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CLOSED UNIVERSAL SUBSPACES OF SPACES
OF INFINITELY DIFFERENTIABLE FUNCTIONS

by Stéphane CHARPENTIER,
Quentin MENET & Augustin MOUZE

Abstract. — We exhibit the first examples of Fréchet spaces which contain a
closed infinite dimensional subspace of universal series, but no restricted universal
series. We consider classical Fréchet spaces of infinitely differentiable functions
which do not admit a continuous norm. Furthermore, this leads us to establish
some more general results for sequences of operators acting on Fréchet spaces
with or without a continuous norm. Additionally, we give a characterization of
the existence of a closed subspace of universal series in the Fréchet space KN.

Résumé. — On exhibe les premiers exemples d’espaces de Fréchet contenant
un sous-espace fermé de dimension infinie de séries universelles, mais ne contenant
aucune série universelle restreinte. Pour cela, on considère les espaces de Fréchet
classiques de fonctions indéfiniment dérivables qui n’admettent pas de norme conti-
nue. On établit alors des résultats plus généraux pour des suites d’opérateurs qui
agissent sur des espaces de Fréchet avec ou sans norme continue. Enfin, on carac-
térise complètement l’existence de sous-espaces fermés de séries universelles dans
l’espace de Fréchet KN.

1. Introduction

In approximation theory, very strange behaviors occur. For instance,
Fekete proved [17] that there exists a sequence (an)n>1 in R such that,
for every continuous function h on [−1, 1], with h(0) = 0, there exists an
increasing sequence (λn)n>0 of positive integers such that

sup
x∈[−1,1]

∣∣∣∣∣∣
λn∑
j=1

ajx
j − h(x)

∣∣∣∣∣∣→ 0, as n→ +∞.

Keywords: infinitely differentiable real functions, spaceability, universality, universal se-
ries, Taylor series.
Math. classification: 30K05, 41A58, 26E10, 46E15, 47A16.
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In the same spirit, Seleznev showed [18] the existence of a complex sequence
(cn)n>0 such that, for every entire function h ∈ H(C) and for every compact
set K ⊂ C, 0 /∈ K, with connected complement, there exists an increasing
sequence (λn)n>0 of positive integers such that

sup
z∈K

∣∣∣∣∣∣
λn∑
j=0

cjz
j − h(z)

∣∣∣∣∣∣→ 0, as n→ +∞.

Fekete’s series or Seleznev’s series are called universal series. Since these
examples, many of such results were given. The theory of universal series
is a part of universality, which is a very active branch of analysis. We refer
the reader to the nice survey of Grosse-Erdmann [9]. Let us explain the
basic definitions of universal series. Let X be a metrizable vector space
over the field K = R or C endowed with a translation-invariant metric.
In the sequel X will be a Fréchet space. Let us denote (xn)n>1 a fixed
sequence of elements in X.

Definition 1.1. — A sequence a = (a1, a2, . . . ) defines an universal
series (with respect to (xn)n>1) if the sequence

∑n
j=1 ajxj is dense in X.

We denote by U(X) the set of such series.

We fix a subspace A of KN which carries a complete metrizable vector
space topology induced by a translation-invariant metric d. We assume that
the coordinate projections A→ K, a 7→ am are continuous for all m ∈ N∗,
and that the set of polynomials {a = (an)n>1 ∈ KN : {n; an 6= 0} is finite}
is contained and dense in A. As usual we denote by (en)n>1 the canonical
basis of KN.

Definition 1.2. — A sequence a = (a1, a2, . . . ) ∈ A defines a restricted
universal series (with respect to (xn)n>1) if, for every x ∈ X, there exists
an increasing sequence (λn)n>0 in N∗ such that

λn∑
j=1

ajxj → x as n→ +∞ and
λn∑
j=1

ajej → a as n→ +∞.

We denote by UA(X) the set of such series.

Clearly we have UA(X)⊂U(X)∩A. Obviously if for every a= (a1, a2, . . . ) ∈
A we have

∑n
j=1 ajej → a, as n → +∞, then UA(X) = U(X) ∩ A (this

is the case if the sequence (en)n>1 is a Schauder basis of A, e.g. A = KN

endowed with its cartesian topology). Bayart, Grosse-Erdmann, Nestoridis
and Papadimitropoulos established a nice abstract theory of universal se-
ries, where they gave a necessary and sufficient condition for the existence
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of universal elements in terms of polynomial approximation [3]. The exis-
tence of such series is always surprising. In fact there are many such series
in the sense that the existence is equivalent to the topological genericity. It
is natural to ask if there are large vector spaces of such series. It is proved
that if there exists a restricted universal series, then the set of restricted
universal series is densely lineable, i.e. UA(X) contains a dense vector space
except {0} [3]. Then it is natural to wonder whether the set of universal
series (resp. restricted universal series) is spaceable, i.e. if U(X) ∩ A (resp.
UA(X)) contains a closed infinite dimensional vector subspace of A, except
{0}.

We know several examples of sets of strange functions which are space-
able : for instance the set of continuous and nowhere differentiable functions
in the set of continuous real-valued functions on [0, 1], the set of entire func-
tions f whose set of translates is dense in H(C) [1]. In 2005, Bayart proved
that the set of universal Taylor series of holomorphic functions on the unit
disk is spaceable [2]. Later Charpentier proved that UA(X) is spaceable if
A is a Banach space and UA(X) 6= ∅ [8]. In the same paper, Charpentier
studied the case where A is a Fréchet space and, under the hypotheses that
A admits a continuous norm and UA(X) 6= ∅, the author obtains a weaker
conclusion: U(X) ∩ A contains a closed infinite dimensional vector space
except {0}. Let us recall that (A, d) admits a continuous norm means that
one can find a norm ‖·‖ on A which is continuous in the topology defined
by d. It is of course equivalent to the fact that the topology of (A, d) can be
defined by a family of norms. We mention that the existence of a continuous
norm is a standard assumption in such related topics of universality (see
[4], [5], [15] and the references therein). Therefore several natural questions
arise in the Fréchet case:

• Can we obtain the conclusion UA(X) is spaceable ?
• Replacing UA(X) 6= ∅ by U(X) ∩ A 6= ∅ can we obtain U(X) ∩ A

spaceable ?
• Removing the condition of continuous norm can we obtain examples
where U(X) ∩A is spaceable again ?

Recently Menet gave a positive answer to the first question under the
hypothesis that A admits a continuous norm using the same techniques as
Charpentier together with the theory of basic sequences in Fréchet spaces
with a continuous norm [12]. Besides, Charpentier gave an example where A
does not admit a continuous norm and UA(X) is not spaceable using Fekete
universal series [8, Theorem 5.9]. The author takes A = RN and argues by
contradiction. The particular structure of RN seems to play an essential
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role in the proof as well as the fact that for every element (an)n>1 in RN

the series
∑
j>1 ajej is convergent. With similar arguments, we can prove

that there does not exist a closed infinite dimensional subspace without 0
in CN consisting of universal Seleznev series in the complex plane.

This somehow justifies the study of universal series in abstract Fréchet
spaces which are not necessarily sequence spaces. Through a convenient
continuous linear map from a Fréchet space E into a subspace of KN, we
can define the elements of E which are universal as those for which the
image under this map is an universal series. Restricted universality also
makes sense. More precisely, let A ⊂ KN be a Fréchet space of sequences,
let (fn)n>1 be a sequence in E and let T0 : E → A be a continuous linear
map such that T0 (fn) = en for any n > 1. Then universal elements are
defined in the following way.

Definition 1.3. — We keep the above assumptions.
(1) An element f ∈ E, with T0(f) = (an)n>1 ∈ A, is universal (with

respect to T0 and (xn)n>1) if, for every x ∈ X, there exists an increasing
sequence (λn)n>0 in N∗ such that

(1.1)
λn∑
j=1

ajxj → x as n→ +∞.

