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CHEN–RUAN COHOMOLOGY OF M1,n AND M1,n

by Nicola PAGANI (*)

Abstract. — In this work we compute the Chen–Ruan cohomology of the
moduli spaces of smooth and stable n-pointed curves of genus 1. In the first part
of the paper we study and describe stack theoretically the twisted sectors of M1,n

and M1,n. In the second part, we study the orbifold intersection theory of M1,n.
We suggest a definition for an orbifold tautological ring in genus 1, which is a
subring of both the Chen–Ruan cohomology and of the stringy Chow ring.
Résumé. — Dans ce travail on calcule la cohomologie de Chen–Ruan de l’espace

de modules des courbes lisses et stables de genre 1 avec n points marqués. Dans
la première partie on étudie et on décrit les secteurs tordus de M1,n et M1,n, en
tant que champs.

Dans la deuxième partie, on étudie la théorie d’intersection orbifold de M1,n. On
donne une définition possible de l’anneau tautologique orbifold en genre 1, comme
sous-anneau simultanément de la cohomologie de Chen–Ruan et de l’anneau de
Chow orbifold.

1. Introduction

Motivated by physics, Chen–Ruan cohomology was introduced in the
paper [6] in the analytic category, and in the two papers by Abramovich–
Graber–Vistoli [1] and [2] in the algebraic category. This has produced two
parallel objects: the Chen–Ruan cohomology and the stringy Chow ring,
which provide the basis to develop the quantum cohomology ring of an orb-
ifold. This cohomology ring recovers as a subalgebra the ordinary rational
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cohomology ring of the topological space that underlies the orbifold. As a
vector space, the Chen–Ruan cohomology of X is simply the cohomology of
the inertia stack of X. If X is an orbifold, its inertia stack I(X) is, loosely
speaking, constructed as the disjoint union, for g in the stabilizer of some
point x of X, of the locus stabilized by g in X (see Definition 3.1). As an
example, the orbifold X itself appears as a connected component of I(X),
as the locus fixed by the identity automorphism, which is trivially in the
stabilizer group of every point. All the other connected components of the
inertia stack I(X) are usually called twisted sectors. In this paper we use
the algebraic language, and whenever the word “orbifold” is mentioned, it
stands for smooth Deligne–Mumford stack.
Among the first examples of smooth Deligne–Mumford stacks in the

literature there are the moduli of smooth pointed curves Mg,n and their
compactifications Mg,n. It seems thus interesting to study their Chen–
Ruan cohomology. This has been done so far for M1,1 (a special case of
weighted projective space) and for M2 and M2 by Spencer [26] (see also
[27]).
In the present work, we investigate the Chen–Ruan cohomology ring

for M1,n and M1,n with rational coefficients, assuming knowledge of the
cohomology of M1,n and M1,n. We show how it is possible to describe
the stringy Chow ring in a similar fashion. Indeed we show that for each
twisted sector, the cycle map from the Chow ring to cohomology is an
isomorphism.
The main results of this paper are the complete stack-theoretic descrip-

tion of the twisted sectors, and the explicit computation of the Chen–Ruan
product as an extension of the usual cup product.

Theorem 1.1. — (Theorem 3.22, Corollary 3.23) Each twisted sector
ofM1,n is isomorphic to

A×M0,n1 ×M0,n2 ×M0,n3 ×M0,n4 ,

where the ni > 3 are integers and A is in the set

{Bµ3, Bµ4, Bµ6,P(4, 6),P(2, 4),P(2, 2)}.

Here BG is the classifying stack of principal G-bundles, and P(a, b) is a
weighted projective stack.

Theorem 1.2. — (Theorem 7.2) The Chen–Ruan cohomology ring of
M1,n is generated as an algebra over the ordinary cohomology ring ofM1,n
by the fundamental classes of the twisted sectors with explicit relations.

ANNALES DE L’INSTITUT FOURIER



CHEN–RUAN COHOMOLOGY OF M1,n AND M1,n 1471

The theory developed in this manuscript can be seen as an extension of
the study of the cohomological properties of the moduli spaces of curves,
initiated by Harer and Mumford ([19]) in the eighties. The latter framework
has produced important results in algebraic geometry, topology, mathemat-
ical and theoretical physics, representation theory and number theory. On
the other hand, our results are the first steps towards the study and the
understanding of more recent topics of investigation, such as the stringy
topology and the Gromov-Witten theory of the moduli spaces of curves
(see, for example, [3]).

This paper is part of the PhD thesis [20], where the case of genus g bigger
than 1 is also discussed. However, we believe that the genus 1 case can be
conveniently described within a more explicit and elementary framework,
mainly thanks to the fact that the automorphism groups of stable genus
1 marked curves are cyclic. In general we make an effort to limit to a
minimum the use of technicalities, whereas various aspects of the theory
could be developed in bigger generality to produce higher genera results,
see [21], [22] and [23].

1.1. Description of the sections

In Section 2 we recall some known results that we will use and fix our
notation. The complete, stack-theoretic description of the twisted sectors of
M1,n andM1,n is given in Section 3, where we prove the first main result
1.1. This result allows us to compute the generating series of the orbifold
Poincaré polynomials forM1,n. In Section 4, we compute the Chen–Ruan
cohomology ofM1,n andM1,n as a graded vector space. To do so, we intro-
duce the unconventional rational grading on the cohomology of the inertia
stack, usually referred to as age, or degree shifting number, or fermionic
shift. In Section 5, we describe the twisted sectors of the second inertia
stack ofM1,n andM1,n. Here a simplification occurs, indeed we show that
every double twisted sector is canonically isomorphic to a twisted sector. In
Section 6 we begin the study of the orbifold intersection theory onM1,n,
we compute all excess intersection bundles, and their top Chern classes.
Finally, in Section 7, we determine the Chen–Ruan cup product and we
prove the second main result 1.2. In this section a proposal for an orbifold
tautological ring forM1,n is motivated and advanced.

TOME 63 (2013), FASCICULE 4
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2. Foundation

2.1. General notation

We work in the category of schemes of finite type over C. Although
we treat only this case, some of our results can easily be extended to the
case of an arbitrary field of characteristic different from 2 and 3. In the
paper, algebraic stack means Deligne–Mumford stack. Intersection theory
on schemes is defined in [10], on Deligne–Mumford stacks it is defined in
[28]. We refer to these texts for the definitions and first properties of the
Chow groups A∗. In this manuscript we work with cohomology and Chow
ring with rational coefficients. Since all the spaces we consider are smooth,
there is a standard identification of A∗ with the dual of A∗.
We use Gm to denote the group scheme of invertible multiplicative ele-

ments of C. The discrete group subscheme of Gm of the N -th roots of 1 is
called µN . The generators of µ2, µ4 and µ6 are conventionally chosen to be
respectively−1, i and ε. Since we work over the complex numbers, we can fix
ε = e

2iπ
6 . We denote by Sn the group of permutations of [n] := {1, 2, . . . , n}.

If G is a finite abelian group, G∨ = Hom(G,C∗) is the group of characters
of G. We call the trivial G-gerbe over a point BG = [Spec(C)/G]; it is the
classifying stack of the groupG. IfX is a scheme, an element in Pic(X×BG)
is a pair (L, χ) where L ∈ Pic(X) and χ ∈ G∨. For a complete treatment
on gerbes, we refer to the book [14], or to [5].

2.2. Notation for Mg,n and Mg,n, and some cohomological
results

If I is a finite setMg,I is the moduli stack of stable genus g curves with
marked points in the set I. If I = {i, •} then we conventionally defineM0,I
as a point labeled by i. When the set I is [n], the set of the first n natural
numbers, we writeMg,n andMg,n instead ofMg,[n] andMg,[n].

If I ⊂ J , then πI : Mg,J → Mg,I is the morphism that remembers
only the sections inside I. We give the same name to the morphism πI :
Mg,J →Mg,I that forgets all the sections but the ones in I and stabilizes.
With this notation, let si be the i-th section of π[n] :Mg,n+1 →Mg,n. By
definition, the cotangent line bundle Li is the line bundle s∗i (ωπ[n]), where
ωπ[n] is the relative dualizing sheaf. We also define ψi := c1(Li).

Let k > 0 and let (I1, . . . , Ik) be a partition of [n]. We define jg,k as the
morphism gluing the marked points labeled with the same symbol:

jg,k :M
g,
∐k

i=1
•i
×Mg1,I1t•1 × . . .×Mgk,Ikt•k →Mg+

∑
gi,n

,

ANNALES DE L’INSTITUT FOURIER
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note that jg,k depends on the partition I1, . . . , Ik and on the choice of
g1, . . . , gk, although we do not make this explicit in our notation. We also
define:

j :Mg,nt•1t•2 →Mg+1,n

as the morphism gluing together •1 and •2. In this paper, we will be dealing
with the case of genus 1 curves. We will be using several times the map
j1,k, where all the gi are set equal to 0. We call this map simply jk, so if
I1, . . . , Ik is a partition of [n] we have the gluing map:

jk :M1,
∐k

i=1
•i
×M0,I1t•1 × . . .×M0,Ikt•k →M1,n.

The product space on the left admits projection maps onto each factor.
We denote by p the projection map onto the first factor p, and with pi the
projection maps onto the genus 0 component with marked points in the set
Ii.
We recall the definition and main properties of the tautological ring for

the moduli spaces of curves.

Definition 2.1. — ([8, Section 0.1]) The system of tautological rings
R∗(Mg,n) is defined to be the set of smallest Q-subalgebras of the Chow
rings

R∗g,n = R∗(Mg,n) ⊂ A∗(Mg,n,Q)
that is closed under push–forward via all forgetful and gluing maps.

