k) ∼= 0j∗kU , where
j : U ↪→ X denotes the inclusion of a smooth, open, dense subvariety of X.

Proof. — Choose a stratification of X which has U as the only stratum
of dimension n, and write Xi for the union of all strata of codimension 6 i
(so that X0 = U and Xn = X). We have a chain of inclusions

X0
j0
↪→ X1

j1
↪→ X2

j0
↪→ · · ·

jn−2
↪→ Xn−1

jn−1
↪→ Xn.

The Deligne construction (see [3, Proposition 2.1.11]) gives an isomorphism

IC(X, k) ∼= (τ6n−1 ◦ jn−1∗) ◦ (τ6n−1 ◦ jn−1∗) ◦ · · · (τ60 ◦ j0∗kU )

Repeatedly applying the above lemma yields

τ60IC(X, k) ∼= 0jn−1∗ ◦ · · · ◦ 0j1∗ ◦ 0j0∗kU
∼= 0j∗kU ,

as claimed. �

Proposition 8.6. — A varietyX is k-smooth if and only if IC(X, k)x ∼=
k for all x ∈ X.

Proof. — If X is k-smooth then IC(X, k) ∼= kX by Proposition 8.3 and
so IC(X, k)x ∼= k for all x ∈ X. It remains to show the converse. Choose
an open, dense, smooth subvariety U of X and let j : U ↪→ X denote its
inclusion. The adjunction morphism

kX → 0j∗j
∗kX

is an injection on stalks, as may easily be checked from the definition of
0j∗. (It is an isomorphism if and only if X is unibranched, however we will
not need this fact.) It follows from our assumptions that IC(X, k) lies in
D60(X, k) and so we have an isomorphism

τ60IC(X, k) ∼→ IC(X, k).

By the above lemma we also have an isomorphism 0j∗kU
∼= τ60IC(X, k).

It follows that all stalks of 0j∗kU are one-dimensional and that we have an
isomorphism

kX
∼→ 0j∗kU

∼→ IC(X, k).
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Our claim now follows from Proposition 8.3. �

8.4. On the p-smooth locus of T -varieties

Now let X =
⊔
λ∈ΛXλ be an irreducible, complex, stratified T -variety,

and let k be a field. Assume that these data satisfy the assumptions (A1)–
(A4a/b), (S1), (S2) and (R1)–(R3) and let Ωk(G) denote the k-smooth
locus of the moment graph G of X. The following proposition shows that
the k-smooth locus of X and of its moment graph agree.

Proposition 8.7. — All points of a stratumXλ belong to the k-smooth
locus of X if and only if λ ∈ Ωk(G).

Proof. — Let U denote the p-smooth locus ofX. It is a union of strata by
our assumption (S2). Because we have assumed that X is irreducible there
exists a unique open dense stratum Xλ ⊂ X. Let P be the corresponding
indecomposable parity sheaf normalised so that its restriction to Xλ is kXλ .
In the following it will be useful to work with non-equivariant sheaves.

Note that the non-equivariant analogue of Theorem 5.3 is valid (see [23,
Theorem 2.12]) and P := For(P) is the indecomposable non-equivariant
parity sheaf with support X.
Let U ′ denote the largest open union of strata Xλ for which PXλ ∼= kXλ .

We claim U = U ′.
Indeed, if U ′ denotes this set then PU ′ satisfies the properties (1) and

(2) of the IC-complexes and hence also satisfies (3) because D(PU ′) ∼=
PU ′ [2 dimX]. Hence PU ′ ∼= IC(U, k) and so U ′ ⊂ U by Propositions 8.3
and 8.6. On the other hand, IC(U, k) ∼= kU is certainly indecomposable
and ∗-even. It is even !-even because DIC(U, k) ∼= IC(U, k)[2 dimX]. Hence
PU ∼= kU by the classification of parity sheaves, together with the fact that
the restriction of an indecomposable parity sheaf to an open union of strata
is either zero or indecomposable (see [23, Proposition 2.11]).
Now, by Theorem 6.10, W(P) ∼= B(λ) and hence PXµ ∼= kXλ if and only

if B(λ)µ ∼= Sk. The proposition then follows by definition of the k-smooth
locus of the moment graph of X. �

Combining this result with Theorem 6.9 yields:

