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KOSZUL DUALITY AND SEMISIMPLICITY
OF FROBENIUS

by Pramod N. ACHAR & Simon RICHE

Abstract. — A fundamental result of Bĕılinson–Ginzburg–Soergel states that
on flag varieties and related spaces, a certain modified version of the category
of `-adic perverse sheaves exhibits a phenomenon known as Koszul duality. The
modification essentially consists of discarding objects whose stalks carry a non-
semisimple action of Frobenius. In this paper, we prove that a number of common
sheaf functors (various pull-backs and push-forwards) induce corresponding func-
tors on the modified category or its triangulated analogue. In particular, we show
that these functors preserve semisimplicity of the Frobenius action.
Résumé. — D’après un résultat fondamental de Bĕılinson–Ginzburg–Soergel,

sur les variétés de drapeaux et certains autres espaces, une version modifiée de la
catégorie des faisceaux pervers `-adiques possède des propriétés liées à la dualité de
Koszul. Cette catégorie modifiée est obtenue en éliminant les objets où l’action du
Frobenius sur les fibres n’est pas semi-simple. Dans cet article, nous démontrons
que de nombreuses opérations faisceautiques s’étendent à cette catégorie modifiée
et sa version triangulée. En particulier, ces foncteurs préservent la semi-simplicité
de l’action du Frobenius.

1. Introduction

Let X be a variety over a finite field Fq. In Deligne’s work on the Weil
conjectures [16, 17], a central role is played by the category of “mixed
constructible complexes of Q`-sheaves” on X, denoted DWeil(X) in the
present paper. (Henceforth, we will avoid calling this category “mixed,” as
that conflicts with the terminology of [9].) In order to belong to DWeil(X),
a complex F must have the property that the eigenvalues of the Frobenius
action on stalks of F at Fqn -points of X are of a certain form. One of the
main results of Deligne’s work states that this constraint on eigenvalues of
Frobenius is preserved by all the usual sheaf operations [17, §6.1].

Keywords: Koszul duality; perverse sheaves; flag variety.
Math. classification: 16S37, 14F05, 14M15.



1512 Pramod N. ACHAR & Simon RICHE

However, since the work of Beilinson–Ginzburg–Soergel [9], it has been
known that DWeil(X) and its abelian subcategory PWeil(X) of perverse
sheaves are “too large” for certain applications in representation theory.
For instance, when X is the flag variety of a reductive algebraic group G,
the category PWeil

S (X) of perverse sheaves smooth along the stratification
S by Bruhat cells is very close to being a Koszul category (see Section 2.4).
To achieve Koszulity, one must replace it by the full subcategory Pmix

S (X)
consisting of objects on which the Frobenius action is semisimple and has
integral eigenvalues. A similar phenomenon occurs at the level of the de-
rived category in work of Arkhipov–Bezrukavnikov–Ginzburg [4]; see the
remarks at the end of the introduction.
For a variety X with a fixed stratification S , we may pose two general

questions:
(Q1) Is there a triangulated category Dmix

S (X) ⊂ DWeil
S (X) analogous to

Pmix
S (X) on whose objects the Frobenius action is semisimple and

has integral eigenvalues?
(Q2) Following Deligne, do the usual sheaf operations preserve these

stronger conditions on the action of Frobenius?
These questions (along with (Q3) below) are closely related to the “stan-
dard conjectures on algebraic cycles” and to the Tate conjecture; see [25,
§2.9] or [21, Proposition 1.15]. The aim of this paper is to supply pos-
itive answers in certain very special cases. In fact, the flag variety is the
archetype for the cases we are able to treat; the Koszul duality phenomenon
is an essential ingredient in our proofs.
Let us explain what form the answers to the questions above might take,

starting with (Q1). It is fairly easy to write down (see Section 6.4) a con-
dition on objects that generalizes the definition of Pmix

S (X). However, the
resulting full subcategory, which we denote Dmisc

S (X) and call the misci-
ble category, has a severe disadvantage: it is not a triangulated category.
The problem lies in the word “full”: Dmisc

S (X) contains morphisms with no
cone, so to give a satisfactory answer to (Q1), we must discard some mor-
phisms from that category so that what remains is a triangulated category.
Equivalently, we could answer (Q1) by constructing a triangulated category
Dmix

S (X) together with a triangulated functor ι : Dmix
S (X) → DWeil

S (X)
such that the following conditions hold:
(D1) ι is faithful (but not full in general).
(D2) The essential image of ι is Dmisc

S (X).
One additional desideratum we might impose on Dmix

S (X) and ι is as fol-
lows:

ANNALES DE L’INSTITUT FOURIER



KOSZUL DUALITY AND SEMISIMPLICITY OF FROBENIUS 1513

(D3) Dmix
S (X) admits a t-structure whose heart can be identified with

Pmix
S (X), and ι is t-exact and induces a fully faithful functor ι :

Pmix
S (X)→ PWeil

S (X).
Turning now to (Q2), we say that a functor F : DWeil

S (X) → DWeil
T (Y )

is miscible if F (Dmisc
S (X)) ⊂ Dmisc

T (Y ). A positive answer to (Q2) consists
of showing that the usual sheaf operations are miscible. However, the re-
stricted functor F : Dmisc

S (X) → Dmisc
T (Y ) is not one that can be studied

with the usual tools of homological algebra, because the categories involved
are not triangulated.
In retrospect, we see that (Q2) was too coarse a question, because it was

only about preserving a certain class of objects. Instead, we really ought
to ask:
(Q3) Do the usual sheaf operations preserve the class of morphisms in

the image of ι : Dmix
S (X)→ Dmisc

S (X)?
Let us make this more precise. A miscible functor F : DWeil

S (X) →
DWeil

T (Y ) is said to be genuine if there is a functor of triangulated categories
F̃ : Dmix

S (X)→ Dmix
T (Y ) making the diagram

Dmix
S (X)

F̃

��

ι // Dmisc
S (X)

F

��
Dmix

T (Y )
ι

// Dmisc
T (Y )

commute. (Q3) asks us to show that the usual sheaf operations are genuine.
The definition of genuineness suggests that we should go back and add one
more desideratum to our list:
(D4) For any genuine functor F : DWeil

S (X) → DWeil
T (Y ), the induced

functor F̃ : Dmix
S (X)→ Dmix

T (Y ) is unique up to isomorphism.

In this paper, we consider a very special class of stratifications, called
affable stratifications. For varieties with an affable stratification, we explain
how to construct the category Dmix

S (X) and the functor ι : Dmix
S (X) →

DWeil
S (X) satisfying desiderata (D1)–(D4), answering (Q1). We prove that

a number of common functors (proper push-forwards, tensor products, etc.)
are at least miscible, answering (Q2). For some of these (notably, locally
closed inclusions, and push-forward along a smooth proper map), we further
prove that they are genuine, answering (Q3).

The paper is divided into three parts. Part 1 introduces various no-
tions and results in abstract homological algebra that are needed later. In

TOME 63 (2013), FASCICULE 4



1514 Pramod N. ACHAR & Simon RICHE

particular, Section 3 introduces a class of additive categories, called infin-
itesimal extensions, that are “almost triangulated.” Section 4 introduces
Orlov categories, which are a useful tool for constructing morphisms be-
tween functors of triangulated categories. Orlov categories also turn out
to be closely related to Koszul duality, of which we give a self-contained
account in Section 5.
Part 2 is the core of the paper. It contains the definition of affable strati-

fication, and the definition of the category Dmix
S (X). (This definition relies

on the fact that Dmisc
S (X) is an infinitesimal extension.) The main results,

which assert the miscibility or genuineness of various functors, appear in
Section 9. Their proofs rely heavily on the theory of Orlov categories.
Finally, Part 3 gives two brief applications of these results to repre-

sentation theory, both related to the work of Arkhipov–Bezrukavnikov–
Ginzburg [4] mentioned earlier. That paper deals with the affine Grass-
mannian Gr for a semisimple algebraic group, stratified by orbits of an
Iwahori subgroup. Realizing that DWeil

S (Gr) was the wrong category for
their purposes, the authors of that paper substituted the derived cat-
egory DbPmix

S (Gr). It turns out that in this case, the natural functor
DbPmix

S (Gr) → DWeil
S (Gr) is faithful and induces an equivalence

DbPmix
S (Gr) ∼−→ Dmix

S (Gr). Using the sheaf operations on this category
that are made available by the results of Part 2, we prove two small results
about Andersen–Jantzen sheaves and about Wakimoto sheaves.
In a subsequent paper [1], the authors will use the theory developed here

to show that a derived version of the geometric Satake equivalence coming
from [4] is compatible with restriction to a Levi subgroup.
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Part 1. Homological algebra

2. Mixed and Koszul categories
We begin by collecting a number of definitions related to abelian and

triangulated categories. Fix a field k. In this section, and throughout Part 1,

ANNALES DE L’INSTITUT FOURIER



KOSZUL DUALITY AND SEMISIMPLICITY OF FROBENIUS 1515

all additive categories will be k-linear, and all functors between additive
categories will be assumed to be additive and k-linear as well.
In any additive category A , we write Ind(A ) for the set of isomorphism

classes of indecomposable objects in A , or, by an abuse of notation, for a
chosen set of representative objects of those isomorphism classes. Similarly,
in an abelian category M , we write Irr(M ) for the set of isomorphism
classes of simple objects, or for a chosen set of representatives of those
isomorphism classes. For any L ∈ Irr(M ), the ring End(L) is a division
ring over k. We say that M is split if

End(L) ∼= k for all L ∈ Irr(M ).

Finally, we say that M is a finite-length abelian category if it is both
noetherian and artinian.

2.1. Mixed categories

Let M be a finite-length abelian category. As in [9], a mixed structure
on M is a function wt : Irr(M )→ Z such that

Ext1(S, S′) = 0 if S, S′ are simple objects with wt(S′) > wt(S).
(2.1)

This function is called a weight function. The set of weights of an object X
is simply the set of values of wt evaluated on the composition factors of X.
An object is said to be pure if all its simple composition factors have the
same weight. It is a consequence of (2.1) that pure objects are automatically
semisimple. Every object X is endowed with a canonical weight filtration,
denoted

W•X,

such that WkX is the unique maximal subobject of X with weights 6 k.

2.2. Mixed triangulated categories

Suppose that we have a triangulated category D equipped with a boun-
ded t-structure whose heart is M . A mixed structure on D is simply a
mixed structure on M that satisfies the following stronger version of (2.1):

Homi
D(S, S′) = 0 if S, S′ ∈M are simple and wt(S′) > wt(S)− i.

(2.2)

TOME 63 (2013), FASCICULE 4



1516 Pramod N. ACHAR & Simon RICHE

Here, as usual, we write Homi(S, S′) for Hom(S, S′[i]). When i = 1, this
condition is equivalent to (2.1), by [7, Remarque 3.1.17(ii)]. An objectM ∈
D is said to have weights 6 w (resp. have weights > w, be pure of weight
w) if each cohomology object Hi(M) ∈M has weights 6 w + i (resp. has
weights > w + i, is pure of weight w + i).
In the special case where D = Db(M ), condition (2.1) implies (2.2),

because any morphism in Homi(S, S′) is a composition of morphisms in
various Hom1-groups. In other words, the bounded derived category of a
mixed abelian category automatically has a mixed structure. The following
basic facts are well-known.

Lemma 2.1. — Let M be the heart of a t-structure on D , and suppose
D has a mixed structure.

(1) If X,Y ∈ D are objects such that X has weights 6 w and Y has
weights > w, then Hom(X,Y ) = 0.

(2) Let X be an object of D with weights > a and 6 b. For any w ∈ Z,
there is a distinguished triangle

X ′ → X → X ′′ →

where X ′ has weights > a and 6 w, and X ′′ has weights > w

and 6 b.
(3) Every pure object X ∈ D is semisimple. That is, if X is pure of

weight w, then X ∼=
⊕

iH
i(X)[−i], where each Hi(X) ∈ M is a

pure (and therefore semisimple) object of weight w + i. �

Note that neither the distinguished triangle in part (2) nor the direct-sum
decomposition in part (3) is canonical in general.

2.3. Tate twists; mixed and graded versions

Suppose now that M is a mixed abelian category endowed with an
autoequivalence, denoted M 7→ M〈1〉, such that for a simple object S,
wt(S〈1〉) = wt(S) + 1. Suppose also that we have an exact functor ζ :
M →M ′ to another finite-length abelian category M ′, together with an
isomorphism ε : ζ ◦ 〈1〉 ∼−→ ζ. Assume that every simple object of M ′ lies
in the essential image of ζ. Then M is called a mixed version of M ′ if for
all objects M,N ∈M , ζ induces an isomorphism⊕

n∈Z
HomM (M,N〈n〉) ∼−→ HomM ′(ζM, ζN). (2.3)

ANNALES DE L’INSTITUT FOURIER



KOSZUL DUALITY AND SEMISIMPLICITY OF FROBENIUS 1517

There are two natural ways to generalize this notion to the setting of
triangulated categories. Suppose that D is a triangulated category equipped
with an autoequivalence 〈1〉 : D → D , a functor ζ : D → D ′ whose essential
image generates D ′ as a triangulated category, and an isomorphism ε : ζ ◦
〈1〉 ∼−→ ζ. Then D is called a graded version of D ′ if the isomorphism (2.3)
holds for all objects M,N ∈ D .
Suppose, in addition, that D and D ′ are equipped with t-structures such

that D is a mixed triangulated category, and such that the functors 〈1〉
and ζ are t-exact. In this case, D is said to be a mixed version of D ′.

2.4. Koszul categories

Let M be a mixed abelian category. M is said to be Koszul if the fol-
lowing stronger version of (2.1) and (2.2) holds:

Exti(S, S′) = 0 if S, S′ are simple objects with wt(S′) 6= wt(S)− i.
(2.4)

In contrast with the setting of (2.1) and (2.2), the i = 1 case of (2.4) does
not imply the general condition. On the other hand, this equation implies
the following stronger version of Lemma 2.1(1).

Lemma 2.2. — Let M be a Koszul category, and let X,Y ∈ Db(M ). If
X has weights 6 w and Y has weights > w, then

Hom(X,Y ) = Hom(Y,X) = 0. �

Corollary 2.3. — Let M be a Koszul category. If X ∈ M has no
composition factors of weight w, then X ∼= Ww−1X ⊕X/Ww−1X.

Proof. — Since X/Ww−1X has weights > w + 1 and (Ww−1X)[1] has
weights 6 w, we have

Ext1(X/Ww−1X,Ww−1X) ∼= Hom(X/Ww−1X, (Ww−1X)[1]) = 0

by the previous lemma, so the short exact sequence 0→ Ww−1X → X →
X/Ww−1X → 0 splits. �

A key feature of Koszul categories is that one can often construct a new
abelian category M \, called the Koszul dual of M , such that there is a
canonical equivalence of derived categories of M and M \. (M and M \

need not be equivalent abelian categories.) A very general form of this
equivalence, in which M and M \ are both categories of finitely-generated
modules over Koszul rings, is developed in [9].

TOME 63 (2013), FASCICULE 4



1518 Pramod N. ACHAR & Simon RICHE

Assuming that M has enough projectives, the category M \ can be de-
scribed as the full subcategory of Db(M ) given by

M \ =

X ∈ Db(M )

∣∣∣∣∣
for any indecomposable projective P ∈M ,

we have Hom(X,P [k]) = 0 if k < wt(P/ radP )
and Hom(P [k], X) = 0 if k > wt(P/ radP )

 .

(2.5)
The following theorem is one way to formulate Koszul duality in this set-
ting.

Theorem 2.4 (Koszul Duality). — Let M be a Koszul category with
enough projectives, and assume that every object has finite projective di-
mension. Then M \ is the heart of a t-structure on Db(M ), and the real-
ization functor (see Section 2.5)

real : Db(M \)→ Db(M )

is an equivalence of categories. Moreover, M \ is itself a Koszul category,
with

Irr(M \) = {P [−wt(P/ radP )] | P ∈M an indecomposable projective}

and with weight function wt\ : Irr(M \)→ Z given by

wt\(P [−wt(P/ radP )]) = wt(P/ radP ).

Finally, M \ has enough injectives, and every object has finite injective
dimension. The indecomposable injectives are of the form {L[−wtL] | L ∈
Irr(M )}.

There is, of course, an analogous construction of a Koszul dual category
M 7→ \M for Koszul categories with enough injectives in which every
object has finite injective dimension. Starting from a category M satisfying
the hypotheses of Theorem 2.4, one finds that the composition

Db(\(M \)) ∼−→ Db(M \) ∼−→ Db(M )

induces an equivalence of abelian categories \(M \) ∼−→ M . In this way,
passage to the Koszul dual is an involution.
The idea of Koszul duality is quite well-known. However, the specific

version stated above cannot readily be extracted from the statements in [9],
because that paper imposes additional assumptions on M : specifically, M

is assumed to be endowed with a Tate twist, and to have only finitely many
isomorphism classes of simple objects up to Tate twist. We will therefore
give a self-contained proof in Section 5, which also contains a more general
statement with weaker assumptions on M .

ANNALES DE L’INSTITUT FOURIER
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2.5. Realization functors for homotopy categories

Let D be a triangulated category equipped with a t-structure (D60,D>0),
and let C = D60 ∩D>0 be its heart. One can ask for a t-exact functor of
triangulated categories

Db(C )→ D

that restricts to the identity functor on C . Such a functor is called a real-
ization functor. One well-known construction of such a functor, adequate
for Theorem 2.4 above, is given in [7, §3.1]. That construction assumes that
D is a full triangulated subcategory of the derived category of an abelian
category. Unfortunately, many of the triangulated categories we encounter
in this paper are not of that form.
In [6], Beilinson has explained how to axiomatize the notion of a “filtered

derived category” and thereby generalize the construction of [7, §3.1] to
other triangulated categories. In particular, he treats the case where D is
the category DWeil(X) of mixed Weil complexes of Q`-sheaves on a variety
over a finite field, cf. Section 6.
Another case that is important in this paper is that in which D is the

bounded homotopy category Kb(A ) of an additive category A . In this
section, we explain how to apply the formalism of [6] to this setting.

Lemma 2.5. — Suppose we have three objects X = (X•, dX), Y =
(Y •, dY ), and Z = (Z•, dZ) in Kb(A ), and two chain maps f = (f•) :
X → Y and g = (g•) : Y → Z. Assume that for each i ∈ Z, we have an
identification Y i ∼= Xi ⊕ Zi such that the maps

f i : Xi → Xi ⊕ Zi and gi : Xi ⊕ Zi → Zi

are the inclusion and projection maps, respectively for Xi and Zi as direct
summands of Y i. Then there is a chain map δ : Z → X[1] such that

X
f−→ Y

g−→ Z
δ−→ X[1]

is a distinguished triangle in Kb(A ).

Proof. — Using the identification Y i = Xi⊕Zi, we can write the differ-
ential diY : Y i → Y i+1 as a matrix

diY =
[
si ti

ui vi

]
.

Note that diY ◦f i = [ si
ui

]. On the other hand, f i+1◦diX = [ diX0 ]. We conclude
that si = diX and ui = 0. Similar reasoning shows that vi = diY . Define
δ : Z → X[1] by setting δi = ti : Zi → Xi+1 = (X[1])i. It follows from

TOME 63 (2013), FASCICULE 4



1520 Pramod N. ACHAR & Simon RICHE

the fact that di+1
Y ◦ diY = 0 that δ• is, in fact, a chain map. Moreover,

it is now evident from the formula for dY above that Y is the cocone of
δ : Z → X[1]. �

Let FA denote the additive category whose objects are sequences

· · · e−1←− X−1
e0←− X0

e1←− X1
e2←− · · ·

of objects in A , satisfying the following conditions:
(1) Each ei : Xi → Xi−1 is an inclusion of a direct summand of Xi−1.
(2) There are integers a 6 b such that:

(a) Xi = Xa and ei = id for all i 6 a.
(b) Xi = 0 for all i > b.

If X = (X•, eX• ) and Y = (Y•, eY• ) are two objects of FA , a morphism
f : X → Y is simply a collection of maps (fi : Xi → Yi)i∈Z such that
fi−1 ◦ eXi = eYi ◦ fi for all i. Intuitively, we may think of FA as the
category of “objects in A equipped with finite decreasing filtrations.”
Let s : FA → FA be the functor which sends an object X = (X•, eX• )

to

s(X) = (s(X)•, es(X)
• ) where s(X)i = Xi−1 and e

s(X)
i = eXi−1,

and likewise for morphisms. Note that we have a canonical morphism

α : X → s(X) given by αi = ei : Xi → s(X)i.

For any n ∈ Z, we can form the following full additive subcategories of
FA :

FA (6 n) = {X = (X•, p•) | Xi = 0 for i > n},
FA (> n) = {X = (X•, p•) | Xi = Xn and ei = id for i 6 n}.

Lastly, consider the functor j : A → FA that sends an object X to the
sequence given by

j(X)i =
{
X if i 6 0,
0 if i > 0,

e
j(X)
i =

{
id if i 6 0,
0 if i > 0,

and which sends a morphism f : X → Y in A to the sequence (fi) with
fi = f for i 6 0 and fi = 0 for i > 0.

Lemma 2.6. — (1) Given objects X ∈FA (> 1) and Y ∈FA (6 0),
we have Hom(X,Y ) = 0. Moreover, α induces isomorphisms

Hom(Y,X) ∼= Hom(Y, s−1X) ∼= Hom(sY,X). (2.6)

(2) Every object X ∈ FA admits a direct-sum decomposition X ∼=
A⊕B with A ∈ FA (> 1) and B ∈ FA (6 0).

ANNALES DE L’INSTITUT FOURIER



KOSZUL DUALITY AND SEMISIMPLICITY OF FROBENIUS 1521

(3) The functor j induces an equivalence of additive categories j :
A

∼−→ FA (6 0) ∩ FA (> 0).

Proof. — (1) IfX = (X•, eX• ) ∈ FA (> 1) and Y = (Y•, eY• ) ∈ FA (6 0),
then for any map f = (f•) : X → Y , we clearly have fi = 0 for i > 1. On
the other hand, for i 6 0, we have

fi ◦ eXi+1 ◦ eXi+2 ◦ · · · ◦ eX1 = eYi+1 ◦ eYi+2 ◦ · · · ◦ eY1 ◦ f1 = 0.

Since eXi+1 = · · ·= eX1 = idX1 , it follows that fi = 0 for all i, so Hom(X,Y ) =
0. Next, for any morphism g : Y → s−1X or g : Y → X, we have gi = 0
for i > 1. Thus, the natural map φ : Hom(Y, s−1X)→ Hom(Y,X) induced
by αs−1X can be described by

φ(g)i :
{
eXi+1 ◦ gi if i 6 0,
0 if i > 1.

But X ∈ F (A )(> 1) means that eXi+1 is the identity map for i 6 0, and it
follows that φ is a bijection. The same reasoning shows that Hom(Y,X) ∼=
Hom(sY,X).
(2) LetN 6 0 be such thatX = (X•, eX• ) ∈ FA (> N). We will construct

the terms of A and B by downward induction as follows. For i > 1, let
Ai = Xi and let Bi = 0. Next, for N 6 i 6 0, if Ai+1 and Bi+1 are already
defined, then the map ei+1 : Xi+1 → Xi lets us regard Ai+1 and Bi+1 as
direct summands of Xi. Let Yi be a complementary direct summand in Xi

to Xi+1, and then set Ai = Ai+1 and Bi = Bi+1 ⊕ Yi. With respect to the
identifications Xi+1 = Ai+1 ⊕Bi+1 and Xi = Ai ⊕Bi, ei+1 has the form

eXi+1 =
[
id 0
0 ēi+1

]
(2.7)

for some map ēi+1 : Bi+1 → Bi. Finally, for i < N , we set Ai = AN and
Bi = BN . Let us put

eAi =
{
eXi if i > 1,
idA1 if i 6 1,

eBi =


0 if i > 1,
ēi if N < i 6 1,
id if i 6 N .

Then the object A = (A•, eA• ) belongs to FA (> 1), B = (B•, eB• ) lies in
FA (6 0). It follows from (2.7) that X ∼= A⊕B.

(3) It is clear that j is faithful and essentially surjective. Moreover, it
is easy to see that any morphism f = (f•) : X → Y between two objects
X,Y ∈ FA (6 0)∩FA (> 0) is determined by f0. Thus, j is full, and hence
an equivalence of categories. �
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We now consider the bounded homotopy category Kb(FA ) of FA . The
functors s and j extend in an obvious way to functors of triangulated
categories

s : Kb(FA )→ Kb(FA ), j : Kb(A )→ Kb(FA ),

and α extends to a morphism of functors α : idKb(FA ) → s. We also
define Kb(FA )(6 n) (resp. Kb(FA )(> n)) to be the full subcategory of
Kb(FA ) consisting of objects isomorphic to a complex X = (X•, dX) with
Xi ∈ FA (6 n) (resp. Xi ∈ FA (> n)) for all i.

Lemma 2.7. — With the above notation, we have the following proper-
ties.

(1) sn(Kb(FA )(6 0)) = Kb(FA )(6 n);

sn(Kb(FA )(> 0)) = Kb(FA )(> n)

.

(2) Kb(FA )(> 1) ⊂ Kb(FA )(> 0), Kb(FA )(6 1) ⊃ Kb(FA )(6 0),
and

⋃
n∈ZK

b(FA )(6 n) =
⋃
n∈ZK

b(FA )(> n) = Kb(FA ).
(3) For any object X ∈ Kb(FA ), we have αX = s(αs−1(X)).
(4) For X ∈ Kb(FA )(> 1) and Y ∈ Kb(FA )(6 0), we have

Hom(X,Y ) = 0. Moreover, α induces isomorphisms

Hom(Y,X) ∼= Hom(Y, s−1X) ∼= Hom(sY,X).

(5) For any object X ∈ Kb(FA ), there is a distinguished triangle
A→ X → B → with A ∈ Kb(FA )(> 1) and B ∈ Kb(FA )(6 0).

(6) Every object of Kb(FA )(6 0) ∩Kb(FA )(> 0) is isomorphic to a
chain complex X = (X•, dX) with Xi ∈ FA (6 0) ∩ FA (> 0) for
all i.

(7) The functor j gives rise to an equivalence of triangulated categories
j : Kb(A ) ∼−→ Kb(FA )(6 0) ∩Kb(FA )(> 0).

Proof. — Parts (1)–(3) are straightforward from the definitions. For (4),
the vanishing of Hom(X,Y ) follows from the corresponding statement in
Lemma 2.6(1). Because the isomorphisms in (2.6) are natural, they induce
corresponding isomorphisms in the additive category of chain complexes
over FA . Furthermore, the latter isomorphisms respect homotopy, and so
descend to Kb(FA ).

For part (5), given an object X = (X•, dX) ∈ Kb(FA ), let us endow
each term of the chain complex with a decomposition Xi = Ai ⊕ Bi with
Ai ∈ FA (> 1) and Bi ∈ FA (6 0), as in Lemma 2.6(2). Each differential

ANNALES DE L’INSTITUT FOURIER



KOSZUL DUALITY AND SEMISIMPLICITY OF FROBENIUS 1523

diX : Xi → Xi+1 can then be written as a matrix

diX =
[
diA δi

0 diB

]
,

where the lower left-hand entry is 0 because Hom(Ai, Bi+1) = 0 by
Lemma 2.6(1). ThenA = (A•, d•A) is a chain complex inKb(FA )(> 1), and
B = (B•, d•B) ∈ Kb(FA )(6 0). We have obvious chain maps A→ X → B,
and this diagram extends to a distinguished triangle by Lemma 2.5.
If we apply this construction to a chain complex X with Xi ∈ FA (> 0)

for all i, then we find that Bi ∈ FA (6 0) ∩ FA (> 0). If X also lies
in Kb(FA )(6 0), then we must have A ∼= 0 (because Hom(A,X) =
Hom(A,B[−1]) = 0), so X ∼= B. This establishes part (6). It follows from
that statement that the inclusion functor

Kb(FA (6 0) ∩ FA (> 0)) ∼−→ Kb(FA )(6 0) ∩Kb(FA )(> 0)

is an equivalence of categories. Part (7) then follows from Lemma 2.6(3).
�

In the terminology of [6, Appendix], the preceding lemma states that
Kb(FA ), together with the data consisting of s, j, and α, is an f -category
over Kb(A ). The machinery of loc. cit. then gives us the following result.

Theorem 2.8 ([6, §A.7]). — Let A be an additive category, and let
C be the heart of a t-structure on Kb(A ). There is a t-exact functor of
triangulated categories real : Db(C ) → Kb(A ) with the property that
real |C ∼= idC . �

Together, this result and those in [7, §3.1] and [6] cover all the cases
we need. We will henceforth make use of realization functors whenever
necessary without further explanation.

3. Infinitesimal extensions of triangulated categories

In this section, we will study a kind of “thickened” version of a triangu-
lated category, with extra morphisms (called infinitesimal morphisms) that
do not have cones. Such a category looks bizarre from the usual perspec-
tive of homological algebra, but they arise naturally in the setting of étale
`-adic sheaves on certain varieties, cf. Section 7.