Remark 2.2. — The system of tautological rings is closed under pull–
back via the forgetful and the gluing maps. Each tautological ring is an
Sn-representation via the action that permutes the points. We denote by
RH∗(Mg,n) the image of R∗(Mg,n) under the cycle map to the ring of
even cohomology classes.

Definition 2.3. — We define B∗g,n to be the smallest system of vector
subspaces of the Chow rings A∗(Mg,n,Q) that contain the fundamental
classes, and that are stable under push–forward via all gluing maps (see
Definition 2.1). A boundary strata class is an element in B∗g,n that corre-
sponds to a closed irreducible proper substack ofMg,n.

Obviously, the tautological ring contains all boundary strata classes.

Notation 2.4. — If I ⊂ [n], |I| > 2, we denote by dI the closure of the
substack ofM1,n of reducible nodal curves with two smooth components,
where the marked points in the set I are on the genus 0 component and
the marked points on the genus 1 curve are in the complement. The closure
of the substack ofM1,n of irreducible curves of geometric genus 0 is called

TOME 63 (2013), FASCICULE 4
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dirr. We will sometimes indicate by dI also the class [dI ] ∈ H2(M1,n)
represented by the divisor dI . These elements form a basis for B1

1,n.
Analogously, given I ⊂ [n], such that |I| > 2 and |[n]\I| > 2, ∆I = ∆[n]\I

is the sublocus ofM0,n whose general element has two genus 0 components
with marked points in I in the first one and in [n] \ I in the second one.
These elements generate B1

0,n.

In general, B∗g,n ⊂ R∗g,n ⊂ A∗(Mg,n,Q) → H∗(Mg,n,Q) are all distinct.
By [8, p.2], the ψ-classes defined in Section 2.2 are in the tautological ring.
In genus 0 we have the equalities

(2.1) B∗0,n = R∗0,n = A∗(M0,n,Q) = H2∗(M0,n,Q);

moreover the cohomology is generated by the boundary divisor classes (see
[17]). In the remainder of this section, we will see what we can say for
the cohomology ofM1,n, in analogy with (2.1). The next proposition is a
straightforward consequence of Theorem ∗, [16, Theorem 1.1].

Proposition 2.5. — The tautological ring R∗(M1,n) is additively gen-
erated by boundary strata classes (see 2.3), so that B∗1,n = R∗1,n.

So let us now introduce some results concerning the tautological ring of
M1,n. These results were originally claimed by Getzler in [12], and they
were recently proved by Petersen in [24].

Theorem 2.6. — (claimed for the first time in [12], proved in [24]) The
boundary strata classes span the even cohomology ofM1,n. Moreover the
cycle map is injective when restricted to the tautological algebra R∗(M1,n).

Note that the second sentence of the statement follows, in Petersen’s
proof, from the stronger fact that all relations among the generators of the
even cohomology come from genus 0 relations, and from Getzler’s relation
[12, Theorem 1.8], see [24] for more details. The tautological ring ofM1,n
has been studied in detail by Belorousski [4]. When n 6 10, the picture is
similar to the genus 0 case (2.1).

Proposition 2.7. — ([4, Theorem 3.1.1, Theorem 3.6.3]) For n 6 10
the following two equalities also hold

R∗1,n = A∗(M1,n,Q) = H∗(M1,n,Q).

It is well known that the eleventh cohomology group ofM1,11 is non-zero.
It follows that the second and third equalities of the proposition above are
no longer true for n > 11 (see for instance [15, p.2]).

ANNALES DE L’INSTITUT FOURIER
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Anyway, after Proposition 2.5, and Theorem 2.6, we obtain a decompo-
sition of the cohomology in boundary strata classes and odd cohomology

(2.2) H∗(M1,n) = B∗1,n ⊕Hodd(M1,n).

The rings R∗1,n = B∗1,n are, in general, not multiplicatively generated by
the boundary divisors (as it happens in genus 0), by a result of Belorousski.

Theorem 2.8. — [4, Chapter 3] The Chow ring of M1,n is generated
by the divisors precisely when n 6 5.

Anyway, it is possible to give a simple and geometric description of the
additive generators of R∗1,n besides the product of boundary divisors. We
denote by Rdiv1,n the subring of R∗1,n generated by the classes of the divisors.

Definition 2.9. — The banana locus (cf. [4, p.49]) is the locus inM1,n
of curves whose general element has two rational components joined in
two nodes. A subbanana cycle is a boundary strata class in M1,n that is
contained in the banana locus. Let Rban1,n be the vector subspace of R∗1,n
generated by subbanana cycles.

Then we have(1)

(2.3) R∗1,n = B∗1,n = Rdiv1,n +Rban1,n .

Indeed, let us consider the complement of the banana locus inM1,n. Rea-
soning by induction on the codimension, it is simple to see that the bound-
ary strata classes on this complement can all be written as products of
divisor classes.

3. The Chen–Ruan cohomology of M1,n and M1,n as
vector spaces

3.1. Definition of Chen–Ruan cohomology as a vector space

The following is a natural stack associated to a stack X, which points to
where X fails to be an algebraic space.

Definition 3.1. — ([28, Definition 1.12]) Let X be an algebraic stack.
The inertia stack I(X) of X is defined as the fiber product X ×X×X X

where both morphisms X → X ×X are the diagonal morphisms. There is
a natural map f : I(X)→ X.

(1)We learned this from Belorousski’s thesis [4], although it is not explicitly written
there.

TOME 63 (2013), FASCICULE 4
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The construction of Chen–Ruan cohomology based on the definition of in-
ertia orbifold was given for the first time in [6, Definition 3.2.3]. As observed
in [1, Section 4.4], the latter is nothing but the coarse moduli space of the
inertia stack we have just introduced. In [2, 7.3] the algebraic counterpart
of Chen–Ruan cohomology is introduced, under the name of stringy Chow
ring. It is built on the rigidification of the cyclotomic inertia stack intro-
duced in [2, Section 3]. In this paper we work over C, and all cohomologies
are taken with rational coefficients. Therefore, the cohomologies of the iner-
tia stack, of the cyclotomic inertia stack, of the rigidified cyclotomic inertia
stack and of the inertia orbifold are all canonically isomorphic, since all of
them share the same coarse moduli space.

Remark 3.2. — If Y is a twisted sector of I(X), then the map f of
Definition 3.1 restricts to a map f|Y : Y → X. In general f|Y : Y → X is a
composition of a stack covering and a closed embedding, as easily follows
for instance from [28, Lemma 1.13], or from [6, 3.1.3]. In the present paper
however, since all the stacks we consider are abelian orbifolds, the map
f|Y is a closed embedding. So if Y is a twisted sector, it can be written as
Y = (Z, g), where Z is a closed substack of X and g is an automorphism
in the generic stabilizer of Z.

Definition 3.3. — If X is an algebraic stack, the connected component
of the inertia stack associated with the identity automorphism is called the
untwisted sector of the inertia stack. All the remaining connected com-
ponents are called the twisted sectors of I(X). The latter are sometimes
called also the twisted sectors of X.

Proposition 3.4. — [2, Corollary 3.1.4] Let X be a smooth algebraic
stack. Then the inertia stack I(X) is smooth.

Definition 3.5. — Let X be a smooth algebraic stack. Let T be a set
of indices in bijection with the twisted sectors of I(X). We say that the
equality

I(X) = X t
∐
i∈T

(Xi, gi),

is a decomposition of the inertia stack of X in twisted sectors.

Notation 3.6. — In order to simplify the notation, if (A, g), (A, g′) are
two twisted sectors, we shall write (A, g/g′) to denote the disjoint union
of the two twisted sectors (A, g) and (A, g′) in the inertia stack. When we
write A we refer to the image of the closed embedding of the twisted sector
inside the original stack X (see Remark 3.2).

ANNALES DE L’INSTITUT FOURIER
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We can then define the Chen–Ruan cohomology vector space.

Definition 3.7. — ([6, Definition 3.2.3]) Let X be a smooth algebraic
stack. Then the Chen–Ruan cohomology is by definition

H∗CR(X,Q) := H∗(I(X),Q)

as a rational vector space.

The Chen–Ruan cohomology decomposes as in Definition 3.5

H∗CR(X,Q) = H∗(X,Q)⊕
⊕
i∈T

H∗(Xi,Q).

3.2. The inertia stack of M1,n and M1,n

The twisted sectors in case n = 1 are well known as a direct consequence
of the Weierstrass Theorem. We refer to [25, III.1] for the basic material
on this topic. First of all, recall that every curve of the form:

Ca,b = {[x : y : z]| zy2 = x3 + az2x+ bz3, ∆ := 4a3 + 27b2 6= 0} ⊂ P2

is a smooth genus 1 curve. If, instead:

Ca,b = {[x : y : z]| zy2 =x3 +az2x+bz3, ∆ := 4a3 +27b2 = 0, (a, b) 6= (0, 0)},

then Ca,b is a nodal curve of arithmetic genus 1, geometric genus 0 and one
node. All genus 1 curves with a marked point admit this description.

Theorem 3.8. — [25, III.1] (Weierstrass representation) Let (C,P ) be
an elliptic curve, possibly nodal. Then there exist (a, b) ∈ C2 such that
(C,P ) is isomorphic to (Ca,b, [0 : 1 : 0]), where Ca,b is as above. If α is an
isomorphism of (C,P ) with (D,Q) then there exists λ ∈ Gm such that, up
to the isomorphism above, α is

α :



a→ λ4a

b→ λ6b

x→ λ2x

y → λ3y

z → z.

From this it follows that the moduli stack M1,1 is isomorphic to the
weighted projective stack P(4, 6).

