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THE LAPLACE-BELTRAMI OPERATOR
IN ALMOST-RIEMANNIAN GEOMETRY

by Ugo BOSCAIN & Camille LAURENT (*)

Abstract. — We study the Laplace-Beltrami operator of generalized Rie-
mannian structures on orientable surfaces for which a local orthonormal frame is
given by a pair of vector fields that can become collinear.

Under the assumption that the structure is 2-step Lie bracket generating, we
prove that the Laplace-Beltrami operator is essentially self-adjoint and has discrete
spectrum. As a consequence, a quantum particle cannot cross the singular set (i.e.,
the set where the vector fields become collinear) and the heat cannot flow through
the singularity. This is an interesting phenomenon since when approaching the
singular set all Riemannian quantities explode, but geodesics are still well defined
and can cross the singular set without singularities.

This phenomenon also appears in sub-Riemannian structures which are not equi-
regular, i.e., when the growth vector depends on the point. We show this fact by
analyzing the Martinet case.
Résumé. — On étudie l’opérateur de Laplace-Beltrami dans des structures

Riemanniennes généralisées sur des surfaces orientables pour lesquelles un repère
orthonormé est donné par une paire de champs de vecteurs pouvant devenir coli-
néaires.

Sous l’hypothèse que la structure est génératrice avec des crochets de Lie d’ordre
2, on prouve que l’opérateur de Laplace-Beltrami est essentiellement autoadjoint et
a un spectre discret. Par conséquent, une particule quantique ne peut pas traver-
ser l’ensemble singulier (i.e., là où les champs de vecteurs deviennent colinéaires)
et la chaleur ne peut pas diffuser à travers la singularité. Le phénomène est inté-
ressant puisque lorsqu’on s’approche de l’ensemble singulier, toutes les quantités
Riemanniennes explosent, mais les géodésiques sont encore bien définies et peuvent
traverser l’ensemble singulier sans singularité.

Ce phénomène apparaît aussi dans des structures sous-Riemanniennes qui ne
sont pas équirégulières, i.e., dont le vecteur de croissance dépend du point. On
montre ce fait en analysant le cas Martinet.

Keywords: Grushin, Laplace-Beltrami operator, almost-Riemannian structures.
Math. classification: 53C17,35P05,58C40.
(*) This research has been supported by the European Research Council, ERC StG 2009
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1. Introduction

A 2-dimensional Almost Riemannian Structure (2-ARS for short) is a
generalized Riemannian structure that can be defined locally by a pair of
smooth vector fields on a 2-dimensional manifold M , satisfying the Hör-
mander condition. These vector fields play the role of an orthonormal frame.
Let us denote by N(q) the linear span of the two vector fields at a point

q. Where N(q) is 2-dimensional, the corresponding metric is Riemannian.
Where N(q) is 1-dimensional, the corresponding Riemannian metric is not
well defined, but thanks to the Hörmander condition one can still define
the Carnot-Caratheodory distance between two points, which happens to
be finite and continuous.

2-ARSs were introduced in the context of hypoelliptic operators [20, 21],
they appeared in problems of population transfer in quantum systems [13,
14, 15], and have applications to orbital transfer in space mechanics [10, 9].
2-ARSs are a particular case of rank-varying sub-Riemannian structures
(see for instance [8, 23, 35]).

Generically (i.e., for an open and dense subset of the set of all 2-ARSs,
in a suitable topology), the singular set Z, where N(q) has dimension 1,
is a 1-dimensional embedded submanifold and there are three types of
points: Riemannian points, Grushin points where N(q) is 1-dimensional
and dim(N(q) + [N,N](q)) = 2 and tangency points where dim(N(q) +
[N,N](q)) = 1 and the missing direction is obtained with one more bracket.
One can easily show that at Grushin points N(q) is transversal to Z. Gener-
ically, at tangency points N(q) is tangent to Z and tangency points are
isolated. Normal forms at Riemannian, Grushin and tangency points were
established in [4] and are described in Figure 1.1.

2-ARSs present very interesting phenomena. For instance, geodesics can
pass through the singular set, with no singularities even if all Riemannian
quantities (as for instance the metric, the Riemannian area, the curvature)
explode while approaching Z. Moreover, the presence of a singular set per-
mits the conjugate locus to be nonempty even if the Gaussian curvature is
always negative (where it is defined). See [4] and [4, 2, 17, 18] for Gauss–
Bonnet-type formulas and for a classification of 2-ARSs from the point of
view of Lipschitz equivalence.
In this paper we study the Laplace-Beltrami operator in a 2-ARS. The

main point is that the first order terms explode as a consequence of the
explosion of the area on the singular set Z. In particular we are interested in
its self-adjointness. This is crucial to understand the evolution of a quantum
particle and of the heat flow in a 2-ARS.
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X2 = (y − x2ψ(x))eξ(x,y) ∂

∂x ∂y
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φ ∈ C∞, φ(0, y) 0

φ ∈ C∞, φ(0, y) 0==

==

Figure 1.1. The local representations established in [4]. Tangency
points are the most difficult to handle due to the fact that the as-
ymptotic of the distance is different from the two sides of the singular
set (see [11, 16]).

On M \ Z, this operator is defined as the divergence of the gradient.
The almost-Riemannian gradient can be defined with no difficulty since it
involves only the inverse metric that is well defined (by continuity) even on
the singular set. More precisely, on a Riemannian manifold (M, g), ∇ is the
unique operator from C∞(M) to Vec(M) satisfying gq(∇ φ(q), v) = dφq(v),
∀ q ∈ M, v ∈ TqM . In the two-dimensional case, if in an open set Ω ⊂ M

an orthonormal frame for g is given by two vector fields X1 and X2, then
we have on Ω,

∇(φ) = X1(φ)X1 +X2(φ)X2, (1.1)

where by Xi(φ) we mean the Lie derivative of φ in the direction of Xi

(i = 1, 2). This last formula can be used to define the gradient even where
X1 and X2 are not linearly independent. In this paper, we use formula (1.1)
to define the gradient of a function on a 2-ARS.

TOME 63 (2013), FASCICULE 5



1742 Ugo BOSCAIN & Camille LAURENT

The divergence of a vector field requires a notion of area and in a 2-ARS
the natural area (i.e., the Riemannian one) explodes while q approaches
the singular set. Let us recall that the divergence of a vector field X on
an orientable Riemannian manifold (M, g) is the unique function satisfying
divXdω = LXdω where dω is the Riemannian volume form. In coordinates
divX = 1

ω

∑
i ∂i
(
ωXi

)
, where ω =

√
detg.

To see how the Riemannian quantities (and in particular dω) explode
while approaching the singular set Z, choose a local orthonormal frame for
the 2-ARS of the form X1 = (1, 0) and X2 = (0, f(x, y)), where f is some
smooth function. This is always possible, see for instance [4]. On M \ Z,
for the metric g, the area element dω, the curvature K and the gradient of
a smooth function one has:

g(x, y) =
(

1 0
0 1

f(x,y)2

)
,

dω(x, y) = 1
|f(x, y)|dx dy,

K(x, y) = f(x, y)∂2
xf(x, y)− 2 (∂xf(x, y))2

f(x, y)2 ,

∇(φ) = ∂x(φ)∂x + f2∂y(φ)∂y.

and for a vector field Y = (Y 1, Y 2) one has

div(Y ) = |f |
(
∂x

(
1
|f |
Y 1
)

+ ∂y

(
1
|f |
Y 2
))

= ∂xY
1 + ∂yY

2 − ∂xf

f
Y 1 − ∂yf

f
Y 2 (1.2)

which is not well defined on Z even on vector fields which are linear com-
binations of X1 and X2. In particular, the divergence is not well defined on
X1. As a consequence, the Laplace Beltrami operator presents some singu-
larities in the first order terms. (The choice of the area does not affect the
principal symbol of the operator). More precisely, one has

∆(φ) = ∂2
xφ+ f2∂2

yφ−
∂xf

f
∂xφ+ f(∂yf)(∂yφ). (1.3)

The simplest case is the well known Grushin metric, which is the 2-ARS
on R2 for which an orthonormal basis is given by,

X1 =
(

1
0

)
, X2 =

(
0
x

)
. (1.4)
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Here the singular set Z is the y axis and on R2 \Z the Riemannian metric,
the Riemannian area and the Gaussian curvature are given respectively by:

g =
(

1 0
0 1

x2

)
, dω = 1

|x|
dx dy, K = − 2

x2 . (1.5)