TOME 63 (2013), FASCICULE 4



1524 Pramod N. ACHAR & Simon RICHE

3.1. Basic properties of infinitesimal extensions

Let D be a triangulated category. Let =D be the category whose objects
are the same as those of D , but whose Hom-spaces are given by

Hom=D(X,Y ) = HomD(X,Y )⊕HomD(X,Y [−1]), (3.1)

and where composition of morphisms is given by the rule

(g0, g
′) ◦ (f0, f

′) = (g0 ◦ f0, g0[−1] ◦ f ′ + g′ ◦ f0). (3.2)

There are obvious functors ι : D → =D and $ : =D → D that send objects
to themselves, and for which the induced maps

ι : HomD(X,Y )→ Hom=D(X,Y )

and
$ : Hom=D(X,Y )→ HomD(X,Y )

are the inclusion and projection maps, respectively, for HomD(X,Y ) as a
direct summand of Hom=D(X,Y ). We also have the inclusion map

υ : HomD(X,Y [−1])→ Hom=D(ιX, ιY ). (3.3)

It follows from (3.2) that υ is a natural transformation.

Definition 3.1. — The category =D defined above is called the infini-
tesimal extension of D . A morphism f = (f0, f

′) : X → Y in =D is said to
be infinitesimal if $(f) = 0, or, equivalently, if f0 = 0. On the other hand,
f is genuine if f = ι(f0), i.e., if f ′ = 0.
A diagram X → Y → Z → X[1] is called a distinguished triangle if there

is a commutative diagram

X //

θ o
��

Y //

o
��

Z //

o
��

X[1]

θ[1] o
��

ι(X ′)
ι(f) // ι(Y ′)

ι(g) // ι(Z ′)
ι(h) // ι(X ′[1])

where X ′ f−→ Y ′
g−→ Z ′

h−→ X ′[1] is some distinguished triangle in D , and
where the vertical maps are isomorphisms. A morphism is said to have a
cone if it occurs in some distinguished triangle.

Remark 3.2. — For morphisms in =D , the property of being genuine
is not natural. In particular, a genuine morphism may be conjugate to a
morphism that is not genuine. In contrast, being infinitesimal is a natural
notion.
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It is clear from the definitions of $ and ι that

$ ◦ ι ∼= idD . (3.4)

Note that a morphism that has a cone must be conjugate to a genuine
morphism, and so cannot be infinitesimal. In other words, infinitesimal
morphisms do not have cones, so =D cannot be a triangulated category
unless D = 0.

Lemma 3.3. — (1) If f : X → Y and g : Y → Z are both infinitesi-
mal morphisms in =D , then g ◦ f = 0.

(2) A morphism f = (f0, f
′) in =D is an isomorphism if and only if

$(f) = f0 is an isomorphism in D .

Proof. — The first assertion is immediate from (3.2). If f is an isomor-
phism, then it is clear that f0 = $(f) must be as well. If f0 is an isomor-
phism, then one may check that g = (f−1

0 ,−f−1
0 [−1]◦f ′◦f−1

0 ) is an inverse
for f . �

Let % : =D → D be the functor defined as follows: for an object X, we
put

%(X) = X ⊕X[−1],

and for a morphism f = (f0, f
′) : X → Y , we put

%(f) =
[
f0
f ′ f0[−1]

]
: X ⊕X[−1]→ Y ⊕ Y [−1].

Lemma 3.4. — The functor ι : D → =D is left adjoint to % and right
adjoint to %[1].

Proof. — We will prove the first assertion by explicitly constructing the
unit η : idD → %ι and the counit ε : ι% → id=D . For an object X ∈ D ,
define

ηX : X → X ⊕X[−1] by ηX =
[
idX
0

]
.

It is straighforward to check that for a morphism f : X → Y in D , we have
%(ι(f))◦ηX = ηY ◦f , so this is indeed a morphism of functors. Next, define

εX : X ⊕X[−1]→ X by εX =
[
(idX , 0) (0, idX[−1])

]
.

Here, the notation “id” denotes identity morphisms in D , of course. Con-
sider a morphism f = (f0, f

′) : X → Y in =D . The following equation
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shows that ε is a morphism of functors:

(f0, f
′) ◦

[
(idX , 0) (0, idX[−1])

]
=
[
(idY , 0) (0, idY [−1])

] [(f0, 0)
(f ′, 0) (f0[−1], 0)

]
.

Next, we must show that %ε ◦ η% = id : % → %. This follows from the
following calculations:

η%X =


idX 0
0 idX[−1]
0 0
0 0

 : X ⊕X[−1]→ (X ⊕X[−1])⊕ (X ⊕X[−1])[−1],

%εX =
[
idX 0 0 0
0 idX[−1] idX[−1] 0

]
: (X ⊕X[−1])⊕ (X ⊕X[−1])[−1))

→ X ⊕X[−1].
The proof that ει ◦ ιη = id : ι→ ι is similar. Thus, ι is left adjoint to %.
For the other adjunction, we record below the formulas for the unit

η : id=D → ι%[1] and the counit ε : %[1]ι→ idD but otherwise omit further
details.

ηX =
[
(0, idX)
(idX , 0)

]
: X → X[1]⊕X, εX =

[
0 idX

]
: X[1]⊕X → X. �

3.2. Distinguished triangles in an infinitesimal extension

A number of familiar facts from homological algebra remain valid in =D ,
even though that category is not triangulated. We prove a few of these in
the next two lemmas.

Lemma 3.5. — Let X → Y → Z → be a distinguished triangle in =D .
For any object A ∈ =D , the following two sequences are exact:

· · · → Hom(A,X)→ Hom(A, Y )→ Hom(A,Z)→ Hom(A,X[1])→ · · ·
· · · → Hom(X[1], A)→ Hom(Z,A)→ Hom(Y,A)→ Hom(X,A)→ · · ·

Proof. — By replacing the given triangle X → Y → Z → by an iso-
morphic one if necessary, we may assume that it arises by applying ι to a
distinguished triangle X ′ → Y ′ → Z ′ → in D . By Lemma 3.4, applying
the functor Hom=D(A, ·) to the given triangle is equivalent to applying
HomD(%(A[1]), ·) to a triangle in D , so the resulting sequence is exact.
Similar reasoning applies to Hom=D(·, A). �
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Lemma 3.6. — Consider a commutative diagram

X
f //

p

��

Y

q

��
X ′

i
// Y ′

(3.5)

in =D . If f and i both have cones, then this diagram can be completed to
a morphism of distinguished triangles

X
f //

p

��

Y
g //

q

��

Z
h //

r

��

X[1]

p[1]
��

X ′
i

// Y ′
j

// Z ′
k

// X ′[1]

(3.6)

Moreover, if p and q are isomorphisms, then r is an isomorphism as well.

Proof. — By replacing f and i by isomorphic maps, we may assume
that they are both genuine. (We cannot assume that p and q are genuine,
however.) Let us write these maps as pairs:

f = (f0, 0), i = (i0, 0), p = (p0, p
′), q = (q0, q

′).

The commutativity of (3.5) implies that the following squares in D each
commute:

X
f0 //

p0

��

Y

q0

��
X ′

i0

// Y ′

and

X
f0 //

p′

��

Y

q′

��
X ′[−1]

i0[−1]
// Y ′[−1]

(3.7)

We can complete each of these to a morphism of distinguished triangles as
follows:

X
f0 //

p0

��

Y
g0 //

q0

��

Z
h0 //

r0

��

X[1]

p0[1]
��

X ′
i0

// Y ′
j0

// Z ′
k0

// X ′[1]

X
f0 //

p′

��

Y
g0 //

q′

��

Z
h0 //

r′

��

X[1]

p′[1]
��

X ′[−1]
i0[−1]

// Y ′[−1]
j0[−1]

// Z ′[−1]
k0[−1]

// X ′

Note that we have chosen the same objects Z and Z ′ and the same mor-
phisms g0, h0, j0, k0 in both diagrams. Let us put

g = ι(g0), h = ι(h0), j = ι(j0), k = ι(k0),

and let r = (r0, r
′) ∈ Hom(Z,Z ′). Then (3.6) commutes.
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For any object A ∈ =D , applying Hom(A, ·) to the diagram (3.6) gives
us a morphism of long exact sequences, by Lemma 3.5. If p and q are
isomorphisms, then, by the 5-lemma, the map Hom(A,Z) → Hom(A,Z ′)
induced by r is always an isomorphism. By Yoneda’s lemma, r itself is an
isomorphism. �

3.3. Pseudotriangulated functors

We will now study functors that respect the structure of an infinitesimal
extension of a triangulated category.

Definition 3.7. — An additive functor F : =D → =D ′ is said to be
pseudotriangulated if the following two conditions hold:

(1) It commutes with [1] and takes distinguished triangles to distin-
guished triangles.

(2) It commutes with υ ◦$.
We also use the term pseudotriangulated for functors D → =D ′ satisfying
just condition (1).

The last condition means that the following diagram commutes:

Hom=D(X,Y [−1]) $ //

F

��

HomD(X,Y [−1]) υ // Hom=D(X,Y )

F

��
Hom=D′(FX,FY [−1])

$
// HomD′(FX,FY [−1])

υ
// Hom=D′(FX,FY )

The following basic facts about pseudotriangulated functors are immediate
consequences of the definition.

Lemma 3.8. — Let F : =D → =D ′ be a pseudotriangulated functor.
Then:

(1) F takes infinitesimal morphisms to infinitesimal morphisms.
(2) We have $ ◦ F ◦ ι ◦$ ∼= $ ◦ F . �

Lemma 3.9. — For any pseudotriangulated functor F : =D → =D ′,
there is a functor of triangulated categories F̃ : D → D ′, unique up to
isomorphism, such that $ ◦ F ∼= F̃ ◦$.

Definition 3.10. — The functor F̃ : D → D ′ is said to be induced by
F .
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Proof. — Let F̃ = $◦F ◦ι. By Lemma 3.8(2), we have that$◦F ∼= F̃ ◦$.
For uniqueness, suppose we have an isomorphism φ : F̃ ◦$ ∼−→ G ◦$ for
some G : D → D ′. Since the objects of D are the same as those of =D , we
can define a morphism φ′ : F̃ → G simply by setting φ′X = φX : F̃ (X) →
G(X), and this is clearly an isomorphism. �

The lemma above may be thought of as saying that pseudotriangulated
functors are “automatically” compatible with $. The analogous property
for ι, however, is not automatic, and turns out to be rather more difficult
to study.

Definition 3.11. — Let D and D ′ be two triangulated categories. A
pseudotriangulated functor F : =D → =D ′ is said to be genuine if the
induced functor F̃ satisfies ι ◦ F̃ ∼= F ◦ ι.

There is still a uniqueness property like that in Lemma 3.9.

Lemma 3.12. — Let F : =D → =D ′ be a pseudotriangulated functor.
If G : D → D ′ is a functor of triangulated categories such that ι◦G ∼= F ◦ι,
then G ∼= F̃ .

Proof. — Composing on both sides with $ and using Lemma 3.8(2), we
find that $ ◦ ι ◦ G ◦$ ∼= $ ◦ F ◦ ι ◦$ ∼= F̃ ◦$. From (3.4), we see that
G ◦$ ∼= F̃ ◦$, so G ∼= F̃ by Lemma 3.9. �

Genuineness for functors is quite a subtle condition, and we will only be
able to establish it when D and F obey rather strong constraints. The next
lemma tells us how this notion is related to genuineness for morphisms, but
since the latter is not a natural property, it seems difficult to prove that
a functor F is genuine by reasoning directly with morphisms. Instead, our
strategy will be to seek indirect ways of showing that ι ◦ F̃ and F ◦ ι are
isomorphic.

Lemma 3.13. — A pseudotriangulated functor F : =D → =D ′ is gen-
uine if and only if it is isomorphic to a pseudotriangulated functor F ′ :
=D → =D ′ that sends genuine morphisms to genuine morphisms.

Proof. — If F sends genuine morphisms to genuine morphisms, then it
is easy to see that ι ◦$ ◦ F ◦ ι ∼= F ◦ ι. In other words, ι ◦ F̃ ∼= F ◦ ι, so F
is genuine. For the converse, suppose F is genuine, and fix an isomorphism
θ : ι◦ F̃ → F ◦ ι. For a morphism f0 : X → Y in D , we have a commutative
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diagram

F̃ (X)
(F̃ (f0),0) //

θX

��

F̃ (Y )

θY

��
F (X)

F (f0,0)
// F (Y )

Form the analogous diagram for another morphism f ′ : X → Y [−1] in
D . Applying the natural transformation υ : HomD(F (X), F (Y [−1])) →
Hom=D(F (X), F (Y )) to that diagram, we obtain

F̃ (X)
(0,F̃ (f ′)) //

θX

��

F̃ (Y )

θY

��
F (X)

υ($F (f ′,0))
// F (Y )

Since F commutes with υ◦$, we have υ($F (f ′, 0)) = F (0, f ′). Combining
the two diagrams, we find that

F̃ (X)
(F̃ (f0),F̃ (f ′)) //

θX

��

F̃ (Y )

θY

��
F (X)

F (f0,f
′)

// F (Y )

commutes. Let F ′ : =D → =D ′ be the functor given by F ′(X) = F (X)
for objects X, and by F ′(f) = (F̃ (f0), F̃ (f ′)) for morphisms f = (f0, f

′).
The commutative diagram above shows that the collection {θX} can be
regarded as an isomorphism of functors θ : F ′ ∼−→ F . Moreover, F ′ clearly
sends genuine morphisms to genuine morphisms. �

Lemma 3.14. — If F : =D → =D ′ is genuine, then % ◦ F ∼= F̃ ◦ %.

Proof. — It is clear that for an object X in =D , we have %(F (X)) ∼=
F̃ (%(X)) ∼= F̃ (X) ⊕ F̃ (X)[−1]. By Lemma 3.13, we may assume that F
sends genuine morphisms to genuine morphisms. Indeed, we may assume
that for a morphism f = (f0, f

′) in =D , we have F (f) = (F̃ (f0), F̃ (f ′)).
The result follows from the observation that

%(F (f)) =
[
F̃ (f0)
F̃ (f ′) F̃ (f0[−1])

]
= F̃ (%(f)). �
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Lemma 3.15. — Let F : =D → =D ′ and G : =D ′ → =D be a pair
of pseudotriangulated functors. If F is left adjoint to G, then the induced
functor F̃ is left adjoint to G̃.

Proof. — We begin by showing that the adjunction morphism

Φ : Hom=D′(F (X), Y ) ∼−→ Hom=D(X,G(Y ))

has the property that Φ(f) is infinitesimal if and only if f is infinitesimal.
Let η : id=D′ → G ◦ F be the unit of the adjunction, and recall that Φ is
given by Φ(f) = G(f) ◦ ηX . If f is infinitesimal, then G(f) is infinitesimal,
and then any composition with G(f) is also infinitesimal. The opposite
implication is similar, using the fact that Φ−1(g) = εY ◦ F (g), where ε :
F ◦G→ id=D is the counit.
Now HomD′(F̃ (X), Y ) ∼= HomD′($F (ιX), Y ) is canonically isomorphic

to the quotient of Hom=D′(F (X), Y ) by the subspace of infinitesimal mor-
phisms. The same holds for HomD(X, G̃(Y )), so we see that Φ induces a
canonical isomorphism HomD′(F̃ (X), Y ) ∼−→ HomD(X, G̃(Y )). �

Theorem 3.16. — Let F : =D → =D ′ be a genuine pseudotriangulated
functor. If F has a right adjoint (resp. left adjoint) pseudotriangulated
functor G : =D ′ → =D , then G is also genuine.

Proof. — We will treat the case where G is right adjoint to F ; the other
case is similar. By Lemmas 3.4 and 3.15, ι ◦ G̃ is right adjoint to F̃ ◦ %[1],
and G◦ ι is right adjoint to %[1]◦F . But F̃ ◦%[1] ∼= %[1]◦F by Lemma 3.14.
Since adjoint functors are unique up to isomorphism, it follows that ι◦ G̃ ∼=
G ◦ ι. �

4. Homotopy categories of Orlov categories

Let A and B be two additive categories, and consider their bounded
homotopy categories Kb(A ) and Kb(B). In the sequel, we will encounter
the problem of showing that two functors F, F ′ : Kb(A )→ Kb(B) are iso-
morphic without having any explicit way to construct a morphism between
them.
The main results of this section (Theorems 4.7 and 4.9) give us a way to

solve this problem, provided that the additive categories A and B satisfy
the conditions of the following definition. The idea of using properties of
the categories to prove an isomorphism of functors is due to Orlov [23].
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Definition 4.1. — Let A be an additive category equipped with a
function deg : Ind(A ) → Z. A is said to be an Orlov category if the
following conditions hold:

(1) All Hom-spaces in A are finite-dimensional.
(2) For any S ∈ Ind(A ), we have End(S) ∼= k.
(3) If S, S′ ∈ Ind(A ) with deg(S) 6 deg(S′) and S 6∼= S′, then

Hom(S, S′) = 0.
An object X ∈ A is said to be homogeneous of degree n if it is isomorphic
to a direct sum of indecomposable objects of degree n. An additive functor
F : A → B between two Orlov categories is said to be homogeneous if
it takes homogeneous objects of degree n in A to homogeneous objects of
degree n in B.

It follows from conditions (1) and (2) above that any Orlov category
is Karoubian (every idempotent endomorphism splits) and Krull–Schmidt
(every object is a direct sum of finitely many indecomposable objects, whose
isomorphism classes and multiplicities are uniquely determined).

4.1. Preliminaries on Orlov categories

We first require some additional notation and lemmas. For an object
X = (X•, dX) ∈ Kb(A ), let us define the support of X to be the subset
suppX ⊂ Z× Z such that

(i, j) ∈ suppX if and only if Xi contains a nonzero homogeneous
direct summand of degree j.

Note that this notion is not homotopy-invariant: isomorphic objects of
Kb(A ) may have different supports. For any subset Σ ⊂ Z×Z, letKb(A )Σ
denote the following full subcategory of Kb(A ):

Kb(A )Σ

= {X ∈ Kb(A ) | X is isomorphic to an object X ′ with suppX ′ ⊂ Σ}.

Clearly, every object of Kb(A ) belongs to some Kb(A )Σ with Σ finite. Let
us endow Z× Z with the lexicographic order:

(i, j) 6 (i′, j′) if i < i′, or if i = i′ and j 6 j′. (4.1)

With respect to this order, any finite set Σ ⊂ Z× Z has a largest element.

Lemma 4.2. — Let X = (X•, dX) ∈ Kb(A ), and suppose X ∼= A[n]⊕
Y , where A is an object of A . Then Y is isomorphic to a chain complex
Y ′ = (Y ′•, dY ′) with suppY ′ ⊂ suppX.
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Proof. — Let i : A[n] → X and p : X → A[n] be the inclusion and
projection maps coming from the given direct sum decomposition. Let us
represent these by chain maps: i = (ik)k∈Z and p = (pk)k∈Z. The statement
that p ◦ i = idA[n] in Kb(A ) is equivalent to the statement that the chain
map (pk ◦ ik)k∈Z is homotopic to idA[n]. But A[n] clearly admits no nonzero
homotopies, so the composition (pk ◦ ik)k∈Z is equal to idA[n] as a chain
map. In particular, p−n ◦ i−n = idA. It follows that i−n ◦ p−n ∈ End(X−n)
is an idempotent.
Recall that A is a Karoubian category. Therefore, there is some object

B ∈ A such that we can identify X−n ∼= A⊕B, and such that under this
identification, p−n and i−n are the projection and inclusion maps for the
direct summand A. With respect to this direct-sum decomposition, we may
write the differentials d−n−1

X : X−n−1 → X−n and d−nX : X−n → X−n+1

as matrices

d−n−1
X =

[
a

b

]
and d−nX =

[
s t

]
.

Since (p•) is a chain map, we see that a = p−n ◦ d−n−1
X = 0. Similarly,

s = d−nX ◦ i−n = 0. It follows that t ◦ b = d−nX ◦ d
−n−1
X = 0. Define the chain

complex Y ′ = (Y ′•, dY ′) by

Y ′k =
{
Xk if k 6= −n,
B if k = n,

dkY ′ =


dkX if k 6= −n− 1,−n,
b if k = −n− 1,
t if k = −n.

Y ′ has support contained in that of X, and we clearly have X ∼= A[n]⊕Y ′,
so Y ′ becomes isomorphic to Y after passing to the homotopy category
Kb(A ). �

Lemma 4.3. — Let f : A→ B be a morphism in an Orlov category A ,
and assume that B is homogeneous of degree n. Then f has a “homoge-
neous cokernel.” That is, there is a morphism q : B → Q, where Q is also
homogeneous of degree n, such that

(1) We have q ◦ f = 0.
(2) If g : B → C is any morphism such that g ◦ f = 0 and C is

homogeneous of degree n, then there is a unique morphism r : Q→
C such that g = r ◦ q.

In fact, there is an isomorphism u : Q⊥ ⊕ Q → B (for some homoge-
neous object Q⊥) such that q ◦ u is simply the canonical projection map
Q⊥ ⊕Q→ Q.
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Proof. — Let In = {S ∈ Ind(A ) | degS = n}. For any S ∈ In, we have
a natural pairing

Hom(S,B)⊗Hom(B,S)→ Hom(S, S) ∼= k.

This pairing is nondegenerate: to see this, it suffices to consider the spe-
cial case where B is itself indecomposable, and in that case, the non-
degeneracy is obvious from condition (3) of Definition 4.1. Let us write
HS = Hom(B,S) for brevity. The pairing above gives us a canonical iso-
morphism H∗S

∼= Hom(S,B). (Here H∗S = Hom(HS ,k).)
Recall that in any k-linear additive category, it makes sense to form

tensor products of objects with finite-dimensional k-vector spaces. Note
that HS is always finite-dimensional, and it vanishes for all but finitely
many S, so the direct sum

⊕
S∈In H

∗
S ⊗ S is a well-defined object of A .

We claim that there is a canonical isomorphism⊕
S∈In

H∗S ⊗ S
∼−→ B. (4.2)

Indeed, there is a natural map
⊕

S∈In Hom(S,B)⊗S → B; this map is ev-
idently an isomorphism when B is indecomposable, so it is an isomorphism
in general.
For each S ∈ In, let ES denote the kernel of the map Hom(B,S) →

Hom(A,S) induced by f . Let iS : ES → HS denote the inclusion map, and
let qS : H∗S → E∗S denote its dual. Next, let

Q =
⊕
S∈In

E∗S ⊗ S,

and let q : B → Q be the map given by q =
⊕
qS ⊗ idS (using the iden-

tification (4.2)). To describe q another way, consider the chain of natural
isomorphisms

Hom(B,Q) ∼=
⊕
S∈In

E∗S ⊗Hom(B,S) ∼=
⊕
S∈In

Hom(ES ,Hom(B,S)).

We have iS ∈ Hom(ES ,Hom(B,S)), and under these identifications, we
have q =

⊕
iS . Observe that the map f gives rise to a commutative diagram

Hom(B,Q) ∼

·◦f
��

⊕
S∈In Hom(ES ,Hom(B,S))

��
Hom(A,Q) ∼ ⊕

S∈In Hom(ES ,Hom(A,S))

By the definition of ES , we see that each iS is in the kernel of the map

Hom(ES ,Hom(B,S))→ Hom(ES ,Hom(A,S)).
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It follows that q is in the kernel of Hom(B,Q) → Hom(A,Q). In other
words, q ◦ f = 0, as desired.
It is easy to see from the above construction that for any T ∈ In, there

are natural isomorphisms Hom(Q,T ) ∼= ET and Hom(B, T ) ∼= HT , and
that the map Hom(Q,T ) → Hom(B, T ) induced by q is none other than
iT : ET → HT . In other words, if g ∈ Hom(B, T ) is any morphism in ET ,
i.e., such that g ◦ f = 0, then there is a unique morphism r ∈ Hom(Q,T )
such that g = r ◦ q. Thus, we have just proved a special case of the desired
universal property of q. Since the universal property holds for indecompos-
able objects, it holds in general.
Finally, each qS : H∗S → E∗S is a surjective map of vector spaces, so

there certainly exists some isomorphism uS : (ker qS) ⊕ E∗S
∼−→ H∗S such

that qS ◦ uS is the projection map onto the second direct summand. Let
Q⊥ =

⊕
(ker qS)⊗S. Then there is an obvious isomorphism u : Q⊥⊕Q→ B

such that q ◦ u is also a projection map. �

Corollary 4.4. — Let f : A→ B be a morphism in an Orlov category
A , and assume that B is homogeneous of degree n. There is an idempotent
endomorphism θ : B → B such that for any morphism g : B → C with C
also homogeneous of degree n, the following two conditions are equivalent:

(1) g ◦ θ = g.
(2) g ◦ f = 0.

Proof. — Let q : B → Q and u : Q⊥⊕Q ∼−→ B be as in Lemma 4.3, and
let i : Q → Q⊥ ⊕ Q be the inclusion map of the second summand. Then
θ = u ◦ i ◦ q has the required properties. �

Lemma 4.5. — Let Σ ⊂ Z×Z be a finite set with largest element (i, j),
and let Σ′ = Σ r {(i, j)}.

(1) For any object X ∈ Kb(A )Σ, there is a distinguished triangle

P → X → Y → P [1]

with P ∈ Kb(A ){(i,j)} and Y ∈ Kb(A )Σ′ .
(2) Suppose we have a commutative diagram in Kb(A ) as follows, in

which the horizontal rows are distinguished triangles:

P
f //

p

��

X
g // Y

h //

r

��

P [1]

p[1]
��

P ′
f ′

// X ′
g′

// Y ′
h′

// P ′[1]

(4.3)

TOME 63 (2013), FASCICULE 4



1536 Pramod N. ACHAR & Simon RICHE

If P, P ′ ∈ Kb(A ){(i,j)}, X,X ′ ∈ Kb(A )Σ, and Y, Y ′ ∈ Kb(A )Σ′ ,
then there is a unique map q : X → X ′ that makes the above
diagram commute.

(3) Let P f−→ X → Y → P [1] be a distinguished triangle, and let
f ′ : P ′ → X be any morphism, where P, P ′ ∈ Kb(A ){(i,j)}, X ∈
Kb(A )Σ, and Y ∈ Kb(A )Σ′ . Form the morphism P ⊕ P ′ → X,
and complete it to a distinguished triangle

P ⊕ P ′
[ f f ′ ] // X // Z // (P ⊕ P ′)[1].

Then we have Z ∈ Kb(A )Σ′′ , where Σ′′ = Σ′ ∪ {(i− 1, j)}.

Proof. — (1) We may assume that X is a chain complex (X•, dX) with
suppX• ⊂ Σ. Choose a direct-sum decomposition Xi = A ⊕ B, where A
has degrees < j and B is homogeneous of degree j. With respect to this
direct-sum decomposition, we may write the differential di−1

X : Xi−1 → Xi

as a matrix di−1
X = [ ab ]. Let Y = (Y •, dY ) be the chain complex given by

Y k =
{
Xk if k 6= i,
A if k = i

and dkY =


dkX if k 6= i, i− 1,
a if k = i− 1,
0 if k = i.

Clearly, Y ∈ Kb(A )Σ′ . Let P = (P •, dP ) be the complex given by

P k =
{

0 if k 6= i,
B if k = i

and dP = 0.

We clearly have P ∈ Kb(A ){(i,j)}. Consider the morphism δ : Y [−1]→ P

where δi : Y i−1 → P i is the map b. It is easy to see that the cone of δ is
isomorphic to X, so we have a distinguished triangle P → X → Y →, as
desired.
(2) Assume that P and P ′ (resp. Y and Y ′) are represented by chain

complexes whose support is contained in the set {(i, j)} (resp. Σ′). We
may assume that the terms of the chain complex X = (X•, dX) can be
identified with terms of Y and P as follows:

Xk ∼=

{
Y k if k 6= i,
Y i ⊕ P i if k = i.

Let us denote the inclusion and projection maps for the direct sum Xi ∼=
Y i ⊕ P i as follows:

Y i
ι1 //

Xi
π1

oo P i
ι2 //

Xi
π2

oo
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The maps f : P → X, g : X → Y are then given by

fk =
{

0 if k 6= i,
ι2 if k = i,

gk =
{

id if k 6= i,
π1 if k = i.

We fix analogous identifications for the objects and morphisms in the tri-
angle P ′ → X ′ → Y ′ →.
The existence of q follows from general properties of triangulated cat-

egories. For uniqueness, it is sufficient to consider the special case where
p = 0 and r = 0. Suppose q : X → X ′ is a map making (4.3) commute;
we must show that q = 0. Since g′ ◦ q = 0, q must factor through f ′. Let
q̃ : X → P ′ be a map such that q = f ′◦q̃. We may assume that this equality
holds at the level of chain maps (not just up to homotopy). In particular,

qk =
{

0 if k 6= i,
ι′2 ◦ q̃i if k = i.

Now, the map q̃i : Y i ⊕ P i → P ′i can be written as a matrix q̃i =
[
0 a

]
,

where the left-hand entry is 0 because Hom(Y i, P ′i) = 0 by part (3) of
Definition 4.1. We therefore have

qi = ι′2 ◦ q̃i =
[
0 0
0 a

]
with a : P i → P ′i.

Using these identifications Xi ∼= Y i⊕P i and X ′i ∼= Y ′i⊕P ′i, we can write
the differentials di−1

X and di−1
X′ as matrices

di−1
X =

[
u

v

]
and di−1

X′ =
[
u′

v′

]
.