We denote by U(X) ∩ E the set of such universal elements.
(2) An element f ∈ E, with T0(f) = (an)n>1 ∈ A, is restrictively uni-

versal (with respect to T0, (fn)n>1 and (xn)n>1) if, for every x ∈ X, there
exists an increasing sequence (λn)n>0 in N∗ such that (1.1) holds and such
that

λn∑
j=1

ajfj → f in E, as n→ +∞.

We denote by UE(X) the set of such restricted universal elements.

Actually, the structure of the sets of universal elements is deeply con-
nected to the space in which the universal elements under consideration
live. Anyway, such elements are often called universal series, keeping in
mind that this term referred to the approximation in X which is realized
by partial sums of a series. This more general setting has been considered
in [3, 8, 12]. In particular, Charpentier and Menet’s results still hold and
the two last questions above remain relevant.

In this paper we exhibit concrete examples of Fréchet spaces E of in-
finitely differentiable functions which lead to positive answer to these two
questions. These classes of universal C∞ elements have been studied in [14]
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and they are examples where we have UE(X) = ∅ and U(X) ∩ E 6= ∅. In
fact, we show that all the pathological cases also occur:

• UE(X) = ∅, U(X) ∩ E 6= ∅ and U(X) ∩ E is spaceable,
• UE(X) = ∅, U(X) ∩ E 6= ∅, E does not admit a continuous norm

and U(X) ∩ E is spaceable.
More precisely, let E be the Fréchet space of all C∞ functions on R

vanishing at 0, X = C0(R) the Fréchet space of all continuous functions on
R vanishing at 0, and the fixed sequence xn = xn, n > 1, in X. It appears
that moving from the point of view of sequences in RN to the point of view
of infinitely differentiable functions changes the spaceability of the set of
universal elements. Indeed, we prove the following result (see Theorem 2.9).

Theorem A. — The set of C∞ functions f vanishing at 0 such that the
series

(∑
n>1

f(n)(0)
n! xn

)
is universal for C0(R) is spaceable.

In passing, we would like to mention that as far as we know, there was
only one example of a universal closed infinite dimensional subspace in a
Fréchet space with no continuous norm (see [7]). Furthermore, we show
that the spaceability of Fekete universal smooth functions even extends
to a set of smooth functions which satisfies the universal Fekete property
with respect to a denumerable set of isolated points. The same results are
valid in other specific classes of C∞ functions as well-known Gevrey spaces.
Let us remark that all the results are written for functions defined on R
for convenience of the reader, but a simple generalization shows that the
theorems are valid in Rn, n > 1, too (see [14] for details).

More generally, our study of Fekete spaceability in C∞(R) provides a
way to produce examples of sequences of operators, acting on Fréchet spaces
with or without a continuous norm, which admit universal closed subspaces.
In some extend, we adopt an abstract point of view which aims to include
universal series into the theory of universality for sequences of operators.
For example, we show how general criterion for spaceability of sequences of
operators can be applied to deduce spaceability in the context of universal
series. In particular, if E is a separable Fréchet space and T0 : E → A a
continuous, linear and surjective map, then we have the following result
(see Theorem 3.12).

Theorem B. — Suppose that E admits a continuous norm. If
UA(X) 6= ∅, then U(X) ∩ E is spaceable.

We finally recover previous results about spaceability of universal series
(including that of the present paper that we mentioned above) without
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using the tools strictly specific to universal series. The only restriction is
to work with certain type of Fréchet spaces (but quite general even so).

Besides, the question of the spaceability in KN with K = R or C was far
from being settled by the negative result obtained in [8] for Fekete universal
series. Another quick look at the proof of this result points out that when
the sequence (xk)k>1 ⊂ X - from which the universal series is defined
- is linearly independent, the set of associated universal series cannot be
spaceable. Actually, thanks to a subtle refinement of the ideas of the proof
of Charpentier’s result, we characterize the sequences (xk)k>1 ⊂ X for
which the set of associated universal series in KN is spaceable. We obtain
the following result (see Theorem 4.1).

Theorem C. — Let X be any metrizable vector space over K with a
continuous norm and let (xn) be a fixed sequence in X. Then the following
assertions are equivalent:

(1) the set U(X) ∩KN is spaceable,
(2) for every n > 1, the set

⋃
m>n(span{xk; n 6 k 6 m}∩span{xk; k >

m+ 1}) is dense in X.

This characterization involves a “degree of linear independence” of the se-
quence (xk)k>1 ⊂ X. Surprisingly, it appears that, up to modify the se-
quence

(
xk
)
k>1 ⊂ X, we can recover Fekete universal closed subspaces in

RN.
The paper is organized as follows: Section 2 is devoted to spaceability for

universal series in spaces of infinitely differentiable functions; in Section 3,
we generalize the results of the previous section to arbitrary sequences of
operators acting on Fréchet spaces with or without continuous norm. The
last section deals with the characterization of those universal series living
in KN whose set is spaceable.

Notation. — Given a sequence (xk)k>1 ⊂ X, we will denote by Sn,
n > 1, the map which sends the formal series

∑
k>1 akxk, (ak)k>1 ⊂ K, to

the n-th partial sum
∑n
k=1 akxk.

2. Fekete universal closed subspaces of C∞ functions

2.1. Framework

Let Kn = [−(n + 1), n + 1], n ∈ N, be an exhaustion of compact sets
in R. Notice that 0 ∈ K0. We also fix a connected compact set K ⊂ R

ANNALES DE L’INSTITUT FOURIER
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so that 0 is in the interior of K. Let C∞ (K) be the Fréchet space of C∞
functions on K (i.e. the functions f which are C∞ in the interior of K and
such that every derivative of any order of f admits a limit at the boundary
of K), endowed with the topology defined by the family of norms given
by ‖f‖n =

∑n
j=0 supx∈K |f (j)(x)|, for any f ∈ C∞ (K) and any n ∈ N. We

denote by dK the associated translation-invariant metric. Let us also define
the Fréchet space C∞ (R) of infinitely differentiable functions on R, whose
topology is given by the seminorms

pn :=
n∑
j=0

sup
x∈Kn

∣∣∣f (j) (x)
∣∣∣ .

We denote by dC∞ the associated metric. To simplify the notations, we
shall use d instead of dK or dC∞ when there will be no ambiguity. Finally
let C (R) denote the Fréchet space of continuous functions on R, whose
topology is given by the seminorms ‖f‖n = supx∈Kn

|f (x)| .

Let T0 denote the Borel map from C∞ (R) to RN defined by

T0 (f) =
(
f (j) (0)
j!

)
j>0

.

By Borel theorem [6], T0 is a continuous, surjective, hence open map from
C∞ (R) onto RN. Since every restriction to K of f ∈ C∞ (R) is an element of
C∞ (K), T0 is also an open surjective continuous map from C∞ (K) onto RN.
For greater convenience, we will sometimes identify T0 with the map which

sends f ∈ C∞ (K) to the formal series
∑
j>0 ajx

j where aj = f (j) (0)
j! .

Let observe that if (fn)n>0 converges to f in C∞ (K), then (T0 (fn))n>0
converges to T0 (f) in RN, at least for the cartesian topology.
If f ∈ C∞ (R) is such that T0 (f) = (ai)i>0 is a polynomial (i.e. a finite

linear combination of the ei’s), then we define the valuation v (f) (resp.
the degree d (f)) of f as the smallest (resp. the biggest) index n ∈ N such
that an 6= 0. Observe that if f is itself a polynomial in C∞ (R), then the
valuation and the degree of f coincide with the usual ones.

2.2. Main results

We recall that a combination of Fekete’s theorem with Borel’s one yields
to the existence of infinitely differentiable functions f ∈ C∞ (R), with
f(0) = 0, which are universal in the following sense: for every continuous
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functions h, with h(0) = 0, and for every compact set L ⊂ R, there exists
an increasing sequence (λn)n>1 of integers such that

sup
x∈L

∣∣∣∣∣∣
λn∑
j=1

(
f (j)(0)
j!

)
xj − h(x)

∣∣∣∣∣∣→ 0, as n→ +∞.

Clearly the universal elements cannot satisfy, in addition to the universal
approximation, the convergence

λn∑
j=1

(
f (j)(0)
j!