Theorem 8.8. — A T -fixed point xµ ∈ Xµ belongs to the p-smooth
locus of X if and only if for all λ > µ the number of one-dimensional T -
orbits having xλ in their closure is equal to the complex dimension of X.
Moreover, Xµ belongs to the k-smooth locus if and only if its T -fixed point
xµ does.
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8.5. A freeness result

In this subsection k denotes a complete local ring and p denotes the
characteristic of the residue field of k. Let X =

⊔
λ∈ΛXλ be an irreducible,

complex, stratified T -variety. Assume that these data satisfy the assump-
tions (A1)–(A4a/b), (S1), (S2). We further assume that there exists an
indecomposable parity sheaf P corresponding to the unique open stratum
Xµ ⊂ X. (For example, X could be open in a stratified variety satisfying
(R1), (R2) and (R3).) For any λ ∈ Λ let

X>λ =
⊔
γ>λ

Xγ and X>λ =
⊔
γ>λ

Xγ

For any λ ∈ Λ we can find a T -stable affine neighbourhood U of xλ and
a T -invariant affine normal slice N ⊂ U to the stratum Xλ. The aim of
this section is to show the following result:

Proposition 8.9. — H•T(PNr{xλ}) is torsion free over k.

Of course this result has no content if k is a field. However it seems to
be quite useful if k is, for example, the p-adic integers. Before turning to
the proof of this result we state a corollary, which is of central importance
to [25]:

Corollary 8.10. — If X>λ is p-smooth then H•T (Nr{xλ}, k) is a free
k-module.

Proof. — If X>λ is p-smooth then the constant sheaf with coefficients
in k is self-dual and hence parity. Hence the restriction of P to X>λ is
isomorphic to the constant sheaf (cf. [23, Proposition 2.11]). The result
then follows from Proposition 8.9. �

Proof of Proposition 8.9. — Consider the Cartesian diagram:

N // U

{xλ}

i

OO

// Xλ

ĩ

OO

Without loss of generality we may assume that Xλ is a closed stratum in
X. In this case we have seen in the course of the proof of Theorem 5.11 that
we have an isomorphism H•T(̃i!P) ∼= W(P)λ. Moreover, because N ↪→ U is
a normally non-singular inclusion we have

H•T(i!PN ) = H•T(̃i!P) ∼= W(P)λ.
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One the other hand, by the attractive proposition, we have H•T(PN ) =
H•T(Pxλ) = W(P)λ.
Now consider the open-closed decomposition:

{xλ}
i
↪→ N

j
←↩ N r {xλ}.

This leads to a distinguished triangle

i!i
!P → PU → j∗j

∗P [1]→ .

Taking hypercohomology and using the above observations we conclude
that we have an exact sequence

0→W(P)λ →W(P)λ → H•T(PNr{xλ})→ 0

where the first map is the inclusion. It follows that we have an embedding

H•T(PNr{xλ}) ↪→
⊕

E : λ→γ
W(P)E

Now each W(P)E is isomorphic to a direct sum of shifts of S/(αE). By
assumption (A4b) no character αE is p-divisible in X(T ) and hence each
S/(αE) is torsion free over k. It follows that H•T(PNr{xλ}) is torsion free
over k. �

9. Representations of reductive algebraic groups

Let G be a simple reductive algebraic group over Fp and let RepG denote
the category of rational representations of G. It is a fundamental problem
in representation theory to determine the characters of the simple and
tilting modules in RepG. For simple modules there exists a conjecture,
due to Lusztig, in the case that the characteristic p is larger than the
Coxeter number h associated to G. For tilting modules there is no general
conjecture. Schur-Weyl duality can be used to show that knowledge of the
characters of tilting modules for G = GLn(Fp) implies dimension formula
for the simple modules for Sm for m 6 n in characteristic p.
We want to explain how the above results allow one to reinterpret these

two basic problems using the geometry of certain Schubert varieties in the
(complex) affine Grassmannian associated with the Langlands dual group.
To this end let T ⊂ B ⊂ G denote a maximal torus and Borel subgroup of
G respectively. Let X∗(T ) denote the character lattice and X+(T ) denote
the subset of dominant weights. Then X+(T ) parametrises both the simple
and tilting modules in RepG.
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9.1. Tilting modules
Let G∨C denote the complex Langlands dual group of G, G∨C((t)) its loop