Now, q is a chain map, and since qi−1 = 0, we must have qi ◦ di−1
X = 0, or

qi ◦ di−1
X =

[
0 0
0 a

] [
u

v

]
=
[

0
av

]
= 0.

We will now make use of the “homogeneous cokernel” of v : Xi−1 → P i.
Corollary 4.4 lets us associate to this map an idempotent endomorphism
θ : P i → P i. Since a ◦ v = 0, we have a ◦ θ = a, and so

qi ◦ ι2 ◦ θ =
[
0
a

] [
θ
]

=
[
0
a

]
= qi ◦ ι2. (4.4)

Next, we have q ◦ f = 0. This is a statement about the existence of a
certain homotopy; specifically, there is a map hi : P i → X ′i−1 such that

qi ◦ ι2 = di−1
X′ ◦ h

i. (4.5)
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Of course, the homotopy is not unique in general. Indeed, in view of (4.4),
we could replace hi by hi ◦ θ, and (4.5) would still hold. By carrying out
this replacement if necessary, we henceforth assume that hi ◦ θ = hi, or
equivalently,

hi ◦ v = 0. (4.6)

Let us define a collection of maps h̃k : Xk → X ′k−1 by

h̃k =
{

0 if k 6= i,[
0 hi

]
: Y i ⊕ P i → X ′i−1 if k = i.

We claim that
qk = h̃k+1 ◦ dkX + dk−1

X′ ◦ h̃
k (4.7)

for all k. If k < i− 1 or k > i, both sides are obviously 0. If k = i, we have
h̃i+1 = 0, so this is essentially a restatement of (4.5). Finally, if k = i− 1,
we know that qi−1 = 0 and h̃i−1 = 0; we must check that h̃i ◦ di−1

X = 0.
But this follows from (4.6). We see from (4.7) that q is null-homotopic, as
desired.
(3) Consider the following octahedral diagram, which is associated with

the composition P → P ⊕ P ′ → X:

P ⊕ P ′

������������������

��<<<<<<<<

P ′
eeeeeeeeee

+1

rreeeeeeeeeeeee

������

�����������

P

::uuuuuuuuuuuuuuuuuuu

))RRRRRRRRRR Z

+1

ddIIIIIIIIIIIIIIIIIII+1

iiRRRRRRRRRR

X

22eeeeeeeeeeeeeeeeeeeeeeee

��<<<<<<<<

Y

+1

ddJJJJJJJJJJJJJJJJJJJJ

::tttttttttttttttttttt

We see that there is a distinguished triangle Y → Z → P ′[1] →. The
category Kb(A )Σ′′ is stable under extensions, and since Y and P ′[1] both
belong to it, it follows that Z ∈ Kb(A )Σ′′ as well. �

Part (2) of Lemma 4.5 has an analogue in the infinitesimal extension
=Kb(A ). Recall that the objects of this category are the same as those
of Kb(A ), so the notion of support makes sense here as well. The full
subcategories =Kb(A )Σ (for Σ ⊂ Z × Z) are defined in the same way as
Kb(A )Σ.
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Lemma 4.6. — Suppose we have a commutative diagram in =Kb(A )
as follows, in which the horizontal rows are distinguished triangles:

P
f //

p

��

X
g // Y

h //

r

��

P [1]

p[1]
��

P ′
f ′

// X ′
g′

// Y ′
h′

// P ′[1]

(4.8)

If P, P ′ ∈ =Kb(A ){(i,j)}, X,X ′ ∈ =Kb(A )Σ, and Y, Y ′ ∈ =Kb(A )Σ′ ,
then there is a unique map q : X → X ′ that makes the above diagram
commute.

Proof. — The existence of q follows from Lemma 3.6; we must prove
uniqueness. As in Lemma 4.5(2), it suffices to consider the case where
p = 0 and r = 0. Furthermore, every distinguished triangle is, by definition,
isomorphic to a diagram obtained by applying ι : Kb(A ) → =Kb(A ) to
a distinguished triangle in Kb(A ), so we may assume that the morphisms
f, g, h, f ′, g′, h′ are all genuine.
Suppose q : X → X ′ makes the diagram commute. Since g′ ◦ q = 0, it

follows from Lemma 3.5 that q factors through f ′. Let q̃ : X → P ′ be a
map such that q = f ′ ◦ q̃. It is clear from the support assumptions that
HomKb(A )(X,P ′[−1]) = 0, so in fact, q̃ must be genuine; it can have no
nonzero infinitesimal component. The same must then hold for q. Since
every morphism in our diagram is in the image of ι, we have actually
reduced the problem to the setting of Lemma 4.5(2), where the desired
uniqueness is already known. �

4.2. Morphisms of functors

We are now ready to prove the main results of this section. Their proofs
are adaptations of an argument due to Orlov [23, Proposition 2.16].

Theorem 4.7. — Let A and B be two Orlov categories. Let F, F ′ :
Kb(A )→ Kb(B) be two functors of triangulated categories. Assume that
F (A ) ⊂ B and F ′(A ) ⊂ B, and that the induced functors F |A , F ′|A :
A → B are homogeneous. Any morphism of additive functors

θ◦ : F |A → F ′|A
can be extended to a morphism θ : F → F ′ of functors of triangulated
categories in such a way that if θ◦ is an isomorphism, then θ is as well.
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Remark 4.8. — The statement of the theorem is equivalent to the fol-
lowing fact. Let F : Kb(A ) → Kb(B) be a functor that satisfies the
hypotheses of the theorem, and consider the functor F ′ := Kb(F |A ) :
Kb(A ) → Kb(B) induced by F |A : A → B. Then there is an isomor-
phism of functors F ∼−→ F ′.

There is an analogous statement in which the codomain category is
replaced by an infinitesimal extension. Note that for objects X,Y ∈ B,
we have that Hom(X,Y [−1]) = 0 in Kb(B). Therefore, the composition
B ↪→ Kb(B) ι−→ =Kb(B) is full and faithful. In other words, we can
identify B with a full subcategory of =Kb(B) just as we do with Kb(B).

Theorem 4.9. — Let A and B be two Orlov categories. Let F, F ′ :
Kb(A ) → =Kb(B) be two pseudotriangulated functors. Assume that
F (A ) ⊂ B and F ′(A ) ⊂ B, and that the induced functors F |A , F ′|A :
A → B are homogeneous. Any morphism of additive functors

θ◦ : F |A → F ′|A
can be extended to a morphism θ : F → F ′ of pseudotriangulated functors
in such a way that if θ◦ is an isomorphism, then θ is as well.

Remark 4.10. — Equivalently, this theorem says that any functor F :
Kb(A )→ =Kb(B) satisfying the hypotheses of the theorem is isomorphic
to the composition

Kb(A ) Kb(F |A )−−−−−−→ Kb(B) ι−→ =Kb(B).

Proof of Theorems 4.7 and 4.9. — Constructing a morphism of functors
θ : F → F ′ consists of the following three steps:

(1) For each object X ∈ Kb(A ), construct a morphism θX : F (X) →
F ′(X) in Kb(B) or =Kb(B), and show that it is an isomorphism
if θ◦ is.

(2) Show that θX is independent of choices in the construction.
(3) Show that for any morphism s : X → X ′ in Kb(A ), we have

F ′(s) ◦ θX = θX′ ◦ F (s).
We will carry out these steps by an induction argument involving the sup-
port of an object. We say that a subset Σ ⊂ Z×Z is a paragraph if it is of
the form

Σ =
(
{a, a+ 1, . . . , b− 1} × {c, c+ 1, . . . , d}

)
∪ {(b, c), (b, c+ 1), . . . , (b, e)}

for some e with c 6 e 6 d. We also say that such a paragraph Σ has b−a+1
lines. For Σ as above, we see that the largest element is (b, e). Note that if

ANNALES DE L’INSTITUT FOURIER



KOSZUL DUALITY AND SEMISIMPLICITY OF FROBENIUS 1541

Σ has at least 2 lines, then (b− 1, e) ∈ Σ as well. Obviously, the support of
any object is contained in some paragraph.
To begin the induction, let Σ be a paragraph with a single line, so that

Σ ⊂ {n} × Z for some n ∈ Z. For any object X ∈ Kb(A )Σ, we have
X[n] ∈ A , so we have available a morphism θ◦X[n] : F (X[n]) → F ′(X[n]).
Define θX : F (X) → F ′(X) by θX = θ◦X[n][−n]. Trivially, statements (1)–
(3) hold for objects X,X ′ whose support is contained in {n}×Z. Moreover,
θX is an isomorphism of objects if θ◦ is an isomorphism of functors.

For the inductive step, let us assume that Σ is a paragraph with at
least two lines. Let (b, e) denote its largest element, and let Σ′ = Σ r
{(b, e)}. Then Σ′ is also a paragraph, and it contains (b − 1, e). Assume
that steps (1)–(3) above have already been carried out for objects and
morphisms of Kb(A )Σ′ . We will now carry them out for objects and mor-
phisms of Kb(A )Σ.
Step 1. For an object X ∈ Kb(A )Σ, we can find, by Lemma 4.5(1), a

triangle
P → X → Y

δ−→ P [1] (4.9)
with suppP ⊂ {(b, e)} and suppY ⊂ Σ′. Note that δ : Y → P [1] is a
morphism in Kb(A )Σ′ , so we already have morphisms θY and θP [1] such
that the diagram

F (Y )
F (δ) //

θY

��

F (P [1])

θP [1]

��
F ′(Y )

F ′(δ)
// F ′(P [1])

commutes. We define θX : F (X) → F ′(X) by completing this square to
a morphism of distinguished triangles (invoking Lemma 3.6 in the case of
=Kb(B)):

F (P ) //

θP=θP [1][−1]
��

F (X) //

θX

��

F (Y )
F (δ) //

θY

��

F (P [1])

θP [1]

��
F ′(P ) // F ′(X) // F ′(Y )

F ′(δ)
// F ′(P [1])

(4.10)

Note that if θ◦ is an isomorphism, then we know inductively that θP and
θY are isomorphisms, so it follows (perhaps by Lemma 3.6 again) that θX
is as well.
Step 2. We must now show that θX is independent of the choices made

above. Either Lemma 4.5(2) or Lemma 4.6 tells us that θX is uniquely
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determined once the triangle (4.9) is fixed, but we must also prove inde-
pendence of the choice of that triangle. Let

P ′ → X → Y ′ → P ′[1] (4.11)

be another such triangle, and let θ′X : F (X) → F ′(X) be the morphism
obtained from it by the construction above. We must show that θ′X = θX .
To do this, we will construct a third triangle as an intermediary. Let

P ′′ = P ⊕ P ′. Consider the obvious map P ′′ → X, and let Y ′′ denote its
cone. By Lemma 4.5(3), we have Y ′′ ∈ Kb(A )Σ′ , and the construction
above gives us a third morphism θ′′X : F (X) → F ′(X). Note that P → X

factors through P ′′ → X, so we can form a morphism of triangles as follows:

P //

f

��

X // Y //

g

��

P [1]

f [1]
��

P ′′ // X // Y ′′ // P ′′[1]

(4.12)

Applying F and F ′ to this diagram, we obtain the following diagram:

F (P ) //
F (f)

%%KKKKKK

θP

��

F (X) //

JJJJJJ

JJJJJJ

θX

��

F (Y ) //
F (g)

%%KKKKKK

θY

��

F (P [1])
F (f[1])

&&NNNNNNN

θP [1]

��

F (P ′′) //

θ
P ′′

��

F (X) //

θ′′
X

��

F (Y ′′) //

θ
Y ′′

��

F (P ′′[1])

θ
P ′′[1]

��

F ′(P ) //
F ′(f)

%%JJJJJJ F ′(X) //

IIIIII

IIIIII
F ′(Y ) //

F ′(g)

%%JJJJJJ F ′(P [1])
F ′(f[1])

&&MMMMMMM

F ′(P ′′) // F ′(X) // F ′(Y ′′) // F ′(P ′′[1])

(4.13)
Some care is required in assessing the commutativity of this diagram. There
are four morphisms of distinguished triangles in this diagram: the “top” and
“bottom,” each obtained by applying a functor to (4.12), and the “front”
and “back,” each of which is an instance of (4.10). We also know by induc-
tion that F ′(g) ◦ θY = θY ′′ ◦F (g) and F ′(f [1]) ◦ θP ′[1] = θP [1] ◦F (f [1]). We
thus obtain two morphisms of triangles from the “top back” to the “bottom
front,” which we write down together as follows:

F (P ) //

��

F (X) //

θX

��
θ′′X

��

F (Y ) //

��

F (P [1])

��
F ′(P ′′) // F ′(X) // F ′(Y ′′) // F ′(P ′′[1])
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We can now invoke Lemma 4.5(2) or Lemma 4.6 again to deduce that
θX = θ′′X . But since P ′ → X also factors through P ′′ → X, the same
argument shows that θ′X = θ′′X as well, so θX = θ′X , as desired.
Step 3. Let s : X → X ′ be a morphism in Kb(A )Σ. Choose distinguished

triangles

P → X → Y → P [1], P ′ → X ′ → Y ′ → P ′[1]

as in Lemma 4.5(1). We may assume without loss of generality that the
composition P → X → X ′ factors through P ′ → X ′: if not, simply re-
place P ′ by P ⊕ P ′. (The cone of P ⊕ P ′ → X ′ is still in Kb(A )Σ′ by
Lemma 4.5(3), so the new triangle is still of the required form.) We then
have a morphism of distinguished triangles

P //

��

X //

s

��

Y //

��

P [1]

��
P ′ // X ′ // Y ′ // P ′[1]

Applying F and F ′, we obtain a large diagram analogous to (4.13):
F (P ) //

%%KKKKK

θP

��

F (X) //
F (s)

%%KKKKK

θX

��

F (Y ) //

%%LLLLL

θY

��

F (P [1])

''OOOOOO

θP [1]

��

F (P ′) //

θ
P ′

��

F (X′) //

θ
X′

��

F (Y ′) //

θ
Y ′

��

F (P ′[1])

θ
P ′′[1]

��

F ′(P ) //

%%KKKKK F ′(X) //
F ′(s)

%%KKKKK F ′(Y ) //

%%KKKKK F ′(P [1])

''NNNNNN

F ′(P ′′) // F ′(X′) // F ′(Y ′′) // F ′(P ′′[1])

As with (4.13), by studying the parts of this diagram known to be commu-
tative, we obtain two morphisms of distinguished triangles

F (P ) //

��

F (X) //

F ′(s)◦θX
��
θX′◦F (s)

��

F (Y ) //

��

F (P [1])

��
F ′(P ′) // F ′(X ′) // F ′(Y ′) // F ′(P ′[1])

By Lemma 4.5(2) or 4.6, we must have F ′(s) ◦ θX = θX′ ◦F (s), as desired.
If θ◦ is an isomorphism, we noted at the end of Step 1 that θX is an

isomorphism for all X, so θ is an isomorphism of functors. �

Theorem 4.11. — Let A and B be two Orlov categories, and let F :
=Kb(A )→ =Kb(B) be a pseudotriangulated functor. If F (A ) ⊂ B, and
if the induced functor F |A : A → B is homogeneous, then F is genuine.
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Proof. — Let F̃ : Kb(A ) → Kb(B) be the functor induced by F as
in Definition 3.10. According to Remark 4.8, we have F̃ ∼= Kb(F |A ). On
the other hand, by Remark 4.10, we have F ◦ ι ∼= ι ◦Kb(F |A ). Therefore,
ι ◦ F̃ ∼= F ◦ ι, as desired. �

4.3. Bifunctors

The results of Section 4.2 can be generalized to bifunctors. We briefly
indicate how to carry out this generalization. Let A , A ′, and B be Orlov
categories. An additive bifunctor F : A × A ′ → B is said to be bi-
homogeneous if for any two homogeneous objects X ∈ A , X ′ ∈ A ′,
we have that F (X,X ′) is homogeneous of degree degX + degX ′. In the
setting of infinitesimal extensions, an additive bifunctor F : =Kb(A ) ×
=Kb(A ′) → =Kb(B) is said to be pseudotriangulated if the functors
F (X, ·) and F (·, X ′) are pseudotriangulated for any fixed objects X and
X ′. Finally, F is said to be genuine if there is a triangulated bifunctor
F̃ : Kb(A )×Kb(A ′)→ Kb(B) such that ι ◦ F̃ ∼= F ◦ (ι× ι).

Theorem 4.12. — Let A , A ′, and B be Orlov categories, and suppose
we have two triangulated bifunctors F, F ′ : Kb(A )×Kb(A ′)→ Kb(B), or
two pseudotriangulated bifunctors F, F ′ : Kb(A ) ×Kb(A ′) → =Kb(B).
Assume that F (A × A ′) ⊂ B and F ′(A × A ′) ⊂ B, and that the in-
duced functors F |A×A ′ , F

′|A×A ′ : A ×A ′ → B are bihomogeneous. Any
morphism of additive bifunctors

θ◦ : F |A×A ′ → F ′|A×A ′

can be extended to a morphism θ : F → F ′ of pseudotriangulated bifunc-
tors in such a way that if θ◦ is an isomorphism, then θ is as well.

Sketch of proof. — We must construct a morphism θX,X′ : F (X,X ′)→
F ′(X,X ′) for each object (X,X ′) ∈ Kb(A ) ×Kb(A ′). This construction
proceeds by induction on the size of the supports of X and X ′. Both sup-
ports may be replaced by “paragraphs.” If both supports are contained in a
single line, then θX,X′ is easily defined in terms of θ◦. Otherwise, suppose
suppX has at least two lines. Form a distinguished triangle like (4.9) using
Lemma 4.5(1), and apply the functors F (·, X ′) and F ′(·, X ′) to it. The con-
struction of θX,X′ and the proof that it is independent of choices involving
X are as above. A similar construction can be carried out if suppX ′ instead
has at least two lines.
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However, when neither suppX nor suppX ′ is contained in a single line,
there is a further well-definedness issue: we must check that θX,X′ does not
depend on whether we carried out the above construction using X or using
X ′. If we apply F to distinguished triangles

P → X → Y →, P ′ → X ′ → Y ′ →

coming from Lemma 4.5(1) in both variables simultaneously, we get a large
diagram in Kb(B) or =Kb(B) involving nine objects arranged into three
horizontal distinguished triangles and three vertical distinguished triangles,
as in [7, Proposition 1.1.11]. Let us call such a diagram a distinguished 9-
tuple. Applying F ′ gives us another distinguished 9-tuple. To proceed, we
must use a “27-lemma,” stating that a commutative cube (involving the
known morphisms θY,Y ′ , θP [1],Y ′ , θY,P ′[1], and θP [1],P ′[1]) can be extended to
a morphism of distinguished 9-tuples. That morphism contains a morphism
F (X,X ′) → F ′(X,X ′), which must coincide with both versions of θX,X′
by Lemma 4.5(2) or 4.6. �

The proof of Theorem 4.11 applies in this setting as well.
Theorem 4.13. — Let A , A ′, and B be Orlov categories, and let

F : =Kb(A ) × =Kb(A ′) → =Kb(B) be a pseudotriangulated bifunctor.
If F (A ×A ′) ⊂ B, and if the induced functor F |A×A ′ : A ×A ′ → B is
bihomogeneous, then F is genuine. �

5. Koszul duality from Orlov categories

In this section, we will show that there is a very close relationship between
Koszul categories and a certain class of Orlov categories, called Koszules-
cent Orlov categories. Specifically, we will prove in Section 5.2 that there
is a one-to-one correspondence

equivalence classes
of split Koszul

abelian categories

 oo ∼ //


equivalence classes
of Koszulescent
Orlov categories

 .

(5.1)
In one direction, the map is easy to describe: given a split Koszul category
M , it turns out that the category of all pure objects of weight 0 in Db(M )
is a Koszulescent Orlov category. (The description of the map in the other
direction is given in Section 5.1.) This correspondence may be seen as
a generalization of Koszul duality (Theorem 2.4); indeed, as promised in
Section 2.4, we give in Section 5.3 a new proof of Theorem 2.4 based on
the correspondence (5.1).

TOME 63 (2013), FASCICULE 4



1546 Pramod N. ACHAR & Simon RICHE

5.1. A t-structure on Kb(A )

Let A be an Orlov category. Consider the following two subsets of Z×Z:

C = {(i, j) | i 6 −j}, B = {(i, j) | i > −j}.

As in the previous section, we associate to these subsets certain full subcat-
egories Kb(A )C, Kb(A )B of Kb(A ). We begin with some lemmas about
these categories.

Lemma 5.1. — If X ∈ Kb(A )C and Y [1] ∈ Kb(A )B, then
Hom(X,Y ) = 0.

Proof. — We may assume that the underlying chain complexes of X
and Y are such that suppX ⊂ C and suppY [1] ⊂ B. Then, for each
i ∈ Z, the homogeneous summands of Xi have degree 6 −i, while those of
Y i = (Y [1])i−1 have degree > −i + 1, so there are no nonzero morphisms
Xi → Y i. It follows that Hom(X,Y ) = 0 in Kb(A ). �

Lemma 5.2. — Let S ∈ Ind(A ).
(1) If X ∈ Kb(A )B, the cone of any nonzero morphism S[degS]→ X

lies in Kb(A )B.
(2) IfX ∈ Kb(A )C, the cocone of any nonzero morphismX → S[degS]

lies in Kb(A )C.

Proof. — We will prove only the first assertion; the second one is similar.
Let p = degS. Assume that the chain complex X = (X•, dX) is such
that suppX ⊂ B. Write X−p as a direct sum X−p = A ⊕ B, where A is
homogeneous of degree p, and B is a direct sum of homogeneous summands
whose degrees are > p. Since Hom(S,B) = 0, any nonzero chain map
f : S[p]→ X must have the form

fk =
{

0 if k 6= −p,
[ a0 ] : S → A⊕B if k = −p,

where a : S → A is some nonzero map. Let q : A→ A′ be the homogeneous
cokernel of a, as in Lemma 4.3. That lemma also tells us that q may be
regarded as a projection onto a direct summand of A. Here, we claim that a
is in fact the inclusion map of a complementary summand. We can certainly
write A ∼= C⊕A′ for some homogeneous object C. Since q ◦a = 0, we have
a = [ c0 ] for some c : S → C. But if c is not an isomorphism, then it has
its own nonzero cokernel, contradicting the universal property of q. Thus,
a identifies S with the summand C.
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Let Y −p denote the object A′⊕B. We henceforth identify X−p with the
direct sum S ⊕ Y −p, and f−p : S → S ⊕ Y −p with the inclusion map of
the first summand. Let r : S⊕Y −p → Y −p be the projection to the second
summand. We may write the differential d−pX : S ⊕ Y −p → X−p+1 as a
matrix

d−pX =
[
0 s

]
.

Here, the first entry must be 0 because d−pX ◦ f−p = 0. Similarly, we may
write d−p−1

X as a matrix

d−p−1
X =

[
u

v

]
.

Since d−pX ◦ d
−p−1
X = 0, we see that s ◦ v = 0. We also have d−p+1

X ◦ s = 0
and v ◦ d−p−2

X = 0.
We now regard the object Y −p as a term of the chain complex Y =

(Y •, dY ) given by

Y k =
{
Xk if k 6= −p,
A′ ⊕B if k = −p,

dkY =


dkX if k 6= −p,−p− 1,
s if k = −p,
v if k = −p− 1.

The observations in the preceding paragraph show that dkY ◦ d
k−1
Y = 0 for

all k, so this is a well-defined chain complex. Next, we define a morphism
g : Y [−1]→ S[p] by

gk =
{

0 if k 6= −p,
u : Y −p−1 → S if k = −p.

Again, this is a chain map since u ◦ d−p−2
X = 0.

It is now easy to see that the cone of u : Y [−1] → S[p] is none other
than X, and that the second map in the triangle Y [−1] → S[p] → X →
is f . Thus, the cone of f is isomorphic to Y , which lies in Kb(A )B by
construction. �

Lemma 5.3. — For any X ∈ Kb(A ), there is a distinguished triangle
A→ X → B → with A ∈ Kb(A )C and B[1] ∈ Kb(A )B.

Proof. — We will make use of the “∗” operation for objects in a trian-
gulated category from [7, §1.3.9]. In this language, we must show that

X ∈ Kb(A )C ∗ (Kb(A )B[−1]). (5.2)

We proceed by induction on the size of the support of X. If suppX is a
singleton, then X ∼= A[n] for some homogeneous object A ∈ A and some
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n ∈ Z. If n > degA, then X ∈ Kb(A )C; otherwise, X[1] ∈ Kb(A )B. In
either case, (5.2) holds trivially.
Next, consider the general case. Let Σ = suppX, and let (i, j) be the

largest element of Σ. Lemma 4.5(1) says that there are objects P and Y

such that
X ∈ {P} ∗ {Y },

with suppP = {(i, j)} and suppY ⊂ Σ′ = Σ r {(i, j)}. By induction, we
may assume that there exist objects A′ ∈ Kb(A )C and B′ ∈ Kb(A )B[−1]
such that Y ∈ {A′} ∗ {B′}, so that

X ∈ {P} ∗ {A′} ∗ {B′}.

If i 6 −j, then P ∈ Kb(A )C, so {P} ∗ {A′} ⊂ Kb(A )C, and then (5.2)
follows. On the other hand, if i > −j, we proceed by induction on the
number of indecomposable summands in the homogeneous object P . Write
P = S[−i]⊕ P ′, where S ∈ Ind(A ) is an indecomposable object of degree
j, and where P ′ contains fewer indecomposable summands (possibly zero).
We then have

X ∈ {S[−i]} ∗ {P ′} ∗ {A′} ∗ {B′}.
By induction, we have {P ′} ∗ {A′} ∗ {B′} ⊂ Kb(A )C ∗ (Kb(A )B[−1]).
Thus, there exist objects A′′ ∈ Kb(A )C and B′′ ∈ Kb(A )B[−1] so that

X ∈ {S[−i]} ∗ {A′′} ∗ {B′′}.

Consider a distinguished triangle

S[−i]→ Z → A′′ → S[−i+ 1]. (5.3)

If i − 1 > −j, then S[−i + 1] ∈ Kb(A )B[−1], so we know by Lemma 5.1
that Hom(A′′, S[−i+ 1]) = 0. Therefore, every such triangle splits, and we
have {S[−i]} ∗ {A′′} ⊂ {A′′} ∗ {S[−i]}. It follows that

X ∈ {A′′} ∗ ({S[−i]} ∗ {B′′}) ⊂ Kb(A )C ∗ (Kb(A )B[−1]),

as desired. On the other hand, if i−1 6> −j, we must have i−1 = −j (recall
that i > −j). If the triangle (5.3) splits, then the preceeding argument still
applies. But if (5.3) does not split, i.e., if the map A′′ → S[−i+1] is nonzero,
then we are in the setting of Lemma 5.2, which tells us that Z ∈ Kb(A )C.
Since X ∈ {Z} ∗ {B′′}, we see that (5.2) holds in this case as well. �

Proposition 5.4. — For any Orlov category A , the pair (Kb(A )C,
Kb(A )B) is a bounded t-structure on Kb(A ). The heart

Kos(A ) = Kb(A )C ∩Kb(A )B
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is a split finite-length abelian category, and the simple objects in Kos(A )
are those isomorphic to objects in the set

Irr(Kos(A )) = {S[degS] | S ∈ Ind(A )}.

Moreover, Kos(A ) has the structure of a mixed category, with weight func-
tion wt : Irr(Kos(A ))→ Z given by wt(S[degS]) = degS.

Proof. — It is clear that Kb(A )C[1] ⊂ Kb(A )C and Kb(A )B[1] ⊃
Kb(A )B. The other axioms for a t-structure have been checked in Lem-
mas 5.1 and 5.3, so the pair (Kb(A )C,Kb(A )B) does indeed constitute a
t-structure.
Since the support of any object X is finite, it is clear that there exist

integers n and m such that X[n] ∈ Kb(A )C and X[m] ∈ Kb(A )B. In
other words, the t-structure is bounded.

For brevity, let us write C = Kos(A ). Let S ∈ Ind(A ), and consider the
object E = S[degS] ∈ C . Let X be any other object of C . If f : E → X is
a nonzero morphism, Lemma 5.2 tells us that the cone of f lies in Kb(A )B,
which means that the kernel of f must be 0. This means that E contains
no nontrivial subobject in C. In other words, E is simple.
Let us call a simple object of C good if it is isomorphic to S[degS]

for some S ∈ Ind(A ). More generally, an object of C is said to be good
if it has a composition series whose composition factors are good simple
objects. We will now show that every object of C is good. Given an object
X = (X•, dX) ∈ C , let Σ = suppX. Assume that Σ ⊂ C. We proceed by
induction on the size of Σ.
The base case is that in which Σ is a singleton. Since X ∈ C , we must

have X ∼= A[n], where A ∈ A is homogeneous of degree n. Such an object
is evidently a direct sum of good simple objects.
Otherwise, let (i, j) be the largest element of Σ, and form the distin-

guished triangle
P

f−→ X → Y →
as in Lemma 4.5(1). Since (i, j) ∈ C, we have i 6 −j. If i < −j, then
P ∈ Kb(A )C[1], so Hom(P,X) = 0 by Lemma 5.1. It follows that Y ∼=
X⊕P [1]. Recall that Y has strictly smaller support thanX. By Lemma 4.2,
X is isomorphic to a chain complex whose support is contained in that of
Y , so X is already known to be good by induction.