)
xj → f(x), as n→ +∞,

in the topology of C∞ (R). With the notations of Definition 1.3, this cor-
responds to take E = C∞ (R), A = RN, T0 equal to the Borel map intro-
duced in Section 2.1, X = C0 = {h ∈ C(R) : h(0) = 0} and (fn)n>1 =
(xn)n>1 = (xn)n>1. Therefore, we deduce that UC∞ (C0) = ∅ whereas we
have U (C0) ∩ C∞(R) 6= ∅.

We are interested in the spaceability. Let us remark that each step of
the construction of universal closed infinite dimensional subspaces given in
[8, 12] intensively used the building of convenient basic sequences in Ba-
nach or Fréchet spaces with continuous norm respectively and the following
approximation result.

Lemma 2.1. — [3, Theorem 1] With the notations of Definition 1.3, the
following assertions are equivalent:

(1) UE(X) 6= ∅
(2) For every p ∈ N∗, x ∈ X and ε > 0, there exists n > p and

ap, . . . , an ∈ K such that

dX

 n∑
j=p

ajxj , x

 < ε and dE

 n∑
j=p

ajfj , 0

 < ε.

Remark 2.2. — Actually, only (1) ⇒ (2) is needed in [8, 12]. As we
already said, Theorem 1 in [3] also states that under assumption (1) or
(2) of the preceding lemma, UE(X) is a dense Gδ and contains a dense
subspace (except 0).

Since UC∞ (C0) = ∅, Lemma 2.1 is useless in the present context. In the
recent abstract theory of universal series, the authors gave another approx-
imation lemma under the assumption U(X) ∩A 6= ∅ [3, Theorem 30]. Yet,
as mentioned in [8], this result cannot be used to improve the construc-
tion in an abstract way under assumption U(X) ∩ A 6= ∅. Nevertheless,
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we have the following approximation lemma, which is a refinement of that
mentioned above.

Lemma 2.3. — For any L ⊂ R compact set, any continuous function
h : R → R with h(0) = 0, for any p ∈ N∗ and for any ε > 0, there exist
n ∈ N, n > p, ap, . . . , an in R and f ∈ C∞(R) such that

sup
x∈L

∣∣∣∣∣∣
n∑
j=p

ajx
j − h(x)

∣∣∣∣∣∣ < ε and d(f, 0) < ε with T0(f) =
n∑
j=p

ajx
j ,

where d is the distance in the Fréchet space C∞(R).

Proof. — Since there exist restricted universal series in RN by Fekete’s
theorem, the abstract theory of universal series [3] ensures that, for any
η > 0, there exist n > p and ap, . . . , an in R such that

sup
x∈L

∣∣∣∣∣∣
n∑
j=p

ajx
j − h(x)

∣∣∣∣∣∣ < η and dRN(a, 0) < η,

where a =
∑n
j=p ajx

j . As we already said, the linear Borel map T0 :
C∞(R) → RN is open. Hence with a good choice of η, η < ε, there is a
function f ∈ C∞(R) such that T0f =

∑n
j=p ajx

j and dC∞(f, 0) < ε. This
finishes the proof. �

We recall that a basic sequence in a Fréchet space is a sequence (un)n>0
whose closed linear hull is given by all convergent series

∑
n>0 anun and

where the expansion is unique. As mentioned above, the construction of
universal closed subspaces given in [8, 12] lays on the possibility to build
convenient basic sequences in Banach or Fréchet spaces with a continuous
norm. However, it is well-known that C∞ (R) does not admit a continuous
norm (see [15] for example). For this reason, we first work in C∞ (K). Then
Lemma 1 in [15] or Lemma 2.2 in [12] directly yields the following result.

Lemma 2.4. — Let (u0, . . . , un) ⊂ C∞ (K) be a finite family and let
F be an infinite dimensional subspace of C∞ (K). For every real number
ε > 0, there exists un+1 ∈ F with ‖un+1‖∞ = 1 and such that

(2.1)

∥∥∥∥∥
n∑
k=0

λkuk

∥∥∥∥∥
j

6 (1 + ε)

∥∥∥∥∥
n+1∑
k=0

λkuk

∥∥∥∥∥
j

for every scalar λk, 0 6 k 6 n+ 1 and every 0 6 j 6 n.
In particular, we can construct by induction a sequence of polynomials

(un)n>0, where each un is built as above with F the infinite dimensional

TOME 64 (2014), FASCICULE 1
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subspace of C∞ (K) consisting of polynomials of valuation greater than a
chosen sequence (ln)n>0 (assuming that v(0) = +∞), such that

(1) (un)n>0 is a basic sequence in the Fréchet space C∞ (K);
(2) ‖un‖∞ = 1 for any n ∈ N;
(3) v (un) > ln for any n ∈ N.

Now, a combination of Lemma 2.3 and Lemma 2.4 together with the con-
struction of universal closed subspaces in [8, 12] yields the following theo-
rem. The proof, quite similar to that given in [8, 12], is omitted.

Theorem 2.5. — The set U (C0) ∩ C∞(K) is spaceable.

Remark 2.6. — Theorem 2.5 is the first result about spaceability for
universal series when UE(X) = ∅ and U(X)∩E 6= ∅. Moreover it is a quite
natural one.

Actually, a refinement of Lemma 2.4 shows that even C∞(R) admits a
convenient basic sequence. To see this, we need the following result.

Lemma 2.7. — Let Ln : C∞(R) → C∞([−(n + 1), n + 1]), n > 0, be
the restriction mapping defined by Ln(u) = u|[−(n+1),n+1], and M be a
subspace of C∞(R) such that L0(M) is infinite dimensional. Then there
exists a sequence (uk)k>0 in M such that:

(1) For every k > 0, ‖L0 (uk)‖∞ = 1;
(2) For every n > 0, the sequence (Ln (uk))k>n is basic in C∞([−(n +

1), n+ 1]).

Proof. — Let (εk)k>0 be a sequence of positive real numbers such that∏+∞
k=0 (1 + εk) converges. We consider a subspace N ⊂M such that L0(N)

is infinite dimensional and, for every non-zero u ∈ N , L0(u) is non-zero.
Note that such a subspace exists, by considering the linear span of any
extension to R of any infinite free sequence of functions in L0(M). The
sequence (uk)k>0 is built by induction. First we take u0 in N of supre-
mum norm 1 on [−1, 1]. We turn to the inductive step and we assume
that u0, . . . , uk, k > 0, have been built. For any 0 6 i 6 k and any
0 6 l 6 k, let (zi,j,l)mk,i,l

j=0 be an εk
1 + εk

-net of the unit sphere of

span
(
u0|[−(i+1),i+1], . . . , uk|[−(i+1),i+1]

)
in ̂(

C∞([−(i+ 1), i+ 1]), ‖·‖i,l
)
,

where ‖·‖i,l stands for the l-th norm in C∞([−(i+1), i+1]). Let (ϕi,j,l)mk,i,l

j=0

be continuous linear functionals of norm 1 on ̂(
C∞([−(i+ 1), i+ 1]), ‖·‖i,l

)
such that, for any 0 6 i 6 k, any 0 6 l 6 k and any 0 6 j 6 mk,i,l, we
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have
ϕi,j,l (zi,j,l) = 1.

Now, for every 0 6 i 6 k, let Ei be the subspace of C∞([−(i + 1), i + 1])
defined by

Ei :=
mk,i,l⋂
j=0

k⋂
l=0

ker (ϕi,j,l) .

Since every Li is a continuous linear map, i > 0, L−1
i (Ei) has finite

codimension and, by definition of N , we can choose uk+1 non-zero in
N ∩

⋂k
i=0 L

−1
i (Ei) such that

∥∥uk+1|[−1,1]
∥∥
∞ = 1.

To finish, we can conclude as at the end of the proof of [15, Lemma 1] to
show that (uk)k>0 satisfies the assertions (1) and (2) in the statement of
the lemma. �

We now show how the previous lemma actually produces a basic sequence
in C∞(R).

Corollary 2.8. — Under the above notations, the sequence (uk)k>0
is a basic sequence in C∞(R).