TOME 63 (2013), FASCICULE 4
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Notation 3.9. — There are two elements of M1,1 that are stabilized
by the action of a group respectively isomorphic to µ4 and µ6, we call
them respectively C4 and C6. These are classes of curves whose Weierstrass
representation can be chosen respectively as:

C4 :=
{

[x : y : z]| y2z = x3 + xz2} ⊂ P2,

C6 :=
{

[x : y : z]| y2z = x3 + z3} ⊂ P2.

If (C,P ) is an elliptic curve, and G is its automorphism group, then it
can be identified canonically with µN for a certain N ∈ {2, 4, 6}.

Notation 3.10. — If (C,P ) is an elliptic curve, and G is its automor-
phism group, then G acts effectively on T∨P (C), the cotangent space in C
to P , which is canonically isomorphic to C. We identify G with µN under
this isomorphism.

The decomposition of the inertia stack of M1,1 and M1,1 in twisted
sectors (Definition 3.5), is a simple way to summarize the well–known facts
that we have exposed in this section.

Corollary 3.11. — With the notation introduced in Notation 3.6 and
3.10, the decomposition of the inertia stack ofM1,1 in twisted sectors is:

I(M1,1) = (M1,1, 1) t (M1,1,−1) t (C4, i/− i) t (C6, ε/ε
2/ε4/ε5)

and that ofM1,1 is:

I(M1,1) = (M1,1, 1) t (M1,1,−1) t (C4, i/− i) t (C6, ε/ε
2/ε4/ε5).

3.2.1. The case ofM1,n

We now study the inertia stack ofM1,n. Note that if n > 4, the objects
ofM1,n are rigid, and therefore in that range I(M1,n) =M1,n. A simple
analysis of the fixed points of the action of µ3, µ4 and µ6 on the curves C4
and C6 (see Notation 3.9) by Theorem 3.8 leads to three special points of
M1,n, n 6 3.

Notation 3.12. — We call the point in M1,2 stabilized by i or −i C ′4,
the point inM1,2 stabilized by ε2 or ε4 C ′6, and the point inM1,3 stabilized
by ε2 or ε4 C ′′6 .

To complete the study of the loci fixed by automorphisms in M1,n, we
shall need the loci fixed by the elliptic involution (according to Notation
3.10 we write it as (−1)). We give a special name to them.

ANNALES DE L’INSTITUT FOURIER
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Definition 3.13. — Let 1 6 i 6 4. We define Ai as the closed substack
of M1,i whose objects Ai(S) are i-marked smooth genus 1 curves over S
such that the sections are stabilized by the elliptic involution.

We shall see, as a consequence of Lemma 3.17, that Ai is connected for
all i (note that A1 = M1,1). What we have just discussed, leads to the
following description:

Corollary 3.14. — The decomposition of the inertia stack of M1,n
(Notation 3.5, 3.6, 3.10) is:

• I(M1,1) =M1,1 t (M1,1,−1) t (C4, i/− i) t (C6, ε/ε
2/ε4/ε5);

• I(M1,2) =M1,2 t (A2,−1) t (C ′4, i/− i) t (C ′6, ε2/ε4);
• I(M1,3) =M1,3 t (A3,−1) t (C ′′6 , ε2/ε4);
• I(M1,4) =M1,4 t (A4,−1);
• I(M1,n) =M1,n if n > 5.

We collect the twisted sectors ofM1,n in the following table. Different rows
correspond to different automorphisms, while the i-th column corresponds
to the twisted sectors ofM1,i.

1 2 3 4
−1 A1 A2 A3 A4
ε2/ε4 C6 C ′6 C ′′6 ∅
i/− i C4 C ′4 ∅ ∅
ε/ε5 C6 ∅ ∅ ∅

We now investigate the geometry of the spaces Ai introduced in Defini-
tion 3.13. In particular, this will give their cohomology.

Remark 3.15. — Using analytic methods (see [7, Chapter 3]), it is known
that the coarse moduli space of Ai is a genus 0 quasiprojective curve, and
also how many points are needed to compactify it. In the literature, the
coarse moduli space for A2 is known under the name of Y1(2) = Y0(2). The
coarse moduli space for A3 ∼= A4 is usually called Y (2). We here want to
give an algebraic and stack-theoretic description of those spaces, that we
could not find anywhere.

Definition 3.16. — We define Ai as the closure of Ai, inM1,i.

We have already observed that the stack A1 ∼=M1,1 is isomorphic to P(4, 6)
as a consequence of Theorem 3.8. Following the same strategy that can be
used to prove the latter isomorphism, we can obtain the following result:

TOME 63 (2013), FASCICULE 4
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Lemma 3.17. — The stack A2 is isomorphic to the weighted projec-
tive stack P(2, 4). The stacks A3 and A4 are isomorphic to the weighted
projective stack P(2, 2).

Proof. — We first study the case of A2. Let us define the following space:

B1 :=
{

((a, b), [x : y : z]) | (a, b) 6= (0, 0), zy2 =x3 +az2x+bz3}⊂A2
0×P2.

The projection onto the first factor, with the section σ1(a, b) := ((a, b), [0 :
1 : 0]), describes this space as an elliptic fibration over A2

0, so it determines
a unique map φ : A2

0 → M1,1, (here C1,1 is the universal curve):

B1 //

��

C1,1

��

∼ // M1,2

A2
0

φ //

σ1

[[

M1,1.

x1

YY

making the diagram cartesian. It is a well–known consequence of the Weier-
strass theorem (3.8) made in families that the map φ factors via the quotient
[A2

0/Gm], where Gm acts with weights 4 and 6, and that the resulting map
φ̃ : [A2

0/Gm]→M1,1 is an isomorphism of stacks. The locus in B1 cut out
by the equation y = 0 surjects onto A2 ⊂ M1,2. This locus is isomorphic
to A2

0 with parameters (a, x). Again as a consequence of the Weierstrass
theorem, the action of Gm with weights 4 and 2 can be factored out, to ob-
tain an isomorphism of stacks [A2

0/Gm]→ A2. The forgetful map A2 → A1
lifts to the map of the charts A2

0 → A2
0

(3.1) (a, x)→ (a,−ax− x3).

Now we study the case of A3. Let:

B2 :=
{

((a,x1), [x :y :z])| (a,x1) 6= (0,0), zy2 =x3 +az2x+(−ax1−x3
1)z3}.

In this case, the projection onto the first factor with the two sections{
σ1(a, x1) = ((a, x1), [0 : 1 : 0])
σ2(a, x1) = ((a, x1), [x1 : 0 : 1])

does not give a map toM1,2 since the image of the second section intersects
the singular locus. We define

Λ :=
{

((a, x1), [x : y : z]) | x=x1, y= 0, 4a3 +27(−ax1−x3
1)2 = 0

}
⊂B2.

Let p : B̃2 → B2 be the blow-up of B2 in Λ. Now the projection of B̃2
onto A2

0 admits two distinct sections σ̃1 and σ̃2 that to not intersect the
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singular locus, and such that p◦σ̃i = σi. In this way, we obtain the cartesian
diagram:

B̃2
//

��

C1,2

��

∼ // M1,3

A2
0

ψ //

σ̃1

YY

σ̃2

ff

M1,2.

x1

YY
x2

ee

We denote by ψ̃ the smooth map B̃2 →M1,3. Let F be the locus in B2 cut
out by the equation y = 0 and F̃ its strict transform under p : B̃2 → B2.
The map ψ̃ restricted to F̃ surjects onto A3. There is an isomorphism λ

from A2
0 (parameters (x2, x1)) to F

λ : (x2, x1)→ ((−x2
1 − x1x2 − x2

2, x1), [x2 : 0 : 1]).

Since F is smooth, the restriction of the map p : F̃ → F is an isomorphism,
and therefore λ lifts to an isomorphism λ̃ : A2

0 → F̃ . So we have a surjection:

ψ̃ ◦ λ̃ : A2
0 → A3.

Again, as a consequence of Weierstrass theorem, this map factors via the
quotient [A2/Gm], where the action has weights 2 and 2, thus inducing an
isomorphism of stacks [A2

0/Gm]→ A3. The forgetful map A3 → A2 lifts to
the map of the charts A2

0 → A2
0

(3.2) (x1, x2)→ (−x2
1 − x1x2 − x2

2, x1).

To conclude the proof, we observe that the restriction of the forgetful
map, A4 → A3, is an equivalence of categories. Indeed, when three among
the four 2-torsion points of an elliptic curve have been chosen, the fourth
is uniquely determined. �

Note that as a consequence of the proof, we deduce from (3.1) and (3.2)
a description of the forgetful maps A3 → A2 → A1 in terms of maps of
weighted projective stacks.
In Figure 3.1 we show the two points in A2 \ A2, the three points in

A3\A3 are in Figure 3.2. The irreducible components of these curves are all
rational: the geometric genus of each component is written at one extreme
of the curve itself. The first marked point is not pictured and is at infinity.
If coordinates are chosen on the vertical genus 0 curve, in such a way that
the two intersection points with the other component are 0,∞, the marked
points (2 and) 2, 3 are (chosen among) the points with coordinates 1,−1.
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2

0

2

0
0

Figure 3.1. The two points that compactify A2

2

0

0

3 2

0

0

3
2

0

0

3

Figure 3.2. The three points that compactify A3

We have thus described the spaces Ai as open dense substacks of weighted
projective stacks of dimension 1. In particular, their rational cohomology
follows from the following corollary.

Corollary 3.18. — The coarse moduli spaces of Ai is isomorphic to
P1. If i < 4, the coarse moduli spaces of Ai is P1 minus i points. The moduli
stack A4 coincides with A3.