It follows that the Laplace Beltrami operator is given by

∆φ := div(∇(φ)) =
(
∂2
x + x2∂2

y −
1
x
∂x
)
φ, (1.6)

which is the basic model of Laplace Beltrami operator on 2-ARSs and whose
self-adjointness will be studied in this paper. Notice that the operator "sum
of squares",

∆̄ = X2
1 +X2

2 = ∂2
x + x2∂2

y (1.7)

has been deeply studied in the literature. This operator (which in this case
is the principal symbol of ∆) can be obtained as the divergence of the
gradient by taking as area, the standard Euclidean area on R2. However,
this operator does not give any information about ∆ because of the di-
verging first order term. Moreover, in 2-ARS an intrinsic Laplacian with
non-diverging terms cannot be defined naturally, since an intrinsic area
which does not diverge on the singular set is not known. Here by “intrin-
sic” we mean an area which depends only on the 2-ARS and not on the
choice of the coordinates and of the orthonormal frame.
Notice that even if all Riemannian quantities are not defined on Z, clas-

sical geodesics do. See Section 3.1 for the explicit expressions of geodesics in
the Grushin plane. Another interesting feature of the Grushin plane is that
a bounded open set intersecting Z has finite diameter but infinite area.
The main purpose of this paper is to study the following question:
[Q]: Let M be a 2-D manifold endowed with a 2-ARS, and let ∆ be

the corresponding Laplace-Beltrami defined on C∞0 (M \ Z). Is ∆
essentially self-adjoint?

Notice that a priory one expects a negative answer to this question, since,
as explained below, a positive answer would imply that neither the heat
flow nor a quantum particle can pass through Z, while classical geodesics
cross it with no singularities.
Our main result is an unexpected positive answer to the question [Q]

when there are no tangency points and whenM is compact. More precisely,
we have the following.

Theorem 1.1. — LetM be a 2-D compact orientable manifold endowed
with a 2-ARS. Assume that

TOME 63 (2013), FASCICULE 5



1744 Ugo BOSCAIN & Camille LAURENT

[HA]: the singular set Z is an embedded one-dimensional submanifold
of M ;

[HB]: for every q ∈M , N(q) + [N,N](q) = TqM .
Let dω be the corresponding Riemannian area and ∆ the corresponding
Laplace-Beltrami operator, both defined on M \ Z. Then we have the fol-
lowing facts

(1) ∆ with domain C∞0 (M \Z) is essentially self-adjoint on L2(M,dω).
(2) The domain of ∆ (the self-adjoint extension denoted by the same

letter) is given by

D(∆) =
{
u ∈ L2(M,dω)

∣∣∆D,gu ∈ L2(M,dω)
}

where ∆D,gu is ∆u seen as a distribution in Ω = M \ Z.
(3) The resolvent (−∆ + 1)−1 is compact and therefore its spectrum is

discrete and consists of eigenvalues with finite multiplicity.

Hypothesis HA is generic (see [4]). Hypothesis HB implies that every
point is either a Riemannian point or a Grushin point (see Figure 1.1).
The hypothesis that there are no tangency points is technical and the same
result should hold in much more general situations. Indeed, the singular
set behaves like a barrier as a consequence of the explosion of the volume,
and in the case of tangency points this explosion is even stronger. The
orientability of the manifold can be weakened. Indeed it is only necessary
that each connected component of Z (which is diffeomorfic to S1) admits
an open tubular neighborhood diffeomorfic to (−1, 1)×S1. See Proposition
2.3 and 2.4.

Remark 1.2. — Notice that 2-ARSs satisfyingHA andHB do exist. See
for instance [4] where such a 2-ARS has been built on compact orientable
manifolds of any genus. Notice moreover that a 2-ARS satisfying HA and
HB are structurally stable in the sense that small perturbations of the
local orthonormal frames in the C∞ norm, do not destroy conditions HA
and HB.

Theorem 1.1 has a certain number of implications.
First, it implies that a quantum particle, localized for t = 0 on a con-

nected component ofM \Z, remains localized in this connected component
for any time t ∈ R. The same phenomenon holds for the wave or the heat
equation. Indeed, the essential self-adjointness means that our operator can
be naturally and uniquely extended (by taking its closure) to a self-adjoint
operator without adding any additional boundary condition. But, in our
case, one possible extension is to take an extension for the operator defined

ANNALES DE L’INSTITUT FOURIER



THE LAPLACE-BELTRAMI OPERATOR IN 2-ARS 1745

on each connected component (for instance, the Friedrichs extension) and
to “concatenate” them. This possible extension is the one which separates
the dynamics. For instance, this is what we obtain when one defines the
Friedrichs extension of the usual Laplace operator on R defined on function
in C∞0 (R \ {0}). We obtain two distinct dynamics with Dirichlet boundary
condition at 0. Yet, this is of course not the only possible dynamic because
the operator defined on function C∞0 (R\{0}) is not essentially self-adjoint.
Hence, the essential self-adjointness means that the unique self-adjoint ex-
tension of our operator is the one that separates the dynamics on each
connected components. That means that it is not necessary to add any
boundary condition: the explosion of the area naturally acts as a barrier
which prevents the crossing of the degeneracy zone by the particules.
More precisely, we have the following.

Corollary 1.3. — With the notations of Theorem 1.1, consider the
unique solution u of the Schrödinger equation (according to the self-adjoint
extension defined in the previous theorem),{

i∂tu+ ∆u = 0
u(0) = u0 ∈ L2(M,dω) (1.8)

with u0 supported in a connected component Ω of M \ Z. Then, u(t) is
supported in Ω for any t > 0. The same holds for the solution of the heat
or for the solution of the wave equation.

Second, it is well known that in Riemannian geometry one can relate
properties of the Riemannian distance to those of the corresponding heat
kernels. For instance, we have that

Theorem 1.4 (Varadhan, Neel, Stroock). — LetM be a compact, con-
nected, smooth Riemannian manifold and d the corresponding Riemannian
distance. Let pt(q1, q2) be the heat kernel of the heat equation ∂tφ = 1

2∆φ,
where ∆ is the Laplace-Beltrami operator. Define

Et(q1, q2) := −t log pt(q1, q2)

We have:
1): Et(q1, q2)→ 1

2d(q1, q2)2, uniformly on M ×M as t→ 0,
2): Let Cut(q1) ⊂M the cut locus from q1. Then q2 6∈Cut(q1) if and

only if limt→0∇2Et(q1, q2) = 1
2∇

2d(q1, q2)2, while q2 ∈Cut(q1) if
and only if lim supt→0 ‖∇2Et(q1, q2)‖ =∞, where ‖.‖ is the opera-
tor norm.

TOME 63 (2013), FASCICULE 5



1746 Ugo BOSCAIN & Camille LAURENT

The first result is due to Varadhan [34], the second one to Neel and
Stroock [29, 30]. See also [7] for some extensions in sub-Riemannian geom-
etry.

Both these results do not depend upon the fact that one is using the
Laplace-Beltrami operator or the principal symbol of the operator in a
fixed frame to construct the heat kernel.

The situation is very different in 2-ARS. Both these results are false for
the Laplace Beltrami operator. Indeed the distance between two points
belonging to two different connected components of M \Z is finite while if
q belongs to a connected component W of M \Z then pt(q, ·) is supported
in W .
However, a result in the spirit of the one of Varadhan (which applies to

the context of 2-ARG) has been obtained by Leandre in [26] for the operator
“sum of squares”. Hence, the Laplace-Beltrami operator defined above, has
quite different properties with respect to the operator sum of squares. The
last one is not intrinsic, but still keeps tracks of intrinsic quantities as the
almost-Riemannian distance. In particular, the corresponding heat flow
crosses the set Z which is not the case for the Laplace-Beltrami operator.
For relations among the heat kernel on the diagonal and the distance in
sub-Riemannian geometry see [6].
To prove Theorem 1.1 we start by analyzing the Grushin case (1.6). We

first compactify in the y variable by considering it on Rx × Ty.
By setting f =

√
|x|g we are reduced to study the essential self adjoint-

ness of the following operator considered on L2 with the usual euclidian
metric

L = ∂2
x + x2∂2

y −
3
4

1
x2 . (1.9)

If for a moment we forget the term x2∂2
y which is not relevant for the self-

adjointness of this operator (and becomes a non-positive potential −k2x2

after performing Fourier transform in y), we are reduced to study the op-
erator ∂2

x − 3
4

1
x2 , which is well known in the literature. Indeed we have the

following result

Proposition 1.5. — The operator −∂2
x + c

|x|2 defined on L2(]0,+∞[)
with domain C∞0 (]0,+∞[) is essentially self-adjoint if and only c > 3

4 .