Proof. — Let F := span {uk, k > 0}, with (uk)k>0 given by Lemma 2.7.
Let us fix x ∈ F . There exists a sequence (αk,l)k,l∈N ⊂ R such that

ml∑
k=0

αk,luk → x, as l→ +∞.

Since L0 is a continuous map and
(
uk|[−1,1]

)
k>0 is a basic sequence in

C∞ ([−1, 1]) (see Lemma 2.7 for the definition of L0), there exists a sequence
(αk)k>0 of real numbers such that

ml∑
k=0

αk,luk|[−1,1] →
+∞∑
k=0

αkuk|[−1,1] = x|[−1,1], as l→ +∞.

Because the linear coordinate functionals which take a convergent series∑
k=0 γkuk|[−1,1] to γk are continuous for every k > 0, we must have αk,l →

αk, as l→ +∞, for every k > 0.
Now for every n > 1 and l large enough (up to take αk,l = 0 for k large,
we may and shall assume that ml → +∞, as l→ +∞), we write

ml∑
k=0

αk,luk = α0,lu0 + . . .+ αn−1,lun−1 +
ml∑
k=n

αk,luk.

Letting l tends to +∞, we get that liml→+∞
∑ml

k=n αk,luk exists in C∞(R).
Therefore, taking the restriction to [−n, n] and using that

(
uk|[−n,n]

)
k>n

is
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a basic sequence in C∞([−n, n]), if follows that

x|[−n,n] = α0u0|[−n,n] + . . .+ αn−1un−1|[−n,n] +
∑
k>n

βkuk|[−n,n]

for some sequence (βk)k>n of real numbers. But, up to take the restriction
to [−1, 1], we can still use the uniqueness of the development along a basic
sequence to see that each βk, k > n, must be equal to αk.
Finally, we have shown that for every n > 1, x|[−n,n] =

∑
k>0 αkuk|[−n,n],

where the convergence of the series holds in C∞([−n, n]). It means that
x =

∑
k>0 αkuk by definition of the topology of C∞(R). Moreover this

development is unique since its restriction x|[−1,1] to [−1, 1] admits a unique
development along the sequence

(
uk|[−1,1]

)
k>0 (because this latter is basic

in C∞([−1, 1])).
�

We now prove that Theorem 2.5 extends to C∞(R).

Theorem 2.9. — The set U (C0) ∩ C∞(R) is spaceable.

Proof. — By Theorem 2.5, there exists a universal closed infinite di-
mensional subspace H ⊂ C∞([−1, 1]). Let M = L−1

0 (H) and let then
(uk)k>0 ⊂M be given by Lemma 2.7. We prove that the space

F := span {uk, k > 0}

is a (Fekete) universal closed infinite dimensional subspace of C∞(R) (ex-
cept 0). We have to show that every non-zero element of F is universal.
By Corollary 2.8, if h ∈ F \ {0}, then h =

∑
k>0 αkuk with αk 6= 0 for

some k > 0. By construction in Lemma 2.7, h|[−1,1] =
∑
k>0 αkuk|[−1,1] is

in particular a non-zero element of H and so it is universal. �

2.3. Further extension

Let (bn)n>0 be a sequence of distinct real numbers without accumulation
point and let (cn)n>0 be an arbitrary sequence of real numbers. Mouze and
Nestoridis proved that there exists f ∈ C∞(R) with f(bn) = cn, n ∈ N,
such that for every selection hn : R → R of continuous functions with
hn(bn) = 0, n ∈ N, there exists a subsequence (λj)j>0 of integers such that,
for all n ∈ N,

∑λj

k=0
f(k)(bn)

k! (x− bn)k converges to cn + hn(x) uniformly on
compact subsets of R, as j → +∞ [14, Theorem 4.2]. Observe that we
realize the universal approximation property for the same subsequence of
partial sums. For convenience, let us denote by U∞((bn), (cn)) the set of
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such universal functions. Clearly if f, g ∈ U∞((bn), (cn)), then f+g does not
belong to U∞((bn), (cn)) except if cn = 0 for all n. So U∞((bn), (cn)) ∩ C∞
cannot be spaceable when (cn) is a non-zero sequence. But we intend to
prove that U∞((bn), 0)∩C∞ contains a closed infinite dimensional subspace.

Theorem 2.10. — With the above notations, U∞((bn), 0)∩C∞ is space-
able.

The main ingredient of the proof is the following lemma, which is a refine-
ment of Lemma 2.3. For any n ∈ N, we define Tn0 (f) =

(
f(k)(bn)

k!

)
k>0

.

Lemma 2.11. — Let (bn)n>0 be a sequence of distinct real numbers
without accumulation point such that the sequence (|bn|)n>0 is strictly
increasing. For any N ∈ N, any compact set K ′ ⊂ R, any continuous
functions h0, . . . , hN : R → R, with hi (bi) = 0, i ∈ {0, . . . , N}, any p > 0
and any ε > 0, there exist an integer n > p, real numbers aip, . . . , ain,
i ∈ {0, . . . , N}, and f ∈ C∞ (R), such that

sup
x∈K′

∣∣∣∣∣∣
n∑
k=p

aik (x− bi)k − hi (x)

∣∣∣∣∣∣ < ε and d (f, 0) < ε,

with T i0 (f) =
(
0, . . . , 0, aip, . . . , ain, 0 . . .

)
, i = 0, . . . , N, and T i0(f) = 0, for

i > N + 1.

Proof. — Using that the sequence (|bn|)n>0 is strictly increasing and
has no accumulation points, we fix a function ϕ ∈ C∞(R) supported by
[− |bN+1| , |bN+1|] and equal to 1 on [− |bN | , |bN |]. By continuity of the
multiplication by ϕ in C∞(R), we can choose δ > 0 such that for any
g ∈ C∞, d(g, 0) < δ implies d(ϕg, 0) < ε. Then, we apply [14, Proposition
4.1] and [19, Theorem 2.6] to find aip, . . . , ain, i ∈ {1, . . . , N} , in R so that

sup
x∈K′

∣∣∣∣∣∣
n∑
k=p

aik (x− bi)k − hi (x)

∣∣∣∣∣∣ < ε and d(RN)N (a, 0) < η,

where a = ((a1), . . . , (aN )) with ai = (0, . . . , 0, aip, . . . , ain, 0, . . . ), i =
1, . . . , N . Now, it is easy to check that the linear map from C∞(R) into(
RN)N which takes a function f to (T 0

0 (f), . . . , TN0 (f)) is continuous, onto
between two Fréchet spaces, hence the open mapping theorem ensures
that the image of every δ-neighborhood of 0 in C∞(R) contains some η-
neighborhood of 0 in

(
RN)N (endowed with the product topology). There-

fore, for any δ > 0, there exists g ∈ C∞(R) satisfying d(g, 0) < δ and
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T i0(g) = ai, i = 0, . . . , N . Observe that the function f = ϕg satisfies the
lemma. �

According to Corollary 2.8, there exist basic sequences in C∞(R). Our
proof of Theorem 2.9 did not need this basic sequence to consist of poly-
nomials of convenient valuation, as it is usually the case in order to build
universal closed subspaces ([8, 12] or for e.g. Theorem 2.5). To prove The-
orem 2.10, we need to work again with basic sequences of polynomials of
arbitrary valuations. In fact, an improvement of Lemma 2.7 gives the fol-
lowing.

Lemma 2.12. — Let (bn)n>0 be a sequence of real numbers with no
accumulation points. With the above notations, there exists a basic se-
quence (uk)k>0 in C∞(R) of polynomials such that, for every k > 0, we
have v(T i0(uk)) > lk, i = 0, . . . , k, where (lk)k>0 is a chosen sequence of
natural numbers.