3.2.2. The case ofM1,n

Up to now, we have determined the decomposition in twisted sectors of
the inertia stack (3.5) of M1,n (Corollary 3.14). As we have observed in
Remark 3.2, each twisted sector ofM1,n admits a closed embedding inside
M1,n itself. So, if (Z, g) is a twisted sector of M1,n, we can consider the
Deligne–Mumford compactification Z ⊂ M1,n. It is easily seen that (Z, g)
is a twisted sector of M1,n. In the last section, we have studied all such
twisted sectors (Z, g). We will see in this section that there are further
twisted sectors ofM1,n, whose image insideM1,n is completely contained
in the boundary.
Let (Z, g) be a twisted sector of M1,k. The twisted sector (Z, g) has k

marked points that we rename •i, where 1 6 i 6 k. Let now (I1, . . . , Ik)
be a partition of [n], such that Ii 6= ∅. Let now jk be the morphism gluing
together the same symbols (defined in Section 2.2):
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Definition 3.19. — Let Z be a twisted sector insideM1,k. We say Z
is a base twisted sector. We define Z(I1,...,Ik) as:

Z
(I1,...,Ik) := jk(Z ×M0,I1t•1 × . . .×M0,Ikt•k).

We then say Z is the base twisted sector associated with Z(I1,...,Ik).

Theorem 3.20. — If (Z,α) is a twisted sector inM1,k, and (I1, . . . , Ik)
is a partition of [n], (Z(I1,...,Ik)

, α) is a twisted sector of the inertia stack of
M1,n.

Proof. — The automorphism α lifts to an automorphism α′ of Z(I1,...,Ik)

that acts as α on the base and as the identity on the components M0,n.
We can call with the same name α and α′, and represent them by the same
element in µN (see Notation 3.10). It is easy to check that Z(I1,...,Ik) is a
connected component of the inertia stack ofM1,n. �

Notation 3.21. — Let σ ∈ Sk. Then Z
(I1,...,Ik) = Z

(Iσ(1),...,σ(k)). The
twisted sector is identified up to isomorphism by Z and the partition
{I1, . . . Ik} where the ordering of the Iis does not matter. From now on we
will simply denote this twisted sector inM1,n by Z{I1,...,Ik} or Z{I1,...,Ik}:
the set of parameters for the twisted sectors whose base space is Z is the
set of the k partitions of [n]. Note also that Z is identified with Z{1},...,{k}

for every twisted sector Z ofM1,k.

With the notation just introduced, we state the main result of this sec-
tion.

Theorem 3.22. — The decomposition of I(M1,n) in twisted sectors is
(see Notation 3.5, 3.6, 3.10):(

M1,n, 1
)
t
(
A1

[n]
,−1

)
t
(
A2

I1,I2
,−1

)
t
(
A3

I1,I2,I3
,−1

)
t
(
A4

I1,I2,I3,I4
,−1

)
t
(
C

[n]
4 , i/− i

)
t
(
CI1,I2

4 , i/− i
)

t
(
CI1,I2

6 , ε2/ε4
)
t
(
CI1,I2,I3

6 , ε2/ε4
)
t
(
C

[n]
6 , ε/ε2/ε4/ε5

)
,

where each disjoint union is taken over the set of all possible decompositions
of the set [n] in 1, 2, 3 or 4 non-empty subsets: [n] =

∐
Ii.

Proof. — We have just seen in Theorem 3.20 that all the components
that appear in the decomposition are twisted sectors ofM1,n. We have to
prove that there are no further connected components in the inertia stack
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ofM1,n. To see that there are no further twisted sectors, one can work by
induction using the fact that

π[n] :M1,n+1 →M1,n

is the universal curve. �

From this, we obtain the following corollary that describes all the possible
twisted sectors ofM1,n stack-theoretically.

Corollary 3.23. — Each twisted sector of M1,n is isomorphic to a
product

A×M0,n1 ×M0,n2 ×M0,n3 ×M0,n4 ,

where n1, . . . , n4 > 3 are integers and A is in the set

{Bµ3, Bµ4, Bµ6,P(4, 6),P(2, 4),P(2, 2)} .

Proof. — It is a consequence of Theorem 3.22, Lemma 3.17, and the fact
that C4 ∼= Bµ4, C6 ∼= Bµ6, C ′6 ∼= C ′′6

∼= Bµ3 (as a consequence of Theorem
3.8). �

3.3. The cohomology of the inertia stack of M1,n

We can use the results estabilished in Theorem 3.22 and Corollary 3.23 to
compute the dimension of the vector space H∗CR(M1,n,Q) (see Definition
3.7). We write the formula for the dimension as a function of the dimension
of H∗(M0,n), which is well known after Keel [17]. Then, let

h(n) := dimH∗(M0,n+1,Q) =
∑
k

ak(n)

(the latter notation is the one of [17, p. 550] shifted by 1).

Corollary 3.24. — The dimension of the Chen–Ruan cohomology
vector space ofM1,n is:

dim
(
H∗CR

(
M1,n,Q

))
= dim(H∗(M1,n,Q))+8h(n)+3

∑ (
n

i, j

)
h(i)h(j)

+ 2
3
∑ (

n

i, j, k

)
h(i)h(j)h(k) + 1

12
∑ (

n

i, j, k, l

)
h(i)h(j)h(k)h(l),

where the sum is over indices 1 6 i, j, k, l 6 n such that their sum is n.

Proof. — This result is obtained from Theorem 3.22 and Corollary 3.23,
using the fact that the dimension of the cohomology of a point is 1 and the
dimension of the cohomology of the projective line is 2. �
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We introduce the generating polynomials:

P0(s) :=
∞∑
n=0

Q0(n)
n! sn(3.3)

P1(s) :=
∞∑
n=0

Q1(n)
n! sn(3.4)

PCR1 (s) :=
∞∑
n=0

QCR1 (n)
n! sn(3.5)

where:

Q0(n) := dimH∗(M0,n+1) = h(n)
Q1(n) := dimH∗(M1,n)

QCR1 (n) := dimH∗CR(M1,n)

with the convention that when the right hand side is not defined, the left
hand side equals 1. Formula 3.24 can now be written compactly.

Theorem 3.25. — The following equality between power series relates
the dimensions of the cohomology group of M0,n and M1,n with the di-
mension of the Chen–Ruan cohomology group ofM1,n.

(3.6) PCR1 (s) = P1(s) + 8P0(s) + 3P0(s)2 + 2
3P0(s)3 + 1

12P0(s)4.

3.4. The classes of the twisted sectors in M1,n

In this section, we want to express the classes [Y ] for all Y a twisted sector
ofM1,n, as linear combinations of elements in R∗(M1,n). It is possible to
express them as linear combinations of products of divisor classes inM1,n.
This is due to the fact that there are base twisted sectors (Definition 3.19)
in genus 1 only up to 4 marked points, and Belorousski’s Theorem 2.8. In
fact, we manage to compute these classes as linear combinations of products
of Sn-invariant boundary divisor classes.

Notation 3.26. — If Y is a base twisted sector (3.19), we can write

[Y ] ∈ A∗(M1,n) = R∗(M1,n) = Hev(M1,n) :

the two equalities hold when n 6 10, see 2.7. If i : Y → M1,n is the
restriction of the map from the inertia stack, [Y ] is the push–forward via i
of the fundamental class of the twisted sector Y (see 3.2).

We use the notation for the divisors introduced in Notation 2.4.
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Theorem 3.27. — Let Y be a base twisted sector ofM1,n (Definition
3.19). We express its class in the cohomology ring as a linear combination
of products of Sn-invariant divisor classes.

• Base space classes coming fromM1,1:
(1) [A1]= 1, the fundamental class ofM1,1;
(2) [C4] = 1

2dirr
(3) [C6] = 1

3dirr.
• Base space classes coming fromM1,2:

(1) [A2] = 1
4dirr + 3d{1,2};

(2) [C ′4] = 1
2dirrd{1,2};

(3) [C ′6] = 2
3dirrd{1,2}.

• Base space classes coming fromM1,3:
(1) [A3] = 1

4dirr

(∑
{i,j}⊂{1,2,3} d{i,j}

)
+ 1

4dirrd{1,2,3}

+ 2d{1,2,3}
(∑

{i,j}⊂{1,2,3} d{i,j}

)
;

(2) [C ′′6 ] = 2
9dirrd{1,2,3}

(∑
{i,j}⊂{1,2,3} d{i,j}

)
.

• Base space classes coming fromM1,4:
(1) [A4] = 1

2d{1,2,3,4}
∑
{i,j,k}⊂{1,2,3,4}d{i,j,k}

(∑
{l,m}⊂{i,j,k}d{l,m}

)
+ 1

12dirr
∑
{i,j,k}⊂{1,2,3,4} d{i,j,k}

(∑
{l,m}⊂{i,j,k} d{i,j}

)
+ 1

12dirrd{1,2,3,4}

(∑
{i,j}⊂{1,2,3,4} d{i,j}

)
.

Proof. — We use the methods first established by Mumford [19, Section
III]. For the classes of the points the result is trivial. We show how to obtain
the result for the classes of the spaces Ai. We refer to [4] for all the bases
of the Chow groups ofM1,n that we use in the following.

First of all, a basis of A1(M1,2) is given by dirr and d{1,2}. Therefore:

(3.7) [A2] = adirr + bd{1,2}.

Taking the push–forward via π1 :M1,2 →M1,1, and using that the forget-
ful morphism restricted to A2 is of degree three (Lemma 3.17), gives that
b = 3. Now we observe that A2 does not intersect d{1,2}; by using that

d{1,2}d{1,2} = − 1
24 , d{1,2}dirr = 1/2,

we obtain a = 1
4 .

