
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Richard AOUN

Transience of algebraic varieties in linear groups - applications to generic
Zariski density
Tome 63, no 5 (2013), p. 2049-2080.

<http://aif.cedram.org/item?id=AIF_2013__63_5_2049_0>

© Association des Annales de l’institut Fourier, 2013, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie de cet article sous quelque forme que
ce soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2013__63_5_2049_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Ann. Inst. Fourier, Grenoble
63, 5 (2013) 2049-2080

TRANSIENCE OF ALGEBRAIC VARIETIES IN
LINEAR GROUPS - APPLICATIONS TO GENERIC

ZARISKI DENSITY

by Richard AOUN

Abstract. — We study the transience of algebraic varieties in linear groups.
In particular, we show that a “non elementary” random walk in SL2(R) escapes
exponentially fast from every proper algebraic subvariety. We also treat the case
where the random walk takes place in the real points of a semisimple split algebraic
group and show such a result for a wide family of random walks.

As an application, we prove that generic subgroups (in some sense) of linear
groups are Zariski dense.
Résumé. — Nous étudions la transience des variétés algébriques dans les grou-

pes linéaires. En particulier, nous montrons qu’une marche aléatoire sur un sous-
groupe non élémentaire de SL2(R) évite toute sous-variété algébrique propre avec
une probabilité convergeant vers 1 de façon exponentielle. Nous étudions aussi le
cas où la marche aléatoire vit dans un sous-groupe Zariski dense du groupe des
points réels d’un groupe algébrique semi-simple, défini et déployé sur R.

Nous utilisons ces résultats pour montrer qu’un sous-groupe aléatoire (en un
sens à préciser) d’un groupe algébrique est Zariski dense.

1. Introduction

One of the essential results in probability theory on groups is Kesten’s
theorem [23]: the probability of return to identity of a random walk on a
group Γ decreases exponentially fast if and only if Γ is non amenable. A
natural question is to extend this to other subsets: for which subsets does
the random walk escape with exponential rate? Many authors have studied
the case where the subset is a subgroup of Γ: see for example [15], [3] and
in particular [2, Theorem 51] where it is shown that the probability that a

Keywords: transience, algebraic varieties, Zariski density, random matrix products, ran-
dom walks, probability of return.
Math. classification: 20P05, 20G20, 60B15.



2050 Richard AOUN

random walk on Γ returns to a subgroup H decreases exponentially fast to
zero if and only if the Schreier graph of Γ/H is non amenable.

In this note we look at random walks on Zariski dense subgroups of
algebraic groups (such as SL2(R)) and we look at the escape from proper
algebraic subvarieties. Such questions have an interest in their own right
since they allow us to study the delicate behavior of the random walk but
they have also been recently involved in other domains such as the theory
of expander graphs. We are referring here among others to the works of
Bourgain and Gamburd [11],[12], Breuillard and Gamburd [14] and Varju
[32]. In [14] for instance it is shown that there is an infinite set of primes p
of density one, such that the family of all Cayley graphs of SL2(Z/pZ) is
a family of expanders. A crucial part of the proof is to take a random walk
on SL2(Z/pZ) and to show that the probability of remaining in a subgroup
decreases exponentially fast to zero and uniformly. In [12, Corollary 1.1.]
the following statement was established: consider the group SLd(Z) (d > 2),
the uniform probability measure on a finite symmetric generating set and
(Sn)n∈N the associated random walk, then for every proper algebraic variety
V of SLd(C), P(Sn ∈ V) decreases exponentially fast to zero.

Kowalski [25] and Rivin [28] were interested in similar questions: for
example they were able to estimate the probability that a random walk in
SLd(Z) lies in the set of matrices with reducible characteristic polynomial.
The techniques used by Kowalski and Rivin are arithmetic sieving ones.

In this article, we develop a more probabilistic approach allowing us to
deal with random walks on arbitrary Zariski dense subgroups of semisimple
algebraic groups. In the particular case of SL2(R), we obtain (see Theo-
rem 1.1) that a random walk whose law generates a non-elementary sub-
group escapes with probability tending to one exponentially fast from every
algebraic variety. Our method relies on the theory of random matrix prod-
ucts developed in the 60’s by Kesten and Furstenberg and in the 70’s-80’s
by the French school: in particular Bougerol, Guivarc’h, Le Page and Raugi.
We also apply our techniques to generic Zariski density. Let Γ1 and Γ2 be

two Zariski dense subgroups of SLd(R) (d > 2). We prove in Theorem 7.4
that one can exhibit a probability measure on each of the subgroups such
that two independent random walks will eventually generate a Zariski dense
subgroup. We have proved in [1] that the latter subgroup is also free. This
gives consequently a “probabilistic” version of the Tits alternative [31].
All the random variables will be defined on a probability space (Ω,F ,P),

the symbol E will refer to the expectation with respect to P and “a.s.” to
almost surely. If Γ is a topological group, µ a probability measure on Γ, we
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TRANSIENCE OF ALGEBRAIC VARIETIES IN LINEAR GROUPS 2051

define a sequence of independent random variables {Xn;n > 0} with the
same law µ. We denote for every n ∈ N∗ by Sn = Xn · · ·X1 the nth step of
the random walk.
First let us present the result we obtain for SL2(R). We will say that

a probability measure µ on SL2(R) is non elementary if the group gen-
erated by its support is non elementary, i.e., Zariski dense in SL2(R) or
equivalently non solvable.

Theorem 1.1. — Let µ be a non elementary probability measure on
SL2(R) having an exponential moment (see Section 5.1 for a definition of
this notion). Then for every proper algebraic subvariety V of SL2(R),

lim sup
n→∞

[
P(Sn ∈ V)

] 1
n < 1.

In particular, every proper algebraic subvariety is transient, that is a.s. Sn
leaves V after some time.
More precisely, if P is a non constant polynomial equation in the entries

of the 2× 2 matrices of SL2(R), then there exists λ > 0 such that:
1
n

log |P (Sn)| a.s.−→
n→∞

λ.

A large deviation inequality holds as well: for every ε > 0:

(1.1) lim sup
n→∞

[
P
(∣∣ 1
n

log |P (Sn)| − λ
∣∣ > ε

)] 1
n

< 1.

Theorem 1.1 is in fact a particular case of a more general statement: The-
orem 1.2 below. If G is the group of real points of an algebraic semisimple
group G, m a Cartan projection (see Section 4), µ a probability measure
on G, then the Kingman subadditive ergodic theorem allows us to define
a vector Liap(µ) (see Definition / Proposition 5.7) in the Weyl chamber of
G which is the almost sure limit of 1

nm(Sn) .

Theorem 1.2. — Let G be an algebraic semisimple group defined and
split over R(1) , G = G(R) its group of real points, Γ a Zariski dense sub-
group of G, V a proper algebraic subvariety of G defined over R, µ a
probability on G with an exponential moment (see Section 5.1) such that
its support generates Γ. Then, there exists a finite union of hyperplanes
H1, · · · , Hr in the Weyl chamber (see Section 4.1) depending only on V
such that if Liap(µ) 6∈ H1 ∪ · · · ∪Hr then,

(1.2) lim sup
n→∞

[
P(Sn ∈ V)

] 1
n < 1.

(1)For example, G = SLd, d > 2.
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2052 Richard AOUN

Probability measures, whose support generates Γ, satisfying the condition
Liap(µ) 6∈ H1∪· · ·Hr exist (See Lemma 5.10). A large deviation inequality
similar to (1.1) holds as well.

Theorem 1.2 clearly implies Theorem 1.1: indeed, everything we want to
show is that the Lyapunov exponent associated to µ (see Definition 5.4) is
non zero (positive). This is ensured by Furstenberg’s theorem [17].

Remark 1.3. — The number λ that appears in Theorem 1.1 or 1.2,
should be seen as a generalization of the classical Lyapunov exponent (see
Definition 5.4). In fact, it will be the Lyapunov exponent relative to the
probability measure ρ(µ) where ρ is some rational representation of G.

Remark 1.4. — Our method doesn’t allow us to estimate P(Sn ∈ V)
when Liap(µ) belongs to the finite union of hyperplanes Hi defined by the
variety V. Example 2 of Section 2 illustrates this.

Let us justify why we will look at the escape from algebraic subvari-
eties and not from C1 submanifolds for instance. Kac and Vinberg proved
in [33] (see also [6]) that there exist discrete Zariski dense subgroups of
SL3(R) preserving a C1 (but not algebraic) manifold on the projective
plane (in fact, such manifolds are obtained as the boundary of a divis-
ible convex in P 2(R)). Let Γ be such a group, C such a manifold and
V = {x ∈ R3 \ {0}; [x] ∈ C}∪ {0} where [x] denotes the projection of x 6= 0
on P 2(R). Note that V is differentiable outside 0. Then, for every x ∈ V,
every n ∈ N, P(Snx ∈ V) = 1. By way of contrast, we show in the fol-
lowing statement that for proper algebraic subvarieties the latter quantity
decreases exponentially fast to zero.