Proof. — It is a slight modification of the proof of Lemma 2.7. Consider-
ing Fn the subspace of polynomial functions whose valuation with respect
to the centers bi, i = 0, . . . , n, is greater than ln (with the usual convention
v(0) = +∞), the sequence (uk)k>0 is built by induction exactly as in the
proof of Lemma 2.7, except that at each step k, the infinite dimensional
subspace M is replaced by Fk. �

We turn to the proof of the main result of this subsection.
Proof of Theorem 2.10. — It is still a modification of the standard con-

struction of universal closed infinite dimensional subspace given in [8, 12].
We make a sketch of it. Without loss of generality we may assume that,
for every n > 1, the interval [−n, n] contains exactly the n first terms of
the sequence (bi)i>0 (since we assumed that (bi)i>0 has no accumulation
point). Therefore we have Lemma 2.11 and Lemma 2.12 at our disposal.
Let us also consider an enumeration (ϕ(n), ψ(n))n>1 of pairs (σ, l) where

σ is a finite sequence with coordinates in N and l ∈ N, such that, for every
integer l, there are infinitely many integers kn, n > 1, such that ψ(kn) = l

for any n. As a notation, ϕ(n)(i) will stand for the i-th coordinate of the
sequence ϕ(n). Let also (Qn)n>0 be an enumeration of real polynomials
with coefficients in Q. Let us fix smooth functions χin so that χin ≡ 0 on
]bi−1/2(n+1), bi+1/2(n+1)[, χin ≡ 1 on R\]bi−1/(n+1), bi+1/(n+1)[
and |χin| 6 1.
Let us fix u0 = x. We recall that the notation ‖·‖n stands for the n-th

seminorm in C(R) (see Section 2.1). Proceeding as in [8, Theorem 3.1] or
in [12], we use Lemma 2.11 and Lemma 2.12 to build sequences (uk)k>0,
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(gn,k)n>k>0 and (fn,k)n>k>0 in C∞ (R), with convenient valuations, such
that:

(1) For any i ∈ [0, n],
∥∥T i0 (gn,k)− χinQϕ(n)(i)

∥∥ψ(n)
< ηn;

(2) For any i ∈ [0, n],
∥∥T i0 (fn,k)

∥∥ψ(n+1)
< ηn;

(3) For any i > n+ 1, T i0 (fn,k) = 0;
(4) max

(
‖fn+1,k − fn,k‖k , d (fn+1,k, fn,k)

)
< ηn;

(5) max
(
‖fk,k − uk‖k , d (fk,k, uk)

)
< ηk;

(6)
∥∥uk|[−1,1]

∥∥
∞ = 1,

where (ηn)n>0 is a well chosen sequence which decreases to 0 fast enough.
We can define in C∞ (R) the sequence (fk)k>0 where each fk is given by

fk =
∑
n>k

(fn+1,k − fn,k) + fk,k.

The sequence
(
uk|[−n,n]

)
k>n

is a basic sequence, to which
(
fk|[−n,n]

)
k>n

is
equivalent, hence the sequence

(
fk|[−n,n]

)
k>n

is also basic. It follows that
(fk)k>0 is basic in C∞(R) (as in Corollary 2.8). We consider the infinite
dimensional closed subspace

F =

∑
k>0

αkfk,
∑
k>0

αkfk converges in C∞ (R)

 .

It remains to show that for every h ∈ F \{0}, every selection hi : R→ R of
continuous functions with hi(bi) = 0, i ∈ N, and every n > 1, there exists
a sequence (Nj)j>0 such that

sup
x∈[−n,n]

∣∣∣∣∣∣SNj

∑
k>0

αkT
i
0 (fk)

− hi
∣∣∣∣∣∣→ 0, as j → +∞,

for any i ∈ N and where h =
∑
k>0 αkfk. Let k0 be the smallest integer k

such that αk 6= 0, let (vj)j>0 ⊂ N be a strictly increasing sequence such
that ψ (vj + k0) = n and Qϕ(vj+k0)(i) converges to hi, uniformly on every
compact set, as j → +∞. Combining the continuity of hi and the equality
hi(bi) = 0, with the properties of functions χin, it is easy to check that
χivj+k0

Qϕ(vj+k0)(i) converges to hi, uniformly on [−n, n], as j → +∞. Let
Nj = max

i6vj+k0

{
d
(
T i0(gvj+k0)

)}
. We may suppose that αk0 = 1. We fix an

integer i > 0. Now, for j large enough, we have i ∈ [0, vj +k0−1]. The rest
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of the proof is standard, we show that∥∥∥SNj

(
T i0 (h)

)
− χivj+k0

Qϕ(vj+k0)(i)

∥∥∥n
=

∥∥∥∥∥∥SNj

vj+k0∑
k=k0

αkT
i
0 (fk)

−χivj+k0
Qϕ(vj+k0)(i)

∥∥∥∥∥∥
ψ(vj+k0)

→ 0, as j→+∞,

as in [8] or [12]. �

2.4. Fekete universal closed subspaces of ultradifferentiable
functions

Let (Mn)n>0 be an increasing sequence of real numbers satisfying the
following conditions:

(1) The sequence
(
Mn+1

Mn

)
n>0

is increasing;

(2) There is a constant C > 0 such that
∑
n>p

Mn

(n+ 1)Mn+1
6 C

Mp

Mp+1
,

p > 0.
Let us introduce the classical Beurling space C∞(M) (R) as the subspace of
C∞ (R) consisting of those functions f such that for any compact set K
in R, supj∈N, x∈K

|f(j)(x)|
j!MjCj <∞ for any C > 0 [10]. We endowed this space

with the Fréchet topology defined by the family of seminorms

‖f‖(M),n := sup
j∈N, x∈Kn

∣∣f (j) (x)
∣∣

j!MjC
j
n

where (Cn)n>0 is a sequence of positive real numbers, decreasing to 0,
with C0 = 1. Let T0 denote the Borel map from C∞ (R) to RN defined
by T0 (f) =

(
f(j)(0)
j!

)
j>0

. A refinement of Borel theorem due to Petzsche
[16] ensures, under condition (2) above, that T0|C∞(M)(R) is also a surjective,
continuous and open map from C∞(M) (R) onto the subspace F(M) of RN

consisting of those sequences (aj)j>0 such that

sup
j∈N

|aj |
MjCj

<∞

for any C > 0.
This allows us to define both universal series in C∞(M) (R) and restricted
universal series in F(M) in the sense of Fekete. As for C∞(R), we have
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UC∞(M)
(C0) = ∅ and U (C0)∩ C∞(M)(R) 6= ∅ [14]. Moreover the Beurling space

does not admit a continuous norm. Yet everything can be done exactly as
in the previous section for C∞(R). We can define C∞(M)(K) for K a com-
pact set in R. By Petzsche’s theorem and because UF(M) (C0) 6= ∅ [14], the
approximation Lemma 2.3 is valid in C∞(M)(R) and an analogue of Lemma
2.4 holds for C∞(M)(K). Therefore we can prove that U (C0) ∩ C∞(M)(K) is
spaceable (see Theorem 2.5). Using the same ideas as that of the previous
section, we can prove that U (C0) ∩ C∞(M)(R) is also spaceable. In the same
spirit, Theorem 2.10 remains true in C∞(M)(R). To see this, it suffices again
to observe that U∞((bn), (cn))∩C∞(M) 6= ∅ [14] and to write the analogue of
Lemma 2.11 in Beurling spaces using Petzsche’s theorem and the existence
of cut functions.

We end this section with the following remark.

Remark 2.13. — Let us introduce the quotients space E and E(M) given
by C∞ (R) / ker (T0) and C∞(M) (R) / ker (T0) respectively. Both E and E(M)
are Fréchet spaces since T0 is continuous. Moreover they are isomorphic
to RN and F(M) respectively. In particular, E has no continuous norm but
E(M) has a continuous norm. By definition, two elements in the same class
in E or E(M) have the same Taylor expansion at 0. In particular, we can
define universal and restricted universal elements ḟ in E (resp. E(M)) as
those for which T0(f) is a universal or a restricted universal series, where
f is any element in the class ḟ . Now it follows that:

(1) UE (C0) = U (C0) ∩ E 6= ∅ is not spaceable ([8, Theorem 5.9]);
(2) UE(M) (C0) 6= ∅ is spaceable (by Menet’s result [12]).