In the literature there are different proofs of this result (see [32] Chapter
X for an introduction), often leading to some stronger statements (for in-
stance for potential V > 3

4x2 )) and to generalizations to higher dimensions.
The rest of the proof for an almost Riemannian structure consists in

generalizing this result for a normal form around a connected component

ANNALES DE L’INSTITUT FOURIER
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of the singular set. The main tools are Kato inequality and perturbation
theory.

Remark 1.6. — Notice that, as remarked in the introduction of [22],
solutions of the Schrödinger equation, with the Laplacian defined as sum
of square ∂2

x + x2∂2
y , display a total lack of dispersion: one can not obtain

Strichartz type estimates better than what we could expect by Sobolev
embedding. It would be interesting to understand if the same holds for the
Laplace-Beltrami operator defined by (1.6). Moreover it would be interest-
ing to study if a wave packet moving towards the singular set is reflected
or dispersed.

The structure of the paper is the following. In section 2 we briefly recall
the notion of almost-Riemannian structure. An original result is given in
Proposition 2.3, in which we globalize the normal form of type (F2) around
a connected component of Z in the compact orientable case and under the
assumption that there are no tangency points. In Section 3 we analyze the
Grushin case, both for what concerns geodesics and the self-adjointness of
the Laplace-Beltrami operator. The main result is proven in Section 4.
As a byproduct of our studies, we obtain that the Laplace-Beltrami op-

erator is not essentially self-adjoint when an orthonormal basis is given
by the vectors (1, 0), (0, |x|α) with α ∈ (0, 1) (see remark 3.1). This fact
motivates some remarks on metrics of this kind (which do not enter in the
standard framework of almost-Riemannian geometry, since the vector fields
are not smooth). For instance, we show that in this case, even if the area
element explodes, the area of a bounded open set intersecting Z is finite
(which is false for 2-ARSs). Moreover, we show that there exist regular
curves passing through Z with a velocity not belonging to the span of X1
and X2, having finite length. See Section 3.3.
Finally, in the appendix, we discuss the Martinet case to show that this

kind of phenomenon appears also in sub-Riemannian structure of constant
rank but which are not equiregular, (i.e., sub-Riemannian structure whose
growth vector depends on the point, see for instance [28]). In this case
the role of the Laplace-Beltrami operator is played by the intrinsic sub-
Riemannian Laplacian defined via the Popp measure (see [3, 28]). While
aproaching the Martinet surface, the Popp volume explodes and so do the
first order coefficients of the sub-Riemannian Laplacian.

Theorem 1.7. — Consider the sub-Riemannian structure inM = Tx×
Ry × Tz for which an orthonormal basis is given by X1 = (1, 0, y

2

2 ), X2 =
(0, 1, 0). Then the corresponding intrinsic sub-Riemannian Laplacian which

TOME 63 (2013), FASCICULE 5



1748 Ugo BOSCAIN & Camille LAURENT

is given by ∆sr = (X1)2 + (X2)2 − 1
yX2 with domain C∞0 (M \ {y = 0}) is

essentially self-adjoint on L2(M,dω), where dω = 1
|y|dx dy dz is the Popp

volume.

2. Basic Definitions

In this section we recall some basic definitions in the framework of 2-
ARSs following [4, 2].

LetM be a smooth surface without boundary. Throughout the paper, un-
less specified, manifolds are smooth (i.e., C∞) and without boundary; vec-
tor fields and differential forms are smooth. The set of smooth vector fields
onM is denoted by Vec(M). The circle is denoted by S1 or T depending on
the context. C∞0 denotes the set of smooth functions with compact support.

2.1. 2-Almost-Riemannian Structures

Definition 2.1. — A 2-dimensional almost-Riemannian structure (2-
ARS, for short) is a triple S = (E, f, 〈·, ·〉) where E is a vector bundle of
rank 2 over M and 〈·, ·〉 is a Euclidean structure on E, that is, 〈·, ·〉q is a
scalar product on Eq smoothly depending on q. Finally f : E → TM is a
morphism of vector bundles, i.e., (i) the diagram

E
f //

πE !!DD
DD

DD
DD

TM

π

��
M

commutes, where π : TM → M and πE : E → M denote the canonical
projections and (ii) f is linear on fibers.
Denoting by Γ(E) the C∞(M)-module of smooth sections on E, and by

f∗ : Γ(E) → Vec(M), the map σ 7→ f∗(σ) := f ◦ σ. We require that the
submodule of Vec(M) given by N = f∗(Γ(E)) to be bracket generating, i.e.,
Lieq(N) = TqM for every q ∈M .

Here Lie(N) is the smallest Lie subalgebra of Vec(M) containing N and
Lieq(N) is the linear subspace of TqM whose elements are evaluation at
q of elements belonging to Lie(N). The condition that N satisfies the Lie
bracket generating assumption is also known as the Hörmander condition.
We say that a 2-ARS (E, f, 〈·, ·〉) is orientable if E is orientable as a vector

bundle. Notice that one can build non-orientable 2-ARSs on orientable
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manifolds and orientable 2-ARSs on non-orientable manifolds. See [4] for
some examples. We say that a 2-ARS (E, f, 〈·, ·〉) is trivializable if E is
isomorphic to the trivial bundle M ×R2. A particular case of 2-ARSs is
given by Riemannian surfaces. In this case E = TM and f is the identity.
Let S = (E, f, 〈·, ·〉) be a 2-ARS on a surface M . We denote by N(q) the

linear subspace {V (q) | V ∈ N} = f(Eq) ⊆ TqM . The set of points in M

such that dim(N(q)) < 2 is called singular set and denoted by Z. Since
N is bracket generating, the subspace N(q) is nontrivial for every q and Z
coincides with the set of points q where N is one-dimensional.

The Euclidean structure on E allows to define a symmetric positive def-
inite C∞(M)-bilinear form on the submodule N by

G : N× N→ C∞(M)
G(V,W ) = 〈σV , σW 〉

where σV , σW are the unique(1) sections of E satisfying f◦σV = V, f◦σW =
W .
At points q ∈ M where f|Eq is an isomorphism, i.e., on M \ Z, G is a

tensor and the value G(V,W )|q depends only on V (q),W (q). In this case
G defines a Riemannian metric g via

gq(v, w) = G(V,W )(q), v, w ∈ TqM,

where V and W are two vector fields such that v = V (q) and w = W (q).
This is no longer true at points q where f|Eq is not injective.
If (σ1, σ2) is an orthonormal frame for 〈·, ·〉 on an open subset Ω of M ,

an orthonormal frame for G on Ω is given by (f ◦ σ1, f ◦ σ2). Orthonormal
frames are systems of local generators of N.

For every q ∈M and every v ∈ N(q) define

Gq(v) = inf{〈u, u〉q | u ∈ Eq, f(u) = v}.

An absolutely continuous curve γ : [0, T ]→ M is admissible for S if there
exists a measurable essentially bounded function

[0, T ] 3 t 7→ u(t) ∈ Eγ(t),

called control function such that γ̇(t) = f(u(t)) for almost every t ∈ [0, T ].
Given an admissible curve γ : [0, T ]→M , the length of γ is

`(γ) =
∫ T

0

√
Gγ(t)(γ̇(t)) dt.

(1) the uniqueness is consequence of the fact that we assume E of rank two and N Lie
bracket generating.

TOME 63 (2013), FASCICULE 5
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The Carnot-Caratheodory distance (or sub-Riemannian distance) on M as-
sociated with S is defined as

d(q0, q1) = inf{`(γ) | γ(0) = q0, γ(T ) = q1, γ admissible}.

It is a standard fact that `(γ) is invariant under reparameterization of the
curve γ. Moreover, if an admissible curve γ minimizes the so-called energy
functional E(γ) =

∫ T
0 Gγ(t)(γ̇(t)) dt with T fixed (and fixed initial and

final point) then v =
√

Gγ(t)(γ̇(t)) is constant and γ is also a minimizer of
`(·). On the other hand, a minimizer γ of `(·), such that v is constant, is a
minimizer of E(·) with T = `(γ)/v.
The finiteness and the continuity of d(·, ·) with respect to the topology of

M are guaranteed by the Lie bracket generating assumption on the 2-ARS
(see [5]). The Carnot-Caratheodory distance endows M with the structure
of metric space compatible with the topology ofM as differential manifold.