Theorem 1.5. — Let Γ be a Zariski dense subgroup of SLd(R) (d >
2), µ a probability measure with an exponential moment whose support
generates Γ. Then for every proper algebraic subvariety V of Rd, every non
zero vector x of Rd we have:

lim sup
n→∞

[
P(Snx ∈ V)

] 1
n < 1.

As discussed at the beginning of the introduction, it is interesting to
study the transience of proper subgroups. It follows from Varju’s paper
(see [32, Propositions 8 and 9]) that if E is a simple algebraic group de-
fined over R, G the direct product of r copies of E (with r ∈ N∗), Γ a
Zariski dense subgroup of G = G(R), then there exists a symmetric proba-
bility measure µ on Γ whose support generates Γ such that the probability
that the associated random walk escapes from a proper algebraic subgroup
decreases exponentially fast to zero.

ANNALES DE L’INSTITUT FOURIER
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We will show that this in fact holds for all probability measures with an
exponential moment whose support generates Γ and for every semisimple
algebraic group G, namely:

Theorem 1.6. — Let G be a semisimple algebraic group defined over
R, G its group of real points assumed without compact factors, Γ a Zariski
dense subgroup of G and µ a probability measure with an exponential mo-
ment whose support generates Γ. Then for every proper algebraic subgroup
H of G,

lim sup
n→∞

[
P(Sn ∈ H)

] 1
n < 1

where H is the group of real points of H.

The bound obtained by Varju is uniform over the subgroups. Unfortu-
nately our bound in Theorem 1.6 is not.

Our estimates will be applied to show that Zariski density in linear groups
is generic in the following sense:

Theorem 1.7. — Let G be the group of real points of a semisimple
algebraic group split over R. Let Γ1,Γ2 be two Zariski dense subgroups of
G. Then there exist probability measures µ1 and µ2 with an exponential
moment whose support generate respectively Γ1 and Γ2 such that for some
c ∈]0, 1[ and all large n,

P(〈S1,n, S2,n〉 is Zariski dense and free) > 1− cn

where {S2,n;n > 0} and {S2,n, n > 0} are two independent random walks
on Γ1 (resp. Γ2) associated respectively to µ1 and µ2 on Γ1 (resp. Γ2). This
implies that almost surely, for n big enough, the subgroup 〈S1,n, S2,n〉 is
Zariski dense and free.

See Section 7 for the comparison of these results with Rivin’s in [29].

Remark 1.8. — The fact that {w ∈ Ω; 〈Sn(w), Sn′(w)〉 is Zariski dense}
is measurable will follow from Lemma 7.7.

1.1. Outline of the paper

In order to prove Theorem 1.2 (or 1.5, 1.6), one can clearly suppose
that V is a proper hypersurface (i.e., the common zeroes of one polynomial
equation). We will do so in all the paper.
In Section 2, we provide two examples to explain the general idea of the

proofs.

TOME 63 (2013), FASCICULE 5
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Section 3 is purely algebraic. To every proper algebraic hypersurface V
of G we associate a rational real representation ρ of G such that g ∈ V
is equivalent to: the matrix coefficients of ρ(g) satisfy a linear condition
“(L)”. Thus we have “linearized” our variety. This can be seen as a gener-
alization of the well-known Chevalley theorem (Theorem 3.3) concerning
the particular case of subgroups.
In Section 4 we recall standard facts about semisimple algebraic groups

and their rational representations.
In Section 5 we precise some results in the theory of random matrix

products. They will be used in Section 6 in order to show that ρ(Sn) may
verify (L) only with a probability decreasing exponentially in n.
We consider a random walk on a Zariski dense subgroup Γ of the real

points of an algebraic semisimple group. First we define the Lyapunov
vector, which is the normalized Cartan projection of the random walk. We
recall in Theorem 5.8 that it belongs to the interior of the Weyl chamber.
In Lemma 5.10, we show that for every finite union of hyperplanes in the
Weyl chamber, one can always find a probability measure whose support
generates Γ such that the Lyapunov vector does not belong to this union
(this is the condition stated in Theorem 1.2).
Next, we will be interested in the behavior of the components of the

random walk in the Cartan decomposition. Almost all our results will be
quoted from our previous work [1].

In Section 6, we prove our mains results: Theorems 1.2, 1.5 and 1.6.
The key is Theorem 6.1 which computes the probability that a random
walk on a linear algebraic group verifies a linear condition on the matrix
coefficients. No irreducibility assumptions are made, a genericity condition
on the geometry of the Lyapunov vector is however needed.

Finally in Section 7, we apply Theorem 6.1 to prove Theorem 1.7. We
compare our results with Rivin’s in [29].

Acknowledgments. I sincerely thank Emmanuel Breuillard for fruitful dis-
cussions, remarks and advices. It is my pleasure also to thank Emile Le Page
and Yves Guivarc’h for many discussions and Igor Rivin for his interest and
his comments. I thank also the referee for the very useful comments and
corrections. Finally, I thank Orsay university (Paris 11) for the perfect and
exceptional working atmosphere and “Université Saint-Joseph” (Lebanon)
for their warm welcome during Fall 2012.
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2. Examples

In this section, we give examples to illustrate the ideas and methods we
will use in the next section to prove our main results.

2.1. Example 1

This example illustrates Theorem 1.5.
Let Γ be Zariski dense subgroup of SL3(R) (SL3(Z) for example). Con-

sider a probability measure µ on SL3(R) with an exponential moment (see
Section 5.1) whose support generates Γ. For example, if Γ is finitely gen-
erated, choose a probability measure whose support is a finite symmetric
generating set. Let Sn = Xn · · ·X1 be the associated random walk. We
write Sn in the canonical basis of M3,3(R):

Sn =

 an bn cn
dn en fn
gn hn in

 .

We propose to see if the following probability decreases exponentially fast
to zero:

pn = P(a2
n − anen + 2andn − anbn − bndn = 0).

In other words if V is the proper algebraic hypersurface of SL3(R) defined

by V = {

 a b c

d e f

g h i

 ∈ Γ; a2 − ae + 2ad − ab − bd = 0}, then we are

interested in estimating P(Sn ∈ V).

Step 1: Linearization of the algebraic hypersurface V. Let E be
the vector space of homogenous polynomials on three variables X,Y, Z of
degree 2. The group SL3(R) acts on E by the formula:

g · P

 X

Y

Z

 = P
(
gt

 X

Y

Z

)
where gt is the transposed matrix of g when g is expressed in the canonical
basis. Let us write down this representation. We will consider the basis

TOME 63 (2013), FASCICULE 5



2056 Richard AOUN

{X2, Y 2, Z2, XY,XZ,XY } of E.

SL3(R) ρ−→ GL(E) ' GL6(R)

 a b c

d e f

g h i

 7→



a2 b2 c2 ab ac bc

d2 e2 f2 de df ef

g2 h2 i2 gh gi hi

2ad 2be 2cf ae+ bd af + cd bf + ec

2ag 2bh 2ci ah+ gb ai+ cg bi+ ch

2dg 2eh 2fi dh+ eg di+ gf ei+ hf


.

In what follows we identify E with R6 by sending {X2, Y 2, XY,XZ, Y Z}
to the canonical basis {ei; i = 1, · · · , 6}. Then it is clear that

V = {g ∈ SL3(R); ρ(g)(e1 − e4) ∈ H}

where H is the hyperplane in E defined by H = {x = (xi)6
i=1 ∈ R6;x1 +

x4 = 0}.
We say that we have linearized the hypersurface V. This method gener-

alizes easily and yields Lemma 3.2 which holds for arbitrary hypersurfaces.
Note that, for x = e1 − e4,

pn = P (ρ(Sn)x ∈ H) .

Random matrix products in GL6(R). We have now a probability
measure ρ(µ), image of µ under ρ, on GL6(R) with an exponential mo-
ment. The smallest closed group Gρ(µ) containing the support of ρ(µ) is
a Zariski dense subgroup of ρ(SL3(R)). One can verify that ρ is in fact
SL3(R)-irreducible. Since SL3(R) is Zariski connected, we deduce that
Gρ(µ) is a strongly irreducible (Definition 5.2) subgroup of GL6(R). More-
over, the group ρ (SL3(R)) contains clearly a proximal element, then by
Goldsheid-Margulis Theorem [18] (see Theorem 5.3 for the statement), the
same applies for Gρ(µ).
Thus, we can use the theory of random matrix products which gives (see

Theorem 5.15) what we wanted to prove, i.e., :

lim sup
n→+∞

1
n

logP (ρ(Sn)x ∈ H) < 0.