A basis of the S3-invariants of A2(M1,3) is given by:
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dirr
(
d{1,2} + d{1,3} + d{2,3}

)
, dirrd{1,2,3}, d{1,2,3}

 ∑
{i,j}⊂{1,2,3}

d{i,j}

 ,

therefore [A3] can be uniquely written as:

adirr
(
d{1,2} + d{1,3} + d{2,3}

)
+ bdirrd{1,2,3} + cd{1,2,3}

∑
{i,j}⊂{1,2,3}

d{i,j}.

Taking the push-forwards via the map forgetting one marked point, and
using that these forgetful morphisms restricted to A3 are of degree two
(Lemma 3.17), gives:

2a = 1
2 , c = 2.

Now to determine b, intersect the class of A3 with d{1,2} to find b = a.
The class of A4 is computed similarly. The dimension of the S4-invariants

of A3(M1,4) is four; the four coefficients of the class of A4 are obtained by
intersecting with the four S4-invariant divisors of M1,4. Another way to
obtain three relations among the four coefficients is by considering the
push-forward via the map that forgets the last marked point, this provides
a nontrivial check of the result.

�

Corollary 3.28. — Let (Y, g) be a twisted sector ofM1,n. Then [Y ]
is in the subalgebra generated by the divisors ofM1,n.

Proof. — As a consequence of Theorem 3.22, every twisted sector class
is jk∗p∗([Z]), where Z is a base twisted sector in M1,k, k 6 4, and the
maps fit into the diagram:

M1,k ×M0,I1+1 × . . .×M0,Ik+1
jk //

p

��

M1,n

M1,k,

where jk is the gluing map defined in Section 2.2, and p is the projection
onto the first factor.
Suppose without loss of generality that 1 ∈ I1, . . . , k ∈ Ik, and π{1,...,k}

be the forgetful map. Then the class of Y is just the transversal intersection
of

π∗{1,...,k}([Z]) and jk∗([M1,k ×M0,I1+1 × . . .×M0,Ik+1]).
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The second class is clearly in the subalgebra generated by the divisors, and
so is the first since the class of [Z] is in the subalgebra generated by the
divisors by Theorem 3.27.

�

4. The age grading

4.1. Definition of Chen–Ruan degree

Let X be a smooth algebraic stack of dimension n, and x ∈ X a point.
Let T (X) be the tangent bundle of X. For any g in the stabilizer group
of x of order k, there is a basis of Tx(X) consisting of eigenvectors for
the g-action. In terms of such a basis, the g-action is given by a diagonal
matrix M =diag(ξa1 , . . . , ξan) where ξ = e

2πi
k and ai < k. For any pair

(x, g), define a function a(x, g) := 1
k

∑
ai. This function is nonnegative and

takes rational values. Moreover, this function is constant on each connected
component of the inertia stack ([6, Chapter 3.2]).

Definition 4.1. — ([6, Chapter 3.2]) Let X be an algebraic smooth
stack. The age of a twisted sector X(g) is defined to be a(x, g) for any point
(x, g) ∈ X(g).

The age is also referred to as degree shifting number, or fermionic shift.
The algebraic definition of age was given in [1, 7.1] and [2, 7.1].

Proposition 4.2. — Let (Y, g), (Y, g−1) be two connected components
of the inertia stack of an algebraic stack X which are exchanged by the
involution of the inertia stack. Then

a((Y, g)) + a((Y, g−1)) = codimY X.

Remark 4.3. — If i : Y → X is a twisted sector, and x ∈ Y is a point,
then the following splitting holds:

TxX = TxY ⊕NYX|x.

If G := 〈g〉 is in the stabilizer group of x, then TxX is a representation of G
which splits as a sum of two representations: TxY and NYX|x. The first of
such representations is trivial by the definition of twisted sector. Therefore
what is needed in order to compute the age of a twisted sector is to study
the action of G on NYX|x.

In conclusion of this subsection we define the orbifold degree.
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Definition 4.4. — We define the d−th degree Chen–Ruan cohomology
group as follows:

Hd
CR(X,Q) :=

⊕
i

Hd−2a(Xi,gi)(Xi,Q),

where the sum is over all the connected components of the inertia stack of
X. If α is an element of this vector space, its orbifold degree is d.

4.2. Age of M1,n and M1,n

We start our computations in the smooth case. The result for the age of
M1,1 is well known, so we work out the other cases.

If φN is a generator of µN (and therefore of µ∨N since we work over
C), we denote by 〈φkN 〉 the one dimensional complex vector space with
the action of µN , where φN acts as the multiplication by φkN . Recall that
if G = Aut(C,P ) is the automorphism group of an elliptic curve, it is
canonically identified with µN for a certain N (Notation 3.10).

Lemma 4.5. — Let Z ⊂ M1,k be the closed embedding of a twisted
sector (Z,α) of M1,k, with Z ∈ {C4, C

′
4, C6, C

′
6, C

′′
6 }. The normal bundle

NZM1,k is a representation of µN on a k-dimensional vector space:
• as a representation of µ4, NC4M1,1 is 〈i2〉,
• as a representation of µ4, NC′4M1,2 is 〈i2〉 ⊕ 〈i3〉,
• as a representation of µ6, NC6M1,1 is 〈ε4〉,
• as a representation of µ3 generated by ε2, NC′6M1,2 is 〈ε2〉 ⊕ 〈ε4〉,
• as a representation of µ3 generated by ε2, NC′′6M1,3 is 〈ε2〉⊕ 〈ε4〉⊕
〈ε4〉.

Proof. — The age for the twisted sectors of M1,1 is known from the
description of it as an open substack of P(4, 6) (see for instance [18]). It is
easily checked that i acts on the normal bundle as the multiplication by
i6 = i2 and ε acts as multiplication by ε4.
We study the tangent bundle to C ′4 in M1,2, the other cases follow

through. Since the forgetful morphismM1,2 →M1,1 is the universal curve,
we have that the following diagram is cartesian (see 3.9 for the definition
of C4):

C ′4 //

g
**

C4 // [C4/µ4] //

��

M1,2

��
C4 // M1,1.
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The normal bundle NC′4M1,2 is therefore isomorphic as a representation of
µ4 to the direct sum: g∗(N[C4/µ4]M1,2) ⊕ NC′4C4, since C4 → [C4/µ4] is a
finite étale map. The first term in the direct sum is equivariantly isomorphic
to NC4M1,1 (since the diagram is cartesian and the forgetful map is flat).
The normal bundle NC′4C4 is equivariantly isomorphic to the tangent space
to C4 in the second marked point. In the Weierstrass representation of C4
(3.9), this is the point with projective coordinates: [0 : 0 : 1]. The tangent
space in these coordinates is then parametrized by [0 : t : 1] and i acts on
it as the multiplication by i3 (Theorem 3.8). �

With this result, it is straightforward to compute the age of all the twisted
sectors of M1,n, by using the fact that the twisted sector corresponding
to an involutive automorphism have age equal to half the codimension
(Proposition 4.2).

Remark 4.6. — We observe that, in the proof of the above proposition,
we had to use a different argument for the case n = 1 and n > 1. This is
due to the fact that there is no forgetful map fromM1,1. In particular, if
(C, p) ∈ M1,1, and µN = Aut(C,P ) then the actions of µN on N(C,p) M1,1
and on TpC do not necessarily coincide.

In the following Proposition, we give a description of the normal bundle
NZM1,n where Z is a twisted sector. We restrict to the cases where the
base space of Z (Definition 3.19) has dimension 0, since the automorphism
element of all others is involutive. Hence, let Z be in {C4, C

′
4, C6, C

′
6, C

′′
6 }.

The normal bundle NZM1,k is a k-dimensional vector space with an action
of µN on it which we studied in Lemma 4.5 (N can be 3, 4 or 6). For the
sake of simplicity, we identify ZI1,...,Ik with Z ×M0,I1+1 × . . .×M0,Ik+1
(see Definition 3.19). We denote by p, p1, . . . , pk the projections onto each
factor. We indicate by C the trivial bundle of rank 1.

Proposition 4.7. — Let I1, . . . , Ik be a partition of [n] in k 6 3 subsets.
Suppose that |Ii| > 1 for all is. Then the normal bundle NZI1,...,IkM1,n is
of rank 2k and splits as a direct sum of line bundles. (2)

(1) N
C

[n]
4
M1,n is isomorphic to: (i2,C)⊕ (i3, p∗1(L∨n+1)),

(2) N
C
I1,I2
4
M1,n is isomorphic to: (i2,C) ⊕ (i3,C) ⊕ (i3, p∗1(L∨I1+1)) ⊕

(i3, p∗2(L∨I2+1)),
(3) N

C
[n]
6
M1,n is isomorphic to: (ε4,C)⊕ (ε5, p∗1(L∨n+1)),

(2) see last paragraph of Section 2.1 for a line bundle on a trivial gerbe
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(4) N
C
I1,I2
6
M1,n is isomorphic to: (ε2,C) ⊕ (ε4,C) ⊕ (ε4, p∗1(L∨I1+1)) ⊕

(ε4, p∗2(L∨I2+1)),
(5) N

C
I1,I2,I3
6

M1,n is isomorphic to: (ε2,C) ⊕ (ε4,C) ⊕ (ε4,C) ⊕
(ε4, p∗1(L∨I1+1))⊕ (ε4, p∗2(L∨I2+1))⊕ (ε4, p∗3(L∨I3+1)).

If some of the Iis has cardinality 1, the normal bundle has the same de-
scription after removing the corresponding components p∗i (L∨Ii+1).

We postpone the proof of this proposition, in order to immediately see that
as a consequence of it we can compute the age of all the twisted sectors of
M1,n. We use the convention that δ(I) = δ1,|I|, the Kronecker delta.