Suppose, on the other hand, that i = −j. Then P ∈ C . Indeed, P is
clearly a semisimple object whose direct summands are good simple objects.
Moreover, f : P → X is a morphism in C , so we may write P ∼= ker f⊕im f .
The map f is then the direct sum of an injective map im f → X and the
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zero map ker f → 0, so its cone is

Y ∼= cok f ⊕ (ker f)[1].

Using Lemma 4.2 again, we see that cok f is an object of C with strictly
smaller support than X, so it is good. From the short exact sequence

0→ im f → X → cok f → 0,

we see that X is good, as desired. In other words, we have just shown that
every object of C has finite length, and that every simple object is isomor-
phic to some S[degS] with S ∈ Ind(A ). It follows from Definition 4.1(2)
that C is split.
Finally, to show that C is a mixed category with the weight function given

above, we must check that Ext1(S[degS], T [deg T ]) = 0 for S, T ∈ Ind(A )
if deg T > degS. By [7, Remarque 3.1.17(2)], we have

Ext1
C (S[degS], T [deg T ]) ∼= HomKb(A )(S[degS], T [deg T + 1]),

It is clear that Hom(S[degS], T [deg T+1]) = 0 if deg T > degS, as desired.
�

Corollary 5.5. — We have Kb(A )C∩B = Kos(A ). Moreover, for a
chain complex X = (X•, dX) with suppX ⊂ C ∩B, the associated graded
of the weight filtration on X is given by grWk X = X−k[k].

Proof. — It is clear that Kb(A )C∩B ⊂ Kos(A ), and that the simple ob-
jects S[degS] (with S ∈ Ind(A )) of Kos(A ) lie in Kb(A )C∩B. Recall that
for any subset Σ ⊂ Z×Z, the category Kb(A )Σ is stable under extensions.
The smallest strictly full subcategory of Kb(A ) containing all the S[degS]
and stable under extensions is none other than Kos(A ), because every ob-
ject of Kos(A ) has finite length. It follows that Kos(A ) ⊂ Kb(A )C∩B. The
second claim is obvious. �

The calculation at the end of the proof of Proposition 5.4 actually shows
the stronger statement that Ext1

C (S[degS], T [deg T ]) = 0 unless deg T =
degS − 1. Indeed, the same reasoning gives us the following more gen-
eral statement: for S, T ∈ Ind(A ), the simple objects S[degS], T [deg T ] ∈
Irr(Kos(A )) have the property that

Homi
Kb(A )(S[degS], T [deg T ]) = 0 if deg T 6= degS − i. (5.4)

This is a stronger version of the condition (2.2). An easy induction argu-
ment yields a strengthened version of Lemma 2.1(1), as follows.

Corollary 5.6. — For an Orlov category A , the mixed structure on
Kos(A ) makes Kb(A ) into a mixed triangulated category. Moreover, if
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X,Y ∈ Kb(A ) are objects such that X has weights 6 w and Y has
weights > w, then Hom(X,Y ) = Hom(Y,X) = 0. �

5.2. Koszulescent Orlov categories

The vanishing property (5.4) and Corollary 5.6 closely resemble proper-
ties of Koszul categories. To make this resemblance into a precise statement,
we must impose the following additional condition on an Orlov category.

Definition 5.7. — An Orlov category A is said to be Koszulescent if
the realization functor

real : Db(Kos(A ))→ Kb(A )

is an equivalence of categories.

If A is Koszulescent, then (5.4) is equivalent to the defining condi-
tion (2.4) for a Koszul category, and Corollary 5.6 is equivalent to
Lemma 2.2. In particular, we have the following observation.

Proposition 5.8. — If A is a Koszulescent Orlov category, then
Kos(A ) is a split Koszul abelian category. �

The following result is a sort of converse to the preceding one.

Proposition 5.9. — Let C be a split Koszul abelian category, and
consider the additive category

Orl(C ) = {pure objects of weight 0 in Db(C )}.

The isomorphism classes of indecomposable objects in Orl(C ) are given by

Ind(Orl(C )) = {L[−wtL] | L ∈ Irr(C )}.

If we define deg : Ind(Orl(C ))→ Z by deg(L[−wtL]) = wtL, then Orl(C )
becomes a Koszulescent Orlov category. Moreover, there is a natural equiv-
alence of abelian categories C

∼−→ Kos(Orl(C )).

Proof. — For brevity, let us write A = Orl(C ). The description of inde-
composable objects in A follows from Lemma 2.1(3). For L,L′ ∈ Irr(C ), it
is obvious that Hom(L[−wtL], L′[−wtL′]) = 0 in Db(C ) if wtL < wtL′,
or if wtL = wtL′ but L 6∼= L′. Thus, A is an Orlov category.
We will now construct a functor Q̃ : C → Kb(A ). For an object X ∈ C ,

we use the weight filtration W•X to construct a short exact sequence

0→ grWk−1X →WkX/Wk−2X → grWk X → 0.
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This sequence determines an element ∂k = ∂X,k ∈ Ext1(grWk X, grWk−1X).
Because all morphisms in C are strictly compatible with W•M , any mor-
phism f : X → Y gives rise to a morphism of short exact sequences of the
above form, and so, in Db(C ), a commutative diagram

grWk X

grWk (f)
��

∂X,k // (grWk−1X)[1]

grWk−1(f)[1]
��

grWk Y
∂Y,k

// (grWk−1 Y )[1]

(5.5)

Next, consider the Yoneda product ∂k−1·∂k ∈ Ext2(grWk X, grWk−2X), which
corresponds to the exact sequence

0→ grWk−2X →Wk−1X/Wk−3X →WkX/Wk−2X → grWk X → 0.

This sequence arises from a filtration of the object WkX/Wk−3X, so it
follows that

∂k−1 · ∂k = 0. (5.6)
Note that for any k ∈ Z, the object (grW−kX)[k] ∈ Db(C ) is pure of weight
0, so it is an object in A . Moreover,

∂−k[k] ∈ Hom((grW−kX)[k], (grW−k−1X)[k + 1])

is a morphism in A . We now define Q̃ : C → Kb(A ) by

Q̃(X) = (Q̃(X)•, d•
Q̃(X))

where
Q̃(X)k = (grW−kX)[k], dk

Q̃(X) = ∂X,−k.

That this is a chain complex follows from (5.6). Moreover, from (5.5), we
see that any morphism f : X → Y in C induces a morphism of chain
complexes Q̃(X)→ Q̃(Y ), so this is indeed a functor.

For brevity, let us write C ′ = Kos(A ) = Kb(A )C ∩ Kb(A )B. Since
the kth term of the chain complex Q̃(X) is a homogeneous object of A of
degree −k, we see that Q̃ actually takes values in C ′. Let Q0 : C → C ′ be
the functor obtained from Q̃ by restricting its codomain.

Note that applying the exact functor grWk to a short exact sequence in
C yields a (necessarily) split short exact sequence of pure objects. There-
fore, applying Q̃ to a short exact sequence in C yields a sequence of chain
complexes satisfying the hypotheses of Lemma 2.5. Invoking that lemma,
we find that Q̃ takes short exact sequences in C to distinguished triangles
in Kb(A ). It follows that Q0 : C → C ′ is an exact functor of abelian
categories, so it gives rise to a derived functor Q′0 : Db(C )→ Db(C ′). Let
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us compose this with the realization functor real : Db(C ′) → Kb(A ) and
define

Q = real ◦Q′0 : Db(C )→ Kb(A ).

It is easy to see that this functor induces isomorphisms

HomDb(C )(L[−wtL], L′[−wtL′ + k])
∼−→ HomKb(A )(L[−wtL], (L′[−wtL′])[k])

for all L,L′ ∈ Irr(C ) and all k ∈ Z. (Indeed, both Hom-groups vanish
unless k = 0.) Since objects of the form L[−wtL] generate both Db(C )
and Kb(A ), it follows that Q : Db(C ) → Kb(A ) is an equivalence of
categories.
It follows that real is full and essentially surjective. In particular, for all

objects X,Y ∈ C ′ and all k > 0, the induced map

real : ExtkC ′(X,Y )→ HomKb(A )(X,Y [k]) (5.7)

is surjective. On the other hand, according to [7, Remarque 3.1.17], that
map is always an isomorphism for k = 0, 1, and if it is known to be an iso-
morphism when k < n for all X,Y ∈ C ′, then it is injective for k = n. (A
similar statement appears in [9, Lemma 3.2.3].) By induction, (5.7) is al-
ways an isomorphism. By the end of the proof of [7, Proposition 3.1.16], we
conclude that real is an equivalence of categories, and that A is Koszules-
cent.
Finally, we now see that Q′0 : Db(C ) → Db(C ′) is an equivalence of

categories as well. Since this is the derived functor of Q0 : C → C ′, the
latter is an equivalence of abelian categories. In other words, C ∼= Kos(A ).

�

We are now ready to complete the proof of the bijective correspon-
dence (5.1).

Theorem 5.10. — The assignments A 7→ Kos(A ) and C 7→ Orl(C )
provide bijections, inverse to one another, between equivalence classes of
Koszulescent Orlov categories and equivalence classes of split Koszul abelian
categories.

Proof. — In view of Proposition 5.9, it remains only to show that if
A is a Koszulescent Orlov category, then A ∼= Orl(Kos(A )). Identifying
Db(Kos(A )) ∼= Kb(A ), it is straightforward to see that an object ofKb(A )
is pure of weight 0 with respect to the mixed structure of Proposition 5.4
if and only if it lies in A . �
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Remark 5.11. — The proof that Orl(C ) is an Orlov category does not
use Koszulity in any way; it is valid for any split mixed abelian category.
Thus, using Proposition 5.4, we actually have a pair of maps{

equivalence classes of split
mixed abelian categories

} Orl ..
{

equivalence classes
of Orlov categories

}
.

Kos
oo

However, in the absence of the Koszulity and Koszulescence conditions,
these maps are neither injective nor surjective.

5.3. Koszul duality and Koszulescent Orlov categories

In the previous section, we saw how to construct a Koszulescent Orlov
category starting from an arbitrary split Koszul category. However, when a
Koszul category has enough projectives, there is another, more elementary
way to build a Koszulescent Orlov category from it, as explained below.

Theorem 5.12. — Let M be a split Koszul category with enough pro-
jectives, and in which every object has finite projective dimension, so that
we have a natural equivalence of categories

R : Db(M ) ∼−→ Kb(Proj(M )),

where Proj(M ) is the additive category of projective objects in M . Then
Proj(M ) is a Koszulescent Orlov category, with degree function

deg : Ind(Proj(M ))→ Z given by degP = −wt(P/ radP ).

Moreover, the split Koszul abelian category

M \ = Kos(Proj(M ))

has enough injectives, and every object has finite injective dimension.

From the description of the category Kos(Proj(M )) in Proposition 5.4,
and in particular the description of its irreducibles and mixed structure,
we see that this definition of M \ coincides with that in (2.5), and that the
theorem is a restatement of Theorem 2.4.
Proof. — For clarity, we will not identify Db(M ) and Kb(Proj(M )); we

will instead explicitly use the functor R to go back and forth between them.
All shifts of objects of M should be understood to be objects of Db(M ).
We proceed in several steps.
Because every object of M has finite length, the Fitting lemma and its

consequences hold in M . For instance, any object X ∈ M has a unique
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minimal subobject radX (called its radical) such that X/ radX is semisim-
ple. In the special case where X is an indecomposable projective, X/ radX
is simple. These facts, and others related to the Fitting lemma, will be used
freely throughout the following proof.
Step 1. Proj(M ) is an Orlov category. Let P be an indecomposable pro-

jective in M , and let L = P/ radP denote its unique simple quotient.
Consider its weight filtration W•P , and let w be the smallest integer such
thatWwP = P . Then grWw P = P/Ww−1P is a semisimple quotient of P , so
we must in fact have that grWw P ∼= L and radP = Ww−1P . In particular,
the simple object L, which has weight w, cannot occur as a composition
factor of radP , so it follows that dim Hom(P, P ) = 1.

More generally, suppose that P ′ is another indecomposable projective,
with simple quotient L′ = P ′/ radP ′. Then L cannot occur as a compo-
sition factor of P ′ if wtL > wtL′, and if wtL = wtL′, then L occurs in
P ′ if and only if L ∼= L′, or, equivalently, if P ∼= P ′. We have just shown
that Hom(P, P ′) = 0 if wtL > wtL′ and P 6∼= P ′, so Proj(M ) is indeed an
Orlov category.
Step 2. M \ has enough injectives. Let L ∈ Irr(M ), and let P → L be its

projective cover. Then Proposition 5.4 tells us that R(P [−wtL]) is a simple
object in M \, and every simple object arises in this way. Let P ′ → L′ be
another projective cover of a simple object in M . We claim that

HomDb(M )(P ′[−wtL′], L[−wtL+ k]) = 0 unless P ∼= P ′ and k = 0.
(5.8)

Indeed, this Hom-group obviously vanishes if k 6= wtL− wtL′. If we take
k = wtL−wtL′, then the Hom-group above is isomorphic to HomM (P ′, L),
which vanishes unless P ′ ∼= P , in which case we necessarily have k = 0.

On the other hand, we also have

HomDb(M )(L[−wtL], P ′[−wtL′ + k]) = 0 if k < 0 (5.9)

by Lemma 2.2, because the object P ′[−wtL′ + k] has weights 6 k in
Db(M ), while L[−wtL] is pure of weight 0.
The Hom-vanishing statements above have analogues in Kb(Proj(M ))

obtained by applying R. From (5.9) and the vanishing of (5.8) for k < 0,
we conclude that R(L[−wtL]) ∈M \. Next, taking (5.8) for k = 1, we find
that

Ext1
M \(R(P ′[−wtL′]), R(L[−wtL])) =

HomKb(Proj(M ))(R(P ′[−wtL′]), R(L[−wtL+ 1])) = 0.
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Thus, R(L[−wtL]) is an injective object of M \. It is indecomposable, and
there is a nonzero map to it from the simple object R(P [−wtL]), so in fact
R(L[−wtL]) is an injective envelope of R(P [−wtL]).
Step 3. Koszulescence and finite injective dimension. Let Φ : Db(M \)→

Db(M ) denote the composition

Db(M \) real−−→ Kb(Proj(M )) R−1

−−−→ Db(M ).

It is easy to see that for any two objects L,L′ ∈ Irr(M ) and any k ∈ Z, Φ
induces an isomorphism

HomDb(M \)(R(L[−wtL]), R(L′[−wtL′ + k]))
∼−→ HomDb(M )(L[−wtL], L′[−wtL′ + k]),

as both Hom-groups vanish unless k = 0. Now, objects of the form L[−wtL]
generate Db(M ) as a triangulated category. If we let Db(M \)′ ⊂ Db(M \)
denote the full triangulated subcategory generated by objects of the form
R(L[−wtL]), then the above calculation shows that Φ induces an equiva-
lence

Φ|Db(M \)′ : Db(M \)′ ∼−→ Db(M ).

To describe Db(M \)′ in another way, note that it is the full triangulated
subcategory of Db(M \) generated by injective objects of M \. Thus, it
contains precisely those objects of Db(M \) that can be represented by a
bounded chain complex of injectives. In particular, for an objectX ∈M \ ⊂
Db(M \), we have

X ∈M \∩Db(M \)′ if and only if X has finite injective dimension.

Let i : Db(M \)′ → Db(M \) denote the inclusion functor, and let Ψ
denote the composition

Db(M \)′ i−→ Db(M \) real−−→ Kb(Proj(M )).

Since Ψ ∼= R ◦ (Φ ◦ i), it is an equivalence of categories. Consider an object
X ∈M \ ⊂ Db(M \). We obviously have

(real ◦i ◦Ψ−1 ◦ real)(X) ∼= real(X).

Because the realization functor commutes with cohomology [7, §3.1.14], it
follows that (i◦Ψ−1◦real)(X) ∈M \. Furthermore, since real is fully faithful
on M \, we must have (i ◦Ψ−1 ◦ real)(X) ∼= X. In particular, every object
X ∈M \ is in the essential image of i.
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In other words, we have just shown that every object of M \ has finite
injective dimension. It follows that Db(M \)′ = Db(M \), so we have equiv-
alences of categories

Φ : Db(M \)→ Db(M ) and real ∼= R ◦ Φ : Db(M \)→ Kb(Proj(M )).

The latter shows that Proj(M ) is Koszulescent. �

Part 2. Sheaf Theory

6. Mixed and Weil Categories of Perverse Sheaves

As noted in the introduction, the triangulated category of constructible
Q`-complexes introduced by Deligne in [17] is too large for many purposes
in representation theory. Over the course of Part 2, we will study how to
replace it by a smaller category, and how to define sheaf functors on the new
smaller category. In the present section, we fix notation and assumptions,
and we review some facts about Deligne’s category. We will also define the
“miscible category.”

6.1. Weil complexes and Weil perverse sheaves

Let X be a variety over Fq. We write X ⊗ Fq for the variety X ×Spec Fq
SpecFq obtained by extension of scalars. This variety comes with a geo-
metric Frobenius map Fr : X ⊗ Fq → X ⊗ Fq. Assume that X is equipped
with a stratification S = {Xs}s∈S (for some index set S). All constructible
complexes should be understood to be constructible with respect to this
stratification. For any constructible complex F on X, we denote by κ(F)
its pullback to X ⊗ Fq.
Let DDel

S (X) denote the category of “mixed constructible complexes” in-
troduced by Deligne in [17]. (This category is often denotedDb

m(X), cf. [7].)
We reiterate that the term “mixed” will not be used again for this category,
because that conflicts with the conventions of Section 2 and [9]. The term
“mixed” will be reserved for a category to be introduced in Section 7.
In this setting of DDel

S (X), we have available the theory of weights
from [17]. Let us fix, once and for all, a square root of the Tate sheaf
on X. This allows us to form Tate twists F(n2 ) of a constructible complex
F ∈ DDel

S (X) for any n ∈ Z. For the aesthetic benefit of avoiding fractions,
we henceforth adopt the notation

F〈n〉 = F(−n2 ).
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We denote by Q
`
the constant sheaf with value Q` on X or on any subva-

riety. Next, let js : Xs → X denote the inclusion map of the stratum Xs.
The following assumption (cf. [7, 2.2.10(c)]) will be in force whenever we
discuss constructible complexes:{

For any s, t, the sheaf Hi(Rjs∗Q`)|Xt is a local system
with irreducible subquotients of the form Q

`
〈n〉. (6.1)

(In fact, most varieties we will encounter satisfy a much stronger condition;
see Section 7.) Next, consider the simple perverse sheaves

ICmix
s = js!∗Q`[dimXs]〈−dimXs〉 and ICs = κ(ICmix

s ).

The condition (6.1) implies that each Hi(ICmix
s )|Xt is a local system with

irreducible subquotients of the form Q
`
〈n〉.

Let DWeil
S (X) denote the full triangulated subcategory of DDel

S (X) that
is generated by the objects ICmix

s . Similarly, let DS (X) denote the full
triangulated subcategory of bounded complexes on X ⊗ Fq generated by
the ICs. Extension of scalars gives us a functor

κ : DWeil
S (X)→ DS (X).

Let PWeil
S (X), resp. PS (X), denote the abelian category of perverse Q`-

sheaves in DWeil
S (X), resp. DS (X). By [7, 5.1.2], PWeil

S (X) may be thought
of as a certain category of perverse sheaves on X ⊗ Fq equipped with a
“Weil structure,” but the analogous statement does not hold for DWeil

S (X).
By [7, Théorème 5.3.5], every object F ∈ PWeil

S (X) is equipped with
a canonical weight filtration, denoted W•F . The subquotients grWi F are
pure, but not necessarily semisimple, cf. [7, Proposition 5.3.9]. (This fail-
ure of semisimplicity shows that PWeil

S (X) is not a mixed category.) All
morphisms in PWeil

S (X) are strictly compatible with the weight filtration.
For F ,G ∈ DWeil

S (X), let us put

RHom(F ,G) = a∗RHom(F ,G),

where a : X → SpecFq is the structure morphism. We further put

Homi(F ,G) = Hi(Ra∗RHom(F ,G)).

Thus, Homi(F ,G) is a Q`-sheaf over SpecFq. In other words, we regard it
as a Q`-vector space equipped with an automorphism

Fr : Homi(F ,G)→ Homi(F ,G) (6.2)

induced by the Frobenius map. Because κ is compatible with all the usual
sheaf operations, we have

Homi
DS (X)(κ(F),κ(G)) ' κ(Homi(F ,G)). (6.3)
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In other words, Homi(κ(F),κ(G)) is obtained from Homi(F ,G) by forget-
ting the automorphism (6.2).
The Hom-groups withinDWeil

S (X) are somewhat different. By [7, (5.1.2.5)],
there is a short exact sequence of Q`-vector spaces

0→ Homi−1(F ,G)Fr → Homi(F ,G)→ Homi(F ,G)Fr → 0, (6.4)

where (·)Fr and (·)Fr denote coinvariants and invariants of Fr (that is, the
cokernel and kernel of Fr−id), respectively. Note that the natural morphism

HomDWeil
S

(X)(F ,G)→ HomDS (X)(κ(F),κ(G))

factors through the map HomDWeil
S

(X)(F ,G)→ Hom(F ,G)Fr of (6.4).

6.2. Functors on the Weil category

The usual sheaf operations are defined on DDel
S (X), so when working with

DWeil
S (X), we must check that that category is preserved by any functors

we wish to use. The following lemma is a useful tool for this.

Lemma 6.1. — For F ∈ DDel
S (X), the following conditions are equiva-

lent:
(1) F ∈ DWeil

S (X).
(2) For each stratum js : Xs → X, we have j∗sF ∈ DWeil

S (Xs).

For a similar statement on X ⊗ Fq, see [9, Lemma 4.4.5]. We will prove
this simultaneously with the following result.

Proposition 6.2. — Let X be a stratified variety. If h : Y → X is the
inclusion of a locally closed union of strata, then the functors h∗ and h!

(resp. h∗ and h!) send objects of DWeil
S (X) to DWeil

S (Y ) (resp. DWeil
S (Y ) to

DWeil
S (X)).

Proof of Lemma 6.1 and Proposition 6.2. — Let DWeil
S (X)′ ⊂ DDel

S (X)
be the full triangulated subcategory consisting of objects satisfying condi-
tion (2) of the lemma. This is the category referred to as the category of
constructible complexes in [7, §2.2.10]. The assumption (6.1) corresponds
to the condition in [7, §2.2.10(c)], and according to that statement, the
analogue of the proposition holds for DWeil

S (X)′ and DWeil
S (Y )′. As a con-

sequence, the formalism of gluing of t-structures applies in DWeil
S (X)′. In

particular, DWeil
S (X)′ admits a perverse t-structure; cf. [7, §2.2.17]. Since

that t-structure is bounded and has a finite-length heart, DWeil
S (X)′ is gen-

erated as a triangulated category by the simple perverse sheaves it con-
tains. But a simple perverse sheaf js!∗L clearly lies in DWeil

S (X)′ if and
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only if the irreducible local system L is isomorphic to some Q
`
[dimXs]〈n〉.

Thus, DWeil
S (X)′ contains and is generated by the ICmix

s , so DWeil
S (X)′ =

DWeil
S (X). �

Proposition 6.3. — For any stratified variety X, the functors D, ⊗L,
and RHom take objects of DWeil

S (X) to DWeil
S (X).

Proof. — The statement for D is clear, since DICmix
s
∼= ICmix

s for all s,
and these objects generate DWeil

S (X). For ⊗L, we first consider the spe-
cial case where X consists of a single stratum Xs. In this case, ICmix

s
∼=

Q
`
[dimX]〈−dimX〉, so

ICmix
s

L

⊗ ICmix
s
∼= (Q

`

L

⊗Q
`
)[2 dimX]〈−2 dimX〉 ∼=

Q
`
[2 dimX]〈−2 dimX〉 ∼= ICmix

s [dimX]〈−dimX〉,

and the desired statement follows. For generalX, suppose F ,G ∈ DWeil
S (X).

Given a stratum Xs ⊂ X, we use the formula

j∗s (F
L

⊗ G) ∼= j∗sF
L

⊗ j∗sG

to see that each j∗s (F ⊗L G) lies in DWeil
S (Xs), so F ⊗L G ∈ DWeil

S (X)
by Lemma 6.1. Finally, the result holds for RHom since RHom(F ,G) ∼=
D(F ⊗L DG). �

Definition 6.4. — Let X and Y be varieties endowed with stratifica-
tions S and T , respectively. A morphism f : X → Y is said to be weakly
stratified if for each stratum Yt ⊂ Y , its preimage f−1(Yt) ⊂ X is a union
of strata.

Proposition 6.5. — Let X and Y be varieties endowed with stratifi-
cations S and T , respectively, and let f : X → Y be a weakly stratified
morphism. Then f∗ and f ! take objects of DWeil

T (Y ) to objects of DWeil
S (X).

Proof. — For each stratum Xs ⊂ X, there is a unique stratum Yt ⊂ Y

such that Xs ⊂ f−1(Yt). Let fs = f |Xs : Xs → Yt. For ICmix
t ∈ Pmix

T (Y ),
we have j∗sf∗ICmix

t
∼= f∗s j

∗
t ICmix

t . We know that j∗t ICmix
t ∈ DWeil

T (Yt) by
Lemma 6.1. We clearly have f∗sQ`

∼= Q
`
, so f∗s takesDWeil

T (Yt) toDWeil
S (Xs).

Therefore, the object f∗s j∗t ICmix
t
∼= j∗sf

∗ICmix
t lies in DWeil

S (Xs) for all s
and t. Using Lemma 6.1 again, we see that f∗ICmix

t ∈ DWeil
S (X), so the

proposition holds for f∗. It then follows for f ! ∼= D ◦ f∗ ◦ D. �

The preceding results cover most of the functors we will encounter. (We
will prove that certain push-forwards preserve the Weil category in Sec-
tion 9.4.) For the most part, we will suppress further mention of DDel

S (X)
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and silently regard sheaf operations as functors on the Weil category. It is
well known that all the usual sheaf operations enjoy the following property.

Definition 6.6. — A functor F : DWeil
S (X) → DWeil

T (Y ) is said to be
geometric if it is a functor of triangulated categories that is equipped with
a natural transformation

RHom(F ,G)→ RHom(F (F), F (G)) (6.5)

and it “commutes with κ,” i.e., there exists a triangulated functor F̄ :
DS (X)→ DT (Y ) such that

F̄ ◦ κ ∼= κ ◦ F.

For a geometric functor, the natural transformation (6.5), combined
with (6.4), gives rise to a commutative diagram

0 // Homi−1(F, G)Fr

��

// Homi(F, G)

��

// Homi(F, G)Fr

��

// 0

0 // Homi−1(F (F), F (G))Fr // Homi(F (F), F (G)) // Homi(F (F), F (G))Fr // 0

(6.6)

6.3. Weight filtrations in the Weil category

Even though DWeil
S (X) is not a mixed triangulated category in general,

an analogue of Lemma 2.1(2) still holds.

Lemma 6.7. — Let F be an object of DWeil
S (X) with weights> a and6 b.

For any integer w, there is a distinguished triangle

F6w → F → F>w → (6.7)

where F6w has weights > a and 6 w, and F>w has weights > w and 6 b.

Proof. — The statement holds trivially unless a 6 w 6 b, so assume
that that is the case. We proceed by induction on the “total length” of F ,
i.e., on the sum of the lengths of the perverse sheaves pHi(F). If the total
length is 1, then F is a shift of a simple perverse sheaf, and so is pure. The
result holds trivially in this case as well.
Otherwise, let k be the smallest integer such that pHk(F) has com-

position factors of weight 6 w + k. (If there is no such k, then F has
weights > w, and the lemma holds trivially.) Form the distinguished trian-
gle

τ<kF → F → τ>kF → .
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Now, consider the term G = Ww+k
pHk(F) in the weight filtration of

pHk(F). The inclusion G ⊂ pHk(F) gives us a natural morphism f :
G[−k]→ τ>kF . Note that the truncation τ<kF must have weights > w. It
follows that

Hom(G[−k], τ<kF [1]) = 0
by [7, Proposition 5.1.15(ii)]. Therefore, f factors through F , say by f̃ :
G[−k]→ F . Complete this to a distinguished triangle

G[−k] f̃−→ F → F ′ → . (6.8)

Since the induced map pHk(G[−k]) → pHk(F) is injective, we see that
pHi(F ′) ∼= pHi(F) if i 6= k, and that pHk(F ′) ∼= pHk(F)/G. That is, F ′
has lower total length than F , so by induction, there exists a distinguished
triangle

F ′6w → F ′ → F ′>w → (6.9)
with weights as specified in the statement of the lemma. Using the “∗”
notation of [7, §1.3.9] (cf. Lemma 5.3), we see from (6.8) and (6.9) that

F ∈ {G[−k]} ∗ ({F ′6w} ∗ {F ′>w}) = ({G[−k]} ∗ {F ′6w}) ∗ {F ′>w}.

In particular, there is some object F ′′ ∈ {G[−k]} ∗ {F ′6w} together with a
distinguished triangle

F ′′ → F → F ′>w → .

Since G[−k] and F ′6w each have weights 6 w, the same holds for all objects
in {G[−k]} ∗ {F ′6w}. Thus, this triangle is of the desired form. �

Corollary 6.8. — Let PureWeil
S (X) ⊂ DWeil

S (X) denote the category
of pure objects of weight 0. If F ∈ DWeil

S (X) has weights > a and 6 b,
then

F ∈ PureWeil
S (X)[a] ∗ PureWeil

S (X)[a+ 1] ∗ · · · ∗ PureWeil
S (X)[b].