A word about the proof: if [x] denote the projection of x ∈ R6 \ {0}
in the projective space P (R6), then ρ(Sn)[x] converges in law towards a
random variable Z with law the unique µ-invariant probability measure ν
on the projective space P (R6). Moreover, almost surely, Z cannot belong
to the hyperplane H because ν is proper. More precisely, we can control
the distance between Z and a fixed hyperplane H.

ANNALES DE L’INSTITUT FOURIER
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Remark 2.1. — This method does not give an estimate of the growth
of Q(Sn) where Q is the polynomial that defines V. We will see in the next
section (Theorem 6.1) how such quantities can be estimated.

2.2. Example 2

This example illustrates situations in which we are unable to obtain
the exponential decrease of the probability of lying in a subvariety for all
probability measures (see the statement of Theorem 1.2).

As in Example 1, consider a probability measure on SL3(R) with an
exponential moment whose support generates a Zariski dense subgroup of
SL3(R). Say that we would like to estimate the following probability:

qn = P(anen − bndn + 2en = 0).

Let S be the following hypersurface of SL3(R): S = {ae − bd + 2e = 0}
so that qn = P(Sn ∈ S). Consider the natural action of SL3(R) on F =∧2R3 ⊕R3. Denote by η this representation and write η = η1 ⊕ η2. We fix
the basis (e1 ∧ e2, e1 ∧ e3, e2 ∧ e3, e1, e2, e3) of F . Formally, we have:

SL3(R) η−→ GL(F ) ' GL6(R)

 a b c

d e f

g h i

 7→



ae− bd af − cd bf − ec 0 0 0
ah− gb ai− gc bi− hc 0 0 0
dh− eg di− gf ei− hf 0 0 0

0 0 0 a b c

0 0 0 d e f

0 0 0 g h i


.

Thus
S = {g ∈ SL3(R); η(g)x ∈ H}

where x = e1 ∧ e2 + e2 and H = {x ∈ R6;x1 + 2x5 = 0}. Hence, we have
linearized our variety S as in Example 1. The difference between these two
examples is that the representation η is no longer irreducible (η1 and η2 are
its irreducible sub-representations). Hence we cannot use Theorem 5.13.
However, we will see in the proof of Theorem 6.1 that we are able to

solve the problem if the top Lyapunov exponents of η1(µ) and η2(µ) are
distinct.
Let us calculate them. If λ1, λ2 are top two Lyapunov exponents of µ(2) ,

then the top Lyapunov exponent of η1(µ) is λ1 + λ2 and the one corre-
sponding to η2(µ) is clearly λ1. So the problem occurs when λ2 = 0. This

(2)λ1 = limn→+∞
1
n
E(log ||Sn||) and λ1 + λ2 = limn→+∞

1
n
E(log ||

∧2
Sn||)

TOME 63 (2013), FASCICULE 5
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can happen for example when µ is a symmetric probability measure (i.e.,
the law of X1 is the same as X−1

1 ).
However, we can still find a probability measure whose support generates

Γ such that λ2 6= 0, see Lemma 5.10.

3. Linearization of algebraic varieties

Let G be a semisimple algebraic group defined over R, G its group of
real points.
The goal of this section is to linearize every algebraic hypersurface of G

defined over R. More precisely, to every proper algebraic hypersurface V
defined over R, we associate a finite dimensional rational real representation
(ρ, V ) of G, a linear form L of End(V ) such that V = {g ∈ G;L (ρ(g)) = 0}.
In fact, we will find a representation (ρ, V ) of G, a lineD in V , a hyperplane
H in V defined over R such that V = {g ∈ G; g ·D ⊂ H} (see Lemma 3.2).
This has to be seen as a generalization of the well-known Chevalley theorem
for subgroups (see Theorem 3.3).

Definition 3.1 (Matrix coefficients). — If (V, ρ) is a finite dimensional
representation of G, 〈·, ·〉 a scalar product on V , we call 〈ρ(g)v, w〉 for
v, w ∈ V a matrix coefficient and we denote by C(ρ) the span of the matrix
coefficients of the representation ρ, thus a function f ∈ C(ρ) can be written
L ◦ ρ where L is a linear form on the vector space End(V ).

Let ρ1, · · · , ρr be independent R-rational irreducible representations of
G. Any f1 ∈ C(ρ1), · · · , fr ∈ C(ρr) are linearly independent provided that
the representation ρi are pairwise non-isomorphic (see the proof of the
Lemma 3.2 below). The set of elements of G where such a linear dependance
is realized defines clearly an algebraic hypersurface of G. The following
lemma says also that each algebraic hypersurface can be realized in this
way.

Lemma 3.2. — For every algebraic hypersurface V of G defined over R,
there exist a representation (ρ, V ) of G, a line D in V , a hyperplane H of V
defined over R such that V = {g ∈ G; g ·D ⊂ H}. In particular, there exist
a representation (ρ, V ) of G whose irreducible sub-representations,
say ρ1, · · · , ρr, occur only once, f1 ∈ C(ρ1), · · · , fr ∈ C(ρr) such that:

(3.1) V(R) = {g ∈ G;
r∑
i=1

fi(g) = 0}.

ANNALES DE L’INSTITUT FOURIER
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This is equivalent to saying that there exists A ∈ End(V1)⊕ · · · ⊕End(Vr)
such that:

V(R) = {g ∈ G; Tr (ρ(g)A) = 0}.
Here Tr(M) denotes the trace of the endomorphism M .

Proof. — Without loss of generality, we can assume that V is proper.
Let R[G] be the algebra of functions on G, G acting on R[G] by right
translations: g · f(x) = f(xg) ∀g, x ∈ G, P the generator of the ideal
vanishing on V (which is of rank one since V is a hypersurface). Then g ∈
V ⇐⇒ g·P (1) = 0. Consider the sub-representation V = V ect(g·P, g ∈ G).
By [22, Chapter 8, Proposition 8.6], V is a finite dimensional R-rational
representation of G. When V is proper, the subspace H = {f ∈ V ; f(1) =
0} is a hyperplane defined over R so that g ∈ V ⇐⇒ g ·P ∈ H and the first
part of lemma is proved. G being semisimple, we decompose (ρ, V ) into
irreducible sub-representations : V = ⊕ri=1Vi. Decomposing P in the V ′i s
gives easily (3.1) with the only difference that the V ′i s are not necessarily
pairwise non isomorphic.
Suppose for instance that V1 ' V2. In this case, there exists an invertible

matrix M such that ρ2(g) = Mρ1(g)M−1 for every g ∈ G. Let fi = Li ◦ ρi
where Li is a suitable linear form on End(Vi) for i = 1, 2. Then f2 = L̃2 ◦ρ1
where L̃2 is the linear form defined on End(V1) by L̃2(h) = L2(MhM−1),
h ∈ End(V1). Consequently, f2 can be seen in C(ρ1) so that f1 +f2 ∈ C(ρ1)
and V2 can be dropped. By updating r if necessary, we obtain (3.1). �

3.1. The particular case of subgroups

Let G be an algebraic group. The linearization of proper subgroups of
G is Chevalley’s theorem:

Theorem 3.3 (Chevalley, [22]). — Let H be a proper subgroup of G,
then there exist a rational representation (ρ, V ) of G, a line D in V such
that H = {g ∈ G; g ·D = D}.

In the particular case where the subgroup H is reductive, that is contains
no proper connected unipotent subgroups, we have the following stronger
statement:

Proposition 3.4 ([7]). — A subgroup H of G is reductive if and only if
there exists a rational representation (ρ, V ) of G, a non zero vector x ∈ V
such that H is the stabilizer of x and such that Gx is Zariski closed in V .

TOME 63 (2013), FASCICULE 5
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4. Preliminaries on algebraic groups

4.1. The Cartan decomposition

Let G be a semisimple algebraic group defined over R, G its group of
real points, A be a maximal R-split torus of G, X(A) be the group of
R-rational characters of A, ∆ the restricted root system of A in the Lie
algebra of G, ∆+ the system of positive roots (for a fixed order) and Π the
system of simple roots (roots than cannot be obtained as product of two
positive roots).
We consider the natural order on X(A): χ1 > χ2 if and only if there

exist non negative integers {nα;α ∈ Π} with at least one non zero nα such
that χ1

χ2
=
∏
α∈Π α

nα .
Finally define A◦ = {a ∈ A;χ(a) ∈]0; +∞[ ∀χ ∈ X(A)} and set

A+ = {a ∈ A◦ ; α(a) > 1 ; ∀α ∈ Π}.