When the 2-ARS is trivializable, the problem of finding a curve minimiz-
ing the energy between two fixed points q0, q1 ∈M is naturally formulated
as the distributional optimal control problem with quadratic cost and fixed
final time

q̇ =
2∑
i=1

uiXi(q) , ui ∈ R ,

∫ T

0

2∑
i=1

u2
i (t) dt→ min, q(0) = q0, q(T ) = q1.

where {X1, X2} is an orthonormal frame.

2.2. Geodesics

A geodesic for S is a curve γ : [0, T ]→M such that for every sufficiently
small nontrivial interval [t1, t2] ⊂ [0, T ], γ|[t1,t2] is a minimizer of E(·). A
geodesic for which Gγ(t)(γ̇(t)) is (constantly) equal to one is said to be
parameterized by arclength. The local existence of minimizing geodesics is
a standard consequence of Filippov Theorem (see for instance [5]). When
M is compact any two points ofM are connected by a minimizing geodesic.
Locally, in an open set Ω, if {X1, X2} is an orthonormal frame, a curve

parameterized by arclength is a geodesic if and only if it is the projection on
Ω of a solution of the Hamiltonian system corresponding to the Hamiltonian

H(q, λ) = 1
2((λX1(q))2 + (λX2(q))2), q ∈ Ω, λ ∈ T ∗q Ω. (2.1)

lying on the level set H = 1/2. This is the Pontryagin Maximum Principle
[31] in the case of 2-ARSs. Its simple form follows from the absence of ab-
normal extremals in 2-ARSs, as a consequence of the Hörmander condition
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see [4]. Notice that when looking for a geodesic γ minimizing the energy
from a submanifold T (possibly of dimension zero), one should add the
transversality condition λ(0)Tγ(0)T = 0.

2.3. Generic 2-ARSs and normal forms

A property (P ) defined for 2-ARSs is said to be generic if for every rank-2
vector bundle E over M , (P ) holds for every f in an open and dense subset
of the set of morphisms of vector bundles from E to TM , endowed with
the C∞-Whitney topology.

Define N1 = N and Nk+1 = Nk+[N,Nk]. We say that S satisfies condition
(H0) if the following properties hold: (i) Z is an embedded one-dimensional
submanifold ofM ; (ii) the points q ∈M at which N2(q) is one-dimensional
are isolated; (iii) N3(q) = TqM for every q ∈M . It is not difficult to prove
that property (H0) is generic among 2-ARSs (see [4]). This hypothesis
was essential to show Gauss–Bonnet type results for ARSs in [4, 2, 18].
The following theorem recalls the local normal forms for ARSs satisfying
hypothesis (H0) (see Figure 1.1).

Theorem 2.2 ([4]). — Consider a 2-ARS satisfies (H0). Then for every
point q ∈M there exist a neighborhood U of q and an orthonormal frame
{X1, X2} of the ARS on U such that, up to a change of coordinates, q =
(0, 0) and {X1, X2} has one of the forms

(F1) X1(x, y) = ∂
∂x , X2(x, y) = eφ(x,y) ∂

∂y ,

(F2) X1(x, y) = ∂
∂x , X2(x, y) = xeφ(x,y) ∂

∂y ,

(F3) X1(x, y) = ∂
∂x , X2(x, y) = (y − x2ψ(x))eξ(x,y) ∂

∂y ,

where φ, ψ and ξ are smooth functions such that φ(0, y) = 0 and ψ(0) 6= 0.

Let S be a 2-ARS satisfying (H0). A point q ∈ M is said to be an
ordinary point if N(q) = TqM , hence, if S is locally described by (F1). We
call q a Grushin point if N(q) is one-dimensional and N2(q) = TqM , i.e., if
the local description (F2) applies. Finally, if N(q) = N2(q) has dimension
one and N3(q) = TqM then we say that q is a tangency point and S can be
described near q by the normal form (F3).

Notice that under hypothesesHA andHB of Theorem 1.1,H0 is fulfilled
and there are no tangency points.
In the compact case, the following proposition permits to extend the

normal form (F2) to a neighborhood of a connected component of Z, when
there are no tangency points.
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Proposition 2.3. — Consider a 2-ARS on a compact orientable mani-
fold satisfying (H0). Let W be a connected component of Z containing no
tangency points. Then there exists a tubular neighborhood U of W and an
orthonormal frame {X1, X2} of the 2-ARS on U such that, up to a change
of coordinates, W = {(0, y), y ∈ S1} and {X1, X2} has the form

X1(x, y) = ∂

∂x
, X2(x, y) = xeφ(x,y) ∂

∂y . (2.2)

Proof. — The proof consists in using as first coordinates the distance
from W and it is very similar to the proof of Theorem 2.2, which contains
a local version of Proposition 2.3 (see [4] pp. 813–814, proof of Lemma 1
and proof of Theorem 1 for Grushin points). Here we just explain which
modifications are necessary.
SinceM is assumed to be compact thenW is diffeomorphic to S1. More-

over, since M is assumed to be orientable, a sufficiently small open tubular
neighborhood ofW is diffeomorphic to (−1, 1)×S1. Then consider a smooth
regular parametrization S1 3 α 7→ w(α) of W .
Let α 7→ λ0(α) ∈ T ∗w(α)M be a smooth map satisfying H(λ0(α), w(α)) =

1/2, where H is the Hamiltonian of the PMP (2.1) and λ0(α) ⊥ Tw(α)W .
Notice that such a map exists since we are assuming that M is orientable.

Let E(t, α) be the projection on the q variables of the solution at time t of
the Hamiltonian system given by the Pontryagin Maximum Principle with
initial condition (q(0), λ(0)) = (w(α), λ0(α)). With the same arguments
given in the proof of Lemma 1 in [4], one shows that E(t, α) is a local
diffeomorphism around every point of the type (0, ᾱ), ᾱ ∈ S1. Using the
fact that E is a global diffeomorphism from {0}×S1 to W and by suitably
reducing ε one gets that it is a diffeomorphism between (−ε, ε) × S1 (for
some ε > 0) and a tubular neighborhood of W . This permits to use as
coordinates in U the pair (t, α). Indeed t is the distance from W which we
proved to be smooth in U . As in [4], one builds an orthonormal frame in
U defining the vector field X1 by

X1(t, α) = ∂tE(t, α) = ∂t.

As in [4] one obtains that the second vector field of the orthonormal frame
has to be of the form teφ(t,α) ∂

∂α . �

Remark 2.4. — Notice that in Proposition 2.3, the hypothesis that M
is orientable can be weakened by requiring that W admits an open tubular
neighborhood diffeomorphic to (−1, 1)× S1
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3. The Grushin case

As already mentioned the Grushin plane is the trivializable almost Rie-
mannian metric on the (x, y) plane for which an orthonormal basis is given
by

X1 =
(

1
0

)
, X2 =

(
0
x

)
. (3.1)

In the sense of Definition 2.1 it can be seen as a triple (E, f, 〈·, ·〉) where
E = R2 × R2, f((x, y), (a, b)) = ((x, y), (a, bx)) and 〈·, ·〉 is the standard
Euclidean metric.

3.1. Geodesics of the Grushin plane

In this section we recall how to compute the geodesics for the Grushin
plane, with the purpose of stressing that they can cross the singular set
with no singularities.

Setting q = (x, y) and λ = (λ1, λ2), the Hamiltonian (2.1) is given by

H(x, y, λ1, λ2) = 1
2(λ2

1 + x2λ2
2) (3.2)

and the corresponding Hamiltonian equations are:

ẋ = λ1, λ̇1 = −xλ2
2

ẏ = x2λ2, λ̇2 = 0 (3.3)

Geodesics parameterized by arclength are projections on the (x, y) plane
of solutions of these equations, lying on the level set H = 1/2. We study
the geodesics starting from i) a Grushin point, e.g. (0, 0) ii) an ordinary
point, e.g. (−1, 0).