Furthermore, this section highlights that all the previous ideas can be
extended to a much more general context. This is the purpose of the next
section.

3. Abstract theory

3.1. General framework

Let Y be a separable Fréchet space and X be a separable topological
vector space whose topology is given by a sequence of seminorms. Let us
consider a sequence Tn : Y → X of continuous linear mappings.

Definition 3.1. — The sequence (Tn) is mixing if for any open sets
U ∈ Y, V ∈ X, with U 6= ∅ and V 6= ∅, there exists N ∈ N such that one
has Tn(U) ∩ V 6= ∅ for every n > N.
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Definition 3.2. — We say that the sequence (Tn) satisfies condition
(C) if there exist an increasing sequence of positive integers (nk) and a
dense subset Y0 ⊂ Y such that

• Tnk
y → 0, for all y ∈ Y0, as k → +∞;

• ∪k>0Tnk
({y ∈ Y : p(y) < 1}) is dense in X, for every continuous

seminorms p on Y.

Definition 3.3. — We say that the sequence (Tn) is topologically tran-
sitive if for any open sets U ∈ Y, V ∈ X, with U 6= ∅ and V 6= ∅, there
exists n ∈ N such that one has Tn(U) ∩ V 6= ∅.

Definition 3.4. — We say that the sequence (Tn) is universal if there
exists y ∈ Y such that the set {Tny; n > 1} is dense in X.

Let us remark that condition (C) has been introduced in [11] in the case
of sequences of operators between Banach spaces and it has been extended
in Fréchet spaces in [13]. The characterization of condition (C) given for
Banach spaces by León and Müller [11, Theorem 4] is still verified for
Fréchet spaces:

Proposition 3.5. — The sequence (Tn) satisfies condition (C) if and
only if for any j > 1, for any non-empty open sets U0, . . . , Uj ⊂ Y, with
0 ∈ U0, and for any non-empty open sets V0, V ⊂ X, with 0 ∈ V0, there
exists n ∈ N such that for 1 6 i 6 j, Tn(Ui) ∩ V0 6= ∅ and Tn(U0) ∩ V 6= ∅.

Proof. — The proof is similar that of Theorem 4 in [11].
(⇒) This implication directly follows from the fact that if for every con-
tinuous seminorm p, ∪k>0Tnk

({y ∈ Y : p(y) < 1}) is dense in X, then for
every continuous seminorm p, for every ε > 0 and for every N > 1, the set⋃
k>N Tnk

({y ∈ Y : p(y) < ε}) is still dense in X.
(⇐) Let (yn) be a dense sequence in Y , (xn) a dense sequence in X, (pn) an
increasing sequence of seminorms defining the topology of Y and (qn) an
increasing sequence of seminorms defining the topology of X. By induction
on k we can construct a family (un,k)k>n ⊂ Y , a sequence (vk) ⊂ X and
an increasing sequence of integers (nk) such that for all j, n < k,

uk,k = yk, qk (Tnk
un,k) < 1

2k , pk(un,k − un,k−1) < 1
2k ,

qk
(
Tnj (un,k − un,k−1)

)
<

1
2k , pk(vk) < 1 and qk (Tnk

vk − xk) < 1
2k .
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For all n > 1, the sequence (un,k)k>n is Cauchy and thus converges to a
vector un ∈ Y . Therefore we have

pn(yn − un) 6
∞∑

k=n+1
pn(un,k − un,k−1) 6

∞∑
k=n+1

pk(un,k − un,k−1)

6
∞∑

k=n+1

1
2k = 1

2n .

The sequence (un) is thus dense in Y and we have for all j > n,

qn
(
Tnjun

)
6 qj

(
Tnjun,j

)
+

∞∑
k=j+1

qk
(
Tnj (un,k − un,k−1)

)
6

1
2j + 1

2j −−−→j→∞
0.

We conclude by remarking that as (Tnk
vk) is dense and (pn) is an increasing

sequence of seminorms defining the topology of Y , the sets ∪k>0Tnk
({y ∈

Y : p(y) < 1}) are dense in X, for every continuous seminorm p on Y . �

Corollary 3.6. — If (Tn) satisfies condition (C) then (Tn) is topolog-
ically transitive.

Proof. — Let U , V be non-empty open sets in Y , X respectively. There
exist U0, U1 non-empty open sets in Y such that U0 +U1 ⊂ U and 0 ∈ U0,
and there exist V0, V1 non-empty open sets in X such that V0 + V1 ⊂ V

and 0 ∈ V0. By Proposition 3.5, we then know that there exists n ∈ N such
that

Tn(U0) ∩ V1 6= ∅ and Tn(U1) ∩ V0 6= ∅.

We conclude that Tn(U) ∩ V 6= ∅. �

We deduce that we have the following implications:

(Tn) mixing ⇒ (Tn) satisfies condition (C) ⇒ (Tn) topologically
transitive ⇒ (Tn) universal.

In [11], the authors give conditions using condition (C) which imply the ex-
istence of a universal closed infinite dimensional subspace for the sequence
(Tn), in the setting of Banach spaces. In particular Theorem 20 in [11], use-
ful in the context of universal series, has been extended in [13] to Fréchet
spaces. A direct consequence of this result is the following:
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Proposition 3.7. — Let Y be a Fréchet space and X be a separable
topological vector space whose topology is given by a sequence of semi-
norms. Let us consider a sequence Tn : Y → X of continuous linear
mappings. Assume that Y admits a continuous norm, that the sequence
(Tn) satisfies condition (C) and that, for any n > 1, ∩nk=1 kerTk is infi-
nite dimensional. Then the sequence (Tn) admits a universal closed infinite
dimensional subspace.

Let us consider another Fréchet space E and another map T0 : E → Y.

We have the following result.

Lemma 3.8. — We use the previous notations and we suppose that T0 is
a continuous linear surjective map. Then we have the following assertions:

(1) If the sequence (Tk) satisfies condition (C), then the sequence (Tk ◦
T0) satisfies condition (C);

(2) For any n > 1, if ∩nk=1 kerTk is an infinite dimensional space, then
∩nk=1 ker(Tk ◦ T0) is an infinite dimensional space.

Proof. — T0 is a continuous, surjective map between two Fréchet spaces,
hence T0 is open.
(1) It suffices to combine the equivalence of Proposition 3.5 together with
the fact that T0 is an open map to conclude.
(2) The space ∩nk=1 ker(Tk ◦ T0) contains T−1

0 (∩nk=1 kerTk). Hence if
∩nk=1 kerTk is an infinite dimensional space, then the surjectivity of T0
ensures that ∩nk=1 ker(Tk ◦ T0) is infinite dimensional. �

Now the following statement gives a condition of spaceability when E ad-
mits a continuous norm.

Theorem 3.9. — Let E, Y be Fréchet spaces and X be a separable
topological vector space whose topology is given by a sequence of semi-
norms. Let Tk : Y → X be a sequence of continuous linear maps (k > 1)
and let T0 be a surjective continuous linear map from E onto Y . Assume
that E admits a continuous norm, that the sequence (Tk)k>1 satisfies con-
dition (C) and that, for any n > 1, ∩nk=1 kerTk is an infinite dimensional
space. Then the sequence (Tk ◦ T0)k>1 admits a universal closed infinite
dimensional subspace.

Proof. — Applying Lemma 3.8 we know that the sequence (Tk ◦ T0)k>1
satisfies condition (C) and that ∩nk=1 ker(Tk ◦T0) is an infinite dimensional
space. Since E admits a continuous norm, it suffices to apply Proposition
3.7 to have the desired conclusion. �
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Applications. — The results of section 3.1 apply to universal series.
We use the notations of the introduction. First we can easily deduce from
[3, Theorem 1] the following proposition.
Proposition 3.10. — If UA(X) 6= ∅, then the sequence of partial sums

(Sn)n>1 is a mixing sequence.
Let us consider a separable Fréchet space E and T0 : E → A a continuous,

linear and surjective map. We recall the following definition.
Definition 3.11. — We say that f ∈ E is a universal series if the

sequence T0(f) defines a universal series. We denote by U(X) ∩ E the set
of such universal series.
Combining Proposition 3.10 together with Theorem 3.9, we obtain the fol-
lowing statement.
Theorem 3.12. — Suppose that E admits a continuous norm. If

UA(X) 6= ∅, then U(X) ∩ E is spaceable.
In particular, Theorem 3.12 allows to recover the spaceability of the sets

U (C0) ∩ C∞(K) and U (C0) ∩ C∞(M)(K).