Corollary 4.8. — In this table we recollect the age, or degree shifting
number, of the twisted sectors ofM1,n.

Component Aut Codimension Age

A1
[n] −1 1− δ(n) 1

2 (1− δ(n))
A2

I1,I2 −1 3− δ(I1)− δ(I2) 1
2 (3− δ(I1)− δ(I2))

A3
I1,I2,I3 −1 5− δ(I1)− δ(I2)− δ(I3) 1

2 (5− δ(I1)− δ(I2)− δ(I3))
A4

I1,I2,I3,I4 −1 7− δ(I1)− δ(I2)− δ(I3)− δ(I4) 1
2 (7− δ(I1)− δ(I2)− δ(I3)− δ(I4))

C
[n]
4 i 2− δ(n) 5

4 −
3
4δ(n)

C
[n]
4 −i 2− δ(n) 3

4 −
1
4δ(n)

CI1,I2
4 i 4− δ(I1)− δ(I2) 11

4 −
3
4 (δ(I1) + δ(I2))

CI1,I2
4 −i 4− δ(I1)− δ(I2) 5

4 −
1
4 (δ(I1) + δ(I2))

CI1,I2
6 ε2 4− δ(I1)− δ(I2) 7

3 −
2
3 (δ(I1) + δ(I2))

CI1,I2
6 ε4 4− δ(I1)− δ(I2) 5

3 −
1
3 (δ(I1) + δ(I2))

CI1,I2,I3
6 ε2 6− δ(I1)− δ(I2)− δ(I3) 11

3 −
2
3 (δ(I1) + δ(I2) + δ(I3))

CI1,I2,I3
6 ε4 6− δ(I1)− δ(I2)− δ(I3) 7

3 −
1
3 (δ(I1) + δ(I2) + δ(I3))

C
[n]
6 ε 2− δ(n) 3

2 −
5
6δ(n)

C
[n]
6 ε2 2− δ(n) 1− 2

3δ(n)
C

[n]
6 ε4 2− δ(n) 1− 1

3δ(n)
C

[n]
6 ε5 2− δ(n) 1

2 −
1
6δ(n)

Proof. — The age of the sectors with an involutive automorphism is half
the codimension by Lemma 4.2. They are all the twisted sectors whose
associated base twisted sector (3.19) has dimension 1. For the remaining
twisted sectors, we simply apply Proposition 4.7.

�

TOME 63 (2013), FASCICULE 4



1492 Nicola PAGANI

To prove Proposition 4.7, we use the following result due to Mumford:

Lemma 4.9. — ([19]) Let I1, . . . , Ik be a partition of [n], and jk the
gluing map defined in Section 2.2

jk :M1,
∐k

i=1
•i
×M0,I1t•1 × . . .×M0,Ikt•k →M1,n.

Let p be the projection onto the first factor, and p1, . . . , pk the projections
onto the moduli spaces of genus 0 curves. Then the normal bundle of the
map jk is isomorphic to:

Njk =
k⊕

1=1
p∗(L∨•i)⊗ p

∗
i (L∨•i),

where L•i are the cotangent line bundles defined in Section 2.2, the first
one is onM1,

∐k

i=1
•i
, and the second one is onM0,Iit•i

Proof. — (of Proposition 4.7) If jk denotes as usual the gluing morphism
defined in Section 2.2, the following diagram is cartesian by definition of
ZI1,...,Ik (p is the projection onto the first factor)

ZI1,...,Ik

p

��

� � λ //

�

M1,k ×M0,I1t•1 × . . .×M0,Ikt•k

p

��

� � jk // M1,n

Z
� � // M1,k.

In this case the following isomorphism holds

p∗(NZM1,k) ∼= NZI1,...,IkM1,k ×M0,I1t•1 × . . .×M0,Ikt•k = Nλ

since the diagram is cartesian and p is flat. This is the trivial bundle with
a certain representation of µN , that we studied in Lemma 4.5.

The map jk◦λ is the restriction to ZI1,...,Ik of the map I(M1,n)→M1,n.
Therefore, the normal bundle NZI1,...,IkM1,n is isomorphic to the direct
sum: λ∗Njk ⊕ Nλ. To conclude the proof, we have now to study the first
term λ∗Njk .
According to Lemma 4.9, we have:

λ∗Njk =
(

k⊕
1=1

p∗(L∨•i)⊗ p
∗
i (L∨•i)

)
|ZI1,...,Ik

.

The term p∗(L∨•i)|ZI1,...,Ik is the trivial bundle whose constant fiber is the
tangent space to Z in the i-th marked point. It carries the representation of
µN , as the latter group acts on the tangent space to Z in the i-th marked
point (this action can be computed explicitly, see Lemma 4.5). On the
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other hand, the term p∗i (L∨•i)|ZI1,...,Ik carries the trivial representation of
µN , but it is non trivial as a line bundle. This last observation concludes
the proof. �

We can now write a formula analogous to (3.6), adding a new variable
to separate the different degrees in the Chen–Ruan cohomology of M1,n.
We define:

P0(s, t) :=
∞∑
n=0

Q0(n,m)
n! sntm,(4.1)

P1(s, t) :=
∞∑
n=0

Q1(n,m)
n! sntm,(4.2)

PCR1,α (s, t) :=
∞∑
n=0

QCR1,α (n,m)
n! sntm,(4.3)

where

Q0(n,m) := dimH2m(M0,n+1) = am(n),
Q1(n,m) := dimH2m(M1,n),
QCR1,α (n) := dimH2m+α

CR (M1,n).

The relevant values of α are {0, 1
4 ,

1
3 ,

1
2 ,

2
3 ,

3
4} =: A. Summing over α and

shifting by α the degree of t, we have the generating series of the orbifold
Poincaré polynomials:(3)

PCR1 (s, t) :=
∑
α∈A

tαPC1,αR(s, t).

In other words, the coefficient of degree n in the variable s of PCR1 is the
orbifold Poincaré polynomial ofM1,n divided by n!. The power series (4.1)
are described in [11, Theorem 5.9], [13, Theorem 2.6]. There, the author
describes the cohomology of the moduli of genus 0 and genus 1, n-pointed
stable curves as an Sn-representation.

Theorem 4.10. — The following equalities between power series relate
the dimension of the m-th Chen–Ruan cohomology group ofM1,n (n > 4)
with the Betti numbers of the moduli of pointed stable curves of genus 0

(3)Note that the orbifold Poincaré polynomials are, strictly speaking, not polynomials.
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and 1.

PCR1,0 (s, t) = P1 + (t+ t2)P0 + 3s(t2 + t3)P 2
0 + s

24(t3 + t4)P 3
0

+ 2s(t+ t2) ∂
∂s

(sP0) + s3

6 (t2 + t3) ∂
3

∂s3 (s3P0)

PCR1, 1
4

(s, t) = tP0 + t2

2 P
2
0

PCR1, 1
3

(s, t) = t2

2 P
2
0 + t2

6 P
3
0 + ts

∂

∂s
(sP0) + s2t2

2
∂2

∂s2 (s2P0)

PCR1, 1
2

(s, t) = 2(1 + t)P0 + t+ t2

2 P 2
0 + t2 + t3

6 P 3
0 + t3 + t4

24 P 4
0

+ s2

2 (t+ t2) ∂
2

∂s2 (s2P0)

PCR1, 2
3

(s, t) = t

2P
2
0 + t3

6 P
3
0 + st

∂

∂s
(sP0) + s2

2 t
∂2

∂s2 (s2P0)

PCR1, 3
4

(s, t) = P0 + t

2P
2
0

5. The second inertia stack

The definition of the Chen–Ruan product involves the second inertia
stack.

Definition 5.1. — Let X be an algebraic stack. The second inertia
stack I2(X) is defined as:

I2(X) = I(X)×X I(X).

Remark 5.2. — Like the inertia stack, the second inertia stack is smooth
(cfr. 3.4, see also [1, p. 15], after noticing that K0,3(X, 0) ∼= I2(X)).

A point in I2(X) is a triplet (x, g, h) where x is a point of X and g, h ∈
Aut(x). It can equivalently be given as (x, g, h, (gh)−1).

Remark 5.3. — The second inertia stack comes with three natural mor-
phisms to I(X): p1 and p2, the two projections of the fiber product, and
p3 which acts on points sending (x, g, h) to (x, gh). This gives the follow-
ing diagram, where (Y, g, h, (gh)−1) is a double twisted sector and (X1, g),
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(X2, h), (X3, (gh)) are twisted sectors:

(X1, g)

(Y, g, h)

p1
66

p2 //

p3

((

(X2, h)

(X3, gh).

Let us now study the double twisted sectors in the case when X =M1,n.
From now on we focus on the compact case, since the case ofM1,n follows
through analogously and much more simply. The following follows easily
from the fact that all isotropy groups ofM1,n are cyclic (cf. also Remark
3.2).

Proposition 5.4. — Let (Z, g, h, (gh)−1) be a double twisted sector of
M1,n. Then either (Z, g) or (Z, h) or (Z, (gh)−1) is a twisted sector of the
inertia stack ofM1,n.

Remark 5.5. — We label each sector of I2(X) via the triplet
(g, h, (gh)−1). There are two automorphism groups acting on I2(X): an
involution sending a sector labeled with (g, h, (gh)−1) into (g−1, h−1, (gh)),
and S3 which permutes the three automorphisms. Up to permutations and
involution, the following are all the possible labels of the sectors in I2(X)
that correspond to non-empty connected sectors:

• (1, 1, 1), generated group µ1;
• (1,−1,−1), generated group µ2;
• (ε2, ε2, ε2), generated group µ3;
• (1, ε2, ε4), generated group µ3;
• (1, i,−i) generated group µ4;
• (i, i,−1), generated group µ4;
• (ε, ε, ε4), generated group µ6;
• (ε, ε2,−1), generated group µ6;
• (1, ε, ε5), generated group µ6.