Case (x(0), y(0)) = (0, 0)
In this case the condition H(x(0), y(0), λ1(0), λ2(0)) = 1/2 implies that
we have two families of geodesics corresponding respectively to λ1(0) =
±1, λ2(0) =: a ∈ R. Their expression can be easily obtained and it is
given by:

{
x(t) = ±t, y(t) = 0 if a = 0
x(t) = ± sin(at)

a , y(t) = 2at−sin(2at)
4a2 if a 6= 0

(3.4)

TOME 63 (2013), FASCICULE 5



1754 Ugo BOSCAIN & Camille LAURENT

Some geodesics are plotted in Figure 3.1 together with the “front”, i.e., the
end point of all geodesics at time t = 1. Notice that geodesics start hori-
zontally. The particular form of the front shows the presence of a conjugate
locus accumulating to the origin.

− 1.0 − 0.5 0.5 1.0

− 0.3

− 0.2

− 0.1

0.1

0.2

0.3

Figure 3.1. Geodesics and the front for the Grushin plane, starting
from the singular set.

Case (x(0), y(0)) = (−1, 0)
In this case the condition H(x(0), y(0), λ1(0), λ2(0)) = 1/2 becomes λ2

1 +
λ2

2 = 1 and it is convenient to set λ1 = cos(θ), λ2 = sin(θ), θ ∈ S1. The
expression of the geodesics is given by:

x(t) = t− 1, y(t) = 0, if θ = 0

x(t) = −t− 1, y(t) = 0, if θ = π

x(t) = − sin(θ − t sin(θ))
sin(θ) ,

y(t) =
2t− 2 cos(θ) + sin(2θ−2t sin(θ))

sin(θ)

4 sin(θ)

 if θ /∈ {0, π}

Some geodesics are plotted in Figure 3.2 together with the “front” at time
t = 4.8. Notice that geodesics pass horizontally through Z, with no singu-
larities. The particular form of the front shows the presence of a conjugate
locus. Geodesics can have conjugate times only after intersecting Z. Before
it is impossible since they are Riemannian and the curvature is negative.
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− 6 − 4 ? 2 2 4

− 10

− 5

5

10

Figure 3.2. Geodesics and the front for the Grushin plane, starting
from a Riemannian point.

3.2. The Laplace-Beltrami operator on the Grushin plane

In this section we illustrate in details the results of the paper in the
Grushin case. For the study of the Laplace Beltrami operator it will be
convenient to compactify the y direction considering x ∈ R and y ∈ T.
As mentioned in the introduction, the Laplace-Beltrami operator on the

Grushin plane can be written as

∆ = ∂2
x + x2∂2

y −
1
x
∂x.

We expect that the Laplacian is the Friedrichs extension associated to the
positive quadratic form

Q(u, u) =
∫

R2
|∇u|2 dω =

∫
R2

1
|x|
|∂xu|2 + |x| |∂yu|2dxdy

Let us make the change of variable in Hilbert space f =
√
|x|g which is

unitary from L2(R×T, dω) to L2(R×T, dx dy), so that (f1, f2)L2(R×T,dω) =
(g1, g2)L2(R×T,dx dy).
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We compute the operator in the new variable:

∆f = ∂2
xf + x2∂2

yf −
1
|x|
∂xf

=
√
|x|
[
∂2
xg + x2∂2

yg −
3

4x2 g

]
=:
√
|x|Lg.

Hence we are left to study the operator Lg = ∂2
xg + x2∂2

yg − 3
4x2 g on

L2(R × T, dx dy). By decomposing a function g(x, y) in the Fourier basis
in the variable y, we get the following decomposition

L2(R × T) ≈ ⊕⊥k∈ZHk

where Hk = L2(R) and the operator L acts on each Hk by

(Lu)k(x) = ∂2
xuk − x2k2uk −

3
4x2uk = ∂2

xuk − Vkuk.

with Vk(x) > 3
4x2 . But, we know that in dimension 1, the operator −∂2

x+V

with domain C∞0 (]0,+∞[) is essentially self-adjoint on L2(]0,+∞[) if V >
3

4x2 (see [32], Theorem X.10 for the proof of the limit point case at 0 and
Theorem X.8 at +∞). Hence, each operator ∂2

xuk − Vk is essentially self-
adjoint. As a consequence, L is essentially self-adjoint as well.

Remark 3.1. — V = 3
4x2 is exactly the limit singular potential to have

−∂2
x+V in the limit point case at zero and hence essentially self-adjoint (see

[32, Theorem X.10, page 159]). It is surprising to find the same constant 3
4

for the Grushin operator.
Notice that the Laplace-Beltrami operator for the generalized Riemann-

ian structure having X =
(

1
0

)
and Y =

(
0
|x|α

)
with α > 0 as orthonormal

frame, is given by
∆u = ∂2

xu+ |x|2α∂2
yu−

α

x
∂xu.

By making the change of variable in Hilbert space u = |x|α/2v (which is
unitary from L2(R×T, dω) to L2(R×T, dx dy)) we get for the transformed
operator

∆̃v = ∂2
xv −

α

2

(α
2 + 1

) 1
x2 + |x|2α∂2

yv,

which is essentially self-adjoint if and only if α ∈ [1,+∞[.

3.3. 1/α
√
Grushin

In this section, motivated by Remark 3.1, we briefly discuss the general-
ized Riemannian structures on R2 for which an orthonormal basis is given
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by

X1 =
(

1
0

)
, X2 =

(
0
|x|α

)
, α ∈ (0, 1). (3.5)

Notice that this generalized-Riemannian structure does not fit the def-
inition of almost-Riemannian structures, since the vector fields are not
smooth. As usual, call Z the set in which the two vector fields are not
linearly independent. It is interesting to notice the following issues, which
in some cases are very different with respect to the standard Grushin case:

• The Lie bracket betweenX1 andX2 is not well defined on Z. Indeed
[X1, X2] = (0, α|x|(α−1))T . However, it is not difficult to prove that
the corresponding distance is continuous and endows R2 with its
standard topology (note that it is not the case if α < 0).

• The curvature is given by K = −α(1+α)
x2 and the area element by

dω = 1
|x|α dx dy. Hence, the area element explodes but the area of a

bounded open set intersecting Z is finite (and its diameter is finite
as well). This is certainly the reason why the Laplace-Beltrami oper-
ator is not essentially self-adjoint and, as a consequence, a quantum
particle or the heat flow can pass through the set Z. Notice that
for the Grushin plane a bounded open set intersecting Z has finite
diameter but infinite area.

• There exists regular curves passing through Z with a velocity not
belonging to the span of X1 and X2 and having finite length. For
instance take α = 1/2 and the curve γ(t) := (t, t), t ∈ [−1, 1].
We have γ̇(0) /∈ span{X1(γ(0)), X2(γ(0))} but its length is finite.
Indeed it corresponds to the controls u1 = 1 and u2 = 1/|t|1/2.
Hence, `(γ) =

∫ 1
−1

√
1 + |t|−1dt = 2(

√
2 + arcsinh(1)) ∼ 4.59. Such

phenomenon does not appear on the singular set of a 2-ARS, as a
consequence of the smoothness of orthonormal frames.

4. Laplace-Beltrami on an Almost-Riemannian structure

4.1. Computation in local coordinates

The aim of this subsection is the proof of the following theorem.

Theorem 4.1. — Set Ω = {x = (x, y) ∈ R × T |x 6= 0} and let g a Rie-
mannian metric on Ω of the form diag

(
1, x−2e−2Φ(x,y)) where Φ is a smooth

function which is constant for large |x|. Let ∆ be the corresponding Laplace-
Beltrami operator with domain C∞0 (Ω).
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Then, ∆ is essentially self-adjoint for L2(R × T, dω), where dω is the
corresponding Riemannian area on Ω.

The same result holds by replacing Ω with Ω± where

Ω− = {x = (x, y) ∈ R × T |x < 0} ,
Ω+ = {x = (x, y) ∈ R × T |x > 0} .

A simple consequence of this theorem is that the only self-adjoint Laplace
operator that can be constructed by extension of the natural one (i.e., the
Laplace-Beltrami operator defined on C∞0 (Ω)) preserves the decomposition
L2(Ω, dω) = L2(Ω−, dω)⊕⊥ L2(Ω+, dω) .
Indeed, if we denote ∆− (resp ∆+) the unique self-adjoint extension of

the natural Laplace operator with domain C∞0 (Ω−) (resp C∞0 (Ω+)), we can
define the operator ∆̄(u−+u+) = ∆−u−+∆+u+ with the natural domain
inherited from the one of ∆− and ∆+. The operator ∆̄ is a self-adjoint
extension of the Laplace-Beltrami operator with domain C∞0 (Ω) and it is
the unique one by Theorem 4.1. Another way of seeing this fact is from the
point of view of the evolution equation.