group, T̂∨C = T∨C × C× the extended torus and Gr∨ := G∨C((t))/G∨C [[t]]
the corresponding affine Grassmannian. Then X+(T ) also parametrises the
G∨C [[t]]-orbits on Gr∨ and Gr∨ satisfies our assumptions when viewed with
the action of T̂∨C (indeed, the closures of G∨C [[t]]-orbits are examples of Kac-
Moody Schubert varieties). Recall that the geometric Satake equivalence
[33] establishes a tensor equivalence between the abelian category of ra-
tional representations of G and the tensor category of G∨C [[t]]-equivariant
perverse sheaves on Gr∨.
Recall the following two results which are Theorem 5.1 and Corollary 5.8

of [22]:
(1) If p > h + 1, then parity sheaves correspond under the geometric

Satake isomorphism to tilting modules. More precisely, the inde-
composable parity sheaf P(λ) corresponds to the indecomposable
tilting module T (λ).

(2) The rank of H•T(P(λ)µ) is equal to the dimension of the µ-weight
space of the tilting module T (λ).

With the above results in mind, it seems natural to expect that the Braden-
MacPherson algorithm can be used to calculate the characters of tilting
modules. There is a problem, however: the moment graph of the affine
Grassmannian satisfies the GKM-condition if and only if k is of character-
istic 0.
To get around this problem we take k to be the ring Zp of p-adic num-

bers. For this the GKM-condition is satisfied. Moreover it is shown [23,
Proposition 2.40] that the graded ranks of the stalks of parity sheaves de-
pend only on the characterstic of the residue field. The following theorem
then follows from the above discussion and our main theorem:

Theorem 9.1. — Suppose that p > h+ 1 (see [22] for better bounds).
When conducted with coefficients in the ring k = Zp of p-adic numbers, the
Braden-MacPhersons algorithm computes the characters of tilting modules.
More precisely, for any character µ ∈ X∗(T ), the dimension of the µ-weight
space of T (λ) is equal to the rank of B(λ)µ.

9.2. Simple rational characters
We now turn to the application of the above results to Lusztig’s con-

jecture. Let I∨ ⊂ G∨C((t)) be the Iwahori subgroup containing B∨ and let
F l∨ := G∨C((t))/I∨ denote the affine flag variety with its T̂∨C -action.
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In [17] a certain subcategory I ⊂ Db

T̂
(F l∨, k) of special equivariant

sheaves was considered and a functor Φ: I → R was defined, where R
is a category of projective objects in a category C naturally associated to
the Lie algebra of G. For the application to Lusztig’s conjecture one needs
to consider only objects in I that are supported on a certain Schubert
variety Xres ⊂ F l∨.

An intermediate step in the construction of Φ was a functor from I to
the category of Braden-MacPherson sheaves on the moment graph associ-
ated to F l∨. It turns out that I is the category of parity sheaves on F l∨

(with respect to the stratification by Schubert cells). Indeed, the category
I is generated from the skyscraper sheaf on the point stratum on F l∨

by repeatedly applying the functors π∗sπs∗ for simple reflections s, where
πs : F l∨ → F l∨s is the projection onto the partial affine flag variety asso-
ciated to s. Now parity sheaves are preserved by these functors (cf. [23,
Proposition 4.9]). From the results in [17] we can hence deduce that the
ranks of the stalks of parity sheaves determine baby Verma multiplicities for
projective objects in C. These multiplicities in turn determine the charac-
ters of simple rational representations of G. Using the results of this paper
we can rephrase the above as follows. Given λ ∈ Λ let IC(Xλ,Z) denote the
intersection cohomology complex of Xλ with integral coefficients (cf. [26]).

Theorem 9.2. — Suppose that the stalks and costalks of the inter-
section cohomology complex IC(Xλ,Z) are p-torsion-free for all strata
Xλ ⊂ Xres. Then the characters of the simple modules for G are given
by Lusztig’s conjecture.

Proof. — It is known (cf. [31]) that the stalks of

IC(Xλ,Q) ∼= IC(Xλ,Z)
L
⊗ Q

satisfy parity vanishing and hence IC(Xλ,Q) is isomorphic to the parity
sheaf PQ(λ) with coefficients in Q. Hence IC(Xλ,Z)

L
⊗ Fp is isomorphic to

the parity sheaf PFp(λ) with coefficients in Fp if and only if the conditions
of the theorem are met. The theorem then follows from [15, 17] together
with our main theorem. �
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