We now describe the sectors of the double inertia stack. We do so up
to the automorphisms described in the previous remark, and up to the
permutations of the marked points. The next proposition is easily obtained
after Theorem 3.22.
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Proposition 5.6. — Up to permutation of the automorphisms, and up
to involution, the following are the twisted sectors of I2(M1,n):(

A1
[n]
, (1,−1,−1)

)
,
(
A2

I1,I2
, (1,−1,−1)

)
,
(
A3

I1,I2,I3
, (1,−1,−1)

)
(
A4

I1,I2,I3,I4
, (1,−1,−1)

)
,
(
CI1,I2

6 , (1, ε2, ε4)/(ε2, ε2, ε2)
)

(
CI1,I2,I3

6 , (1, ε2, ε4)/(ε2, ε2, ε2)
)
,
(
C

[n]
4 , (1, i,−i)/(i, i,−1)

)
(
CI1,I2

4 , (1, i,−i)/(i, i,−1)
)
,
(
C

[n]
6 , (1, ε, ε5)/(ε, ε, ε4)/(ε, ε2,−1)/(ε2, ε2, ε2)

)
,

where I1, I2, I3, I4 form a partition of [n] in non-empty subsets.

6. The excess intersection bundle

6.1. Definition of the Chen–Ruan product

We review the definition of the excess intersection bundle over I2(X),
for X an algebraic smooth stack. Let (Y, g, h, (gh)−1) be a twisted sector
of I2(X). Let H := 〈g, h〉 be the group generated by g and h.

Construction 1. — Let γ0, γ1, γ∞ be three small loops around
0, 1,∞ ⊂ P1. Any map π1(P1 \ {0, 1,∞}) → H corresponds to an H-
principal bundle on P1 \ {0, 1,∞}. Let π0 : C0 → P1 \ {0, 1,∞} be the
H-principal bundle which corresponds to the map γ0 → g, γ1 → h, γ∞ →
(gh)−1. It can be uniquely extended to a ramified H-Galois covering C →
P1 (see [9, Appendix]), where C is a smooth compact curve. Note that H
acts on C (and, by definition, P1 is the quotient C/H as varieties), and
hence on H1(C,OC).

Let f : Y → X be the restriction of the canonical map I2(X) → X to
the twisted sector Y . Note that H acts on f∗(TX).

Definition 6.1. — [6] With the same notation as in the previous para-
graph, the excess intersection bundle over Y is defined as:

EY =
(
H1(C,OC)⊗C f

∗(TX)
)H

,

i.e. the H-invariant subbundle of the expression between parenthesis.

Remark 6.2. — Since H1(C,OC)H = 0, it is the same to consider in
the previous definition: (

H1(C,OC)⊗NYX
)H

,

where NY is the coker of TY → f∗(TX).
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We now review the definition of the Chen–Ruan product.

Definition 6.3. — Let α ∈ H∗CR(X), β ∈ H∗CR(X). We define:

α ∗CR β = p3∗ (p∗1(α) ∪ p∗2(β) ∪ ctop(E)) .

Theorem 6.4. — ([6]) With the age grading defined in the previous
section, (H∗CR(X,Q), ∗CR) is a graded (H∗(X,Q),∪)-algebra.

Theorem 6.4 allows us to compute the rank of the excess intersection
bundle in terms of the already computed age grading. If (Y, (g, h, (gh)−1))
is a sector of the second inertia stack, the rank of the excess intersection
bundle is (here we stick to the notation introduced in Remark 5.3):

(6.1) rk(E(Y,g,h)) = a(X1, g) + a(X2, h) + a(X3, (gh)−1)− codimY X.

Corollary 6.5. — The excess intersection bundle over double twisted
sectors when either g,h, or (gh)−1 is the identity, is the zero bundle.

One other useful consequence of Proposition 4.2 and Theorem 6.4 relates
the rank of the excess bundle over a double twisted sector and the rank
of the excess bundle over the double twisted sector obtained inverting the
automorphisms that label the sector

(6.2) rk(E(Y,g−1,h−1)) =
3∑
i=1

codimXi X − 2 codimY X − rk(E(Y,g,h)).

Let (Y, (g, h, (gh)−1)) be a double twisted sector in I2(M1,n), and let H be
the group generated by (g, h, (gh)−1). We will study NYX and H1(C,OC)
as H-representations.

6.2. The excess intersection bundle for M1,n

We have seen in Remark 5.5 what are all the possible couples of auto-
morphisms that correspond to non-empty connected substacks of I2(M1,n).
Thanks to Corollary 5.4, the double twisted sectors whose excess intersec-
tion bundles have non-zero rank are those labelled by:

(6.3) (ε2, ε2, ε2), (i, i,−1), (ε, ε, ε4), (ε, ε2,−1)

up to permutation and involution. The top Chern classes of the excess
intersection bundles for M1,n are always 0 or 1, since the coarse moduli
spaces of the double twisted sectors labeled by these automorphisms are
points.
The ranks of the excess intersection bundles for the twisted sectors la-

beled by 6.3 can be computed thanks to formulas (6.1) and (6.2).

TOME 63 (2013), FASCICULE 4



1498 Nicola PAGANI

Proposition 6.6. — In the following table we list the ranks of the
excess intersection bundles over all the double twisted sectors (Z, g, h) of
M1,n, such that g, h and gh 6= 1:

(g, h) Double twisted sector rk(E) (g−1, h−1) rk(E)
(ε2, ε2) C

[n]
6 1 (ε4, ε4) 1

(ε2, ε2) CI1,I2
6 3 (ε4, ε4) 1

(ε2, ε2) CI1,I2,I3
6 5 (ε4, ε4) 1

(i, i) C
[n]
4 1 (−i,−i) 0

(i, i) CI1,I2
4 3 (−i,−i) 0

(ε, ε) C
[n]
6 2 (ε5, ε5) 0

(ε, ε2) C
[n]
6 1 (ε4, ε5) 0

Remark 6.7. — The above proposition and Corollary 6.5 imply that
many top Chern classes of excess intersection bundles are 1 (those of the
rank 0 excess intersection bundles). Moreover it is obvious, after Proposi-
tion 4.7, that all the rank 3 or 5 bundles of Corollary 6.5 contain at least
one trivial subbundle of rank 1, this implying that their top Chern classes
is zero.

Now we want to compute explicitly the remaining, non trivial, excess
intersection bundles and their top Chern classes for M1,n. We study the
decomposition of H1(C,OC) as a representation of H in the cases corre-
sponding to non-zero ranks in Proposition 6.6. Here φN is a generator for
µ∨N , the same chosen in Section 4.2. As in that section, we indicate by
〈φkN 〉 the one dimensional complex vector space endowed with the action
of φN ∈ µ∨N given by the product by φkN .

Proposition 6.8. — Let H be generated by two elements g, h as in
6.6. Let C → P1 be the H-covering associated with the generators g, h (see
Construction 1). We study H1(C,OC) as an H-representation:

• H = µ3: g = ε2, h = ε2, then H1(C,OC) = 〈ε2〉,
• H = µ3: g = ε4, h = ε4, then H1(C,OC) = 〈ε4〉,
• H = µ4: g = i, h = i, then H1(C,OC) = 〈i〉,
• H = µ6: g = ε, h = ε2, then H1(C,OC) = 〈ε〉,
• H = µ6: g = ε, h = ε, then H1(C,OC) = 〈ε〉 ⊕ 〈ε2〉.

Proof. — By Serre duality, we compute the action of H on H0(C,Ω1
C).

In the first four cases, the curve C has genus 1, thus Ω1
C is trivial, there-

fore the action of H coincides with its action on the cotangent space of a
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point of total ramification. In the fifth case the curve C has genus 2; by
choosing suitable coordinates one can represent respectively C and a basis
for H0(C,Ω1

C) as

y2 = x6 − 1,
(
dx

y
, x

dx

y

)
.

Here the automorphism acts by fixing y and mapping x → εx. From this
description the result for the last case follows. �

With all this, and thanks to Proposition 4.7, we can compute the excess
intersection bundles and their respective top Chern classes. We know al-
ready that, among the list of couples of automorphisms of Proposition 6.6,
the rank 3 and 5 bundles have top Chern class zero (see 6.7). Among the
vector bundles having rank greater than zero, we can prove:

Corollary 6.9. — In Table 6.6, the top Chern classes of all the excess
intersection bundles (which are all line bundles) corresponding to the couple
(ε4, ε4) are zero. The top Chern class of the excess intersection bundle that
corresponds to the couple (ε, ε) (of rank 1), is also zero.

Proof. — From Proposition 4.7 and Proposition 6.8, it is straightforward
to see that all the excess bundles mentioned in the statement contain a
trivial subbundle, forcing their top Chern class to be zero. �

So we are now left with three rank 1 excess intersection bundles, whose
top Chern class in non-zero and not 1. In the following diagram and in the
following lemma, we identify the isomorphic spaces in order to simplify the
notation for the projection maps.

Bµλ

C
[n]
λ

//

p
11

p1
,,

Bµλ ×M0,nt•

p

77pppppppppppp

p1 &&NNNNNNNNNNN

M0,nt•

,

where λ can be 4 or 6. Here • is the gluing point.