6.4. Mixed perverse sheaves and the miscible category

As noted earlier, the most obvious marker of the failure of PWeil
S (X) and

DWeil
S (X) to be mixed categories is the fact that pure objects need not be

semisimple. As a first step towards remedying this, we must discard some
objects from our categories. Consider first the full subcategory of PWeil

S (X)
given by

Pmix
S (X) = {F ∈ PWeil

S (X) | for all i, grWi F is semisimple},
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called the category of mixed perverse sheaves. This is not a Serre sub-
category of PWeil

S (X), as it is not closed under extensions, but it is closed
under subquotients. In particular, the kernel and cokernel of any morphism
in Pmix

S (X) is again in Pmix
S (X), so Pmix

S (X) is naturally an abelian cate-
gory. It is easy to see that Pmix

S (X) is, in fact, a mixed category, so the
terminology is justified.
Next, we consider the full additive subcategory

PureS (X) = {pure semisimple objects of weight 0 in DWeil
S (X)}

of DWeil
S (X). When there is no ambiguity about the stratification, we will

usually just denote this category by Pure(X). Inspired by Corollary 6.8, we
introduce the following notion.

Definition 6.9. — An object F ∈ DWeil
S (X) is said to be miscible if

F ∈ Pure(X)[a] ∗ Pure(X)[a+ 1] ∗ · · · ∗ Pure(X)[b]

for some integers a 6 b. A geometric functor F : DWeil
S (X) → DWeil

T (Y ) is
said to be miscible if it takes miscible objects to miscible objects.

The full subcategory of DWeil
S (X) consisting of miscible objects is denoted

Dmisc
S (X).

Unfortunately, this is not a triangulated subcategory of DWeil
S (X) (except

in the trivial case where X is the empty variety), because the cone of a
morphism between two miscible objects need not be miscible. It is desirable
to replace Dmisc

S (X) by a smaller category that is triangulated and that
contains Pmix

S (X) as the heart of t-structure. The authors do not know how
to do this in general, but in the next section we will describe a solution for
a very special class of stratifications.

7. Affable stratifications

For the remainder of the paper, we will restrict ourselves to varieties
whose stratifications are of one of the following two types:

Definition 7.1. — An affine even stratification of X is a stratification
S = {Xs}s∈S satisfying the following two conditions:

(1) Each Xs is isomorphic to the affine space AdimXs .
(2) For all s, t ∈ S and i ∈ Z, the sheaf Hi(ICmix

s |Xt) vanishes if i 6≡
dimXs (mod 2), and is isomorphic to a direct sum of copies of Q

`
〈i〉

otherwise.

TOME 63 (2013), FASCICULE 4



1564 Pramod N. ACHAR & Simon RICHE

Definition 7.2. — A stratification S of X is said to be affable if it
admits a refinement S ′ that is an affine even stratification.

The main examples come from representation theory: according to [9,
Corollary 4.4.3], the stratification of a partial flag variety for a reductive
group by orbits of a Borel subgroup is an affine even stratification. It follows
that the stratification by orbits of a parabolic subgroup is affable. Similar
statements hold for partial affine flag varieties, stratified by orbits of an
Iwahori or parahoric subgroup. Note that these results are stronger than the
older Kazhdan–Lusztig theorem [19] on pointwise purity: the latter states
only that each ICmix

s |Xt on a flag variety is a pure object of DWeil
S (Xt),

whereas [9, Corollary 4.4.3] tells us in addition that each cohomology sheaf
belongs to Pmix

S (Xt).

7.1. The Weil category for an affable stratification

To make sure that the considerations of Section 6 apply to affine even
and affable stratifications, we must check that (6.1) holds.

Lemma 7.3. — Condition (6.1) holds for any affable stratification S

of X.

Proof. — We proceed by induction on the number of strata in X. If
X consists of a single stratum, there is nothing to prove. Otherwise, let
js : Xs → X be the inclusion of an open stratum, and let i : Z → X be
the inclusion of the complementary closed subvariety. Consider the distin-
guished triangle

js!Q`[dimXs]〈−dimXs〉 → ICmix
s → i∗i

∗ICmix
s → .

We know by induction that the induced stratification on Z satisfies (6.1).
It is clear from the definition that i∗ICmix

s has the second property in
Lemma 6.1, so i∗ICmix

s ∈ DWeil
S (Z). By Proposition 6.3, i!ICmix

s
∼= Di∗ICmix

s

lies in DWeil
S (Z) as well. It follows from the distinguished triangle

i!js!Q`[dimXs]〈− dimXs〉 → i!ICmix
s → i∗ICmix

s →

that i!js!Q` lies in D
Weil
S (Z), so using D again, we have i∗js∗Q` ∈ D

Weil
S (Z),

and this implies (6.1). �
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7.2. The mixed category

If S is an affable stratification of X, we define the mixed category of X
to be the triangulated category

Dmix
S (X) = KbPure(X). (7.1)

Our first goal is to describe the relationship between this category and
Dmisc

S (X).

Theorem 7.4. — There is a natural equivalence of additive categories

I : =Dmix
S (X) ∼−→ Dmisc

S (X). (7.2)

Once this result is proved, we will identify =Dmix
S (X) with Dmisc

S (X). We
will explain in Section 7.3 how to transfer various notions and results from
Section 3 to the setting of Dmisc

S (X). For now, note that this identification
gives us a canonical functor

ι : Dmix
S (X)→ Dmisc

S (X).

By an abuse of notation, we will also write ι for the compositionDmix
S (X)→

Dmisc
S (X) → DWeil

S (X). Let ζ = κ ◦ ι, so that we have a commutative
diagram

Dmix
S (X) ι //

ζ ��@@@@@@@
DWeil

S (X)

κ
~~}}}}}}}

DS (X)

In the course of the proof of Theorem 7.4, we will simultaneously establish
the following statement, which tells us in part that Dmix

S (X) and Pmix
S (X)

are mixed versions of DS (X) and PS (X), respectively.

Proposition 7.5. — (1) Dmix
S (X) admits a natural t-structure whose

heart can be identified with Pmix
S (X), and the functor ι : Dmix

S (X)→
DWeil

S (X) is t-exact and restricts to the inclusion functor Pmix
S (X)→

PWeil
S (X).

(2) The functor ζ : Dmix
S (X) → DS (X) is t-exact and induces an iso-

morphism⊕
n∈Z

HomDmix
S

(X)(F ,G〈n〉)
∼−→ HomDS (X)(ζF , ζG).
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The proofs of Theorem 7.4 and Proposition 7.5 will occupy most of this
section. We begin by recalling some key results about affine even stratifica-
tions from [9]. Those results are mostly stated not for Pmix

S (X) but rather
for the Serre subcategory

Pmix
S (X)′ ⊂ Pmix

S (X) generated by {ICmix
s 〈n〉 | n ≡ dimXs (mod 2)}.

Note that Pmix
S (X)′ is stable under integral Tate twists F 7→ F〈2n〉.

Lemma 7.6. — We have Pmix
S (X) ∼= Pmix

S (X)′ ⊕ Pmix
S (X)′〈1〉.

Proof. — Let F ,G ∈ Pmix
S (X)′ be two simple objects. It is sufficient to

show that Ext1
Pmix

S
(X)(F ,G〈1〉) = 0. That, in turn, would follow from the

vanishing of the Ext1-group in the larger category PWeil
S (X). We now pro-

ceed by induction on the number of strata in X. Choose a closed stratum
js : Xs → X, and let h : U → X be the complementary open subvari-
ety. From the distinguished triangle js∗j!

sG〈1〉 → G〈1〉 → h∗h
∗G〈1〉 → in

DWeil
S (X), we obtain the long exact sequence

· · · → Hom(j∗sF , j!
sG〈1〉[1])→ Hom(F ,G〈1〉[1])

→ Hom(h∗F , h∗G〈1〉[1])→ · · · .

The last term vanishes by induction. For the first term, j∗sF (resp. j!
sG〈1〉)

lies in the triangulated subcategory of DWeil
S (Xs) generated by Q

`
〈n〉 with

n ≡ dimXs (mod 2) (resp. n 6≡ dimXs (mod 2)). It is well known that
on X ∼= AdimXs , we have HomDWeil

S
(Xs)(Q`,Q`[i]〈m〉) = 0 if m is odd

(cf. Lemma 8.1(1)), so the first term vanishes as well. It follows that
Ext1

PWeil
S

(X)(F ,G〈1〉) = 0. �

In the following theorem, parts (2)–(4) are proved in [9] only for Pmix
S (X)′

(which is denoted P̃ in loc. cit.), but it is clear from the preceding lemma
that the same statements hold for Pmix

S (X) as well.

Theorem 7.7. — Suppose X has an affine even stratification.
(1) [9, Theorem 3.3.1 and Corollary 3.3.2] The category PS (X) has

enough projectives and enough injectives, and finite cohomological
dimension. In addition, the realization functor

real : DbPS (X)→ DS (X)

is an equivalence of categories.
(2) [9, Lemma 4.4.8] The category Pmix

S (X) has enough projectives and
enough injectives, and finite cohomological dimension. An object
F ∈ Pmix

S (X) is projective (resp. injective) if and only if κ(F) ∈
PS (X) is projective (resp. injective).
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(3) [9, Theorem 4.4.4] The category Pmix
S (X) is Koszul.

(4) [9, Theorem 4.4.4] The functor ζ = κ|Pmix
S

(X) : Pmix
S (X) → PS (X)

makes Pmix
S (X) into a mixed version of PS (X). The composition

DbPmix
S (X)→ DbPS (X) ∼−−→

real
DS (X)

makes DbPmix
S (X) into a mixed version of DS (X). �

The proof of the next lemma depends on Proposition 7.5. Due to the
structure of the argument for Theorem 7.4, it is convenient to give a con-
tingent proof of this lemma now, even though Proposition 7.5 has not yet
been proved.

Lemma 7.8. — For any F ,G ∈Dmix
S (X), the action of Fr on Hom(ιF , ιG)

is semisimple. In other words, Hom(ιF , ιG) ∈ Pmix
S (pt). Moreover, the func-

tor ι induces an isomorphism

HomDmix
S

(X)(F ,G〈n〉)
∼−→ (Hom(ιF , ιG)〈n〉)Fr

. (7.3)

In addition, there is a natural isomorphism

HomDWeil
S

(X)(ιF , ιG) ' HomDmix
S

(X)(F ,G)⊕HomDmix
S

(X)(F ,G[−1]). (7.4)

Remark 7.9. — The proof given below uses only the formal properties
stated in Proposition 7.5 and general properties of DWeil

S (X); it does not
make explicit use of the definition of Dmix

S (X).

Proof. — For brevity, let us put A = Hom(ιF , ιG). This is an object
of PWeil

S (pt). The weight filtration for a perverse sheaf on a point splits
(cf. Lemma 8.1(2) below), so we may write A '

⊕
nA

n, where each An is
pure of weight n. Note that (A〈−n〉)Fr is a subspace of An: indeed, is the
Fr-eigenspace of eigenvalue qn/2. Thus, to show that Fr acts semisimply on
A, it suffices to show that (A〈−n〉)Fr = An for all n.
To prove the latter assertion, consider the map

HomDmix
S

(X)(F ,G)→ HomDS (X)(ζF , ζG) (7.5)

induced by ζ. Because ζ ∼= κ◦ι, we have that HomDS (X)(ζF , ζG) is canon-
ically isomorphic to the vector space A with the grading forgotten, cf. (6.3).
Furthermore, the map (7.5) factors as

HomDmix
S

(X)(F ,G)→ HomDWeil
S

(X)(ιF , ιG)→ AFr → A0 → A (7.6)

where the first map is induced by ι, and the second by κ, cf. (6.4). Taking
Tate twists and summing up over n, we can build the diagram⊕

n

HomDmix
S

(X)(F ,G〈−n〉)→
⊕
n

(A〈−n〉)Fr →
⊕
n

An ' A. (7.7)
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The second map is injective, but the composition is an isomorphism by
Proposition 7.5. Therefore, the second map must be an isomorphism as
well, so (A〈−n〉)Fr = An, as desired.

We now see that the first map in (7.7) is also an isomorphism. This
establishes (7.3). Since the composition

HomDmix
S

(X)(F ,G)→ HomDWeil
S

(X)(ιF , ιG)→ Hom(ιF , ιG)Fr

is an isomorphism, the first map provides a canonical splitting of the short
exact sequence (6.4), and we have

HomDWeil
S

(X)(ιF , ιG) ∼= Hom(ιF , ιG)Fr ⊕Hom(ιF , ιG[−1])Fr.

But since the action of Fr is already known to be semisimple, there is a
canonical identification Hom(ιF , ιG[−1])Fr = Hom(ιF , ιG[−1])Fr, and (7.4)
follows. �

Proof of Theorem 7.4 and Proposition 7.5 for affine even stratifications.
We begin by temporarily changing the definition of Dmix

S (X) to Dmix
S (X) =

DbPmix
S (X). We will first show that the desired results hold with this mod-

ified definition, and then we will see that it is equivalent to (7.1). We know
from Theorem 7.7(3) that Pmix

S (X) is a Koszul category, so by Proposi-
tion 5.9, there is a natural equivalence of categories

Dmix
S (X) ∼= Kb(Orl(Pmix

S (X))). (7.8)

The inclusion functor Pmix
S (X) → PWeil

S (X) is exact, so it gives rise
to a derived functor DbPmix

S (X) → DbPWeil
S (X). Define  : Dmix

S (X) →
DWeil

S (X) to be the composition

Dmix
S (X) = DbPmix

S (X)→ DbPWeil
S (X) real−−→ DWeil

S (X).

By construction,  is a functor of triangulated categories that commutes
with Tate twists and restricts to the inclusion functor Pmix

S (X)→ PWeil
S (X).

In particular, for any simple object ICmix
s ∈ Pmix

S (X), we have

(ICmix
s [n]〈−n〉) ∼= ICmix

s [n]〈−n〉.

The full additive subcategories

Orl(Pmix
S (X)) ⊂ DbPmix

S (X) and Pure(X) ⊂ DWeil
S (X)

both consist of objects that are direct sums of various ICmix
s [n]〈−n〉, so 

restricts to an additive functor |Orl(Pmix
S

(X)) : Orl(Pmix
S (X))→ Pure(X).

The functor  has the properties attributed to ι in Proposition 7.5:
part (7.5) is obvious, and part (7.5) holds by Theorem 7.7(4). Therefore,
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according to Remark 7.9, we may use Lemma 7.8 in our setting if we re-
place ι by  in that statement. In particular, the formula (7.4) shows that
 : Dmix

S (X)→ DWeil
S (X) extends in a canonical way to an additive functor

̃ : =Dmix
S (X)→ DWeil

S (X).

Moreover, this functor is fully faithful and makes the following diagram
commute:

=Dmix
S (X)

̃

��

Dmix
S (X)

ι 55kkkkkk

 ))SSSSSS

DWeil
S (X)

(7.9)

We claim that the essential image of ̃ is the full subcategory Dmisc
S (X) ⊂

DWeil
S (X). Note that an object lies in this essential image if and only if it is

in the essential image of , so we prove the claim by working with  instead.
First, given F ∈ Dmisc

S (X), say

F ∈ Pure(X)[a] ∗ Pure(X)[a+ 1] ∗ · · · ∗ Pure(X)[b],

we will prove by induction on b− a that there exists an object

F̃ ∈ Orl(Pmix
S (X))[a]∗Orl(Pmix

S (X))[a+1]∗· · ·∗Orl(Pmix
S (X))[b] ⊂ Dmix

S (X)
(7.10)

such that (F̃) ∼= F . In the case where b−a = 0, F is a direct sum of objects
of the form ICmix

s [n]〈a−n〉, and every such object is clearly in the essential
image of |Orl(Pmix

S
(X))[a]. In the general case, there is a distinguished triangle

F ′ → F → F ′′ δ−→ F ′[1]

with F ′ ∈ Pure(X)[a] and

F ′′ ∈ Pure(X)[a+ 1] ∗ Pure(X)[a+ 2] ∗ · · · ∗ Pure(X)[b].

By induction, we may assume that F ′ = (F̃ ′) and F ′′ = (F̃ ′′) for some
objects F̃ ′, F̃ ′′ ∈ Dmix

S (X), where F̃ ′ ∈ Orl(Pmix
S (X))[a] and

F̃ ′′ ∈ Orl(Pmix
S (X))[a+ 1] ∗ Orl(Pmix

S (X))[a+ 2] ∗ · · · ∗ Orl(Pmix
S (X))[b].

In view of the equivalence (7.8) and Theorem 5.10, we have

HomDmix
S

(X)(F̃ ′′, F̃ ′) = 0,

so using Lemma 7.8 again, we see that  induces an isomorphism

HomDWeil
S

(X)(F ′′,F ′[1]) ∼= HomDmix
S

(X)(F̃ ′′, F̃ ′[1]).

TOME 63 (2013), FASCICULE 4



1570 Pramod N. ACHAR & Simon RICHE

In particular, δ : F ′′ → F ′[1] is equal to (δ̃) for some morphism δ̃ :
F̃ ′′ → F̃ ′[1] in Dmix

S (X). If we let F̃ denote the cocone of δ̃, then we have
F ∼= (F̃). Thus, every object of Dmisc

S (X) lies in the essential image of 
and ̃.
Conversely, by (7.8), every object of Dmix

S (X) has the property (7.10)
for some integers a 6 b. Since (Orl(Pmix

S (X))[n]) ⊂ Pure(X)[n], it follows
that  takes values in Dmisc

S (X). Thus, the essential image of ̃ is Dmisc
S (X),

and ̃ induces the desired equivalence (7.2). We have now established both
Theorem 7.4 and Proposition 7.5 for our modified definition of Dmix

S (X)
together with the functor  : Dmix

S (X) → DWeil
S (X). The same argument

also shows that ̃ restricts to an equivalence

Orl(Pmix
S (X)) ∼−→ Pure(X).

Combining this with (7.8), we see that our modified definition of Dmix
S (X)

is equivalent to (7.1), as desired. �

The following facts emerged in the course of the preceding proof.

Corollary 7.10. — Suppose X has an affine even stratification S .
There are natural equivalences Pure(X) ∼= Orl(Pmix

S (X)) and Dmix
S (X) ∼=

DbPmix
S (X).

The following fact brings notions from Sections 4 and 5 into our setting.

Proposition 7.11. — Suppose X is endowed with an affine even strat-
ification, and let Proj(X) and Inj(X) denote the categories of projective and
injective objects, respectively, in Pmix

S (X). Then the three categories

Pure(X), Proj(X), Inj(X)

are all Koszulescent Orlov categories. If A denotes any of these three cat-
egories, the inclusion functor A → Dmix

S (X) extends to an equivalence of
triangulated categories Kb(A ) ∼= Dmix

S (X).

Proof. — These assertions follow from Theorem 7.7(2) and Corollary 7.10
together with Proposition 5.9 and Theorem 5.12. �

We now consider the case of a general affable stratification S . Note
that if S1 is an affine even refinement of S , then a number of categories
associated to S can naturally be regarded as full subcategories of the
corresponding categories associated to S1. Specifically, we have full sub-
categories

ES (X) ⊂ ES1(X)
where E is one of:

Pure,Pmix,Dmix,=Dmix,Dmisc,DWeil.
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To deduce the results for S from what we have already proved for S1, we
need to give some of these full subcategories alternate descriptions.
Let F be an object of Dmix

S1
(X), =Dmix

S1
(X), Dmisc

S1
(X), or DWeil

S1
(X). We

say that F is S -constructible if we have pHi(F) ∈ PWeil
S (X) for all i. (In

=Dmix
S1

(X), the notation pHi(F) is an abuse that should be understood to
mean pHi($F).) Of course, in all but DWeil

S1
(X), an S -constructible object

automatically satisfies the stronger condition that pHi(F) ∈ Pmix
S (X).

Lemma 7.12. — Suppose S is an affable stratification of X, and let S1
be an affine even refinement. Then we have

ES (X) = {F ∈ ES1(X) | F is S -constructible}, (7.11)

where E denotes one of Pure, Pmix, Dmix, =Dmix, Dmisc, or DWeil.

Proof. — For each of the categories PureS (X) ⊂ PureS1(X), Pmix
S (X) ⊂

Pmix
S1

(X), and DWeil
S (X) ⊂ DWeil

S1
(X), this assertion is obvious.

Next, let D ⊂ Dmix
S1

(X) denote the full subcategory consisting of S -
constructible objects. This is a triangulated subcategory; it is generated
as a triangulated category by S -constructible objects in Pmix

S1
(X), and

therefore by simple objects in Pmix
S (X). All such objects lie in Dmix

S (X),
so D ⊂ Dmix

S (X). On the other hand, objects of Dmix
S (X) are obviously

S -constructible, so Dmix
S (X) ⊂ D as well. Thus, Dmix

S (X) = D .
It is an immediate consequence that an object F ∈ =Dmix

S1
(X) lies in

=Dmix
S (X) if and only if F is S -constructible.
It remains to consider the case of Dmisc

S (X) ⊂ Dmisc
S1

(X). Recall that the
equivalence I : =Dmix

S1
(X) → Dmisc

S1
(X) restricts to the identity functor on

PureS1(X), and therefore on PureS (X) as well.
By Proposition 7.5(7.5), the functor ι : Dmix

S1
(X) → DWeil

S1
(X) has the

property that ι(Pmix
S (X)) = Pmix

S (X). Since every object of Dmix
S (X) is

contained in some class of the form PureS (X)[a] ∗ PureS (X)[a+ 1] ∗ · · · ∗
PureS (X)[b], we have ι(Dmix

S (X)) ⊂ Dmisc
S (X). It follows that the equiva-

lence I of (7.2) satisfies

I(=Dmix
S (X)) ⊂ Dmisc

S (X).

Consider now the category Dmisc
S1

(X) ∩ DWeil
S (X), which is precisely the

full subcategory of Dmisc
S1

(X) consisting of S -constructible objects. Be-
cause (7.11) has already been shown for =Dmix

S1
(X), the fact that the equiv-

alence I : =Dmix
S1

(X) → Dmisc
S1

(X) preserves perverse cohomology means
that it restricts to an equivalence

I : =Dmix
S (X) ∼−→ Dmisc

S1
(X) ∩ DWeil

S (X).
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Therefore, Dmisc
S1

(X) ∩ DWeil
S (X) ⊂ Dmisc

S (X). But we obviously have
Dmisc

S (X) ⊂ Dmisc
S1

(X)∩DWeil
S (X), so Dmisc

S (X) = Dmisc
S1

(X)∩DWeil
S (X), as

desired. �

In the second paragraph of the preceding proof, we established the fol-
lowing statement, which we now record separately for future reference.

Lemma 7.13. — Suppose S is an affable stratification of X, and let
S1 be an affine even refinement. Then Dmix

S (X) is the full triangulated
subcategory of Dmix

S1
(X) generated by objects of Pmix

S (X). �

We are now almost finished with the general case.
Proof of Theorem 7.4 and Proposition 7.5 in general. — Given a va-

riety X with an affable stratification S , choose an affine even refinement
S1. The known equivalence I : =Dmix

S1
(X) ∼−→ Dmisc

S1
(X) and the functor ι :

Dmix
S1

(X)→ DWeil
S1

(X) both preserve the property of being S -constructible.
Therefore, by Lemma 7.12, we obtain functors I : =Dmix

S (X) ∼−→ Dmisc
S (X)

and ι : Dmix
S (X)→ DWeil

S (X) with the desired properties simply by restrict-
ing the known functors defined using S1 to suitable full subcategories. �

Proposition 7.14. — If S is an affable stratification, then Pure(X) is
an Orlov category, and ι : Dmix

S (X)→ DWeil
S (X) induces an equivalence

Kos(PureS (X)) ∼= Pmix
S (X).

Proof. — By Corollary 7.10, PureS1(X) is an Orlov category, so its full
subcategory PureS (X) is an Orlov category as well. It follows from Corol-
lary 5.5 that

Kos(PureS (X)) = Kos(PureS1(X)) ∩ Dmix
S (X).

By Lemma 7.12, this means that Kos(PureS (X)) is the full subcategory of
S -constructible objects in Kos(PureS1(X)). Since ι preserves S -construc-
tibility and induces an equivalence Kos(PureS1(X)) ∼= Pmix

S1
(X), the result

follows. �

Corollary 7.15. — If S is an affable stratification, the equivalence
I : =Dmix

S (X) → Dmisc
S (X) and the functor ι : Dmix

S (X) → DWeil
S (X) are

independent, up to isomorphism, of the choice of affine even refinement of
S used to define them.

Proof. — The two functors are related by a diagram like (7.9), so it
suffices to prove the statement for ι. The restriction of ι to the Orlov
category Pure(X) is clearly independent of the choice of refinement. The
uniqueness of ι then follows from Theorem 4.9. �
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7.3. Dmisc
S (X) as an infinitesimal extension

Theorem 7.4 makes it possible to study Dmisc
S (X) using the machinery of

Section 3. Note first that the isomorphism (7.4) can be identified with (3.1).
On the other hand, the natural transformation υ of (3.3) can be identified
with the first map in (6.4). Thus, the following definition is consistent with
Definition 3.1.

Definition 7.16. — A morphism f : F → G in DWeil
S (X) is said to be

infinitesimal if κ(f) = 0.

There is no good notion of a genuine morphism in Dmisc
S (X), however.

Recall that this is not a natural notion even in =Dmix
S (X), in that it is not

stable under conjugacy. Such a notion can be transferred through an iso-
morphism of categories, but not through an equivalence as in Theorem 7.4.
As a substitute, we use the following notion.

Definition 7.17. — A morphism f : F → G in Dmisc
S (X) is said to be

miscible if there is a commutative diagram

ιF̃
ι(f̃) //

o
��

ιG̃

o
��

F
f

// G

where f̃ : F̃ → G̃ is some morphism in Dmix
S (X), and the vertical maps are

isomorphisms.

For other terms from Section 3, we encounter a problem: there are two a
priori different notions of “distinguished triangle” in Dmisc

S (X), which we
distinguish with the following terms.

Definition 7.18. — A diagram F ′ → F → F ′′ → F ′[1] in Dmisc
S (X) is

called:
(1) a Weil distinguished triangle if it is a distinguished triangle in the

triangulated category DWeil
S (X);

(2) a miscible distinguished triangle if it is isomorphic to a diagram
obtained by applying ι to a distinguished triangle in Dmix

S (X).

Since ι : Dmix
S (X) → DWeil

S (X) is a triangulated functor, every miscible
distinguished triangle is a Weil distinguished triangle. We will eventually
prove the converse as well (see Theorem 9.11), so there is actually only a
single notion of “distinguished triangle” in Dmisc

S (X). In the meantime, the
following criterion will be useful.

TOME 63 (2013), FASCICULE 4



1574 Pramod N. ACHAR & Simon RICHE

Lemma 7.19. — Let F : DWeil
S (X) → DWeil

T (Y ) be a miscible functor.
The following conditions on F are equivalent:

(1) F takes every miscible morphism in Dmisc
S (X) to a miscible mor-

phism in Dmisc
T (Y ).

(2) F takes every miscible distinguished triangle in Dmisc
S (X) to a mis-

cible distinguished triangle in Dmisc
T (Y ).

(3) F restricts to a pseudotriangulated functor F : Dmisc
S (X) →

Dmisc
T (Y ).

After Theorem 9.11 is proved, this lemma will be superfluous, cf. Re-
mark 9.12.

Proof. — Since F is a functor of triangulated categories that takes mis-
cible objects to miscible objects, it certainly takes Weil distinguished trian-
gles to Weil distinguished triangles. Note that a Weil distinguished triangle
is miscible if and only if at least one of its morphisms is miscible. The
equivalence of conditions (1) and (2) above follows.
Next, in view of Lemma 7.8, the commutative diagram (6.6) shows that

any miscible functor commutes with υ ◦ $ in the sense of Definition 3.7.
From that definition, we see that conditions (2) and (3) are equivalent. �
The last notion to translate from Section 3 is that of a “genuine functor,”

whose definition is given below. Table 7.1 summarizes the correspondence
between the terminology of Section 3 and that of the present section.

Definition 7.20. — A miscible functor F : DWeil
S (X) → DWeil

T (Y )
is said to be genuine if there is a functor of triangulated categories F̃ :
Dmix

S (X)→ Dmix
T (Y ) such that ι ◦ F̃ ∼= F ◦ ι. In that case, F̃ is said to be

induced by F .

Note that a genuine functor in this sense automatically satisfies condi-
tion (2) of Lemma 7.19, and therefore the other conditions as well. In par-
ticular, a genuine functor automatically gives rise to a pseudotriangulated
functor Dmisc

S (X) → Dmisc
T (Y ). Note also that the definition of “induced”

above is consistent with Definition 3.10, and recall from Lemma 3.12 that
the induced functor F̃ of F , if it exists, is unique up to isomorphism.

The following lemma is useful is reducing genuineness problems to the
case of an affine even stratification. We will frequently make silent use of
it in the sequel, by stating results for general affable stratifications but
considering only affine even ones in the proof.