3.2. Universal closed subspaces in projective limits

We keep some of the notations and assumptions of Section 2. Yet, we
prefer to describe the framework entirely. Let A, An, E, En, X, n > 1,
be Fréchet spaces endowed with translation-invariant metrics dA, dAn , dE ,

dEn
, dX respectively. For n > 1, let (Sk)k and (Snk )k be sequences of linear

continuous operators from E to X and from En to Xn respectively. We
make the following assumptions.

Assumptions. — There exist continuous linear maps T0, T
n
0 , Tk, T

n
k ,

Kn, K
n+1
n , Ln and Ln+1

n , n > 1, such that for every n > 2, the following
diagram and each of its sub-diagrams are commutative:

E
T0 //

Ln

��

A
Tk

""EE
EE

EE
EE

E

Kn

��
En

Tn
0 //

Ln
n−1

��

An
Tn

k //

Kn
n−1

��

X

En−1
Tn−1

0 // An−1

Tn−1
k

<<zzzzzzzz
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We assume that all these spaces and maps satisfy the following assump-
tions:

(1) The Fréchet spaces En, n > 1, admit a continuous norm;
(2) For any n > 1 and any k > 0, Sk = Tk ◦ T0 and Snk = Tnk ◦ Tn0 ;
(3) The maps T0, Tn0 , Ln+1

n and Kn+1
n , n > 1, are surjective;

(4) For any n > 2, Ln−1 = Lnn−1 ◦ Ln and Kn−1 = Kn
n−1 ◦Kn;

(5) The Fréchet spaces E and A are the projective limit of the sequences
(En)n and (An)n respectively, that is

E=

(xn)n>1 ∈
∏
n>1

En : Ln+1
n ◦ . . .◦Lmm−1 (xm) =xn,whenever m>n.

,
endowed with the product topology (A satisfies analogue equality),
where Ln (resp. Kn) is the canonical mapping E → En (resp. A→
An). Note that, under Assumption (3), Ln and Kn are surjective
maps.

Remark 3.13. — (1) Observe that x ∈ En is universal for (Snk )k for some
n > 1 if and only if Lj+1

j ◦ . . . ◦ Lnn−1(x) ∈ Ej is universal for
(
Sjk

)
k
for

some 1 6 j 6 n. Indeed, for any k > 1, we have Sjk ◦L
j+1
j ◦ . . .◦Lnn−1 = Snk .

Similarly x ∈ E is universal for (Sk)k if and only if Lj(x) ∈ Ej is universal
for
(
Sjk

)
k
.

(2) Theorem 3.9 coincides with the case where there is only one row in the
previous diagram.

We have the following general result.

Lemma 3.14. — With the above notations, if there exists n > 1 such
that (Snk )k admits a universal closed subspace in En, then (Sk)k admits a
universal closed subspace in E.

The following corollary is a direct application of this Lemma and Theo-
rem 3.9 to the present context.

Corollary 3.15. — Under the above assumptions, assume that there
exists some n > 1 such that the sequence (Tnk )k>1 satisfies condition (C)
and that, for any m > 1, ∩mk=1 kerTnk is an infinite dimensional space. Then
(Sk)k>1 admits a universal closed infinite dimensional subspace.
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The proof of Lemma 3.14 relies on the following lemma. This is a gener-
alization of Lemma 2.7.

Lemma 3.16. — Let M be subspace of E such that L1(M) is infinite
dimensional. Then there exists a sequence (uk)k>0 in M such that:

(1) For every k > 0, ‖L1 (uk)‖1 = 1, where ‖·‖1 is a continuous norm
of E1;

(2) For every n > 1, the sequence (Ln (uk))k>n is basic in En.

The proof of this lemma is identical to that of Lemma 2.7, with the
updated notations. By definition of the topology of projective limit of E,
we directly deduce the following (see the proof of Corollary 2.8).

Proposition 3.17. — With the above notations, the sequence (uk)k>0
given by Lemma 3.16 is basic in E.

We now turn to the proof of Lemma 3.14.

Proof of Lemma 3.14. — Without loss of generality, we may and shall
assume that n = 1. By hypothesis, there exists a universal closed infinite
dimensional subspace H ⊂ E1. LetM = L−1

1 (H) and let then (uk)k>0 ∈M
be given by Lemma 3.16. We prove that the space

F := span {uk, k > 0}

is an universal closed infinite dimensional subspace of E (except 0). We have
to show that every non-zero element of F is universal. By Proposition 3.17,
if h ∈ F \{0}, then h =

∑
k>0 αkuk with αk 6= 0 for some k > 0. Hence, by

construction, L1 (h) =
∑
k>0 αkL1 (uk) is in particular a non-zero element

of H and so it is universal. �

Applications. — It is easy to check that Theorem 2.10 and its ana-
logue for the Beurling space are straightforward applications of Lemma
3.14.

An interesting consequence of Lemma 3.14 is the following theorem.

Theorem 3.18. — Let E and X be two separable Fréchet spaces, A a
Fréchet space and T0 : E → A a continuous surjective mapping. If there
exists a continuous seminorm p on E satisfying ker p ⊂ kerT0, then the
condition UA(X) 6= ∅ implies that U(X) ∩ E is spaceable.
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Proof. — Wemay assume that the topology of E is given by an increasing
family of seminorms (pn)n such that p1 = p. Setting En = E/ ker pn, it is
not difficult to check that the five assumptions above are satisfied with
An = A for every n > 1. Then we can apply Theorem 3.12 (for E1) and
Lemma 3.14 to conclude. �

Remark 3.19. — To show that U(X) ∩ E is spaceable, it thus suffices
to factorize the map T0 in a convenient way through Fréchet spaces with a
continuous norm.
Observe that we exhibited two different manners to recover Theorem 2.10

(and its analogue for the Beurling space) from Lemma 3.14. The first one
consists in factorizing by En = C∞([−n, n]), while the second one consists
in factorizing by En = C∞(R)/ ker pn where pn is the n-th seminorm on
C∞(R) (see Section 2.1 for their definition).

4. Universal closed subspaces in RN

Let us return in this section to the space KN = RN (or CN) endowed
with the cartesian topology. Let X be a metrizable vector space over the
field K = R or C with a continuous norm ‖·‖ . Let us denote (xn)n>1 a
fixed sequence of elements in X. In this context we always have UKN(X) =
U(X) ∩ KN. Notice that the set U (C0) ∩ KN of all Fekete sequences is not
spaceable [8]. The particular structure of KN plays an essential role in the
proof of this result. A natural question arises: is it possible to find a set
U(X) ∩ KN which is spaceable? The following theorem gives a complete
answer.

Theorem 4.1. — Under the above assumptions, the following asser-
tions are equivalent:

(1) the set U(X) ∩KN is spaceable,
(2) for every n > 1, the set

⋃
m>n(span{xk; n 6 k 6 m}∩span{xk; k >

m+ 1}) is dense in X.

Proof. — Given a sequence (xk)k>1 ⊂ X, we recall that the notation
Sn, n > 1, stands for the n-th partial sum of the formal series

∑
k>1 akxk,

(ak)k ⊂ K.
(1) ⇒ (2): First assume that there exists N > 1 such that the set⋃
m>N (span{xk; N 6 k 6 m} ∩ span{xk; k > m + 1}) is not dense in
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X. Therefore there exists an open set U ⊂ X satisfying the following prop-
erty:

for every x ∈ U and for every m > N,
x /∈ span{xk; N 6 k 6 m} ∩ span{xk; k > m+ 1}.