Corollary 4.2. — With the notations of Theorem 4.1, consider the
unique solution u of the Schrödinger equation (according to the self-adjoint
extension defined in the previous theorem),{

i∂tu+ ∆u = 0
u(0) = u0 ∈ L2(R × T, dω) (4.1)

with u0 supported in Ω+. Then, u(t) is supported in Ω+ for any t > 0.
The same holds for the solution of the heat or for the solution of the wave
equation.

This corollary is a simple consequence of the essential self-adjointness of
the Laplace-Beltrami operator as discussed above.

This is in strong contrast with the classical dynamics associated with
this metric where the geodesics can "cross" the barrier {x = 0} (see Figure
3.2). The proof of Theorem 4.1 relies on a change of variable in Hilbert
space similar to the one we did for the Grushin operator which leads to an
operator that can be written as “Grushin type + singular potential”. Then,
we follow the proof of Kalf and Walter [24] (which was himself inspired
by B. Simon [33]) using Kato inequality for the main part. The other part
can be treated by perturbation theory. Note that some related results for
singular potential were proven in [19] and [27].
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Proof. — [Proof of Theorem 4.1] In coordinates, the Laplace-Beltrami
operator has the form

∆ = 1
ω

∑
i,j

∂i
[
ωgij∂j

]
where we have denoted ω =

√
detg the Riemannian volume.

For u ∈ L2(R × T, dω), let us make the change of variable in Hilbert
space u = ω−1/2v which is unitary from L2(R×T, dω) to L2(R×T, dx dy)
and let us compute its action in the new variable.

ω1/2∆ω−1/2v := ∆̃v

= 1
ω1/2

∑
i,j

∂i

[
ωgij∂j(ω−1/2v)

]
= 1

ω1/2

∑
i,j

∂i

[
ωgij(∂jω−1/2)v + gij(ω1/2)∂jv

]
= 1

ω1/2

∑
i,j

[
∂i

[
gijω(∂jω−1/2)

]
v + gijω(∂jω−1/2)∂iv + (∂igij)ω1/2∂jv

+gij(∂iω1/2)∂jv + gij(ω1/2)∂ijv
]

= 1
ω1/2

∑
i,j

[
∂i

[
gijω(∂jω−1/2)

]
v + gijω(∂iω−1/2)∂jv + (∂igij)ω1/2∂jv

+gij(∂iω1/2)∂jv + gij(ω1/2)∂ijv
]
,

where we have used the symmetry of g.
We have: ω(∂iω−1/2)+(∂iω1/2) = − 1

2ωω
−3/2∂iω+ 1

2ω
−1/2∂iω = 0. More-

over let

µ :=
∑
i,j

1
ω1/2 ∂i

[
gijω(∂jω−1/2)

]
= −

∑
i,j

1
2ω1/2 ∂i

[
gij(∂jω)ω−1/2)

]
=

∑
i,j

[
−1

2∂i(g
ij)∂j(lnω)− 1

2ωg
ij∂ijω + 1

4ω2 g
ij(∂iω)(∂jω)

]
.

Hence we get

∆̃v =
∑
i,j

gij∂ijv + (∂igij)∂jv + µv

= dive(∇v) + µv

= dive(G−1∇ev) + µv.

In the last formula we have used matrix notation where G−1 = (gij) and
dive, ∇e are the divergence and the gradient of the Euclidean space. Now,
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let us specify the computation in our diagonal metric.

ω = 1
|x|
e−Φ,

∂1ω = − sgn(x)
|x|2

e−Φ − ∂1Φ
|x|

e−Φ,

∂2ω = −∂2Φ
|x|

e−Φ; ∂2
2ω = (∂2Φ)2

|x|
e−Φ − ∂2

2Φ
|x|

e−Φ,

∂2
1ω = 2

|x|3
e−Φ + 2sgn(x)∂1Φ

|x|2
e−Φ + (∂1Φ)2

|x|
e−Φ − ∂2

1Φ
|x|

e−Φ,

µ = − 1
|x|2
− sgn(x)∂1Φ

|x|
− (∂1Φ)2

2 + ∂2
1Φ
2

+ 1
4|x|2 + sgn(x)∂1Φ

2|x| + (∂1Φ)2

4

+x2e2Φ
[
(∂2Φ)2 + 1

2
[
∂2

2Φ− (∂2Φ)2]+ 1
4(∂2Φ)2

]
= − 3

4|x|2 −
sgn(x)∂1Φ

2|x| − (∂1Φ)2

4 + ∂2
1Φ
2

+x2e2Φ
[

1
2∂

2
2Φ + 3

4(∂2Φ)2
]

:= − 3
4|x|2 − µ2.

Now, we are able to conclude by the following two Lemmas. The first
one proves that the main part without µ2 is essentially self-adjoint while
the second one treats µ2 as a perturbation.

Lemma 4.3. — Let G−1 given by diag
(
1, x2e2Φ(x,y)) with |Φ| 6 C for

C > 0.
The operator L : v 7→ −dive(G−1∇ev) + 3

4|x|2 v defined on L2(R ×
T, dx dy) with domain C∞0 (Ω) is positive and essentially self-adjoint.

Hence, since L defines a positive symmetric operator, its unique self-
adjoint extension is the Friedrichs extension (in the following still denoted
by L).

Lemma 4.4. — The operator of multiplication by µ2 (defined with do-
main C∞0 (Ω))) is infinitesimally small with respect to L. Therefore, by
the theorem of Kato-Rellich (Theorem X.12 of [32]), L + µ2 is essentially
self-adjoint.

To conclude the proof of Theorem 4.1 we are left to prove the two lemmas.
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Proof. — [Proof of Lemma 4.3] We closely follow the proof of Kalf and
Walter [24]. Actually, we mimick the proof of the 1-D case and we use the
fact that our operator is the classical Laplacian with potential for function
only depending on x: −∂2

1 + 3
4|x|2 . It is enough to prove that Ran(L + I)

is dense in L2, see Theorem X.26 of [32]. So, let h ∈ L2(Ω) such that
h ⊥ Ran(L + I) and let us prove h = 0 (we can assume h real valued
without loss of generality).
Set β(x) = |x|3/2e−|x|

1+|x|3/2 . We have β(x) > 0 and β ∈ L2(Ω). We obtain, for
x 6= 0,

−dive(G−1∇eβ) + 3
4|x|2 β + β = −∂2

1β + 3
4|x|2 β + β

= 3|x|1/2e−|x|

4(1 + |x|3/2)3 (|x|2 + 4|x|3/2 + 7|x|1/2 + 4) := X(x)

Let η, ζ ∈ C∞([0,+∞[) so that

η(s) = 0 if s 6 1/2
= 1 if s > 1

ζ(s) = 1 if s 6 1
= 0 if s > 2

Denote βn(x) = η(n|x|)ζ( |x|n )β(x) ∈ C∞0 (Ω) so that Lβn is well defined in
L2(Ω). Moreover, we have

β(x) = O(|x|3/2), |∇β(x)| = O(|x|1/2), as x→ 0

β(x) = O(e−|x|), |∇β(x)| = O(e−|x|), as x→∞

so, Lβn+βn = η(n|x|)ζ( |x|n )X−2∂1

[
η(n|x|)ζ( |x|n )

]
∂1β−∂2

1

[
η(n|x|)ζ( |x|n )

]
β

converges weakly in L2 to X ∈ L2(Ω) such that X(x) > 0. So, we can write

(X, |h|)L2 = lim
n→∞

(Lβn + βn, |h|)L2 > 0

But, we will use the Kato inequality:

Lemma 4.5 (Kato’s inequality, see Lemma A of [25]). —
For v ∈ L1

loc(Ω) real valued such that dive(G−1∇ev) ∈ L1
loc(Ω), we have,

in the sense of distributions on Ω

−dive(G−1∇e|v|) 6 −(sgnv)dive(G−1∇ev).

Notice that the Kato inequality of [25] can only be applied on Ωε :=
{(x, y) ∈ Ω : |x| > ε} where the metric is positive definite. This does
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not create difficulties since we are applying this Lemma in the sense of
distributions on Ω.