Then there exists a compact subgroup K of G such that

G = KA+K Cartan or KAK decomposition

(see [21, Chapter 9, Theorem 1.1]).
We denote by a the Lie algebra of A. The exponential map is a bijection

between A◦ and a. A Weyl chamber is a+ = logA+. We denote by m the
corresponding Cartan projection m : G −→ a+.

4.2. Rational representations of algebraic groups

A reference for this section is [22] and [30]. If (ρ, V ) is an R-rational
representation of G then χ ∈ X(A) is called a weight of ρ if it is a common
eigenvalue of A under ρ. We denote by Vχ the weight space associated
to χ which is Vχ = {x ∈ V ; ρ(a)x = χ(a)x ∀ a ∈ A}. The following
holds: V = ⊕χ∈X(A)Vχ. Irreducible representations ρ are characterized
by a particular weight χρ called highest weight which has the following
property: every weight χ of ρ different from χρ is of the form χ = χρ∏

α∈Π
αnα

,
where nα ∈ N for every simple root α. The Vχ’s are not necessarily of
dimension 1. When G is R-split, Vχρ is one dimensional. Recall that an
element γ ∈ GLd(R) is called proximal if it has a unique eigenvalue of
maximal modulus. A representation ρ of a group Γ is said to be proximal
if the group ρ(Γ) has a proximal element. Thus, we obtain
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Lemma 4.1. — Every R-rational irreducible representation of an R-split
semisimple algebraic group is proximal

Let Θρ = {α ∈ Π; χρ/α is a weight of ρ}.

Proposition 4.2 ([30]). — For every α ∈ Π, let wα be the fundamental
weight associated to α. Then, there exists an R-rational representation
(ρα, Vα) of G whose highest weight is a power of wα and whose highest
weight space Vχρα is one-dimensional. Moreover, Θρα = {α}

Mostow theorem [27, §2.6]. Let G = KAK be the Cartan decompo-
sition of G, (ρ, V ) an irreducible rational real representation of G. There
exists a scalar product on V for which the elements of ρ(K) are orthogonal
and those of ρ(A) are symmetric. In particular, the weight spaces are or-
thogonal with respect to it. The norm on V induced by this scalar product
is qualified by “good”.

4.3. Standard Parabolic subgroups and their representations

A reference for this section is [8, §4].
For every subset θ ⊂ Π, denote Aθ = {a ∈ A;α(a) = 1∀α ∈ θ} and let

Lθ be its centralizer in G. Denote by g the Lie algebra of G and for every
α ∈ ∆ denote by Uα the unique closed unipotent subgroup of G with Lie
algebra: uα = gα ⊕ g2α where giα = {X ∈ g;Ad(a)(X) = α(a)iX ∀a ∈ A}.
Let [θ] ⊂ ∆ be the set of roots which can be written as integral com-

bination of roots of θ. Denote by Uθ the unipotent closed subgroup of G
whose Lie algebra is

uθ =
⊕

α∈∆+\([θ]∩∆+)

uα.

We set
Pθ = LθUθ.

This is the standard parabolic subgroup associated to θ. Its Lie algebra is

pθ = z⊕
⊕

α∈∆+∪[θ]

uα

where z is the Lie algebra of Z, the centralizer of A in G. Notice that
PΠ = G.
The following lemma will be useful to us for the proof of Theorem 1.6.
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Lemma 4.3. — Let (ρ, V ) be a proximal rational irreducible representa-
tion of G and consider θ ⊂ Π. Then the line generated by a highest weight
vector of (ρ, V ) is fixed by the parabolic subgroup Pθ if β 6∈ Θρ for every
β ∈ θ. In particular, the line generated by a highest weight vector xα of the
representation (ρα, Vα) defined in Proposition 4.2 is fixed by the standard
parabolic Pθ whenever α 6∈ θ.

Proof. — Let χρ be the highest weight of ρ. We look at the action of the
Lie algebra g on V . It is clear that g−β ·v ∈ Vχρ−β for every v ∈ Vχρ and β ∈
Π. If β 6∈ Θρ, then χρ−β is not a weight of ρ so that Vχρ−β = 0. Hence if θ is
a subset of Π such that β 6∈ Θρ for every β ∈ θ, then the parabolic subgroup
Pθ stabilizes the highest weight space Vχρ , which is the line generated by
any highest weight vector (because ρ is assumed proximal). This proves
the first part of the lemma. The last part follows immediately because the
representation ρα defined in Proposition 4.2 satisfies Θρα = {α} and its
highest weight space is a line. �

5. Random matrix products - convergence
in the Cartan decomposition

We will use in this section standard results in the theory of random
matrix products. A nice reference is the book of Bougerol and Lacroix [10].

5.1. Preliminaries

In the following, G = G(R) is the group of real points of a semisimple
connected algebraic group, Γ a Zariski dense subgroup of G, µ a proba-
bility measure whose support generates Γ, (ρ, V ) an irreducible R-rational
representation of G and χρ its highest weight. Let {Xn;n ∈ N∗} be inde-
pendent random variables on Γ with the same law µ and Sn = Xn · · ·X1
the associated random walk . Fix a measurable section of the product map
K × A ×K → G and denote for every n ∈ N∗, Sn = KnAnUn the corre-
sponding decomposition of Sn. If θ is a probability measure on GLd(R), we
denote by Gθ the smallest closed subgroup containing the support of θ.

We consider the basis of weights of V and the “good norm” given by
Mostow theorem (Paragraph 4.2). It induces a K-invariant norm on

∧2
V

and hence aK-invariant distance δ(·, ·) on the projective space P (V ), called
Fubini-Study distance, defined by: δ([x], [y]) = ||x∧y||

||x||||y|| ; [x], [y] ∈ P (V ).
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We fix an orthonormal basis on each weight space Vχ, and for an element
g ∈ End(V ), gt will be the transpose matrix of g in this basis.
G is isomorphic to a Zariski closed subgroup of SLd(R) for some d ∈ N∗

(see [22]). Let i be such an isomorphism. We say way that µ has a moment
of order one (resp. an exponential moment) if for some (or equivalently
any) norm on End(Rd),

∫
log ||i(g)||dµ(g) < ∞ (resp. for some τ > 0,∫

||i(g)||τdµ(g) < ∞). Lemma 5.1 below shows that is indeed a well de-
fined notion, i.e., the existence of a moment of order one or an exponential
moment is independent of the embedding.

Lemma 5.1. — Let G ⊂ SL(V ) be the R-points of a semisimple alge-
braic group G and G ρ−→ SLd a finite dimensional R-algebraic representa-
tion of G. If µ has a moment of order one (resp. an exponential moment)
then the image of µ under ρ has also a moment of order one (resp. expo-
nential moment).

Proof. — Let us identify every g ∈ G with a vector of Rm2 , where
m = dim(V ). Since ρ is a rational representation, for every i, j ∈ {1, · · · , d},
there exists a polynomial Pi,j on m2 variables such that for every g ∈ G,
ρ(g)i,j = Pi,j(g). Consider the canonical norm on Rd. In particular, ||g|| > 1
for every g ∈ G. Then there exists a constant Ci,j > 0 depending only on
the polynomial Pi,j such that ||ρ(g)i,j || 6 ||g||Ci,j . Hence there exists C > 0,
such that ||ρ(g)|| 6 ||g||C for every g ∈ G. This ends the proof. �

Let us recall some definitions and well-known results.

Definition 5.2. — A subgroup Γ of GLd(R) is called strongly irre-
ducible if and only if the identity component of its Zariski closure does not
fix a proper subspace. It is called proximal if it contains a proximal element
(see Section 4).

The key result which prevents our results from being generalized to an
arbitrary local field is that Goldsheid-Margulis theorem below is valid only
over R.

Theorem 5.3 ([18]). — Let d > 2. A strongly irreducible subgroup of
GLd(R) is proximal if and only if its Zariski closure is.

5.2. Geometry of the Lyapunov vector

First, let us recall the definition of the Lyapunov exponent.

TOME 63 (2013), FASCICULE 5



2064 Richard AOUN

Demonstration/Proposition 5.4 (Lyapunov exponent). — If µ is
a probability measure on GLd(R) having a moment of order one (see Sec-
tion 5.1), || · || a matricial norm on End(V ), Sn = Xn · · ·X1 the correspond-
ing random walk, then the Lyapunov exponent Lµ is Lµ = lim 1

nE(log ||Sn||)
which exists by simple application of the subadditive lemma.
Moreover, the following a.s. limit holds Lµ = lim 1

n log ||Sn||. It can be
proved via the Kingman subadditive ergodic theorem [24].