Lemma 7.21. — Let S be an affable stratification of X with affine even
refinement S1, and let T be an affable stratification of Y with affine even
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refinement T1. If F : DWeil
S1

(X)→ DWeil
T1

(Y ) is a genuine geometric functor
that takes objects of DWeil

S (X) to objects of DWeil
T (Y ), then F |DWeil

S
(X) :

DWeil
S (X)→ DWeil

T (Y ) is genuine as well.

Proof. — Let F̃ : Dmix
S1

(X) → Dmix
T1

(Y ) be the functor induced by F .
Identifying Dmix

S (X) and Dmix
T (Y ) with full subcategories of Dmix

S1
(X) and

Dmix
T1

(Y ), respectively, we see from Lemma 7.12 that F̃ must take objects
of Dmix

S (X) to objects of Dmix
T (Y ). The functor F̃ |Dmix

S
(X) : Dmix

S (X) →
Dmix

T (Y ) satisfies ι◦F̃ |Dmix
S

(X)
∼= F |DWeil

S
(X)◦ι, so F |DWeil

S
(X) is genuine. �

8. Sheaves on an affine space

The easiest example of a variety with an affable stratification is, of course,
an affine space Am endowed with the trivial stratification. In this section,
we establish a large number of technical results on miscibility of objects
and morphisms on an affine space. These results lay the groundwork for
the more general results to be proved in Section 9. Throughout this section,
S will denote the trivial stratification on Am.

Lemma 8.1. — (1) In DWeil
S (Am), we have

Homi(Q
`
,Q

`
〈n〉) ∼=

{
Q` if i ∈ {0, 1} and n = 0,
0 otherwise.

Terminology for =Dmix
S (X) Terminology for Dmisc

S (X)

infinitesimal morphism infinitesimal morphism

genuine morphism —

morphism conjugate to
a genuine morphism

miscible morphism

distinguished triangle [miscible] distinguished triangle*

pseudotriangulated functor miscible functor*

genuine functor genuine functor

Table 7.1. Dictionary for infinitesimal extensions and miscible sheaves.
For terms marked (*), see Theorem 9.11.
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(2) For any object F ∈ DWeil
S (Am), there is a (noncanonical) isomor-

phism F ∼=
⊕

i
pHi(F)[−i].

(3) The weight filtration of a perverse sheaf F ∈ PWeil
S (Am) splits cano-

nically. That is, there is a canonical isomorphism F ∼=
⊕

j grWj F .
(4) An object F ∈ DWeil

S (Am) is miscible if and only if each pHi(F) is
semisimple.

Proof. — Part (1) is an immediate consequence of (6.4) and the well-
known fact that Homi

DS (Am)(Q`,Q`) = 0 for i > 0 (see [20, Corolla-
ry VI.4.20]).
By induction on the length of a perverse sheaf, it follows from part (1)

that for any two perverse sheaves F ,G ∈ PWeil
S (Am), we have Homi(F ,G) =

0 for i > 2. Part (2) then follows by a standard argument.
For part (3), let w be the largest weight of any simple subquotient of

F . From the weight filtration of F , we can form a short exact sequence
0→ F ′ → F → F ′′ → 0 where F ′′ is pure of weight w and F ′ has weights <
w. By induction, it suffices to show that this sequence has a canonical
splitting. To show that, we must check that Hom(F ′′,F ′) = Ext1(F ′′,F ′) =
0. The fact that Hom(F ′′,F ′) = 0 is obvious from considering the weight
filtration. From (6.4), this implies that Hom(F ′′,F ′)Fr = 0. In other words,
1 is not an eigenvalue of the action of Fr on Hom(F ′′,F ′). It follows that
Hom(F ′′,F ′)Fr = 0 as well, so using (6.4) again, we obtain an isomorphism
Hom1(F ′′,F ′) ∼−→ Hom1(F ′′,F ′)Fr. But Hom1(F ′′,F ′) = 0.

Finally, part (4) follows from parts (2) and (3) and the fact that a pure
perverse sheaf is miscible if and only if it is semisimple. �

A slight modification of the notion of purity will also be useful to us.
Let us call an object F ∈ DWeil

S (X) baric-pure of weight w if each pHi(F)
is pure of weight w. This notion has been studied by S. Morel [22]; the
terminology comes from [2]. There is an analogue of Lemma 6.7 for baric
purity; in fact, in the baric version, the triangle (6.7) is functorial (see [22,
§4.1] or [2, §2.1]). Note that unlike ordinary purity, baric purity is stable
under translation. It follows from Lemma 8.1 that for any F ∈ DWeil

S (Am),
there is an isomorphism

F ∼=
⊕
j

F j

where each F j is baric-pure of weight j.

Lemma 8.2. — (1) If F ,G ∈ DWeil
S (Am) are baric-pure with distinct

weights, then Hom(F ,G) = 0.
(2) If F ,G ∈ DWeil

S (Am) are both baric-pure of weight j, then the cone
of any morphism is also baric-pure of weight j.
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Proof. — The first part follows from Lemma 8.1(1), and the second part
is immediate from consideration of the long exact sequence of perverse
cohomology sheaves associated to a distinguished triangle. �

Lemma 8.3. — Let F ,G ∈ Pmix
S (Am) be pure of weight j. There is a

canonical isomorphism φ : HomDWeil
S

(Am)(F ,G) ∼−→ HomDWeil
S

(Am)(F ,G[1]).
Moreover, we have φ(f ◦ g) = f [1] ◦ φ(g) = φ(f) ◦ g.

This statement actually holds for any variety X with an affable stratifi-
cation, as can be seen from the proof.
Proof. — For two objects F ,G ∈ Pmix

S (X) that are pure and have the
same weight, we clearly have

HomDmix
S

(X)(F ,G[−1]) = 0 and HomDmix
S

(X)(F ,G[1]) = 0.

The existence of φ is an immediate consequence of (7.4). Note that φ takes
genuine morphisms F → G to infinitesimal morphisms F → G[1]. The
composition formulas are then simply instances of (3.2). �

For the next two lemmas, we will denote the isomorphism of Lemma 8.3
by

r ∈ HomDWeil
S

(Am)(F ,G) 7→ ṙ ∈ HomDWeil
S

(Am)(F ,G[1]).

Lemma 8.4. — Suppose F ,G ∈ Pmix
S (Am) are pure objects of weight 0.

For any morphism r : F → G, the cone of ṙ[−1] : F [−1]→ G is isomorphic
to the object

K = G ⊕ F with Fr acting by
[
1 r

1

]
.

Proof. — This statement clearly holds when r = 0. On the other hand,
in the special case where F ∼= G ∼= Q

`
and r : F → G is any nonzero map,

then ṙ ∈ Ext1(Q
`
,Q

`
) corresponds to a short exact sequence in PWeil

S (Am)
whose middle term is an indecomposable pure rank-2 perverse sheaf on Am.
Such an object has the form described above by [7, Proposition 5.3.9(i)].
Finally, in the general case, note that F and G are both direct sums of
copies of Q

`
. One can always choose direct-sum decompositions of these

objects so that r : F → G arises as a direct sum of some number of zero
maps and some number of isomorphisms Q

`

∼−→ Q
`
. Thus, the general case

follows from the special cases considered above. �

Lemma 8.5. — Suppose F ,G ∈ DWeil
S (Am) are miscible baric-pure ob-

jects of weight 0. Any morphism f : F → G can be written as a sum

f =
∑
i

(pi[−i] + ṙi[−i]) (8.1)
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involving morphisms pi : pHi(F)→ pHi(G) and ṙi : pHi(F)→ pHi−1(G)[1].
Let K denote the cone of f . Its cohomology sheaves are described by

pHi(K) ∼= cok pi ⊕ ker pi+1 with Fr acting by
[
1 r̄i+1

1

]
, (8.2)

where r̄i+1 denotes the composition ker pi+1 ri+1
// pHi(G) // cok pi .

In particular, K is miscible if and only if ri+1(ker pi+1) ⊂ im pi for all i.

Proof. — The fact that f can be written as a sum (8.1) follows from
Lemma 8.1. Note that the map pHi(F) → pHi(G) induced by f is none
other than pi. In particular, f is an isomorphism if and only if each pi is
an isomorphism. Thus, in the special case where f is an isomorphism, its
cone K = 0 is indeed described by (8.2).
Suppose henceforth that K 6= 0, and let k be the smallest integer such

that pHk(K) 6= 0. Fix an isomorphism F ∼=
⊕

pHi(F)[−i], and define two
new objects as follows:

F ′ =
⊕
i6k

pHi(F)[−i]⊕ (ker pk+1)[−k − 1],

F ′′ =
⊕
i>k+1

pHi(F)[−i]⊕ (im pk+1)[−k − 1].

For each i, there is an obvious short exact sequence

0→ pHi(F ′)→ pHi(F)→ pHi(F ′′)→ 0.

By putting in appropriate shifts and taking the direct sum over all i, we
obtain a split distinguished triangle

F ′ → F → F ′′ → . (8.3)

Note that F ′ and F ′′ are both miscible by construction. Next, we define
maps f ′ : F ′ → τ6kG and f ′′ : F ′′ → τ>kG by

f ′ =
∑
i6k

(pi[−i] + ṙi[−i]) + ṙk+1, f ′′ =
∑
i>k+1

(pi[−i] + ṙi[−i]) + p̄k+1,

where p̄k+1 : im pk+1 → pHk+1(G) is the inclusion map. These definitions
make the two leftmost squares below commute.

F ′ //

f ′

��

F //

f

��

F ′′ //

f ′′

��

F ′[1]

f ′[1]
��

τ6kG // G // τ>kG // (τ6kG)[1]
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The rightmost square commutes as well: the map τ>kG → (τ6kG)[1] van-
ishes by Lemma 8.1(2), and (8.3) splits by construction. Thus, this is a mor-
phism of distinguished triangles. By the 9-lemma [7, Proposition 1.1.11],
we can extend this to a diagram in which all rows and columns are distin-
guished triangles:

F ′ //

f ′

��

F //

f

��

F ′′ //

f ′′

��
τ6kG //

��

G //

��

τ>kG //

��
K′ //

��

K //

��

K′′ //

��

(8.4)

From the known cohomology vanishing conditions on the first two rows, it
is obvious that pHi(K′) = 0 for i > k, and that pHi(K′′) = 0 for i < k. In
fact, we also have pHk(K′′) = 0, since the map

p̄k+1 : pHk+1(F ′′)→ pHk+1(τ>kG) ∼= pHk+1(G) (8.5)

is injective. Therefore, we have canonical isomorphisms

K′ ∼= τ6kK and K′′ ∼= τ>kK.

If we already knew that the cohomology sheaves pHi(K′) and pHi(K′′) could
be described by (8.2) in terms of f ′ and f ′′, then the result would follow
for K. Note that K′ and K′′ each have fewer nonzero cohomology sheaves
than K. Therefore, by induction, it suffices to prove (8.2) in the special
case where K has nonzero cohomology in a single degree. We may further
assume, without loss of generality, that K is in fact concentrated in degree
0.

With this assumption in place, we may still construct the diagram (8.4),
taking k = 0. In this case, we have τ>0K = 0, so f ′′ is an isomorphism. That
diagram tells us that to prove the result for the middle column, it suffices
to prove it for the first column. In other words, by replacing f : F → G by
f ′ : F ′ → τ60G, we may henceforth assume that

pHi(F) = 0 for i > 1, and pHi(G) = 0 for i > 0.

Under these conditions, let us form yet another copy of (8.4), this time
with k = −1. Now we have τ6−1K = 0, so to prove the result, it suffices to
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consider the third column. Making another replacement, we have reduced
the problem to following situation:

F ∼= pH0(F)⊕ pH1(F)[−1], G ∼= pH0(G), f = p0 + ṙ1.

For brevity, let us put F i = pHi(F) for i = 0, 1. In particular, we have
p1 = 0, so F1 = ker p1. We further know that p0 = p̄0 : F0 → G is injective,
cf. (8.5). Form the octahedral diagram associated with the composition
F0 → F0 ⊕F1[−1] f−→ G:

F0 ⊕F1[−1]

f

��������������������

##HHHHHHHHH

F1[−1]
dddddddddddddd

+1
qqdddddddddddddd










��












F0

99ttttttttttttttttttttt

((RRRRRRRRRR K

+1

ffNNNNNNNNNNNNNNNNNNNNNNNN+1

iiSSSSSSSSSS

G

11ccccccccccccccccccccccccccccccccc

!!CCCCCCCCC

cok p0

+1

eeKKKKKKKKKKKKKKKKKKKK

77pppppppppppppppppppppppp

Applying Lemma 8.4 to the distinguished triangle F1[−1] → cok p0 →
K →, we obtain the desired result. �

Lemma 8.6. — Suppose F ,G ∈ DWeil
S (Am) are miscible baric-pure ob-

jects of weight 0. If f : F → G is a morphism whose cone is miscible, then
f is miscible.

Proof. — Let pi and ri be as in (8.1), and let f ′ =
∑
i p
i[−i]. We will

construct a commutative diagram

F
f //

φ o
��

G

ψo
��

F
f ′ // G

where φ and ψ are isomorphisms. Since f ′ is obviously miscible, f will be
as well. By Lemma 8.5, we know that ri(ker pi) ⊂ im pi−1 for all i. For
each i, choose a complement U i ⊂ pHi(F) to ker pi. In other words, we
have pHi(F) ∼= ker pi ⊕ U i. Then, let ui : pHi(F)→ pHi−1(F) be the map
such that

ui(U i) = 0, ui(ker pi) ⊂ U i−1, (pi−1 ◦ ui)|ker pi = ri|ker pi .
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Since pi−1 induces an isomorphism U i−1 ∼= im pi−1 and ri(ker pi) ⊂ im pi−1,
there is a unique map ui satisfying the conditions above. Next, let vi :
pHi(G)→ pHi−1(G) be a map such that

(vi ◦ pi)|Ui = ri|Ui .

Such a map certainly exists since pi induces an isomorphism U i ∼= im pi,
although it is not uniquely determined. Note that we have an equality

ri = pi−1 ◦ ui + vi ◦ pi : pHi(F)→ pHi−1(G)

and therefore, using the formulas in Lemma 8.3, we have

ṙi = pi−1[1] ◦ u̇i + v̇i ◦ pi : pHi(F)→ pHi−1(G)[1].

Define φ : F → F and ψ : G → G by

φ =
∑
i

idpHi(F)[−i] + u̇i[−i], ψ =
∑
i

idpHi(G)[−i]− v̇i[−i].

It is now easy to see that

f ′ ◦ φ =
∑
i

(pi + pi−1 ◦ u̇i)[−i] =
∑
i

(pi + ṙi − v̇i ◦ pi)[−i] = ψ ◦ f.

Finally, u̇i and v̇i are infinitesimal, so by Lemma 3.3, φ and ψ are themselves
isomorphisms, as desired. �

9. Miscibility and genuineness results

We have now defined a number of properties that a functor between
categories of constructible complexes on varieties over Fq may have. In
order from strongest to weakest, they are:

genuine =⇒ miscible =⇒ geometric
=⇒ preserves the Weil category.

This section contains the main results of the paper, which state that vari-
ous functors (including smooth pull-backs, open and closed inclusions, and
smooth proper push-forwards) are genuine. For a few more functors (in-
cluding tensor products and arbitrary proper push-forwards), we prove
miscibility. Under an additional hypothesis, we will show that arbitrary
proper push-forwards are genuine in Section 10.
We will generally not comment on the property of preserving the Weil

category in the proofs below, as this has already been checked for most
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functors in Section 6 (two exceptions occur in Proposition 9.4 and Corol-
lary 9.17). We will likewise remain silent about the property of being geo-
metric, since this is essentially automatic for the usual sheaf operations.
Along the way, we also prove that Weil and miscible distinguished tri-

angles coincide, as promised in Section 7.3, and we establish a pointwise
criterion for semisimplicity (Proposition 9.15) that may be useful in other
contexts as well.

9.1. Basic results on genuineness

The following proposition is the main tool we will use to apply results
from Section 4 in the sheaf-theoretic setting.

Proposition 9.1. — Let S be an affable stratification of X, and T

an affable stratification of Y . Let F : DWeil
S (X)→ DWeil

T (Y ) be a geometric
functor, and let A ⊂ Dmisc

S (X) and B ⊂ Dmisc
T (Y ) each be one of the Orlov

categories of Propositions 7.11 or 7.14.
(1) If F (A ) ⊂ B, then F is a miscible functor. Furthermore, F takes

miscible morphisms to miscible morphisms.
(2) If, in addition, the restriction F |A : A → B is homogeneous, then

F is genuine.

Proof. — By Lemma 7.19, the first assertion implies that F |Dmisc
S

(X) :
Dmisc

S (X) → Dmisc
T (Y ) is a pseudotriangulated functor, so the second as-

sertion follows from it by Theorem 4.11, using Theorem 7.4 and Propo-
sition 7.11. Thus, it suffices to prove the first assertion. We will prove
simultaneously that F takes miscible objects to miscible objects and mis-
cible morphisms to miscible morphisms. Let f : F → G be a morphism in
Dmix

S (X) ∼= Kb(A ). Write these objects as chain complexes: F = (F•, d)
and G = (G•, d). Let I = {j, j + 1, . . . , k} ⊂ Z be the smallest interval in
Z such that F i = Gi = 0 for i /∈ I. We proceed by induction on the size
of I. With k denoting the largest element of I, then there is an obvious
distinguished triangle

Fk[−k]→ F → F ′ →

in Kb(A ), where F ′ is the complex obtained from F by replacing its kth
term by 0. We can form the analogous triangle Gk[−k]→ G → G′ → for G. It
is clear that Hom(Fk[−k],G′) = 0, so the composition Fk[−k]→ F f−→ G
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factors through Gk[−k], and we obtain a morphism of triangles

Fk[−k]

fk[−k]
��

// F

f

��

// F ′

f ′

��

// Fk[−k + 1]

fk[−k+1]
��

Gk[−k] // G // G′ // Gk[−k + 1]

for some morphisms fk, f ′. All the objects in the rightmost commutative
square are chain complexes whose nonzero terms appear only in degrees
i ∈ I r {k}. Therefore, by induction, all objects and morphisms in the
square

F (ιF ′)

��

// F (ιFk[−k + 1])

��
F (ιG′) // F (ιGk[k + 1])

are miscible. Since the morphism F (ιf) : F (ιF) → F (ιG) arises by com-
pleting this square to a morphism of distinguished triangles, it follows that
F (ιF), F (ιG), and F (ιf) are all miscible. �

The next three results are straightfoward applications of the preceding
proposition.

Proposition 9.2. — Suppose X and Y are endowed with affable strat-
ifications S and T , and let f : X → Y be a weakly stratified morphism. If
f is smooth, then the functors f∗, f ! : DWeil

T (Y )→ DWeil
S (X) are genuine.

Proof. — In place of f∗ and f !, we will instead consider the functor
f ] = f∗[d]〈−d〉 ∼= f ![−d]〈d〉, where d denotes the relative dimension of f .
This functor is t-exact and takes simple perverse sheaves to pure semisimple
perverse sheaves of the same weight. More specifically, if h : f−1(Yt)→ X is
the inclusion map, then f ]ICmix

t
∼= h!∗Q`[n]〈−n〉, where n = dim f−1(Yt).

The constant sheaf Q
`
[n]〈−n〉 on the smooth variety f−1(Yt) is the di-

rect sum of simple perverse sheaves of weight 0 on the various connected
components of f−1(Yt), so h!∗Q`[n]〈−n〉 is also a direct sum of simple per-
verse sheaves of weight 0. Thus, f ] gives rise to a homogeneous functor
Pure(Y )→ Pure(X), so it is genuine by Proposition 9.1. �

Proposition 9.3. — Let X be a variety with an affable stratification.
The Verdier duality functor D : DWeil

S (X)op → DWeil
S (X) is genuine.

Proof. — The category Pure(X)op ⊂ DWeil
S (X)op is clearly an Orlov cat-

egory with degree function given by

degPure(X)op(ICmix
s [n]〈−n〉) = n = − degPure(X)(ICmix

s [n]〈−n〉).
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We clearly have D(Pure(X)op) ⊂ Pure(X), and D : Pure(X)op → Pure(X)
is a homogeneous functor. The result follows by an analogue of Proposi-
tion 9.1. �

Proposition 9.4. — Let X and Y be two varieties equipped with af-
fable stratifications. Then, for F ∈ DWeil

S (X) and G ∈ DWeil
T (Y ), we have

F � G ∈ DWeil
S×T (X × Y ). Moreover, the induced stratification S × T on

X×Y is affable, and the functor � : DWeil
S (X)×DWeil

T (Y )→ DWeil
S×T (X×Y )

is genuine.

See Section 4.3 for remarks on homogeneity and genuineness for bifunc-
tors.

Proof. — It suffices to treat the case where S and T are both affine even
stratifications, so we henceforth restrict to that case. Let js,t : Xs × Yt →
X × Y denote the inclusion of a stratum. Recall that

j∗s,t(F � G) ∼= j∗sF � j∗t G and j!
s,t(F � G) ∼= j!

tF � j!
tG. (9.1)

Using these facts, it follows by elementary dimension calculations (cf. [7,
Proposition 4.2.8]) that � takes perverse sheaves to perverse sheaves. In
fact, the same calculations also show that

ICmix
s � ICmix

t
∼= ICmix

s,t . (9.2)

Now, on the variety An × Am, we clearly have Q
`An � Q

`Am
∼= Q

`An×Am .
Using this observation together with (9.1) and (9.2) to compute j∗u,vICmix

s,t

and j!
u,vICmix

s,t , we see that the second condition of Definition 7.1 holds.
Thus, S ×T is an affine even stratification. Now, (9.2) shows that � takes
pure semisimple objects in either variable to pure semisimple objects, so
it clearly takes values in the Weil category when applied to objects in the
Weil category. Lastly, it is genuine by Proposition 9.1. �

9.2. Open and closed inclusions

The following theorem tells us in part that mixed categories satisfy the
axioms in [7, §1.4.3] for the formalism of “gluing,” so all subsequent results
of [7, §1.4] apply in this setting.

Theorem 9.5. — Let i : Z → X be the inclusion of a closed subvariety
that is a union of strata, and let j : U → X be the inclusion of the
complementary open subvariety. The functors i∗, i!, i∗, j∗, j∗, and j! are
all genuine. Moreover, the induced functors on the mixed categories enjoy
the following properties:
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(1) The usual adjointness properties hold.
(2) For F ∈ Dmix

S (X), there are functorial distinguished triangles

i∗i
!F → F → j∗j

∗F → and j!j
∗F → F → i∗i

∗F → (9.3)

in Dmix
S (X).

(3) The functors i∗ : Dmix
S (Z) → Dmix

S (X) and j∗, j! : Dmix
S (U) →

Dmix
S (X) are fully faithful.

Remark 9.6. — As an example of a statement that follows purely from
the formalism of gluing, we have by [7, §1.4.6(b)] that j∗ induces an equiv-
alence

Dmix
S (X)/Dmix

S (Z) ∼−→ Dmix
S (U).

Here, we have identified Dmix
S (Z) with a full triangulated subcategory of

Dmix
S (X) using the fully faithful functor i∗. This observation will be used

in the proof of Theorem 11.5.

Before proving this theorem, we recall a result about the structure of
projectives in PS (X) from [9]. Let us put

∆mix
s = js!Q`[dimXs]〈−dimXs〉

and
∇mix
s = js∗Q`[dimXs]〈−dimXs〉.

These objects are perverse sheaves by [7, Corollaire 4.1.3], a priori only
in PWeil

S (X), although it clearly follows from Theorem 9.5 that they lie a
posteriori in Pmix

S (X). ∆mix
s is called a standard perverse sheaf, and ∇mix

s is
called a costandard perverse sheaf. The same terms are used for the objects

∆s = ζ(∆mix
s ) and ∇s = ζ(∇mix

s )

in PS (X). According to [9, Theorem 3.3.1], every projective in PS (X) has
a filtration with standard subquotients, and every injective has a filtration
with costandard subquotients. To be more specific, it follows from “BGG
reciprocity” (see [9, Remark (1) following Theorem 3.2.1]) that the standard
objects ∆t occurring as subquotients of the projective cover of ICs all have
the property that Xs ⊂ Xt.

Proof of Theorem 9.5. — By Lemma 7.21, it suffices to treat the case
where S is an affine even stratification, and we henceforth assume this to
be the case. The proof is somewhat lengthy and proceeds in several steps.
Step 1. i∗ and j∗. These two functors send semisimple pure objects to

semisimple pure objects. That is, they induce functors Pure(Z)→ Pure(X)
and Pure(X) → Pure(U). Moreover, the latter functors are homogeneous
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functors of Orlov categories because i∗ and j∗ are t-exact. By Proposi-
tion 9.1, these functors are genuine.
Step 2. j!. Our strategy is to show that this functor induces a homoge-

neous functor Proj(U)→ Proj(X). Specifically, consider a stratum Xs ⊂ U .
Let Ps denote the projective cover of ICmix

s in Pmix
S (X), and let P ′s denote

the projective cover of the simple object ICmix
s |U in Pmix

S (U). It suffices to
show that

j!P
′
s
∼= Ps. (9.4)

We begin by showing that j∗Ps ∼= P ′s. Note first that we at least have
j∗Ps ∈ Pmix

S (U), since j∗ is already known to be genuine. To prove that
j∗Ps is projective, it suffices, by Theorem 7.7(2), to show that ζ(j∗Ps) ∼=
j∗(ζ(Ps)) is a projective object in PS (U). Making use of the equivalence
in Theorem 7.7(1) and the fact that ζ(Ps) is projective, we have

Ext1(j∗ζ(Ps),G) ∼= Hom(ζ(Ps), j∗G[1]) ∼= Hom(ζ(Ps), pH1(j∗G))

for any G ∈ PS (U). Since pH1(j∗G) is supported on Z, it cannot contain
ICs as a composition factor, so the last Hom-group above vanishes. We
conclude that j∗ζ(Ps) and j∗Ps are projective. For similar reasons, we have

Hom(ζ(Ps), i∗i!ζ(Ps)) = Ext1(ζ(Ps), i∗i!ζ(Ps)) = 0,

so we deduce from the distinguished triangle i∗i
!ζ(Ps) → ζ(Ps) →

j∗j
∗ζ(Ps)→ that there are isomorphisms

Hom(ζ(Ps), ζ(Ps)) ∼= Hom(ζ(Ps), j∗j∗ζ(Ps))
∼= Hom(j∗ζ(Ps), j∗ζ(Ps)) ∼= k.

In particular, we have that j∗ζ(Ps) is indecomposable, so j∗Ps is as well.
Since j∗Ps is an indecomposable projective with a nonzero map j∗Ps →
ICmix

s |U , we must have j∗Ps ∼= P ′s, as desired.
Consider now the distinguished triangle ζ(j!P ′s)→ ζ(Ps)→ ζ(i∗i∗Ps)→

in DS (X). Recall that ζ(Ps) has a standard filtration consisting of ∆t

with Xs ⊂ Xt. All such Xt are contained in U , so i∗∆t = 0, and therefore
ζ(i∗Ps) = 0. Since ζ kills no nonzero object, we conclude that i∗Ps = 0 as
well. Thus, the natural map j!P ′s → Ps is an isomorphism.
Step 3. i∗. The strategy is similar to that in Step 2. For any s ∈ S ,

let Ps denote the projective cover of ICmix
s in Pmix

S (X). For any standard
object ∆t ∈ PS (X), we have that i∗∆t is either 0 or a standard object in
PS (Z). In either case, it is a perverse sheaf. Since ζ(Ps) has a standard
filtration, ζ(i∗Ps) is a perverse sheaf as well, and hence so is i∗Ps. From
the distinguished triangle

j!j
∗Ps → Ps → i∗i

∗Ps → (9.5)
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and the right t-exactness of j!, we see that i∗i∗Ps is a quotient of Ps.
Therefore, like any quotient of an indecomposable projective, it is either
indecomposable or 0. Indeed, we saw in Step 2 that it is 0 if Xs ⊂ U . On
the other hand, if Xs ⊂ Z, there is a nonzero morphism i∗Ps → ICmix

s .
Since

Hom(i∗(ζ(Ps)),G[1]) ∼= Hom(ζ(Ps), i∗G[1]) = 0
for all G ∈ PS (Z), we see that ζ(i∗Ps) is projective, and therefore so is
i∗Ps. We have shown that

i∗Ps ∼=

{
0 if Xs ⊂ U ,
P ′′s if Xs ⊂ Z,

where P ′′s is the projective cover of ICmix
s in Pmix

S (Z). In particular, i∗ in-
duces a homogeneous functor Proj(X)→ Proj(Z), and is therefore genuine.
Step 4. j∗ and i!. These follow from Steps 2 and 3 and Proposition 9.3

by the formulas j∗ ∼= D ◦ j! ◦ D and i! ∼= D ◦ i∗ ∼= D.
Step 5. Adjointness properties. The fact that the induced functors on

the mixed categories have the usual adjointness properties follows from
Lemma 3.15.
Step 6. Functorial distinguished triangles. By Step 5, for any F∈Dmix

S (X),
we have an adjunction morphism ε : i∗i!F → F . Let us complete this to a
distinguished triangle

i∗i
!F ε−→ F q−→ K p−→ i∗i

!F [1]. (9.6)

After applying ι, we obtain a distinguished triangle in DWeil
S (X) that is

canonically isomorphic to the functorial distinguished triangle

i∗i
!(ιF) ε−→ ιF η−→ j∗j

∗(ιF) δ−→ i∗i
!(ιF)[1] (9.7)

In particular, we see that (9.7), which is a priori only a Weil distinguished
triangle, is actually miscible. Recall from Lemma 3.9 that the functor F̃
induced by a pseudotriangulated functor F is given by F̃ ∼= $ ◦ F ◦ ι.
Therefore, applying$ to (9.7) gives us a functorial distinguished triangle in
Dmix

S (X) that is isomorphic to (9.6). The argument for the second triangle
in (9.3) is similar.
Step 7. Fullness and faithfulness. We first note that i∗ : Dmix

S (Z) →
Dmix

S (X) is faithful, because the original functor i∗ : DWeil
S (Z)→ DWeil

S (X)
is. In addition, for F ∈ Dmix

S (Z), the adjunction map i∗i∗F
∼−→ F is an

isomorphism because the same statement holds in DWeil
S (Z), so for any

G ∈ Dmix
S (Z), we have

HomDmix
S

(X)(i∗F , i∗G) ∼= HomDmix
S

(Z)(i∗i∗F ,G) ∼= HomDmix
S

(Z)(F ,G).
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Thus, i∗ : HomDmix
S

(Z)(F ,G) → HomDmix
S

(X)(i∗F , i∗G) is an injective map
between vector spaces of the same dimension, so it is an isomorphism. The
arguments for j∗ and j! are similar. �

Corollary 9.7. — If h : Y → X is the inclusion map of a locally
closed subvariety that is a union of strata, then h∗, h∗, h!, and h! are all
genuine.