Since h ⊥ Ran(L+ I), we have (L+ I)h = 0 in the distributional sense.
So dive(G−1∇eh) ∈ L1

loc(Ω) and we can write (sgnh)(−dive(G−1∇eh) +
3

4|x|2h+h) = 0 as an equality in L1
loc(Ω) and therefore in the distributional

sense. Applying the Kato Lemma to h and βn > 0 as test function, we get

(Lβn + βn, |h|)L2 6 (βn, (sgnh)(Lh+ h))L2 6 0.

So (X, |h|)L2 = 0 and h ≡ 0. �

Proof. — [Proof of Lemma 4.4] The quadratic form associated to L+ 1
is

Q(u, u) =
∫

Ω
(G−1∇eu · ∇eu) + 3

4|x|2 |u|
2 + |u|2 dx dy

For u ∈ C∞0 (Ω), and by Cauchy-Schwarz inequality, we have

Q(u, u) = (Lu, u)L2 + ‖u‖2L2 6 ‖Lu‖L2 ‖u‖L2 + ‖u‖2L2

6 ε ‖Lu‖2L2 +
(

1
4ε + 1

)
‖u‖2L2

Moreover, since Φ is smooth and constant for large x, we have

‖µ2u‖2L2 6 C

(∥∥∥∥ u|x|
∥∥∥∥
L2

+ ‖u‖2L2

)
6 CQ(u, u) 6 Cε ‖Lu‖2L2 + (Cε + 1) ‖u‖2L2 .

Since ε is arbitrary small and the estimate can be extended to any u ∈ D(L)
by taking closure, this yields the result. �

The proof of Theorem 4.1 is concluded. �

The next Lemma is the first step to establish the compactness of the
resolvent of ∆ in the compact case. Of course, since here we are dealing
with the case of R × T, we can not expect compactness without adding a
cut-off function.

Lemma 4.6. — Denote by ∆ the positive self-adjoint operator defined
by Theorem 4.1. Then, the truncated resolvent ρ(x)(−∆ + 1)−1, where
ρ ∈ C∞0 (R), is well-defined and compact from L2(R × T, dω) to itself.

Proof. — The fact that (−∆+1)−1 is well defined comes from the positiv-
ity of −∆. For the compactness it is equivalent to prove that the operator
ρ(x)(−∆̃ + 1)−1 is compact when defined on L2(R × T, dx dy) with the
metric induced by the Lebesgue measure.
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We begin by showing that it is the case for L defined above. Let un
be a real valued sequence in L2(R × T, dx dy) with L2 norm bounded by
1. Denote f̃n := ρ(x)(L + 1)−1un := ρ(x)fn. In particular, Q(fn, fn) =
((L+ 1)fn, fn) = (un, fn) =

∫
ΩG
−1∇efn · ∇efn + 3

4|x|2 |fn|
2 + |fn|2 dx dy

is bounded in L2(R × T, dx dy). Set ε > 0. Take ϕ ∈ C∞0 (R), supported
in ] − ε, ε[ with 0 6 ϕ 6 1 and ϕ ≡ 1 in a neighborhood of 0. Split
f̃n = ϕ(x)f̃n+(1−ϕ(x))f̃n := fn,1 +fn,2. Then, we have |xϕ(x)|2 6 ε2 and
‖ϕfn‖2L2 =

∫ |xϕ(x)|2fn
|x|2 6 ε2 4

3Q(fn, fn) 6 Cε2. This also gives ‖fn,1‖L2 6

Cε. Now that ϕ is fixed, fn,2 = (1−ϕ(x))f̃n = (1−ϕ(x))ρ(x)fn is supported
in a fixed compact of Ω and bounded in H1. Indeed,

‖∇efn,2‖2L2 6 2(‖(1− ϕ(x))ρ(x)∇efn‖2L2 + ‖∂x(ϕ(x)ρ(x))fn‖2L2)
6 CQ(fn, fn) 6 C

where the second inequality comes from the fact that there exists a constant
C such that Id 6 CG−1 (in the sense of quadratic forms) on the support of
(1−ϕ(x))ρ(x). We conclude by invoking the compact embedding of H1 into
L2 on compact sets so that fn,2 is convergent up to extraction. Actually,
we have proved that for any ε > 0, we can find an extraction γ such that
fγ(n) can be written fγ(n) = fγ(n),1 + fγ(n),2 with

∥∥fγ(n),1
∥∥
L2 6 ε and

fγ(n),2 convergent. By choosing ε = 1
p , p ∈ N, and by a diagonal extraction

argument, we easily get that we can find a subsequence such that fγ(n) is
a Cauchy sequence and converges. This gives that ρ(L + 1)−1 is compact.
It remains to prove the same result for L+ µ2.
Again, let un be a sequence in L2(R × T, dx dy) with L2 norm bounded

by 1. Denote f̃n := ρ(x)(L+µ2 +1)−1un := ρ(x)fn. Thanks to Lemma 4.4,
we get

‖(L+ 1)fn‖L2 6 ‖(L+ µ2 + 1)fn‖L2 + ‖µ2fn‖L2

6 ‖un‖L2 + ε ‖(L+ 1)fn‖L2 + Cε ‖fn‖L2

6 Cε + ε ‖(L+ 1)fn‖L2

so that we get by absorption for ε small enough that (L+ 1)fn is bounded.
Since we have proved that ρ(L + 1)−1 is a compact operator, we get that
f̃n = ρ(x)fn = ρ(L+ 1)−1(L+ 1)fn is relativelly compact. �

4.2. Case of a compact manifold

In this section, using the previous results, we prove the three statements
of Theorem 1.1. For the first statement, we have to prove the following.
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Proposition 4.7. — Consider a 2-ARS on a compact manifold M sat-
isfying hypothesesHA andHB. Denote by ∆ the Laplace operator defined
for functions of C∞0 (Ω) where Ω = M \Z. Then, ∆ is essentially self-adjoint
on L2(M,dω).

Proof. — Let M =
⋃
i∈I Ωi be a finite covering of M such that for every

connected component W of Z there exists i ∈ I such that W ⊂ Ωi and
W ∩ Ωj = ∅ for j ∈ I, j 6= i and an orthonormal frame for the 2-ARS in
Ωi is given by (2.2). Moreover assume that if Ωj (j ∈ I) does not contain
any Grushin point, then an orthonormal frame for the 2-ARS in Ωi is
given by the normal form (F1). This is possible thanks to Theorem 2.2 and
Proposition 2.3.
Theorem 4.1 yields the result in local coordinates around a connected

component of the singular set. We only have to extend it to the whole
manifold.

Let (Ψi)i∈I be a partition of unity associated to (Ωi)i∈I , that is Ψi ∈
C∞0 (Ωi) and

∑
i∈I Ψi = 1. We can also assume that Ψi ≡ 0 or Ψi ≡ 1 in

a neighborhood of Z, so that ∇Ψi and ∆Ψi are C∞ compactly supported
in Ω. Here we use the fact that we have global coordinates around every
connected component of Z.

Again, let u ∈ L2(Ω) such that u ⊥ Ran(−∆ + I) and let us prove
u = 0 (we can assume u real valued without loss of generality). We denote
ui = Ψiu ∈ L2(Ωi).
Since the domain of definition of ∆ contains C∞0 (Ω), we get that u is

solution of −∆u + u = 0 in the sense of distributions on Ω. By elliptic
regularity, we get that u ∈ C∞(Ω). Therefore, the only problem is the
possibility to compute integration by part around the degeneracy points.
Let Ωi with i ∈ I be an open set around which we can find a coordinate

system so that the metric g takes the diagonal form
(
1, x−2e−2Φ(x,y)) that

we extend arbitrarily on R×T with Φ smooth constant for large x. We will
denote ∆i, ∇i and dωi the Laplacian, gradient and area corresponding to
this extension on R×T. Since ui ∈ L2(Ωi), we can consider the function ui
in this local coordinates (in what follows we will not distinguish ui with its
representent in local coordinates) and make the computation (in the sense
of distributions of Ω and of R∗ × T in local coordinates):

−∆iui + ui = −2∇iu · ∇iΨi − (∆iΨi)u.

Remark that in these local coordinates u has only a true meaning for small
x but we can then extend this equality on R∗ × T since Ψi is compactly
supported. Moreover, ∇iΨi and ∆iΨi is supported outside of the zone of
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degeneracy Z where u is C∞. So, we get −∆iui + ui ∈ C∞0 (R∗ × T) and
so −∆iui + ui ∈ L2(M,dωi). This is true in the sense of distributions, but
that means that for any ϕ ∈ C∞0 (R∗ × T), we have∣∣(ui,−∆iϕ+ ϕ)L2(R∗×T,dωi)

∣∣ 6 C ‖ϕ‖L2(R∗×T,dωi) .