A useful result will be the following

Proposition 5.5 ([10] Corollary 4, page 53). — Let θ be a probabil-
ity measure on GLd(R) with a moment of order one and such that Gθ :=
〈Supp(θ)〉 is strongly irreducible. Then for every sequence {xn;n > 0} of
vectors in Rd converging to some non zero vector x ∈ Rd, 1

n log ||Snxn||
a.s.−→
n→∞

Lθ.

Remark 5.6. — In [10], the condition is made on the smallest closed sub-
semi-group Γθ containing the support of θ. There is no difference taking Γθ
or Gθ because they have the same Zariski closure. Hence if one is strongly
irreducible than the other satisfies the same property. This remark applies
also for later applications when proximality is envolved (see for example
the statement of Theorem 6.5). This is due to Goloshes-Margulis theorem
(Theorem 5.3) which is special to the field of real numbers.

Demonstration/Proposition 5.7 (Lyapunov vector). — Suppose
that µ has a moment of order one. Then the Lyapunov vector is the con-
stant vector in the Weyl chamber a+ of G (see Section 4.1) defined as the
following a.s. limit:

1
n
m(Sn) a.s−→

n→∞
Liap(µ)

where m is the Cartan projection (Section 4.1).

Proof. — Let α ∈ Π. Since the fundamental weights (wβ)β∈Π is a basis of
a∗, there exists real numbers (nβ)β∈Π such that α =

∏
β∈Π w

nβ
β . For every

β ∈ Π, consider the rational real irreducible representation (ρβ , Vβ) given by
Proposition 4.2 and a good norm on Vβ (Paragraph 4.2). By the definition
of ρβ , there exists an integer lβ such that for every n ∈ N∗, ||ρβ(Sn)|| =
w
lβ
β (An) (where An is the A-part of Sn in theKAK decomposition). Hence,

(5.1) 1
n

log α(An) =
∑
β∈Π

nβ
lβ

1
n

log ||ρβ(Sn)||.

By Definition/Proposition 5.4, lim 1
n log α(An) a.s.=

∑
β∈Π

nβ
lβ
Lρβ(µ). Thus

Liap(µ) is well defined. �
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Theorem 5.8 ([20]). — Suppose that µ has a moment of order one.
Then the Lyapunov vector Liap(µ) belongs to the interior of the Weyl
chamber a+, i.e., α (Liap(µ)) > 0 ∀α ∈ Π.

Remark 5.9. — When the local field in not R, the Lyapunov vector does
not necessarily belong to the interior of a+. The reason is that Goldsheid-
Margulis theorem (Theorem 5.3) is valid only over the real field.

The following lemma describes the geometry of the Lyapunov vector
inside the Weyl chamber.

Lemma 5.10. — Let Γ be a Zariski dense subgroup of G. Then for ev-
ery finite union F of hyperplanes in a (see Section 4.1 for the definition
of a), there exist a probability measure µ on Γ with an exponential mo-
ment whose support generates Γ and whose Lyapunov vector Liap(µ) is
not included in F . In consequence, if (V1, ρ1), · · · , (Vr, ρr) are pairwise non
isomorphic irreducible representations of G (with r > 2), then one can
exhibit a probability measure µ whose support generates Γ, a permutation
σ of {1, · · · , r} such that Lρσ(1)(µ) > · · · > Lρσ(r)(µ) (See Definition 5.4).

Proof. — Let lΓ be the cone in a+ asymptote to m(Γ) (we recall that
m is the Cartan projection defined in Section 4.1). Y. Banjoist proved in
[4] that lΓ is convex and has a non empty interior. Hence, there exists an
sub-cone C of lΓ with non empty interior and whose intersection with every
hyperplane of F is empty.
By [5, Proposition 5.1], there exists a sub-semi-group Γ′ of Γ such that Γ′

is Zariski dense and lΓ′ = C. Without loss of generality, we can assume Γ′
finitely generated. Let µ be a finitely generated probability measure on Γ′
whose support generates all of Γ′. Since, by the definition of the Lyapunov
vector, Liap(µ) belongs to the cone C, we deduce that Liap(µ) 6∈ F .
Let us perturb µ on Γ, that this define a sequence of probability measure

µn with an exponential moment whose support generates Γ such that µn
converge weakly to µ , for example µn = (1 − 1/n)µ + η/n where η is a
probability measure with an exponential moment whose support generates
Γ. The strong irreducibility of Γ′ and the definition of the top Lyapunov
exponent by means of the unique stationary probability measure on the
projective space (see for example ) imply that the Lyapunov vector depends
continuously on the probability measure: see for instance [10, Corollary 7.3,
page 72-73]). Hence, Liap(µn) converge to Liap(µ). Hence, for n big enough,
µn is a probability measure on Γ with Liap(µn) 6∈ F .

Now we prove the last part of the lemma. Let ρ1, · · · , ρr be r rational real
irreducible representations of G and denote by χρi the highest weight of ρi.
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Recall that the set Π of simple roots is a basis of the space R⊗ZX(A), where
X(A) is the set of rational characters of A. Hence for every i = 1, · · · r, there
exist real numbers {ni,α;α ∈ Π} such that:

logχρi =
∑
α∈Π

ni,αlogα.

It can occur that one of the representations is trivial, say ρr. In this case,
for every probability measure µ on Γ, the Lyapunov exponent is zero, i.e.,
Lρr(µ) = 0. But in this case, Furstenberg theorem [17] ensures that for
every i = 1, · · · , r − 1, Lρi(µ) > 0. Hence, without loss of generality, we
can assume that all the representations are non trivial. . For every i < j,
denote by Hi,j the following hyperplane of a:

Hi,j = {χρi = χρj}.

Set F = ∪i<jHi,j . Applying the first part of the lemma shows that there
exists a probability measure on Γ with an exponential moment such that
Liap(µ) 6∈ F . This ends the proof because for every i = 1, · · · , r,

Lρi(µ) = lim 1
n

logχρi(An).

�

5.3. Estimates in the A-part

The following theorem gives an estimates in the A-part of the Cartan
decomposition of the random walk. It can be proved by the same techniques
as in [1] where the theory of random matrix products is treated over an
arbitrary local field. However, since we are working here in R, we will use
another route and apply the large deviations theorem of Le Page [26] in
GLd(R) we recall below. First, let us state our result:

Theorem 5.11 (Ratio in the A-component). — Suppose that µ has an
exponential moment then for every ε > 0 and every non zero weight χ of ρ
distinct from χρ,

(5.2) lim sup
n→∞

[
E[( χ(An)

χρ(An) )ε]
] 1
n < 1.

Moreover, if ρ1, ρ2 are two irreducible rational real representations of G
such that Lρ1(µ) > Lρ2(µ) (Definition 5.4), then for every small enough
ε > 0:

(5.3) lim sup
n→∞

[
E[(χρ2(An)

χρ1(An) )ε]
] 1
n < 1.
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Before giving the proof, we recall Le Page large deviations theorem in
GLd(R):

Theorem 5.12 ([26] Large deviations in GLd(R)). — Let µ be a prob-
ability on GLd(R) having an exponential moment and such that Gµ is
strongly irreducible. Let Sn = Xn · · ·X1 be the corresponding random
walk. Then for every ε > 0,

lim sup
n→∞

[
P
(∣∣ 1
n

log ||Sn|| − Lµ
∣∣ > ε

)] 1
n < 1.

A similar estimate holds for 1
n log ||Snx|| for every non zero vector x ∈ Rd.

Proof of Theorem 5.11. — For every β ∈ Π, a similar large deviation
inequality as in Theorem 5.12 holds for the quantity 1

n log ||ρβ(Sn)|| be-
cause ρβ is strongly irreducible and ρβ(µ) has an exponential moment by
Lemma 5.1. Hence by equation (5.1) a large deviation inequality holds for
1
n logα(An) for every α ∈ Θ. Since χρ/χ =

∏
α∈Π α

nα for non-negative
integers {nα;α ∈ Π}, we get for λ = −

∑
α∈Π nα limn→∞

1
n log α(An) and

for every ε > 0,

(5.4) lim sup
n→∞

[
P
(∣∣ 1
n

log χ(An)
χρ(An) − λ

∣∣ > ε

)] 1
n < 1.

By Theorem 5.8, λ < 0. Hence, by relation (5.4), there exists C1, C2 > 0
such that for all large n: P

(
χ(An)
χρ(An) > exp(−nC1)

)
6 exp(−nC2). Since

χ(a) 6 χρ(a) for every a ∈ A+, we get for every ε > 0, E
[ (

χ(An)
χρ(An)

)ε ]
6

exp(−nC1) + exp(−nC2). This shows (5.2).
By the same large deviations techniques, we can show a similar estimate

as (5.4) for the quotient χρ2 (An)
χρ1 (An) with λ = Lρ2(µ) − Lρ1(µ) < 0. Hence, for

some C3, C4 > 0,

(5.5) P
(
χρ2(An)
χρ1(An) > exp(−nC3)

)
6 exp(−nC4).