Proof. — The map h can be factored as an open embedding followed by
a closed embedding, and the pull-back and push-forward functors for each
of those maps are genuine by Theorem 9.5. �

We are now able to prove the following mixed analogue of [9, Theo-
rem 3.3.1].

Proposition 9.8. — Assume X has an affine even stratification. Every
projective object in Pmix

S (X) has a filtration with standard subquotients,
and every injective object has a filtration with costandard subquotients.

Proof. — We will prove the statement for projectives; the injective case
is similar. We proceed by induction on the number of strata in X. Let
j : Xt → X be the inclusion of an open stratum, and let i : Z → X

be the inclusion of the complementary closed subvariety. For a projective
P ∈ Pmix

S (X), recall from the proof of Theorem 9.5 that i∗P is also a
perverse sheaf. Since j∗ is t-exact and j! is right t-exact, we have a short
exact sequence

0→ j!j
∗P → P → i∗i

∗P → 0.
Since Xt is an affine space, j∗P is semisimple, and j!j∗P is a direct sum of
standard objects. On the other hand, the projective object i∗P ∈ Pmix

S (Z)
has a standard filtration by induction. Thus, P has a standard filtration.

�

Remark 9.9. — It can also be deduced using the methods of [9, Lem-
ma 4.4.8] that if P ∈ Pmix

S (X) is projective, then the standard filtration of
ζ(P ) lifts to some filtration of P with subquotients Fs satisfying ζ(Fs) ∼=
ζ(∆mix

s ). But the stronger statement in Proposition 9.8 requires knowing
that js! and js∗ are miscible functors; it does not directly follow from the
results of [9], as far as we understand.

Remark 9.10. — Now that we know that the objects ∆mix
s belong to

Pmix
S (X), it is easy to check, by a further use of Theorem 9.5, that

Extk(∆mix
s , ICmix

t 〈n〉) = 0 unless n = −k. In other words, the ∆mix
s are

“Koszul objects” of Pmix
S (X) in the sense of [9, Definition 2.14.1], cf. the

remark following [9, Theorem 3.11.4].
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9.3. Weil and miscible distinguished triangles

We can now supply a foundational fact about Dmisc
S (X) that was pro-

mised in Section 7.3. The proof relies on Theorem 9.5.

Theorem 9.11. — Assume that X has an affable stratification. A dia-
gram

F ′ → F → F ′′ → F ′[1]

in Dmisc
S (X) is a miscible distinguished triangle if and only if it is a Weil

distinguished triangle.

Remark 9.12. — We now see that all three conditions of Lemma 7.19
hold for all miscible functors. In particular, every miscible functor F :
DWeil

S (X)→DWeil
T (Y ) gives rise to a pseudotriangulated functor F |Dmisc

S
(X) :

Dmisc
S (X)→Dmisc

T (Y ), as indicated in Table 7.1.

Proof. — Recall that every miscible distinguished triangle is a Weil dis-
tinguished triangle; we need only prove the opposite implication. It suffices
to treat the case where S is an affine even stratification, and we henceforth
restrict to this case.
We begin by proving the statement in the special case where X = Am.

It follows from Lemmas 8.1 and 8.2 that any Weil distinguished triangle
F ′ → F → F ′′ → in Dmisc

S (Am) can be written as the direct sum over
j ∈ Z of triangles

(F ′)j → Fj → (F ′′)j →

in which all three terms are baric-pure of weight j. In particular, to prove
the proposition, it suffices to consider the case where F ′, F , and F ′′ are
all baric-pure of weight j. Since all three objects are miscible, all three
morphisms in the triangle are miscible by Lemma 8.6, so the distinguished
triangle is miscible, as desired.
For the case of a general variety X with an affine even stratification, we

proceed by induction on the number of strata inX. Choose a closed stratum
jt : Xt → X, and let h : U → X be the inclusion of the open complement to
Xt. From the given distinguished triangle, form the following commutative
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diagram:
h!h
∗F ′ //

��

h!h
∗F //

��

h!h
∗F ′′ //

��
F ′ //

��

F //

��

F ′′ //

��
jt∗j

∗
tF ′ //

��

jt∗j
∗
tF //

��

jt∗j
∗
tF ′′ //

��

The columns of this diagram are miscible triangles by Theorem 9.5. Fur-
thermore, the triangles h∗F ′ → h∗F → h∗F ′′ → and j∗tF ′ → j∗tF →
j∗tF ′′ → are miscible by induction, as U and Xt each consist of fewer strata
than X. Since h! and jt∗ are miscible functors, the top and bottom rows of
this diagram are miscible triangles. Thus, the given distinguished triangle
is obtained by taking the “cone” of the miscible commutative diagram

jt∗j
∗
tF ′[−1] //

��

jt∗j
∗
tF [−1] //

��

jt∗j
∗
tF ′′[−1] //

��
h!h
∗F ′ // h!h

∗F // h!h
∗F ′′ //

and is therefore miscible itself, as desired. �

9.4. Proper stratified morphisms

Let X and Y be two varieties equipped with affable stratifications, de-
noted S and T , respectively. In this section, we will study functors arising
from morphisms f : X → Y that respect the stratifications, in the following
sense.

Definition 9.13. — Assume X and Y have affine even stratifications.
A morphism f : X → Y is called a stratified morphism if the following two
conditions hold:

(1) For each stratum Yt ⊂ Y , its preimage f−1(Yt) ⊂ X is a union of
strata.

(2) For each point y ∈ Yt, the collection of spaces

Sy = {Xs ∩ f−1(y) | Xs ⊂ f−1(Yt)}
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constitutes an affine even stratification of f−1(y). Moreover, there
is an isomorphism

f−1(y)× Yt
∼−→ f−1(Yt)

that restricts to an isomorphism (Xs∩f−1(y))×Yt
∼−→ Xs for each

Xs, and such that the composition

f−1(y)× Yt
∼−→ f−1(Yt)

f−→ Yt

is just projection onto the second factor.
If X and Y have only affable stratifications, then f : X → Y is called a
stratified morphism if both stratifications admit simultaneous affine even
refinements that make f stratified in the above sense.

This definition is very close to the one originally introduced by Goresky
and MacPherson [18, Definition 1.2]. Note that part (1) is simply the defi-
nition of a weakly stratified morphism.

The remainder of the section is devoted to studying proper stratified
morphisms. We begin by giving a useful alternate characterization of pure
miscible objects.

Definition 9.14. — An object F ∈ DWeil
S (X) is said to be sterile of

weight w if for all s ∈ S , the objects j∗sF and j!
sF are pure and semisimple

of weight w.

It is immediate from the definition that a sterile object of weight w is
pure of weight w.

Proposition 9.15. — Every sterile object is miscible, and therefore
semisimple.

Proof. — Let F ∈ DWeil
S (X) be sterile of weight w. We proceed by induc-

tion on the number of strata in X. If X consists of a single stratum, then
F is miscible because it is pure and semisimple by definition. Otherwise,
choose a closed stratum jt : Xt → X, and let h : U → X be the inclusion
of the complementary open subset. Then h∗F ∈ DWeil

S (U) is sterile, and
therefore miscible by induction. It also follows that h!h

∗F is miscible. On
the other hand, j∗tF is pure and semisimple, and so miscible, by definition.
Consider the distinguished triangle

h!h
∗F → F → jt∗j

∗
tF

δ−→ . (9.8)

To show that F is miscible, it suffices to show that δ[−1] : jt∗j∗tF [−1] →
h!h
∗F is a miscible morphism. Consider the distinguished triangle

jt∗j
!
th!h

∗F → h!h
∗F → h∗h

∗F →,
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which is miscible by Theorem 9.5. There is no nonzero morphism
jt∗j

∗
tF [−1] → h∗h

∗F , so δ[−1] factors through jt∗j
!
th!h

∗F → h!h
∗F . We

are therefore reduced to showing that the map j∗tF [−1]→ j!
th!h

∗F is mis-
cible. If we complete this map to a distinguished triangle, we simply obtain
the diagram

j∗tF [−1]→ j!
th!h

∗F → j!
tF →

given by applying j!
t to (9.8). Here, the first and last terms are miscible

by the definition of a sterile object, and the middle term is miscible by
Theorem 9.5. Therefore, the whole triangle is miscible by Theorem 9.11. �
The following lemma is a special case of Theorem 9.18 below.

Lemma 9.16. — Let f : X → Am be a proper stratified morphism,
where Am is endowed with the trivial stratification, denoted T . Then,
for F ∈ DWeil

S (X), we have f∗F ∈ DWeil
T (Am). Moreover, the functor f∗ :

DWeil
S (X)→ DWeil

T (Am) is miscible, and for a simple perverse sheaf ICmix
s ∈

Pmix
S (X), we have that pHk(f∗ICmix

s ) = 0 if |k| > dimXs −m.

Proof. — Assume that S is an affine even stratification, and consider
a simple object ICmix

s ∈ Pmix
S (X). In addition to the vanishing condition

stated at the end of the lemma, we will prove that all nonzero pHk(f∗ICmix
s )

are in fact direct sums of copies of Q
`
[m]〈k−m〉. That assertion implies that

f∗ICmix
s lies in DWeil

T (Am) and is miscible (by Lemma 8.1(4)). In particular,
it follows that f∗ preserves the Weil category and, by Proposition 9.1, that
f∗ : DWeil

S (X)→ DWeil
T (Am) is miscible.

We proceed by induction on the number of strata in X. Let jt : Xt → X

be the inclusion of an open stratum, and let i : Z → X be the inclusion of
the complementary closed subvariety. If Xs ⊂ Z, then, by a slight abuse of
notation, we may write f∗ICmix

s
∼= (f ◦ i)∗ICmix

s . Note that f ◦ i : Z → Am
is also proper and stratified, so the lemma holds for (f ◦ i)∗ by assumption.
Thus, f∗ICmix

s has the required properties.
If s = t, on the other hand, we may form the distinguished triangle

jt!j
∗
t ICmix

t → ICmix
t → i∗i

∗ICmix
t → .

Let n = dimXt. Applying f∗ ∼= f!, we obtain

(f ◦ jt)!Q`[n]〈−n〉 → f∗ICmix
t → (f ◦ i)∗i∗ICmix

t → . (9.9)

By Theorem 9.5, i∗ICmix
t is a miscible object of DWeil

S (Z), so by induction,
(f ◦ i)∗i∗ICmix

t is miscible. We also know that pHk(i∗ICmix
t ) = 0 for k > 0.

Moreover, for k 6 −1, any composition factor of pHk(i∗ICmix
t ) is a simple

ANNALES DE L’INSTITUT FOURIER



KOSZUL DUALITY AND SEMISIMPLICITY OF FROBENIUS 1593

perverse sheaf ICmix
u with dimXu < n. The cohomology vanishing for (f ◦

i)∗ implies that
pHk((f ◦ i)∗i∗ICmix

t ) = 0 if k > n−m− 1.

Recall from Definition 9.13 that there is an isomorphism Xt
∼= An−m×Am

such that (f ◦ jt) : An → Am can be identified with projection onto the
second factor. It follows that

(f ◦ jt)!Q`[n]〈−n〉 ∼= Q
`
[2m− n]〈n− 2m〉 ∼= (Q

`
[m]〈n− 2m〉)[m− n].

Thus, pHk((f ◦ jt)!Q`[n]〈−n〉) vanishes except when k = n − m. Now,
forming the long exact sequence in perverse cohomology associated to (9.9),
we see that

pHk(f∗ICmix
t ) ∼=


pHk((f ◦ i)∗i∗ICmix

t ) if k < n−m− 1,
Q
`
[m]〈n− 2m〉 if k = n−m,

0 otherwise.

By induction, each pHk((f◦i)∗i∗ICmix
t ) is miscible and therefore semisimple.

But we already know that f∗ICmix
t is pure of weight 0, so in fact, each

pHk(f∗ICmix
t ) must be a direct sum of copies of Q

`
[m]〈k −m〉, as desired.

We have just seen that pHk(f∗ICmix
t ) = 0 for k > dimXt − m, and the

vanishing for k < m− dimXt follows by Verdier duality. �

Corollary 9.17. — Let f : X → Y be a proper stratified morphism.
If F ∈ DWeil

S (X), then f∗F ∈ DWeil
T (Y ).

Proof. — For each stratum jt : Yt → Y , we know that F|f−1(Yt) ∈
DWeil

S (f−1(Yt)), so by the previous lemma, the object

j∗t f∗F ∼= (f |f−1(Yt))∗(F|f−1(Yt))

lies in DWeil
S (Yt). By Lemma 6.1, f∗F ∈ DWeil

T (Y ). �

Theorem 9.18. — If f : X → Y is a proper stratified morphism, then
the functor f∗ : DWeil

S (X)→ DWeil
T (Y ) is miscible. If f is also smooth, then

f∗ is genuine.

Proof. — We will show that f∗ takes any simple perverse sheaf on X

to a pure miscible object of the same weight on Y . It will then follow by
Proposition 9.1 that f∗ is miscible. In general, the induced functor f∗ :
Pure(X)→ Pure(Y ) will not be homogeneous, so we cannot use that same
proposition to prove genuineness. However, in the case where f is also
smooth, it has a right adjoint f ! that is genuine by Proposition 9.2, so f∗
is genuine by Theorem 3.16.
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Let jt : Yt → Y denote the inclusion of a stratum in Y , and let h :
f−1(Yt) → X denote the inclusion of its preimage in X. In addition, let
f0 = f |f−1(Yt) : f−1(Yt)→ Yt. Then h∗ and h! are miscible by Corollary 9.7,
and f0∗ is as well, by Lemma 9.16. It follows that the objects

j∗t f∗ICmix
s
∼= f0∗h

∗ICmix
s and j!

tf∗ICmix
s
∼= f0∗h

!ICmix
s

are miscible. We know that f∗ICmix
s is pure of weight 0. Since Y is endowed

with an affine even stratification, it follows that all objects j∗t f∗ICmix
s and

j!
tf∗ICmix

s are pure. Since they are pure and miscible, they are semisim-
ple, and so f∗ICmix

s is sterile. By Proposition 9.15, f∗ICmix
s is miscible, as

desired. �

9.5. Other miscible functors

It is reasonable to expect that f∗ is genuine for any proper stratified
morphism f , regardless of whether it is smooth, but unfortunately, the
authors do not know how to prove this statement. Similar remarks apply
to the following statement.

Proposition 9.19. — Suppose X has an affable stratification. Then
the functors

L

⊗ : DWeil
S (X)×DWeil

S (X)→ DWeil
S (X),

RHom : DWeil
S (X)op ×DWeil

S (X)→ DWeil
S (X)

are miscible.

Proof. — For ⊗L, let us assume that S is an affine even stratification.
If F ,G ∈ Pure(X), then for any stratum js : Xs → X, we have

j∗s (F
L

⊗ G) ∼= j∗sF
L

⊗ j∗sG and j!
s(F

L

⊗ G) ∼= j∗sF
L

⊗ j!
sG. (9.10)

On a single stratumXs
∼= AdimXs , we clearly have Q

`
⊗LQ

`
∼= Q

`
. It follows

that the tensor product of semisimple pure objects on An is semisimple.
Since j∗sF , j∗sG, and j!

sG are pure and semisimple, (9.10) shows that j∗s (F⊗L
G) and j!

s(F ⊗L G) are pure and semisimple. Thus, F ⊗L G is sterile, so it
is miscible by Proposition 9.15. Since the bifunctor ⊗L takes Pure(X) ×
Pure(X) to Pure(X), it is miscible by Proposition 9.1(1).
Finally, since we have a natural isomorphismRHom(F ,G) ∼= D(F⊗LDG),

the miscibility of RHom follows from Proposition 9.3 and the statement
for ⊗L. �
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9.6. Ind-varieties

We conclude Section 9 of the paper by explaining how to extend the
above results to certain ind-varieties. Let X be an ind-variety over Fq.
Let S = {Xs}s∈S be a collection of disjoint locally closed ordinary (finite-
dimensional) subvarieties ofX whose union isX. Assume that the closure of
each Xs is the union of Xs and finitely many other Xt’s. In particular, each
Xs is an ordinary, finite-dimensional variety, so it makes sense to form the
perverse sheaf ICmix

s ∈ Pmix
S (Xs). We call S an affine even stratification or

an affable stratification if it restricts to such a stratification on each variety
Xs.
The index set S is partially ordered by containment of closures: we say

that s 6 t if Xs ⊂ Xt. Whenever s 6 t, we have an inclusion map is,t :
Xs ↪→ Xt, and if s 6 t 6 u, we clearly have

is,u = it,u ◦ is,t.

These closed inclusion maps give rise to fully faithful push-forward functors

is,t∗ : E (Xs)→ E (Xt)

where E stands for one of the following eight categories:

Pmix
S , Pure, PWeil

S , PS , Dmix
S , Dmisc

S , DWeil
S , DS . (9.11)

We define the corresponding categories on X by taking inductive limits
over S:

E (X) = 2-lim ind−→
S

E (Xs) where E comes from the list (9.11).

Every object and every morphism in one of these inductive limit categories
is “supported” on some finite-dimensional variety Xs, and as a result, many
results about the categories attached to Xs generalize to X without any
difficulty. The following basic facts are straightforward to verify; we omit
the proofs.

Proposition 9.20. — Let X be an ind-variety with an affable stratifi-
cation.

(1) Dmix
S (X), DWeil

S (X), and DS (X) are triangulated categories. We
also have Dmisc

S (X) ∼= =Dmix
S (X).

(2) Pmix
S (X), PWeil

S (X), and PS (X) are the hearts of t-structures on
Dmix

S (X), DWeil
S (X), and DS (X), respectively. They are all finite-

length categories.
(3) Pure(X) is an Orlov category, and Dmix

S (X) ∼= KbPure(X).
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(4) Pmix
S (X) is a mixed abelian category, and its mixed structure makes
Dmix

S (X) into a mixed version of DS (X).
(5) If S is an affine even stratification, then Pure(X) is Koszulescent.

As a consequence, Dmix
S (X) ∼= DbPmix

S (X), and Pmix
S (X) is a Koszul

abelian category. �

As an immediate consequence, all the miscibility and genuineness results
proved in Section 9 apply in the ind-variety setting.

Remark 9.21. — Note that in the ind-variety setting, when S is an
affine even stratification, Pmix

S (X) need not have enough projectives. (The
proof of Theorem 7.7(2) does not go through, as it involves induction on
the number of strata.)

10. Mixed tilting sheaves

In this section, we consider only varieties with an affine even stratifica-
tion. Tilting perverse sheaves (whose definition is recalled below) on such a
variety are certain objects that enjoy both the “local” nature of IC objects
and the good Ext-vanishing properties of projectives and injectives. For
basic properties and applications to flag varieties in the setting of PS (X),
see [8]. Similar statements in the setting of PWeil

S (X) can be found in [26].
Here, we classify the indecomposable tilting perverse sheaves in Pmix

S (X).
Under an additional assumption on the variety X, we prove that tilting
perverse sheaves form a Koszulescent Orlov category. As an application of
the latter, we show how to strengthen Theorem 9.18.

10.1. Classification of tilting perverse sheaves

We begin with the definition. For the equivalence of the two conditions
below, see [8, Proposition 1.3].

Definition 10.1. — Let X be a variety with an affine even stratifica-
tion S . A perverse sheaf F (in any of PS (X), PWeil

S (X), or Pmix
S (X)) is

said to be tilting if either of the following equivalent conditions holds:
(1) For each stratum js : Xs → X, both j∗sF and j!

sF are perverse
sheaves.

(2) F admits both a standard filtration and a costandard filtration.
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The next two statements are adapted from results in [8, 26]; we include
proofs because Pmix

S (X) differs in some details from PS (X) and PWeil
S (X).

Lemma 10.2. — Let jt : Xt → X be the inclusion of a closed stratum,
and let h : U → X be the inclusion of the complementary open subset. Let
M ∈ Pmix

S (X) be a tilting perverse sheaf, and assume that the canonical
morphism j!

tM → j∗tM vanishes. Then M is indecomposable if and only if
h∗M is indecomposable.

Proof. — Let MU = h∗M ∈ Pmix
S (U). We can form two short exact

sequences
0→ jt∗j

!
tM

p−→M → h∗MU → 0

and
0→ h!MU →M

q−→ jt∗j
∗
tM → 0.

By assumption, we have q◦p = 0. Applying Hom(M, ·) to the first of these,
we obtain an exact sequence

0→ Hom(M, jt∗j
!
tM)→ End(M)→ Hom(M,h∗MU )→ Ext1(M, jt∗j

!
tM).

Note that Ext1(M, jt∗j
!
tM) ∼= Ext1(j∗tM, j!

tM) = 0, since all Ext1-groups in
the category Pmix

S (Xt) vanish. So we actually have a short exact sequence;
rewriting it using the usual adjointness properties, we obtain

0→ Hom(j∗tM, j!
tM) θ−→ End(M)→ End(MU )→ 0.

For f : j∗tM → j!
tM , we have θ(f) = p ◦ f ◦ q. Since q ◦ p = 0, the image

of θ is a nil ideal in End(M). It follows that End(M) is a local ring if and
only if End(MU ) is a local ring. In other words, M is indecomposable if
and only if MU is indecomposable. �

Proposition 10.3. — Let X be a variety with an affine even stratifi-
cation S . For each stratum Xs, there exists a unique (up to isomorphism)
indecomposable tilting perverse sheaf Tmix

s ∈ Pmix
S (X) whose support is Xs

and whose restriction to Xs is given by Tmix
s |Xs ∼= Q

`
[dimXs]〈−dimXs〉.

Moreover, every indecomposable tilting perverse sheaf is isomorphic to
some Tmix

s 〈n〉.

Remark 10.4. — In general, the uniqueness statement for Tmix
s does not

hold in PWeil
S (X), essentially because there may be a nonvanishing Ext1-

group between perverse sheaves supported on a closed stratum. See [26,
Remark 2.2].
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Proof. — We proceed by induction on the number of strata. Let jt :
Xt → X be a closed stratum, and let h : U → X be the complementary
open subvariety. In the case where s = t, it is clear that Tmix

t = ICmix
t is

the unique indecomposable tilting perverse sheaf supported on Xt up to
Tate twist.
Suppose now that Xs ⊂ U . By induction, there is a unique indecompos-

able tilting perverse sheaf T ∈ Pmix
S (U) supported on Xs∩U and satisfying

T |Xs ∼= Q
`
[dimXs]〈−dimXs〉. Since T admits both a standard filtration

and a costandard filtration, both h!T and h∗T are perverse sheaves. Let
A and B denote the kernel and cokernel, respectively, of the natural map
h!T → h∗T , so that we have an exact sequence

0→ A→ h!T → h∗T → B → 0. (10.1)

Both A and B are supported on Xt. By Theorem 9.5, the group
Ext2

Pmix
S

(X)(B,A) can be computed instead in Pmix
S (Xt). The latter is a

semisimple category, so Ext2(B,A) = 0. Therefore, there exists an object
Tmix
s ∈ Pmix

S (X) that fits into two short exact sequences

0→ A→ Tmix
s → h∗T → 0 and 0→ h!T → Tmix

s → B → 0.
(10.2)

These sequences show that jt∗j!
tTmix

s
∼= A and jt∗j∗t Tmix

s
∼= B, so Tmix

s is
certainly tilting. It is obvious from (10.1) that the canonical map A → B

vanishes, so by Lemma 10.2, Tmix
s is indecomposable.

Now, let M ∈ Pmix
S (X) be an indecomposable tilting perverse sheaf that

is not supported on Xt. Then, by Lemma 10.2, MU = h∗M is indecom-
posable, and by induction, there is some stratum Xs ⊂ U and some n ∈ Z
such that MU

∼= h∗Tmix
s 〈n〉. Assume for now that n = 0. Let us apply the

functors Hom(M, ·) and Hom(·,M), respectively, to the two short exact
sequences (10.2). By the reasoning in the proof of Lemma 10.2, we obtain
two new short exact sequences:

0→ Hom(j∗tM,B)→ Hom(M,Tmix
s )→ Hom(MU , h

∗Tmix
s )→ 0,

0→ Hom(A, j!
tM)→ Hom(Tmix

s ,M)→ Hom(h∗Tmix
s ,MU )→ 0.

Fix an isomorphism fU : MU
∼−→ h∗Tmix

s , and let gU = f−1
U : h∗Tmix

s →
MU . We can lift these to maps f̃U : M → Tmix

s and g̃U : Tmix
s → M . Note

that g̃U ◦ f̃U ∈ End(M) is a unit, since h∗(g̃U ◦ f̃U ) = idMU
. Similarly, f̃U ◦

g̃U ∈ End(Tmix
s ) is a unit. We conclude that f̃U and g̃U are isomorphisms.

We have shown that every indecomposable tilting perverse sheaf in
Pmix

S (X) is isomorphic to some Tmix
s 〈n〉. The uniqueness of Tmix

s follows.
�
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Consider the unmixed tilting perverse sheaves Ts = κ(Tmix
s ) ∈ PS (X).

It is well known that

Extk(Ts,Tt) = 0 for all k > 0.

This is essentially a consequence of the fact that Extk(∆s,∇t) = 0 for
k > 0. The analogous fact for tilting perverse sheaves in Pmix

S (X) follows
by Proposition 7.5. This observation can be used to establish the following
fact; see [8, Proposition 1.5] for a proof.

Proposition 10.5. — The natural functorKbTilt(X)→ DbPmix
S (X) ∼=

Dmix
S (X) is an equivalence of categories. �

10.2. Tilting objects as an Orlov category

We now consider varieties on which tilting objects obey the constraint
described below:

Definition 10.6. — A variety X with an affine even stratification is
said to satisfy condition (W) if for any two strataXs, Xt ⊂ X withXt ⊂ Xs

and t 6= s, we have that j∗t Tmix
s has weights > 1 and j!

tTmix
s has weights 6

−1.

The terminology is taken from [26], where it is shown that flag varieties
and affine flag varieties satisfy condition (W) [26, Theorem 5.3.1]. The
following is the main result of this section.

Theorem 10.7. — Let X be a variety with an affine even stratification
S satisfying condition (W), and let Tilt(X) be the additive category of
tilting perverse sheaves in Pmix

S (X). For an indecomposable tilting perverse
sheaf Tmix

s 〈n〉, let us put

deg Tmix
s 〈n〉 = −n.

With respect to this degree function, Tilt(X) is a Koszulescent Orlov cat-
egory.

We first require the following lemma, suggested by the remarks in [26,
§1.3].

Lemma 10.8. — Consider the following two subcategories of Dmix
S (X):

tD60 = {F ∈ Dmix
S (X) | j∗sF has weights > 0 for all strata Xs},

tD>0 = {F ∈ Dmix
S (X) | j!

sF has weights 6 0 for all strata Xs}.
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Then (tD60, tD>0) is a bounded t-structure on Dmix
S (X). Its heart is a

finite-length category, and a set of representatives for the isomorphism
classes of simple objects is

{Tmix
s [n]〈−n〉 | s ∈ S , n ∈ Z}.

Proof. — If X consists of a single stratum, then it is clear that for F ∈
tD60 and G ∈ tD>0, we have Hom(F ,G[−1]) = 0. Moreover, it follows from
parts (2) and (3) of Lemma 8.1 that every F ∈ Dmix

S (X) fits into a split
distinguished triangle F ′ → F → F ′′ → with F ′ ∈ tD60 and F ′′[1] ∈ tD>0.
Thus, (tD60, tD>0) is indeed a t-structure. Its heart consists precisely of
pure objects of weight 0 in Dmix

S (X). This is evidently a semisimple abelian
category whose simple objects are precisely those of the form Q

`
[n]〈−n〉.