In particular, that means that ui belongs to the domain of the adjoint of
the operator −∆i + I with domain C∞0 (R∗ × T). But Theorem 4.1 gives
that this operator is essentially self-adjoint so, ui ∈ D(Li) where Li is the
self-adjoint (Friedrichs) extension of −∆i + I on R∗ ×T. In particular, we
can write (the right hand side has to be understood as a limit for a sequence
ui,n in C∞0 (Ω) converging strongly to ui for the norm of the quadratic form)

(ui,−∆iui + ui)L2(R∗×T,dωi) = ‖∇iui‖2L2(R∗×T,dωi) + ‖ui‖2L2(R∗×T,dωi) .

This quantity also makes sense when ui is considered on the manifold M
and the extension of the metric was chosen so that −∆iui+ui = −∆ui+ui
in the sense of ditributions and ∇iui = ∇ui.

The same result holds for i ∈ I corresponding to a Riemannian zone.
Moreover, if i 6= j ∈ I, the common support of ui and uj do not intersect

the degeneracy zone Z. Hence, these functions are C∞ in this zone and we
can write

(ui,−∆uj + uj)L2(M) = (∇ui,∇uj)L2(M) + (ui, uj)L2(M)

By summing up, we get

0 = (u,−∆u+ u)L2(M,dω) = (∇u,∇u)L2(M,dω) + (u, u)L2(M,dω)

and u ≡ 0. �

From now on, we will use the same notation ∆ for the self-adjoint exten-
sion of the symmetric operator ∆.
In order to prove the second statement of Theorem 1.1 we have to prove

the following.

Proposition 4.8. — The domain of ∆ is given by

D(∆) =
{
u ∈ L2(M,dω)

∣∣∆D,gu ∈ L2(M,dω)
}

(4.2)

where ∆D,gu is ∆u seen as a distribution in Ω = M \ Z.

Proof. — Let T be the Laplace operator defined with domain given by
(4.2). We easily see that

D(T ) =
{
u ∈ L2(M,dω) |∃C : ∀ϕ ∈ C∞0 (Ω), |(u,∆ϕ)L2 | 6 C ‖ϕ‖L2

}
= D(∆∗) = D(∆). �
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In order to prove the third statement of Theorem 1.1 we have to prove the
following.

Proposition 4.9. — Denote by ∆ the positive self-adjoint operator
defined by Proposition 4.7, then the resolvent (−∆ + 1)−1 is well defined
and compact from L2(M,dω) to itself with the measure defined by the
metric.
Therefore, the spectrum of ∆ is discrete and consists of eigenvalues of

finite multiplicity.

Proof. — The fact that (−∆ + 1)−1 is well defined comes from the
positivity of −∆. Now, let un be a bounded sequence in L2(M,dω) and
fn = (−∆ + 1)−1un. By density, we can assume un in C∞0 (M \ Z) and
fn ∈ C∞(M \ Z) by elliptic regularity. Then, we have

∫
M
|∇fn|2 + |fn|2 =

(un, fn)L2 bounded.
Consider the partition of unity (Ψi)i∈I introduced in the proof of the

previous Theorem and denote fi,n := Ψifn.
Let i ∈ I be an index corresponding to a “Grushin zone”. By the formula

(−∆ + I)fn,i = Ψiun − 2∇Ψi · ∇fn − (∆Ψi)fn,

we have that (−∆+I)fn,i is bounded in L2(M). By using Lemma 4.6, we get
that ρ(x)(−∆i + 1)−1(−∆ + I)fn,i is compact for a function ρ ∈ C∞0 (R)
defined in some local coordinate charts. Here, we have denoted ∆i the
Laplacian for an extension of the local metric to R × T. To finish, we
only have to notice that (−∆i + 1)−1(−∆ + I)fn,i = (−∆i + 1)−1(−∆i +
1)fn,i = fn,i because of the support of fn,i (note that it is not the case for
(−∆i + 1)−1 because the resolvent depends on the extension).
So, choosing ρ such that ρ(x)fn,i = fn,i in local coordinates, we have

proved that each sequence fn,i is compact for a Grushin zone. The same
result holds for a Riemannian zone because the equivalent of Lemma 4.6
still holds for any Riemannian extension. In sum, we get that the sequence
fn is convergent up to extraction, which yields the result. �

Appendix A. The Martinet case

In this Section, we prove Theorem 1.7. A sub-Riemannian structure is
a triple (M,N,g), where M is a smooth manifold, N is a smooth vector
distribution of constant rank satisfying the Hörmander condition, and g
is a Riemannian metric on N. Let N1 = N and Nk+1 = Nk + [N,Nk]. A
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sub-Riemannian structure is said to be equiregular if the dimension of Nk
does not depend on the point.
Almost-Riemannian and sub-Riemannian structures can be treated in the

unified setting of rank-varying sub-Riemannian structures, see [1, Chapter
3] and [2, Definition 2]. For sake of readability, we omit this point of view.

In this section, we briefly treat the Martinet sub-Riemannian manifold
(see for instance [12, 28]), defined byM = R3, N(q) = span{X1(q), X2(q)},
and g(Xi, Xj) = δij , i, j = 1, 2, where

X1 =

 1
0
y2

2

 , X2 =

 0
1
0

 . (A.1)

Notice that X3 = [X1, X2] =

 0
0
−y

. Hence, X1, X2 and X3 span

the tangent space at any point outside the so called Martinet plane Z =
{y = 0}, which is the region where the structure is not equiregular. However

X4 = [[X1, X2], X2] = [X3, X2] =

 0
0
1

, hence, the Hörmander condition

is fulfilled on the whole space.
With this structure, R3 \ Z is a 3D sub-Riemannian contact manifold.

On such a structure it is possible to define intrinsically a volume form
which is given by dX1 ∧ dX2 ∧ dX3, where {dX1, dX2, dX3} is the dual
basis to {X1, X2, X3}. Such a volume form is independent on the choice
of the orthonormal basis which define the sub-Riemannian structure, and
it is called the Popp measure (see [28] and Proposition 8 of [3]). One gets
dX1 = dx, dX2 = dy and dX3 = y

2dx −
1
ydz so that dX1 ∧ dX2 ∧ dX3 =

− 1
ydx ∧ dy ∧ dz and the corresponding density is dω = 1

|y|dxdydz. This
allows to define the sub-Riemannian Laplacian as the divergence of the
sub-Riemannian gradient defined as in formula (1.1) (see Remark 14 of
[3]),

∆sr = (X1)2 + (X2)2 − 1
y
X2 = (∂x + y2

2 ∂z)
2 + ∂2

y −
1
y
∂y. (A.2)

Notice that the singularity in the first order term of ∆sr appears similarly
as it does in the Grushin case. We do the same reasoning.
For simplicity, we compactify in x and z and consider the same structure

on M = Tx×Ry ×Tz. We will prove that ∆sr is essentially self-adjoint on
L2(M,dω) with domain C∞0 (M \Z). Again, we make the change of variable
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in Hilbert space f =
√
|y|g so that

∆srf =
√
|y|
(

(∂x + y2

2 ∂z)
2g + ∂2

yg −
3

4|y|2 g
)

=
√
|y|∆̃srg. (A.3)

So, we are left to prove that ∆̃sr = (∂x+ y2

2 ∂z)
2 +∂2

y− 3
4y2 is essentially self-

adjoint on L2(T×R×T, dx dy dz) with domain C∞0 (M \ Z). We compute
the Fourier transform in x and z and get the decomposition

L2(T×R × T) ≈ ⊕⊥(k,l)∈Z2H(k,l)

where H(k,l) = L2(R) and the operator L acts on each H(k,l) by

(Lu)(k,l)(y) = ∂2
yu(k,l) − (k + y2

2 l)
2u(k,l) −

3
4y2u(k,l) = ∂2

yu(k,l) − V(k,l)u(k,l).

with V(k,l)(y) > 3
4y2 . We conclude as in the Grushin case.

This result suggests the general conjecture that for a sub-Riemannian
structure which is rank-varying or not equiregular on an hypersurface, the
singular set acts as a barrier for the heat flow and for a quantum particle.
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