If we assume the stronger condition that χρ1 is strictly bigger than χρ2
(3) ,

then the conclusion of the proof can be done along the same lines as the
proof of inequality (5.2). In order to cover the general case, it suffices to
show that, for every small enough ε > 0 we have:

(5.6) lim sup
n→∞

[
E
[(χρ2(An)

χρ1(An)

)ε
1χρ2 (An)
χρ1 (An)>exp(−nC3)

]] 1
n

< 1.

(3)For an example when this condition can occur, see the proof of Theorem 1.5 in
Section 6. For a situation when it doesn’t (and therefore the probabilistic condition
Lρ1(µ) > Lρ2(µ) is needed), see Example 2 in Section 6.
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Indeed, since µ has an exponential moment (see Section 5.1), then Lem-
ma 5.1 shows that for every finite dimensional R-algebraic representation ρ
of G, there exist C5 > 0, ε0 ∈]0, 1[ such that: E

(
||ρ(X±1

1 )||ε
)
6 exp(C5). By

Jensen inequality, this implies that for every ε ∈]0, ε0[, E
(
||ρ(X1)±1||ε

)
6

exp(C5
ε0
ε). Applying this remark to the representations ρ1, ρ2, we get a new

constant C6 > 0 such that for every ε ∈]0, ε0[:

E
[(χρ2(An)

χρ1(An)

)ε ]
6 exp(C6ε n).

Combining the latter estimate, inequality (5.5) and the Cauchy-Schwartz
inequality we get for every ε ∈]0, ε02 [:

E
[(χρ2(An)

χρ1(An)

)ε
1χρ2 (An)
χρ1 (An)>exp(−nC3)

]
6 exp

(
(εC6 −

C4

2 )n
)
.

The latter quantity decreases exponentially fast to zero if ε is chosen small
enough. This proves (5.6). �

5.4. Estimates in the K-parts
and in the direction of the random walk

Recall that we fix a measurable section of the Cartan decomposition
G → KAK and the corresponding decomposition of the random walk Sn
is denoted by Sn = KnAnUn. In this part, we recall some results we proved
in our previous work [1]. The following result shows that the K-parts of
the Cartan decomposition of Sn converges exponentially fast.

Theorem 5.13 ([1], Theorem 4.33. Exponential convergence of the K-
components). — Suppose that µ has an exponential moment and ρ is prox-
imal. Let vρ be a highest weight vector. Then there exists a random variable
Z on the projective space P (V ) such that for every ε > 0:

lim sup
n→∞

[
E
(
δ(U−1

n · [vρ], Z)ε
) ] 1

n < 1.

Here, for M ∈ GL(V ), we have denoted by M t the transpose matrix of M
with respect to the basis of weights. We recall that δ is the Fubini-Study
distance (see the beginning of Section 5.1). In particular, U−1

n · [vρ] con-
verges a.s. towards Z. Moreover, the law of Z is the unique ρ(µ)t-invariant
probability measure on P (V ) (see for example [10, Proposition 3.2 page
50]). A similar estimate holds if we replace Un with k(X1 · · ·Xn) where
k(g) is the K-component of g ∈ G for the fixed KAK decomposition in G.
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A crucial result we will need in the next section is the asymptotic inde-
pendence in the K-parts.

Theorem 5.14 ([1], Theorem 4.35. Asymptotic independence of the
K-components). — With the same assumptions as in Theorem 5.13, there
exist independent random variables Z and T with respective laws the
unique ρ(µ)t (resp. ρ(µ))- invariant probability measure on P (V ) such
that for every small enough ε > 0, every ε-holder (real) function φ on
P (V )× P (V ) and all large n we have:∣∣E (φ([U−1

n · vρ], [Kn · vρ])
)
− E (φ(Z, T ))

∣∣ 6 ||φ||ερ(ε)n

where ||φ||ε = Sup
[x],[y],[x′],[y′]

∣∣φ([x],[x′])−φ([y],[y′])
∣∣

δ([x],[y])ε+δ([x′],[y′])ε .

Finally, we quote the following result of [1] which holds in the more
general context of random walks on linear groups over local fields(4) . It
shows that the direction Sn[x], where x ∈ Rd \ {0}, can be inside a fixed
hyperplane, with only a probability decreasing exponentially fast to zero.

Theorem 5.15 ([1], Theorem 4.18). — Let k be a local field and µ be a
probability measure on GLd(k) with an exponential moment, such that the
smallest closed group Gµ containing the support of µ is strongly irreducible
and proximal, then

(5.7) lim sup
n→+∞

1
n

logP (Sn[x] ∈ H) < 0

uniformly on x ∈ kd \ {0} and the hyperplanes H of kd.

6. Proof of the main theorems

The proof of the main theorems we presented in the introduction is based
on the following

Theorem 6.1. — Let G be a semisimple algebraic group defined over R,
G its group of real points, let (ρ, V ) be a non trivial rational real representa-
tion of G such that its irreducible sub-representations (ρ1, V1), · · · , (ρr, Vr)
are pairwise non isomorphic and let finally A ∈ End(V1) ⊕ · · · ⊕ End(Vr)
such that its projection on End(V1) is non zero. Consider a probability mea-
sure µ on G with an exponential moment and such that Gµ := 〈Supp(µ)〉
is Zariski dense in G. Denote by {Sn;n > 0} the corresponding random
walk. Assume that :
(4)A local field is isomorphic either to R, C, a p-adic field, or a field of Laurent series
over a finite field.
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(1) ρ1 is proximal.
(2) Lρ1(µ) > Lρi(µ) , i = 2, · · · , r (see Definition 5.4).
Then for every ε > 0 there exists ρ(ε) ∈]0, 1[ such that for all large n:

P
(∣∣ 1
n

log |Tr (ρ(Sn)A) | − Lρ1(µ)
∣∣ > ε

)
6 ρ(ε)n.

In particular, Tr (ρ(Sn)A) vanishes only with a probability decreasing ex-
ponentially fast to zero, and 1

n log
∣∣∣Tr (ρ(Sn)A)

∣∣∣ converges a.s. towards
Lρ1(µ).

Assumption 1 in Theorem 6.1 is fulfilled whenever G is R-split (see
Lemma 4.1). We provide two sufficient conditions for assumption 2 to hold:
a probabilistic one and a determinist (algebraic) one.

Remark 6.2 (A probabilistic sufficient conditions for assumption 2). —
Lemma 5.10 proves that assumption 2 is fulfilled whenever the Lyapunov
vector Liap(µ) does not belong to a finite union of hyperplanes in the Weyl
chamber a+.

Remark 6.3 (An algebraic sufficient conditions for assumption 2). — Let
χi be the highest weight of Vi, i = 1, · · · , r. A necessary condition for 2 to
hold is that χ1/χi =

∏
α∈Π α

nα for some non negative integers {nα;α ∈ Π}
with at least one non zero nα. This is easily checked using the fact that the
Lyapunov vector is in the interior of the weal chamber (Theorem 5.8).
See the applications of this remark in the proof of Theorem 1.5

Proof. — To simplify notation, we can assume r = 2. Let d = dim(V ),
p = dim(V1), B1 = (v1, · · · , vp) (resp. B2 = (vp+1, · · · , vd)) a basis of V1
(resp. V2) consisting of weight vectors. We impose v1 and vp+1 to be a
highest weight vectors. This gives a basis B = (B1, B2) of V . The scalar
products on V1 and V2 given by Theorem 4.2 induce naturally a scalar
product on V for which V1 and V2 are orthogonal. In the basis B, ρ(An) =
diag(ρ1(An), ρ2(An)) = diag(a1(n), · · · , ad(n)) with a1(n) = χρ1(An) and
ap+1(n) = χρ2(An) (notations of Section 4). Let Wρi be the set of non zero
weights of (Vi, ρi), i = 1, 2. A simple computation gives:

Tr(ρ(Sn)A) = Tr(ρ(Kn)ρ(An)ρ(Un)A) = Tr(ρ(An)ρ(Un)Aρ(Kn))

=
d∑
i=1

ai(n)〈ρ(Kn)vi, Atρ(Un)tvi〉

where Sn = KnAnUn is the Cartan decomposition of Sn (see Section 4.1).
Since ρ1 is proximal, a2(n) = χ(An) for some weight χ ∈Wρ1 distinct from
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χρ. Then,

Tr(ρ(Sn)A) = χρ1(An)
[
〈Kn·vρ1 , A

tU−1
n ·vρ1〉+

∑
χ 6=χρ1∈Wρ1

O

(
χ(An)
χρ1(An)

)

+
∑

χ∈Wρ2

O

(
χ(An)
χρ1(An)

)]
.