Suppose that there exists a closed infinite dimensional subspace F0 in
U(X) ∩KN. Clearly one can find a sequence (un)n>1 in F0 \ {0} such that
(v(un))n>1 is strictly increasing and v(u1) > N (v(un) is the valuation of
un ∈ KN with respect to the canonical basis) [8, Lemma 5.1]. Since for
every n > 1, un is an universal element, there exists mn > v (un) such that
Smn

(un) ∈ U. This property implies

Smn
(un) /∈ span{xk; k > mn + 1}.

Thus we have Sk(un) 6= 0 for all k > mn. Without loss of generality one
may consider that the sequence (mn)n>1 strictly increases and m1 < v(u2).
Using that

∑
n>1 αnun converges in KN for every sequence (αn)n>1 ∈ KN

because (v(un))n>1 is strictly increasing, we will construct an element u =∑
n>1 αnun such that ‖Sk(u)‖ > 1 for every k > m1, what will contradict

the universality of u ∈ F0. First let us choose α1 so that we have

‖α1Sk(u1)‖ > 1, for m1 < k 6 m2.

By induction we choose αn satisfying the following∥∥∥∥∥∥Sk
n−1∑
j=1

αjuj

+ αnSk(un)

∥∥∥∥∥∥ > 1, for v(un) 6 k 6 mn+1.

Notice that we can always find αn because for every mn < k 6 mn+1 we
know that Sk(un) 6= 0 and for every v(un) 6 k 6 mn two cases occur:
Sk(un) 6= 0, thus it suffices to choose αn sufficiently large, or Sk(un) = 0
and we obtain the result by induction hypothesis. Therefore, for every
k > m1, if v(un) 6 k < v(un+1) 6 mn+1, then we have ‖Sk(u)‖ =∥∥∥Sk (∑n

j=1 αjuj

)∥∥∥ > 1 and we are done.
(2) ⇒ (1): Now assume that, for every N > 1, the set⋃
m>N (span{xk; N 6 k 6 m} ∩ span{xk; k > m + 1}) is dense in X.

Therefore for any open set U ⊂ X and for any N > 1, there exist x ∈ U
and M > N such that the following holds

x ∈ span{xk; N 6 k 6M} ∩ span{xk; k >M + 1}.
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Let us consider a countable basis of open sets (Uk) in X (which is separable
as hypothesis (2) shows). We want to construct a sequence (uk)k>1 in KN

such that the sequence of valuations (v(uk))k>1 is strictly increasing and
all the non-zero elements

∑
k>1 αkuk are universal. Using the hypothesis,

for any k > 1, any N > 1, there exist b ∈ KN, M > N and M ′ > M such
that

N 6 v(b), SM (b) ∈ Uk and SM (b) =
M ′∑

k=M+1
bkxk.

Define the sequence a = (0, . . . , 0, bN , . . . , bM ,−bM+1, . . . ,−bM ′ , 0, . . . ) and
d(a) = M ′. Therefore we have

N 6 v(a), SM (a) ∈ Uk and Sd(a)(a) = 0.

Let us choose a strict total order ≺ on the set of couples (i, j), i, j > 1. By
induction we construct also polynomials yi,j and integers ni,j so that

Sni,j
(yi,j) ∈ Uj , Sd(yi,j)(yi,j) = 0 and d(yi′,j′) < v(yi,j) for (i′, j′) ≺ (i, j).

In particular we have Sk(yi,j) = 0 for any k < v(yi,j), any k > d(yi,j)
and any (i, j). In addition, for any (i, j), the intervals (v(yi,j), . . . , d(yi,j))
are pairwise disjoint and contains ni,j . Then we define, for any k > 1,
uk =

∑
j>1 yk,j . Let u =

∑
k>1 αkuk, with αk0 = 1 for some k0. We

observe that
Snk0,j

(u) = Snk0,j
(αk0yk0,j) ∈ Uj .

This finishes the proof. �

Remark 4.2. — The proof of the implication (2) ⇒ (1) does not need
the existence of a continuous norm in X.

We immediately deduce the following result.

Corollary 4.3. — If (xn)n>1 is a free family, then the set U(X)∩KN

is not spaceable.

Moreover it is well known that there exists an universal element in U(X)∩
KN if and only if for every n0 ∈ N, span{xk; k > n0} is dense in X (see [9,
Proposition 7] or [3] for e.g.). A careful examination of the condition (2) of
Theorem 4.1 shows that it is close to condition

(2′)
⋂
n>1

span{xk; k > n} is dense in X.
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Proposition 4.4. — Condition (2′) implies condition (2) of Theorem
4.1 but the converse implication is false. In particular, if (2′) holds, then
U(X) ∩KN is spaceable.

Proof. — (2′) ⇒ (2): Let N > 1 and let U be a non-empty open subset
of X. Using (2′) one can find y ∈ ∩n>N span{xk; k > n}∩U . Observe that
one can write y = aNxN + · · ·+ aMxM or y = aM+1xM+1 + · · ·+ aM ′xM ′ .

To prove that (2) ⇒ (2′) does not hold, we are going to build a sequence
(x̃k)k>1 which satisfies condition (2) but not (2′). Let us consider a free fam-
ily (xn)n>1 in X (endowed with the metric ρ) such that for every n0 ∈ N,
span{xk; k > n0} is dense in X. Let also (qn)n>1 be an enumeration of ra-
tional numbers and Gk be the set {α1x1+. . .+αkxk, αj ∈ {q1, . . . , qk}, j =
1, . . . , k}. By induction on k > 1, there exists nk > 1 (with nk−1 < nk,

n0 = 0) such that, for any pk ∈ Gk, we have

ρ (pk, span (xk+1, . . . , xnk
)) < 1

2k .

Let us consider the sequence (x̃n)n>1 = (x1, b1, x2, b2, . . . ) where bk =
(xk+1, . . . , xnk

). Clearly we have ∩n>1span{x̃k; k > n} = {0} which implies
that condition (2′) is not fulfilled. Combining the inclusion span(bk) ⊂
span(xk, bk+1) together with the density of the family{

n∑
i=1

αixi, α1, . . . , αn ∈ Q, n ∈ N

}
,

we conclude that (x̃n)n>1 satisfies condition (2). �

All the previous yields the following general result on the spaceability of
U(X) ∩KN when X is finite dimensional.

Theorem 4.5. — Under the above assumptions, if X is a finite dimen-
sional space, the following assertions are equivalent:

(1) U(X) ∩KN 6= ∅,
(2) U(X) ∩KN is spaceable,
(3) for every n0 ∈ N, span{xk; k > n0} = X.

Example 4.6. — The simplest non-trivial couple (X, (xn)n>1) satisfy-
ing Assumption (3) of Theorem 4.5 is (R, (xn)n>1 = (1)). In this setting,
Theorem 4.5 ensures that there exists a universal sequence a = (an)n>1 of
real numbers such that the set of all partial sums

∑n
j=1 aj is dense in R

and that the set of such sequences is spaceable.

Example 4.7. — Let us return to the universal series of Fekete type. Ap-
plying Corollary 4.3 with the couple (X= C([−1, 1]), (xn)n>1 = (xn)n>1) we
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recover that the set of universal Fekete series is not spaceable again [8, The-
orem 5.9]. Now let us consider a slight modification of the family (xn)n>1.

We set yk = xi, if k = i+j(j−1)/2, for j > 1 and 1 6 i 6 j.We obtain the
couple (X, (yn)n>1) = (C([−1, 1], (x, x, x2, x, x2, x3, x, x2, x3, x4, . . . )). It is
easy to check that this new family satisfies the condition of Theorem 4.1
so that the set of associated Fekete universal series becomes spaceable.
More generally, if we have a couple (X, (xn)n>1) such that for every

n0 ∈ N, span{xk; k > n0} is dense in X, then there exist universal se-
ries. If (xn)n>1 does not satisfy the condition of Theorem 4.1, this set of
universal series is not spaceable. But one can obtain a set of universal
series of the same type which becomes spaceable, by setting (x̃n)n>1 =
(x1, x1, x2, x1, x2, x3, x1, x2, x3, x4, . . . ).
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