In the general case, one sees that (tD60, tD>0) is a t-structure by in-
duction on the number of strata and the formalism of gluing, made avail-
able by Theorem 9.5. It is clear from condition (W) that the Tmix

s [n]〈−n〉
lie in the heart of this t-structure. In fact, they satisfy the stronger con-
dition from [7, Corollaire 1.4.24] characterizing objects arising from the
“intermediate-extension” functor, so by [7, Proposition 1.4.26], these are
precisely the simple objects in the heart. �

Proof of Theorem 10.7. — To prove that Tilt(X) is an Orlov category,
we proceed by induction on the number of strata in X. Choose a closed
stratum ju : Xu → X, and let h : U → X be the inclusion of the comple-
mentary open subvariety. Now, consider two indecomposable tilting per-
verse sheaves Tmix

s 〈n〉 and Tmix
t 〈m〉. Recall that h∗h∗Tmix

t is a perverse
sheaf, since h∗Tmix

t has a costandard filtration. We therefore have a short
exact sequence

0→ ju∗j
!
uTmix

t 〈m〉 → Tmix
t 〈m〉 → h∗h

∗Tmix
t 〈m〉 → 0.

This gives rise to a short exact sequence

0→ Hom(j∗uTmix
s 〈n〉, j!

uTmix
t 〈m〉)→ Hom(Tmix

s 〈n〉,Tmix
t 〈m〉)→

Hom(h∗Tmix
s 〈n〉, h∗Tmix

t 〈m〉)→ 0.

(The sequence is exact because Ext1(j∗uTmix
s 〈n〉, j!

uTmix
t 〈m〉) = 0.) Suppose

that n > m. Consider first the case where s = t = u. Then the last term
vanishes, and the first term vanishes if n > m. Now, consider the case where
at least one of s and t is distinct from u. If s 6= t or if n > m, then the
last term vanishes by induction. For the first term, note that j∗uTmix

s 〈n〉 has
weights > n, and that j!

uTmix
t 〈m〉 has weights 6 m. Moreover, at least one
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of these inequalities must be strict (since at least one of s and t is distinct
from u). Since n > m, the first term above vanishes as well.

We conclude in all cases that Hom(Tmix
s 〈n〉,Tmix

t 〈m〉) = 0 if n > m or if
n = m and s 6= t, so Tilt(X) is an Orlov category.

Using Proposition 10.5, we henceforth identify KbTilt(X) with Dmix
S (X).

To prove that Tilt(X) is Koszulescent, consider the abelian category
Kos(Tilt(X)) of Proposition 5.4. According to that proposition, the sim-
ple objects in that category are of the form Tmix

s [n]〈−n〉. But these objects
also lie in the heart of the t-structure of Lemma 10.8, so we conclude that
the two t-structures coincide:

Kos(Tilt(X)) = tD60 ∩ tD>0.

From the description in Lemma 10.8, it is easy to see that Kos(Tilt(X))
contains the objects

∆mix
s [n]〈−n〉 and ∇mix

s [n]〈−n〉,

and that these objects satisfy graded versions of axioms (1)–(6) of [9, §3.2].
Then, the argument of [9, Theorem 3.2.1] shows that Kos(Tilt(X)) has
enough projectives (resp. injectives), and that these objects admit standard
(resp. costandard) filtrations. Finally, the argument of [9, Corollary 3.3.2]
shows that the realization functor real : DbKos(Tilt(X)) → Dmix

S (X) is an
equivalence of categories. Thus, Tilt(X) is Koszulescent. �

Proposition 10.9. — Let X and Y be two varieties with affine even
stratifications, denoted S and T , and assume that both satisfy condi-
tion (W). If f : X → Y is a proper stratified morphism, then the functor
f∗ : DWeil

S (X)→ DWeil
S (Y ) is genuine.

Proof. — According to [26, Proposition 3.4.1], f∗ takes each indecompos-
able tilting perverse sheaf in PWeil

S (X) either to 0 or to an indecomposable
tilting perverse sheaf in PWeil

T (Y ) of the same degree. Since f∗ is already
known to be miscible, the same statement holds with respect to Pmix

S (X)
and Pmix

T (Y ). In particular, f∗ restricts to a homogeneous functor of Orlov
categories Tilt(X) → Tilt(Y ). In view of Proposition 10.5, Proposition 9.1
applies to these categories as well, and we conclude that f∗ is genuine. �

Part 3. Applications to representation theory

11. Ext-algebras of Andersen–Jantzen sheaves

Let G be a semisimple algebraic group of adjoint type over C. Fix a
Borel subgroup B ⊂ G and a maximal torus T ⊂ B. Let X∗(T ) denote the
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weight lattice of T , and let X∗+(T ) ⊂ X∗(T ) be the set of dominant weights
with respect to B. Any λ ∈ X∗(T ) determines a line bundle Lλ on the flag
variety G/B. Let Ñ denote the cotangent bundle of G/B, with projection
map π : Ñ → G/B. We also have the Springer resolution µ : Ñ → N ,
where N is the nilpotent cone in the Lie algebra of G. The Andersen–
Jantzen sheaf of weight λ ∈ X∗(T ) is the object

Aλ = Rµ∗π
∗Lλ

in the bounded derived category DbCohG(Ñ ). When λ is dominant, the
higher direct images Riµ∗π∗Lλ vanish for i > 0 (see [3, Theorem 3.6] for the
strictly dominant case and [15, Theorem 2.4] for the general case), so Aλ is
in fact a coherent sheaf. For their role in the cohomology of quantized tilting
modules, see [24, 13]. The aim of this section is to calculate the Ext-algebra
of Aλ, using the mixed derived category of the affine Grassmannian for the
Langlands dual group Ǧ. This section has benefitted from conversations
with Victor Ostrik and David Treumann.

11.1. Coherent sheaves on the nilpotent cone

Let the multiplicative group Gm act on N and on fibers of Ñ by (t, x) 7→
t−2x. This action commutes with the natural action of G on both of
these varieties, so we have an action of G × Gm. Let CohG×Gm(N ) and
CohG×Gm(Ñ ) denote the abelian categories of (G×Gm)-equivariant coher-
ent sheaves on these two varieties. For an object F in one of the bounded
derived categories DbCohG×Gm(N ) or DbCohG×Gm(Ñ ), let F〈n〉 denote
the object obtained from F by twisting the Gm-action by z 7→ zn. We
define graded Hom-spaces by

Hom(F ,G) =
⊕
n∈Z

Hom(F ,G〈−n〉). (11.1)

Graded Ext-groups are defined analogously. By endowing the line bundle
Lλ on G/B with trivial Gm-action, we may naturally regard the Andersen–
Jantzen sheaves Aλ as objects of CohG×Gm(N ).

For λ, µ ∈ X∗+(T ), we write µ 6 λ if λ− µ is a sum of positive roots, as
usual. For λ ∈ X∗+(T ), let D6λ (resp. D<λ, Dλ) denote the full triangulated
subcategory of DbCohG×Gm(N ) generated by the objects Aµ〈n〉 with µ 6 λ
(resp. µ < λ, µ = λ) and n ∈ Z. It follows from [12, Proposition 4(a)] that
for a fixed λ, the full additive subcategory consisting of direct sums of
objects of the form Aλ〈n〉 (for n ∈ Z) is a semisimple abelian category.
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Then, by [12, Lemma 3], Dλ admits a unique t-structure whose heart Aλ
contains the Aλ〈n〉. Aλ is a finite-length category, and the simple objects
(up to isomorphism) are precisely the Aλ〈n〉.
For λ ∈ X∗+(T ), let Vλ denote the irreducible G-representation of highest

weight λ. Regard it as a (G × Gm)-equivariant coherent sheaf on a point,
with trivial Gm-action. Its pullback to Ñ (resp. N ) is denoted OÑ ⊗ Vλ
(resp. ON ⊗ Vλ). Let Db

freeCohG×Gm(N ) denote the full subcategory of
DbCohG×Gm(N ) generated by the objects (ON ⊗ Vλ)〈n〉, known as the
category of perfect complexes.

Proposition 11.1. — (1) We have ON ⊗ Vλ ∈ D6λ.
(2) The projection functor Π : D6λ → D6λ/D<λ induces an equiva-

lence of categories Dλ
∼→ D6λ/D<λ. Moreover, Π(ON ⊗ Vλ) lies in

Π(Aλ) and is a projective cover of Π(Aλ).
(3) The realization functor real : DbAλ → Dλ is also an equivalence of

categories. In particular, we have

ExtkAλ(Aλ, Aλ) ' HomE (Aλ, Aλ[k]),

where E is any of: Dλ, D6λ, D6λ/D<λ, DbCohG×Gm(N ).

Proof. — This proposition is mostly a restatement of results of [12]. It
follows from the proof of [12, Proposition 4(a)] that the object ON ⊗Vλ can
be obtained by repeatedly taking extensions among various Aν〈n〉 with ν
a weight of Vλ. By [12, Proposition 3], we may assume that all the required
ν’s are dominant weights of Vλ, so part (1) of the proposition follows, as
does the fact that Π(ON ⊗ Vλ) ∈ Π(Aλ). Next, the fact that Π induces
an equivalence as in part (2) is simply a Gm-equivariant analogue of [12,
Lemma 4(d)]. That lemma also says that the inverse equivalence factors
through a right adjoint Πr : D6λ/D<λ → D6λ to Π. Therefore,

Homi(Π(ON ⊗ Vλ),Π(Aλ)) ' Homi(ON ⊗ Vλ,Πr(Π(Aλ))

' Homi(ON ⊗ Vλ, Aλ).
(11.2)

Since the last term vanishes when i = 1, we see that Π(ON ⊗ Vλ) is a
projective object in Π(Aλ). Moreover, it follows from [12, Fact 1(a)] (see
also [12, Equation (27)]) that dim Hom(Π(ON ⊗ Vλ),Π(Aλ)) = 1. Since
Π(Aλ) is, up to Tate twist, the unique simple object of Π(Aλ), it follows
that Π(ON ⊗ Vλ) is the projective cover of Π(Aλ).

Finally, we see from (11.2) that the functor Homi(Π(ON⊗Vλ), ·) vanishes
on Π(Aλ) for all i > 0. It follows that Homi(·, ·) can be computed on Aλ
by taking projective resolutions in the first variable. The equivalence in
part (3) follows. �
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Corollary 11.2. — For X ∈ D6λ, we have X ∈ Dλ if and only if
Homi(ON ⊗ Vµ〈n〉, X) = 0 for all µ < λ and all i, n ∈ Z.

Proof. — Suppose X /∈ Dλ. By [12, Lemma 4(b)], we know that there is
some object Y ∈ D<λ such that Hom(Y,X) 6= 0. Since D<λ is generated
by the Aµ〈n〉 with µ < λ, there is some µ < λ and some i, n ∈ Z such that
Homi(Aµ〈n〉, X) 6= 0. Suppose that µ is chosen to be minimal with this
property, i.e.,

Homj(Aν〈m〉, X) = 0 if ν < µ. (11.3)
By a repeated use of [12, Lemma 4(e)], the inclusion functor ιµ : D6µ →
D6λ has a right adjoint ιrµ, so Homi(Aµ〈n〉, ιrµX) 6= 0. It then follows
from (11.3) and [12, Lemma 4(b)] that ιrµX ∈ Dµ ∼= DbAµ. From the proof
of the preceding proposition, we know that ΠrΠ(ON ⊗Vµ) is the projective
cover of the unique (up to Tate twist) simple object in Aµ. Since ιrµX 6= 0,
there certainly exist i, n ∈ Z such that Homi(ΠrΠ(ON ⊗Vµ)〈n〉, ιrµX) 6= 0.
Next, there is a distinguished triangle Y → ON ⊗ Vµ → ΠrΠ(ON ⊗ Vµ)→
with Y ∈ D<µ. Using (11.3) once again, we see that Hom•(Y, ιrµX) = 0, so
we then have

Homi(ON ⊗ Vµ〈n〉, X) ∼= Homi(ON ⊗ Vµ〈n〉, ιrµX) 6= 0.

Finally, the opposite implication is clear: if X ∈ Dλ, then Homi(ON ⊗
Vµ〈n〉, X) = 0 for µ < λ by [12, Lemma 4(b)] and Proposition 11.1(1). �
Let H ′λ denote the graded ring End(Π(ON ⊗Vλ)). The category H ′λ-Mod

of graded H ′λ-modules is endowed with a shift-of-grading functor, also de-
noted X 7→ X〈1〉. A standard argument (see, for example, [5, Proposi-
tion II.2.5]) yields the following result.

Proposition 11.3. — There is an equivalence of categories Aλ '
H ′λ-Mod that commutes with X 7→ X〈1〉 and that sends Aλ to the trivial
H ′λ-module. �

11.2. Mixed perverse sheaves on the affine Grassmannian

Fix a prime p, and consider the field K = Fp((t)) and its subring O =
Fp[[t]]. By affine Grassmannian, we mean the ind-variety Gr = Ǧ(K)/Ǧ(O).
Recall that the choice of B determines the Iwahori subgroup Ǐ ⊂ Ǧ(O).
The stratification of Gr by orbits of Ǐ is an affine even stratification, and
the stratification by Ǧ(O)-orbits is affable. When naming categories of
constructible sheaves, the stratification will be indicated by a group as a

ANNALES DE L’INSTITUT FOURIER



KOSZUL DUALITY AND SEMISIMPLICITY OF FROBENIUS 1605

subscript: for instance, Pmix
Ǧ(O)(Gr) or DWeil

Ǧ(O)(Gr). It is well-known that the Ǐ-
orbits (resp. Ǧ(O)-orbits) on Gr are parametrized by X∗(T ) (resp. X∗+(T )).
For λ ∈ X∗+(T ), let Grλ denote the corresponding Ǧ(O)-orbit in Gr. We also
have the corresponding simple perverse sheaf ICmix

λ ∈ Pmix
Ǧ(O)(Gr).

An important result due to Arkhipov–Bezrukavnikov–Ginzburg (see [4,
Theorem 9.4.3]) is the construction of an equivalence of triangulated cate-
gories

P : Dmix
Ǐ

(Gr)→ DbCohG×Gm(Ñ ). (11.4)
This equivalence does not commute with Tate twist; instead, we have
P (F〈1〉) ∼= (PF)〈1〉[1]. When λ ∈ X∗+(T ), we have P (ICmix

λ ) ' OÑ ⊗ Vλ.
Define

Φ : Dmix
Ǧ(O)(Gr)→ DbCohG×Gm(N ) by Φ = Rµ∗ ◦ P |Dmix

Ǧ(O)
(Gr).

We claim that Φ induces an equivalence

Φ : Dmix
Ǧ(O)(Gr) ∼−→ Db

freeCohG×Gm(N ). (11.5)

Indeed, P induces an equivalence between Dmix
Ǧ(O)(Gr) and the full trian-

gulated subcategory of DbCohG×Gm(Ñ ) generated by the objects (OÑ ⊗
Vλ)〈n〉. Using the fact that Rµ∗OÑ

∼= ON (see [3, Lemma 3.9]), one easily
checks that the functors Rµ∗ and Lµ∗ induce quasi-inverse equivalences
between this category and Db

freeCohG×Gm(N ).
Since ON ⊗ Vµ ∈ D6µ for any µ, Φ clearly restricts to a fully faithful

functor Dmix
Ǧ(O)(Grλ) → D6λ. This functor takes objects supported on the

closed subvariety GrλrGrλ to D<λ. As a consequence of Theorem 9.5 (see
Remark 9.6), there is a natural equivalence

Dmix
Ǧ(O)(Grλ)/Dmix

Ǧ(O)(Grλ r Grλ) ' Dmix
Ǧ(O)(Grλ)

induced by restriction. Thus, Φ gives rise to a functor Φλ : Dmix
Ǧ(O)(Grλ)→

D6λ/D<λ that takes ICmix
λ |Grλ

∼= Q
`
[dim Grλ]〈− dim Grλ〉 to Π(ON ⊗ Vλ).

Lemma 11.4. — The functor Φλ : Dmix
Ǧ(O)(Grλ)→ D6λ/D<λ induced by

Φ is fully faithful.

Proof. — Consider the essential image of the functor j∗ : Dmix
Ǧ(O)(Grλ)→

Dmix
Ǧ(O)(Grλ), where j : Grλ → Grλ is the inclusion map. The quotient functor
Dmix
Ǧ(O)(Grλ)→ Dmix

Ǧ(O)(Grλ) induces an equivalence

j∗(Dmix
Ǧ(O)(Grλ)) ∼−→ Dmix

Ǧ(O)(Grλ).
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This statement is analogous to Proposition 11.1(2). In view of that, it
suffices to show that Φ takes objects in j∗(Dmix

Ǧ(O)(Grλ)) to objects in Dλ ⊂
DbCohG×Gm(N ). Consider an object j∗G, where G ∈ Dmix

Ǧ(O)(Grλ). Clearly,
Homi(ICmix

µ 〈n〉, j∗G) = 0 if µ < λ. Because Φ is fully faithful, it follows that
Homi(ON ⊗ Vµ〈n〉,Φ(j∗G)) = 0, so by Corollary 11.2, we have Φ(j∗G) ∈
Dλ. �

We are now ready for the main result of this section. For λ ∈ X∗+(T ),
let Pλ ⊂ G be the standard parabolic subgroup whose simple roots are
orthogonal to λ, and consider the cohomology ring Hλ = H•(G/Pλ). This
is a graded ring, so we can define graded Hom- and Ext-groups over it as
in (11.1).

Theorem 11.5. — There is an isomorphism of bigraded algebras
Ext•(Aλ, Aλ) ' Ext•Hλ(C,C).

Hλ can be described in terms of the coinvariant ring of theWeyl group [10,
Theorem 5.5], so the result above can be used to carry out explicit calcu-
lations.
Proof. — In view of Propositions 11.1(3) and 11.3, the proof of this

statement reduces to showing that Hλ
∼= H ′λ. The fully faithful functor

Φλ of Lemma 11.4 has the property that Φλ(Q
`
[dim Grλ]〈− dim Grλ〉) ∼=

Π(ON ⊗ Vλ), so we have

H ′λ = End(Π(ON ⊗ Vλ)) ∼=
⊕
n∈Z

Homn
Dmix
Ǧ(O)

(Grλ)(Q`,Q`〈−n〉)

∼=
⊕
n∈Z

Hn(Grλ) ∼=
⊕
n∈Z

Hn(G/Pλ) = Hλ,

where the third isomorphism follows from purity of the cohomology of the
smooth variety Grλ, and the fourth one from the fact that Grλ is naturally
a vector bundle over G/Pλ. �

12. Wakimoto sheaves

We retain the notation and conventions of the previous section, with
the exception that we now allow G to be an arbitrary connected reductive
group. Line bundles Lλ on Ñ (where now we allow any λ ∈ X∗(T ), not
just dominant weights) form a particularly important class of objects in
DbCohG×Gm(Ñ ), and it is natural to ask what objects in Dmix

Ǐ
(Gr) they
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correspond to under the equivalence (11.4). In [4, Remark 9.4.4], it was con-
jectured that line bundles should correspond to Wakimoto sheaves, whose
definition we will review below. In fact, this was proved for λ dominant
or antidominant, and the analogous statement for the unmixed version
of (11.4) (involving DǏ(Gr)) was proved in general. But in the mixed case,
it was not known in [4] whether Wakimoto sheaves for general λ are misci-
ble. In this section, we provide a positive answer to this question.

12.1. Twisted external tensor products and convolution
products

Let Fl = Ǧ(K)/Ǐ be the affine flag variety of Ǧ. As with Gr, this is an
ind-variety equipped with an affine even stratification given by orbits of
Ǐ, but these orbits are now indexed by the extended affine Weyl group
W = W0 nX∗(T ), where W0(T ) = NG(T )/T is the ordinary Weyl group.
To explain the construction of the convolution product, we require the
equivariant derived category of Fl in the sense of Bernstein–Lunts [11].
This category, denoted DWeil

Ǐ-eq (Fl), is a triangulated category equipped with
a forgetful functor DWeil

Ǐ-eq (Fl) → DWeil
Ǐ

(Fl), as well as with a t-structure
whose heart PWeil

Ǐ-eq (Fl) is known as the category of equivariant perverse
sheaves. When restricted to this abelian category, the forgetful functor
PWeil
Ǐ-eq (Fl)→ PWeil

Ǐ
(Fl) is full and faithful.

Now, consider the diagram

Fl× Fl p←− Ǧ(K)× Fl q−→ Ǧ(K)×Ǐ Fl m−→ Fl

where p and q are the obvious projection maps, and m is the map induced
by the action of Ǧ(K) on Fl. Suppose F ∈ DWeil

Ǐ
(Fl) and G ∈ DWeil

Ǐ-eq (Fl). The
twisted external tensor product of F and G, denoted F �̃ G, is the unique
object of DWeil

S (Ǧ(K)×Ǐ Fl) characterized by the property that

q∗(F �̃ G) ∼= p∗(F � G).

Here, S denotes the stratification whose strata are subvarieties of the form

Flw ×̃ Flv = q(p−1(Flw × Flv)) where w, v ∈W .

This construction actually gives us a bifunctor of triangulated categories

�̃: DWeil
Ǐ

(Fl)×DWeil
Ǐ-eq (Fl)→ DWeil

S (Ǧ(K)×Ǐ Fl).

Finally, the convolution product is the bifunctor

? : DWeil
Ǐ

(Fl)×DWeil
Ǐ-eq (Fl)→ DWeil

Ǐ
(Fl) given by F ? G = m!(F �̃ G).
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The Ǐ-equivariance of G is an essential ingredient in this construction; there
is no way to make �̃ or ? a bifunctor on DWeil

Ǐ
(Fl)×DWeil

Ǐ
(Fl) instead. (It is

possible to avoid equivariant derived categories at the expense of replacing
one copy of Fl by the “extended affine flag manifold”; see [4, §8.9].)

Lemma 12.1. — The stratification S of Ǧ(K) ×Ǐ Fl is an affine even
stratification.

Proof. — Given two strata Flv,Flw ⊂Fl, we have a functor �̃: Dmix
Ǐ

(Flw)×
Dmix
Ǐ-eq(Flv)→ DWeil

Ǐ
(Flw ×̃ Flv) defined as above using the diagram

Flw × Flv
p←− p−1(Flw × Flv)

q−→ Flw ×̃ Flv.

Observe that
Q
`Flw
�̃ Q

`Flv
∼= Q

`Flw×̃Flv
. (12.1)

If ̃w,v : Flw ×̃ Flv → Ǧ(K) ×Ǐ Fl denotes the inclusion map, it is straight-
forward to check that

̃∗x,y(ICmix
w �̃ ICmix

v ) ∼= j∗xICmix
w �̃ j∗y ICmix

v ,

̃!x,y(ICmix
w �̃ ICmix

v ) ∼= j!
xICmix

w �̃ j!
yICmix

v .
(12.2)

In particular, it follows by a dimension calculation that

ICmix
w �̃ ICmix

v
∼= ICmix

w,v . (12.3)

In view of (12.1), it follows now from (12.2) that S is an affine even
stratification of Ǧ(K)×Ǐ Fl. �

Since the inclusion map jw : Flw → Fl is Ǐ-equivariant, the object
∆mix
w = jw!Q`[dim Flw]〈−dim Flw〉 can naturally be regarded as an object

of DWeil
Ǐ-eq (Fl), so convolution products of the form F ?∆mix

w are defined.

Proposition 12.2. — If s ∈W is a simple reflection, the functor (−) ?
∆mix
s : DWeil

Ǐ
(Fl)→ DWeil

Ǐ
(Fl) is miscible.

Proof. — Let J̌ ⊂ Ǧ(K) denote the standard parahoric subgroup corre-
sponding to the simple reflection s. Let Fls = Ǧ(K)/J̌ be the associated
partial affine flag variety, and let πs : Fl→ Fls denote the natural projection
map.
If G ∈ DWeil

J̌-eq(Fl), then, by a construction using the diagram

Fls × Fl←− Ǧ(K)× Fl −→ Ǧ(K)×J̌ Fl −→ Fl,

one has a convolution product functor

(−) ?s G : DWeil
Ǐ

(Fls)→ DWeil
Ǐ

(Fl).
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Similarly, if G ∈ DWeil
Ǐ-eq (Fls), then there is a convolution product functor

(−) ?s G : DWeil
Ǐ

(Fl)→ DWeil
Ǐ

(Fls).

It is straightforward to check that these new convolution products are as-
sociative in the appropriate sense.
For instance, consider the orbit closure Fls ⊂ Fl, which is a single J̌-orbit.

The object ICmix
s [−1]〈1〉 ∼= Q

`
can be regarded as an object of DWeil

J̌-eq(Fl).
We claim that there is an isomorphism of functors

(−) ?s ICmix
s [−1]〈1〉 ∼= π∗s : DWeil

Ǐ
(Fls)→ DWeil

Ǐ
(Fl). (12.4)

To see this, we first note that the map m : Ǧ(K)×J̌ Fls → Fl is an isomor-
phism, since Fls can be identified with J̌/Ǐ. Let r = πs ◦m : Ǧ(K)×J̌ Fls →
Fls. To establish (12.4), it suffices to show that F �̃ Q

`
∼= r∗F . But this

follows from the observation that q∗r∗F ∼= p∗(F �Q
`
), where p and q are

the maps in the diagram

Fls × Fls
p←− Ǧ(K)× Fls

q−→ Ǧ(K)×J̌ Fls.

Next, consider the object πs∗ICmix
e ∈ DWeil

Ǐ
(Fls), where e ∈ W is the

identity element. This is a skyscraper sheaf on Fls; it can certainly be
regarded as an object of DWeil

Ǐ-eq (Fls). An argument similar to (but easier
than) the one above shows that there is an isomorphism of functors

(−) ?s πs∗ICmix
e
∼= πs∗ : DWeil

Ǐ
(Fl)→ DWeil

Ǐ
(Fls). (12.5)

Note that (πs∗ICmix
e ) ?s ICmix

s [−1]〈1〉 ∼= π∗sπs∗ICmix
e
∼= ICmix

s [−1]〈1〉. By
associativity of convolution products, we have

(−) ? ICmix
s [−1]〈1〉 ∼= (−) ?s πs∗ICmix

e ?s ICmix
s [−1]〈1〉 ∼= π∗s ◦ πs∗.

The functors π∗s and πs∗ are genuine by Proposition 9.2 and Theorem 9.18,
respectively, so the functor (−) ? ICmix

s [−1]〈1〉 is as well.
The functor (−) ? ICmix

e
∼= id is obviously genuine as well. Consider now

the distinguished triangle ICmix
s [−1]〈1〉 θ−→ ICmix

e → ∆mix
s 〈1〉 →. By a

routine calculation involving the convolution products in (12.4) and (12.5),
one can check that the morphism of functors

(−) ? θ : (−) ? ICmix
s [−1]〈1〉 → (−) ? ICmix

e

can be identified with the adjunction morphism π∗s ◦ πs∗ → id.
Suppose now that F ∈ Dmisc

Ǐ
(Fl). We then have a distinguished triangle

F ? ICmix
s [−1]〈1〉 F?θ−→ F ? ICmix

e → F ?∆mix
s 〈1〉 → .
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It follows from Lemma 3.15 that the adjunction morphism F ?θ is miscible,
so its cone F ?∆mix

s 〈1〉 is miscible as well, as desired. �

Remark 12.3. — In the course of the preceding proof, we saw that the
functor F 7→ F ? ICmix

s is genuine. By an induction argument on lengths
of elements in W , one can deduce that the convolution product of any
two simple perverse sheaves is a pure semisimple object of DWeil

Ǐ
(Fl). For

another proof of this fact, see [14, Proposition 3.2.5].

12.2. Wakimoto sheaves

Given a weight λ ∈ X∗(T ), choose two dominant weights µ, ν ∈ X∗+(T )
such that λ = µ− ν. All these weights can be regarded as elements of the
affine Weyl group W , so they determine strata in Fl. The Wakimoto sheaf
of weight λ is defined to be

Wλ = ∇mix
µ ?∆mix

−ν .

This object is independent of the choice of µ and ν; see [4, §8.3]. Sometimes,
the term Wakimoto sheaf is instead used for the object

W̄λ = π∗Wλ,

where π : Fl → Gr is the natural projection map. The following result
answers a question posed in [4, Remark 9.4.4].

Proposition 12.4. — The Wakimoto sheaves Wλ ∈ DWeil
Ǐ

(Fl) and
W̄λ ∈ DWeil

Ǐ
(Gr) are miscible for all λ ∈ X∗(T ).

Proof. — Choose µ, ν ∈ X∗+(T ) such that λ = µ− ν, and then choose a
reduced expression −ν = ts1s2 · · · sk in W , where t is an element of length
0, and the si are simple reflections. The stratum Flt is closed in Fl, so
∆mix
t
∼= ∇mix

t . Therefore, ∇mix
µ ?∆mix

t
∼= ∇mix

µ ?∇mix
t
∼= ∇mix

µt (for the last
step, see, e.g., [4, Equation (8.2.3)]). The object ∇mix

µt is, of course, miscible,
and then it follows from Proposition 12.2 and induction on i that

(∇mix
µ ?∆mix

t ) ?∆mix
s1 ?∆mix

s2 ? · · · ?∆mix
si

is miscible for each i ∈ {1, 2, . . . , k}. Since ∆mix
t ?∆mix

s1 ?· · ·?∆mix
sk
∼= ∆mix

−ν , we
conclude that Wλ is miscible. Lastly, since π : Fl→ Gr is a smooth, proper
stratified morphism, we have from Theorem 9.18 that W̄λ is miscible as
well. �
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