Le Page large deviations theorem (Theorem 5.12) shows that for every
ε > 0 and some ρ ∈]0, 1[:

P
(
exp(nLρ1(µ) − nε) 6 χρ1(An) 6 exp(nLρ1(µ) + nε)

)
> 1− ρn.

Next we show that for every χ 6= χρ1 ∈ Wρ1 and χ ∈ Wρ2 and every
small enough ε > 0:

lim sup
n→∞

[
E
(
χ(An)
χρ(An)

)ε ] 1
n < 1.

Indeed, for χ 6= χρ1 ∈ Wρ1 , this follows from Theorem 5.11 and the fact
that ρ1 is proximal. For χ ∈Wρ2 , this follows also from Theorem 5.11 and
Assumption 2.
Hence, by the Marked property, there exist ε1, ε2 ∈]0, 1[ such that for all

n large enough: P
(
χ(An)
χρ(An) > ε

n
1

)
6 εn2 . The following proposition applied

to the (non trivial) projection of A on V1 and to the representation (ρ1, V1)
ends the proof. �

Proposition 6.4. — Let G be a semisimple algebraic group defined
over R, G its group of real points, Γ a Zariski dense subgroup of G, (ρ, V ) an
irreducible rational real representation of G, µ a probability measure with
an exponential moment and whose support generates Γ. If ρ is proximal,
then for any non zero endomorphism A ∈ End(V ), every t ∈]0, 1[,

lim sup
n→∞

[
P
(
|〈Kn · vρ, AU−1

n · vρ〉| 6 tn
) ] 1

n < 1

where vρ is a highest weight vector.

Before giving the proof, we recall the following remarkable theorem of
Guitar’h:

Theorem 6.5 ([19]). — Let µ be a probability measure on GLd(R)
having an exponential moment and such that Gµ is strongly irreducible
and proximal. Denote by ν the unique µ-invariant probability measure on
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the projective space P (Rd) . Then there exists α > 0 (small enough) such
that:

Sup
{∫ 1∣∣〈 x

||x|| ,
y
||y||
〉∣∣α dν([x]) ; y ∈ Rd \ {0}

}
<∞.

In particular, if Z is a random variable with law ν, there exists a constant
C > 0 such that:

Sup
{
P
(∣∣∣〈Z, x

||x||

〉∣∣∣ 6 ε); x ∈ Rd \ {0}
}
6 Cεα.

Proof of Proposition 6.4.
• Let η the function defined on P (V ) × P (V ) → R by η([x], [y]) =
|〈x,Ay〉| where x and y are two representative of [x] and [y] in the
sphere of radius one. The function η is lipstick with lipstick constant
6 Max{1, ||A||}.

• For every a > 0, let ψa be the function defined on R by ψa(x) = 1
if x ∈ [−a; a]; affine on [−2a;−a[∪]a, 2a] and zero otherwise. One
can easily verify that ψa is lipstick with constant equal to 1

a .
Note also that

(6.1) 1[−a,a] 6 ψa 6 1[−2a,2a].

Define for a > 0, φa = ψa ◦ η. By the previous remarks, φa is lipstick with
lipstick constant: ||φa|| 6 Max{1,||A||}

a .
By Theorem 5.14 there exist independent random variables Z and T in

P (V ) such that for any t ∈]0, 1[, we have:

P(|〈Kn · vρ, AU−1
n · vρ〉| 6 tn) 6 E

(
φtn([Kn ·vρ], [Un−1 ·vρ])

)(6.2)

6 E (φtn(Z, T )) + ||φtn ||ρn(6.3)

6 P(|〈Z,AT 〉| 6 2tn) + Max{1, ||A||}ρ
n

tn
.(6.4)

In the last line, we confused between Z and T in P (V ) and some repre-
sentative in the unit sphere. The bounds (6.2) and (6.4) follow from (6.1).
To prove our proposition, we can clearly suppose t ∈]ρ, 1[. It suffices

then to show that P(|〈Z,AT 〉| 6 2tn) is sub-exponential. The law of T is
the unique ρ(µ)t-invariant probability measure ν on P (V ) (Theorem 5.14).
Moreover, a general lemma of Furstenberg (see for example [10, Proposi-
tion 2.3 page 49]) shows that ν is proper, i.e., does not charge any projec-
tive hyperplane. Hence, a.s. AT 6= 0. Moreover, we claim that the following
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stronger statement holds : there exist D,α > 0 such that for every t′ ∈]0, 1[
and n ∈ N∗:

(6.5) P(||AT || 6 t′n) 6 Dt′nα

Indeed, A being a non zero endomorphism, there exist a non zero vector of
norm one, v0 such that Atv0 6= 0. Then by Theorem 6.5,

P(||AT ||6 t′n) 6 P(|〈AT, v0〉| 6 t′n) 6 P(|〈T,Atv0〉| 6 t′n) 6 C

||Atv0||α
t′nα.

Set D = C/||Atv0||α. Hence for every t′ ∈]t, 1[,

P(|〈Z,AT 〉| 6 2tn) = P(|〈Z, AT

||AT ||
〉| 6 2 tn

||AT ||
)

6 P
(
|〈Z, AT

||AT ||
〉| 6 2(t/t′)n

)
+Dt′

nα

6 Sup{P (δ(Z, [H]) 6 2(t/t′)n) ;
H hyperplane of V }+Dt′

nα
.

We recall that δ is the Fubini-Study distance on the projective space. The
last line is by independence of Z and T . Theorem 6.5 shows that it decreases
exponentially fast to zero. �

As an application, we give the
Proof of Theorem 1.2. — Lemma 3.2 allows us to be in the situation

of Theorem 6.1, i.e., , we have a non trivial representation (ρ, V ) whose
irreducible sub-representations ρ1, · · · , ρr are pairwise non isomorphic, a
endomorphism A ∈ End(V1) ⊕ · · · ⊕ End(Vr) whose restriction to each
End(Vi) non zero such that V = {g ∈ G; Tr (ρ(g)A) = 0}. For every i =
1, ·, r, let χρi be the highest weight of ρi. As in the proof of Lemma 5.10, for
every i < j, denote by Hi,j the following hyperplane of the Weyl chamber:
Hi,j = {χρi = χρj} and F = ∪i,jHi,j . Assuming that Liap(µ) 6∈ F implies
that one of the Lyapunov exponents Lρi(µ), i = 1, · · · , r is the biggest.
Without loss of generality, we can assume that Lρ1(µ) > Lρi(µ) for every i ∈
{2, · · · , r}. Since G is split over R, Lemma 4.1 shows that the representation
ρ1 is proximal. It suffices now to apply Theorem 6.1. �

Proof of Theorem 1.5. — For every k ∈ N, let Symk(Rd) be the vector
space of homogenous polynomials on d variables of degree k. The group
SLd(R) acts on Symk(Rd) by the formula:

g.P (X1, · · · , Xd) = P
(
g−1(X1, · · · , Xd)

)
for every g ∈ SLd(R), P ∈ Symk(Rd). A known fact (see for example [16])
is that the action of SLd(R) on Symk(Rd) is irreducible for every k ∈ N.
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Consider now a proper algebraic hypersurface Ṽ of Rd defined over R, a
non zero vector x of Rd and denote V = {g ∈ SLd(R); gx ∈ Ṽ}. Let now
P be the polynomial that defines Ṽ, k its degree. The polynomial P can
be seen as a vector in V = ⊕ki=0Symi(Rd). Let ρi be the action of SLd(R)
on Symi(Rd). If Pi denotes projection of P on Symi(Rd), then “gx ∈ V ⇔
P (gx) = 0 ⇔

∑k
i=0 fi(g−1) = 0” where fi(g) = ρi(g)(Pi)(x) ∈ C(ρi)

(see Definition 3.1). Moreover, the highest weight of Symi(Rd) is strictly
bigger (for the natural order on X(A) defined in Section 4.1) than the one
of Symi−1(Rd), the ratio being the highest weight of the natural represen-
tation of SLd(R) on Rd. We can then apply Remark 6.3 and Theorem 6.1
to the probability measure µ−1. �

An application of the results of Section 5 independent from Theorem 6.1
is the

Proof of Theorem 1.6. — If the identity component H0 of H is reductive,
then by Proposition 3.4, there exist a rational representation (ρ, V ) of G
and a non zero vector x ∈ V such that the reductive group H0 is the
stabilizer of x and the orbit of x is Zariski closed. Let V = ⊕ri=1Vr be
the decomposition of V into irreducible sub-representations and x = x1 +
· · · + xr the corresponding decomposition of x. Since H0 is the stabilizer
of the vector x, then H0 =

⋂r
i=1 Gxi where Gxi is the stabilizer of xi in

G. Since H0 is proper, there exists i = 1, · · · , r such that Gxi is proper.
Hence, by replacing the representation V with Vi and the subgroup H0

with the proper subgroup Gxi , we can assume that (ρ, V ) is irreducible
and non-trivial. If h1, · · · , hs denote the closets of the finite group H/H0,
then we can write

P(Sn ∈ H) 6
s∑
i=1
P(Snh−1

i · x = x) 6
s∑
i=1
P
(
||ρ(Sn)h

−1
i · x
||x||

|| = 1
)
.

Since G has no compact factors, ρ(G) is non compact. In particular, ρ(Gµ)
is not contained in a compact subgroup of SL(V ) because compact sub-
groups of SL(V ) are algebraic and ρ(Gµ) is Zariski dense in ρ(G). Hence
we can apply Furstenberg theorem ([17]) which shows that Lρ(µ) > 0 (see
Definition 5.4). Applying Le Page large deviations theorem (Theorem 5.12)
shows that for every i = 1, · · · , s, P

(
||Sn · (h−1

i · x)|| 6 exp(nLρ(µ)/2)
)
de-

creases exponentially fast to zero (5) .

(5) If the representation ρ is proximal, we can use only the fact that H0 fixes the line
generated by the vector x and apply Theorem 5.15 instead of Le Page Large deviations
theorem.
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If H0 is not reductive, then it contains a unipotent Zariski connected
R-subgroup U which is normal in H0. Hence H0 ⊂ N(U), where N(U)
is the normalizer of U in G. By [9, Corollary 3.9], there is an R-parabolic
subgroup P of G such that N(U) ⊂ P. By [8, Proposition 5.14], P is
conjugated to one of the standard parabolic subgroups Pθ, θ  Π described
in Section 4.3. Hence, by Lemma 4.3, Pθ fixes the line generated by the
highest weight xα of (ρα, Vα) for every α 6∈ θ. Fix such α. Hence,

H0 ⊂ {g ∈ G0; g · [xα] = [xα]}.

As in the previous paragraph, denote by h1, · · · , hs the closets of the finite
group H/H0. Hence,

(6.6) P(Sn ∈ H) 6
s∑
i=1
P(ρα(Sn)[h−1

i xα] = [xα]).

The representation ρα is G-irreducible hence by connectedness, strongly
irreducible. Moreover, it is proximal because Θρα = {α}, its highest weight
space is a line andG has no compact factors. By Goloshes-Margulis theorem
(Theorem 5.3), ρα(Γ) is proximal. Hence we can apply Theorem 5.15 which
proves the exponential decay of the probability (6.6). �

7. Application to generic Zariski density and to free
subgroups of linear groups

7.1. Statement of the results and commentaries

Let G be a semisimple algebraic group defined over R and G its group
of real points.

Question 7.1. — Let Γ be a Zariski dense subgroup of G. Is it true that
two “random” elements in Γ generate a Zariski dense subgroup of G.

A motivation for this question is the following

Question 7.2. — By the Tits alternative [31], any Zariski dense sub-
group Γ of G contains a Zariski dense free subgroup on two generators.
A natural question is to see if this property is generic. In [1, Theorem 1.1],
we proved that two “random” elements in Γ generate a free subgroup. The
question that arises immediately is to see if the latter subgroup is Zariski
dense.

In recent works of Rivin [29], he showed the following:
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Theorem 7.3 ([29], Corollary 2.11). — Let G = SLd and Γ = SLd(Z)
for some d > 3. Consider the uniform probability measure on a finite sym-
metric generating set and denote by {Sn, n > 0} the associated random
walk. Then, for any g ∈ Γ, there exists a constant c(g) ∈]0, 1[ such that

P(〈g, Sn〉is Zariski dense) > 1− c(g)n.

Moreover, c(g) is effective.

Passing from the “1.5 random subgroup” in Theorem 7.3 to the subgroup
generated by two random elements is delicate since the constant c(g) de-
pends among others things on the norm of g.
Using our Theorem 1.2, we will prove the following

Theorem 7.4. — Let G be the group of real points of a semisimple
algebraic group defined and split over R. Let Γ1,Γ2 be two Zariski dense
subgroups of G. Then there exists probability measures µ1 and µ2 respec-
tively on Γ1 and Γ2 with an exponential moment such that for some c ∈]0, 1[
and all large n,

P(〈S1,n, S2,n〉 is Zariski dense and free) > 1− cn

where {S2,n;n > 0} and {S2,n, n > 0} are two independent random walks
on Γ1 (resp. Γ2) associated respectively to µ1 and µ2. This implies that
almost surely, for n big enough, the subgroup 〈S1,n, S2,n〉 is Zariski dense
and free.

When G = SL2, a stronger statement holds. It will follow immediately
from our result in [1].

Theorem 7.5. — Let Γ1,Γ2 be two Zariski dense subgroups of SL2(R).
Then for any probability measures µ1 and µ2 with an exponential moment
whose support generates respectively Γ1 and Γ2, there exists c ∈]0, 1[ such
that

P(〈S1,n, S2,n〉 is Zariski dense) > 1− cn.

Remark 7.6. — Let us compare Theorem 7.4 with Rivin’s Theorem 7.3.
The advantage of our method is that it allows us to consider two elements at
random and not a “1.5 random subgroup”, which is crucial to solve Ques-
tion 7.2. Furthermore, we do not necessarily consider arithmetic groups,
neither finitely generated groups: any Zariski dense subgroup Γ works. In
addition to that, the statement shows that Zariski density is generic for
a pair of random elements taken in two groups Γ1 and Γ2 not necessarily
equal.
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However, the big inconvenient is that our constants are not effective un-
like Rivin’s. Our result can be applied to prove the “1.5 random subgroup”
but is less interesting than Rivin results since we don’t know if the uniform
probability measure on a finite symmetric generating of SLd(Z) works.
For d = 2, Theorem 7.5 is more satisfying; there is no restrictions neither

on µ1 nor µ2.

7.2. Proofs

Proof of Theorem 7.5. — A subgroup of SL2(R) is Zariski dense if and
only it is not solvable. In particular, a free subgroup of SL2(R) is always
Zariski dense. But in Theorem [1, Theorem 2.11], we proved that with the
same assumptions as in Theorem 7.5, P(〈S1,n, S2,n〉 is not free) decreases
exponentially fast. �

Proof of Theorem 7.4. — The key point is the following

Lemma 7.7 ([13], Lemma 6.8). — Let k be a field of characteristic zero,
G be a semisimple group defined over k, G = G(k). Then there exists a
proper algebraic variety W of G×G defined over k such that any pair of
elements x, y ∈ G generate a Zariski dense subgroup unless (x, y) ∈ W(k).

By Lemma 3.2, there exist a non trivial rational real representation (ρ, V )
of G×G, an endomorphism A 6= 0 ∈ End(V1)⊕ · · · ⊕ End(Vr) such that

(7.1) W ⊂ {(g, h) ∈ G×G; Tr (ρ(g, h)A) = 0}

Let ρ1, · · · , ρr the irreducible sub-representations of ρ. Since Γ1 × Γ2 is
Zariski dense in G×G, the proof of Lemma 5.10 shows that there exist two
probability measures µ1 and µ2 respectively on Γ1 and Γ2, a permutation σ
of {1, · · · , r} such that Lρσ(i)(µ1⊗µ2) > Lρσ(i+1)(µ1⊗µ2) for i = 1, · · · , r. Let
Tn be the random walk (S1,n, S2,n) on Γ1×Γ2 (i.e., the one corresponding
to the probability measure µ1 ⊗ µ2.) By Lemma 7.7 and identity (7.1),

(7.2) P(〈Sn,1, Sn,2〉 is not Zariski dense in G) 6 P
(

Tr (ρ(Tn)A) = 0
)
.

Theorem 6.1 shows that the latter quantity decreases exponentially fast
to zero. �

8. Open problems and questions

• It is interesting to see if the probabilistic methods we used can
generalize Theorem 1.2. More precisely, if µ is a probability measure
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with an exponential moment and whose support generates a Zariski
dense subgroup of the real points of a semisimple algebraic group
G, is it true that for every proper algebraic subvariety V of G,

lim sup
[
P(Sn ∈ V)

] 1
n < 1

where Sn the random walk associated to µ.
• The same question for Theorem 7.4 (i.e., replace there exists by for
all, and do not assume the semisimple algebraic group G R-split.)
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