Corollary 6.10. — The only top Chern classes of the excess inter-
section bundles over double twisted sectors of M1,n that are not 0 nor 1
are:

(1) (C [n]
6 , (ε2, ε2, ε2)) ∼= Bµ6×M0,nt•, where the top Chern class of the

excess intersection bundle is −p∗1(ψ•) = −p∗1(ψn+1);
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(2) (C [n]
4 , (i, i,−1)) ∼= Bµ4 ×M0,nt•, where the top Chern class of the

excess intersection bundle is −p∗1(ψ•) = −p∗1(ψn+1);
(3) (C [n]

6 , (ε, ε2,−1)) ∼= Bµ6×M0,nt•, where the top Chern class of the
excess intersection bundle is −p∗1(ψ•) = −p∗1(ψn+1).

Proof. — The fact that all other top Chern classes are zero or one follows
from all the considerations in this section. In particular, we have observed
in the beginning of the section that the excess intersection bundle that may
have top Chern class different from 1 are listed in 6.6. In Remark 6.7 and
in Corollary 6.9 we have computed the top Chern class of all the remaining
cases to be zero or 1.
The result stated then follows as a consequence of Proposition 4.7, Propo-

sition 6.8 (and from the very definition of the ψ classes, see Section 2.2). �
Note that when n = 2 the top Chern classes in Corollary above are 0 too,
because the sectors involved are all points.
To conclude, we summarize the result we have obtained in this section:

Theorem 6.11. — All top Chern classes of the excess intersection bun-
dles over all double twisted sectors are explicitly given. They can be:

(1) either 1, for all the sectors listed in Proposition 5.6 such that one
of the three automorphisms of the labeling is 1,

(2) or again 1, for some of the sectors in the list 6.6, more precisely
those mentioned in Remark 6.7,

(3) or 0, for some of the sectors listed in 6.6, as discussed in Remark
6.7 and in Corollary 6.9;

(4) or a pullback of a ψ class over a component M0,n, for the the
remaining elements of the list 6.6, as in Corollary 6.10.

7. Pull–backs and push–forwards of strata to the twisted
sectors

In order to compute the Chen–Ruan product, one has to compute pull–
backs from the twisted sectors to the double twisted sectors and push–
forwards from the double twisted sectors to the twisted sectors. Thanks to
Corollary 6.5, it is necessary and sufficient to only compute push–forwards
and pull–backs between twisted sectors of the inertia stack.

In this section we fix n and call X :=M1,n. Let (Y, g) be a twisted sector
of X, and f : Y → X be the closed embedding of the twisted sector.
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Lemma 7.1. — The cycle map

A∗(Y,Q)→ H2∗(Y,Q)

is a graded ring isomorphism. Moreover the Chow ring of each twisted
sector is generated by divisors.

Proof. — All factors of each twisted sector have Chow ring isomorphic
to the even cohomology. The cohomology ring of M0,n is generated by
divisors due to the work of Keel [17]. Each of the spaces A1, A2, A3, A4
has coarse moduli space isomorphic to P1. �

We can now state and prove the result announced in the introduction.
For some of the results needed in the proof we refer to the following two
subsections on pull–backs and push–forwards.

Theorem 7.2. — The Chen–Ruan cohomology ring of M1,n is gener-
ated as an H∗(M1,n,Q)-algebra by the fundamental classes of the twisted
sectors with explicit relations.

Proof. — We will prove in Corollary 7.3 that f∗, the induced pull–back
in cohomology, is surjective. This suffices to prove the generation part of the
statement. Indeed, let (Xi, gi) be two twisted sectors, and fi : (Xi, gi)→ X

be the canonical projection maps. Let αi ∈ H∗((Xi, gi),Q) for i = 1, 2. Let
α̃i be two liftings of αi to H∗(M1,n) obtained by using the surjectivity of
f∗i . Then we have

α1 ∗CR α2 = (α̃1 ∪ α̃2) ∗CR 1(X1,g) ∗CR 1(X2,h),

this proves the generation claim.
Then, as a consequence of Proposition 5.4, (X1, g) ×X (X2, h) is con-

nected, and hence a double twisted sector of I2(X). Let (X3, g1g2) be such a
twisted sector of I(X), and denote by f3 the closed embedding of (X3, g1g2)
in X. Let p3 : (X1, g1)×X (X2, g2)→ (X3, g1g2) be the third projection of
the double twisted sector as in 5.3. Let E be the excess intersection bundle
on (X1, g1)×X (X2, g2), and γ := p3∗(ctop(E)).
In 7.10 we fix a candidate, for every couple X1, X2 of twisted sectors,

of a cohomology class β = β ((X1, g1), (X2, g2)) ∈ H∗(X,Q) such that
p3∗(ctop(E)) = f∗3 (β). In Section 7.1 we fix a set of multiplicative genera-
tors for H∗(X,Q): boundary divisors, subbanana cycles (2.9) and any fixed
set of additive generators for the odd cohomology of X. Our relations de-
pend upon these choices. Finally, we obtain the formula for the Chen–Ruan
product

(7.1) α1 ∗CR α2 = f∗3 (α̃1 ∪ α̃2 ∪ β) = α̃ ((X1, g1), (X2, g2)) ∗CR 1(X3,g1g2),
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where we posed α̃ ((X1, g), (X2, g2)) := α̃1 ∪ α̃2 ∪ β ((X1, g1), (X2, g2)).
From (7.1), the relations appear naturally divided into two sets. The

first set of relations, presented in Section 7.3 comes from the Chen–Ruan
product of all couples of twisted sectors. The second set of relations comes,
for each twisted sector Y , from the classes ofM1,n that are in the kernel of
f∗. These are all the relations of H∗(M1,n) as a module over H∗CR(M1,n)
generated by the fundamental classes of the twisted sectors. These relations
are determined in Section 7.1. �

Note that we actually obtain finitely many generators of the even part
of H∗CR(M1,n) as a Q-algebra as a consequence of Section 7.1. What we
mean by “even part” here is in the original grading on I(M1,n), without
considering the age grading shift. The Chen–Ruan cohomology ofM1,n as
a Q-algebra is generated by the fundamental classes of the twisted sectors,
the boundary divisors of M1,n and the subbanana cycles (see Definition
2.9). In this description the relations are the two sets of relations described
in the proof of Theorem 7.2, and the set of relations for R∗(M1,n) (see
[24]).
We observe that the first part of the proof of Theorem 7.2 shows that the

fundamental classes of the twisted sectors generate the stringy Chow ring
ofM1,n (see [1], [2]) as an algebra over the ordinary Chow ring ofM1,n.

7.1. Pull–backs

Let now (Y, g) be a twisted sector of M1,n. Let f : Y → M1,n be the
restriction to Y of the natural map from the inertia stack toM1,n. In this
section we study the pull–back morphism

f∗ : H∗(M1,n,Q)→ H∗(Y,Q).

The main results of this section are:
(1) the explicit description of the pull–back of the divisor classes of
M1,n;

(2) the pull–back morphism f∗ is determined by its restriction to the
subalgebra of the cohomology generated by the divisors (Proposi-
tion 7.5).

Point (1) is enough for proving the generation part of Theorem 7.3.
Anyway it is only as a consequence of point (2) that we know all relations
ofH∗CR(M1,n) as anH∗(M1,n)-module (and, together with those of Section
7.3, all relations as an H∗(M1,n)-algebra).
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Let us fix a twisted sector (Y, g) = (ZI1,...,Ik
, g) (see Theorem 3.20); and

identify it with the product of Z× M0,I1+1 × . . .× M0,Ik+1. Therefore we
have(4)

A∗
(
Z
I1,...,Ik

)
= H2∗(ZI1,...,Ik)

= A∗(Z)×A∗(M0,I1+1)× . . .×A∗(M0,Ik+1).

We call p, p1, . . . pk the projections onto the factors.
The relations are obtained as follows
• take all divisor classes that are in the kernel of f∗,
• for all 1 6 i 6 k, and each relation R in A1(M0,Ii+1) (see [17]),
take all linear combinations of divisor classes that pull-back via f
to R,

• take any finite set generating Hodd(M1,n),
• take all the subbanana cycles (see Definition 2.9).

Let us first deal with point (1), and thus compute the pull– back mor-
phism for the divisor classes. The notation for the divisors in M1,n was
introduced in Notation 2.4. The pull–back f∗(dirr) is zero when the base
space Z is a point. Otherwise,

(1) it is 1
2 [pt]× [M0,n+1], when the space is A1

[n];
(2) it is 3

2 [pt]× [M0,I1+1]× [M0,I2+1], when the space is A2
I1,I2 ;

(3) it is 3[pt] × [M0,I1+1] × [M0,I2+1] × [M0,I3+1], when the space is
A3

I1,I2,I3 ;
(4) it is 3[pt] × [M0,I1+1] × [M0,I2+1] × [M0,I3+1] × [M0,I4+1], when

the space is A4
I1,I2,I3,I4 .

This is a simple consequence of Theorem 3.27.
The pullback f∗([dM ]) is zero when M is not contained in any of the Iis.

Assume now that the base space Z is a point. If M is contained in (wlog)
I1, then there are two cases. If M is a proper subset of I1, then

f∗([dM ]) ∼= [Z]×∆M × [M0,I2+1]× . . .× [M0,Ik+1].

Otherwise, if I = M , then

f∗([dM ]) = p∗1(−ψI+1).

Finally, if Z is one of the one-dimensional spaces Ai, then the pullback
f∗([dM ]) is computed by applying Theorem 3.27, similarly to f∗(dirr).
A very important theoretical result follows as a corollary of our descrip-

tion of the pull–back morphism.

(4) see Lemma 7.1 for the next equality
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Corollary 7.3. — The morphisms f∗ : R∗(M1,n,Q) → A∗(Y,Q) are
surjective. The same holds for the induced map in cohomology.

Proof. — Thanks to Lemma 7.1, it is sufficient to prove that the mor-
phism f∗ : R1(M1,n) → A1(Y ) is surjective. The Kunneth decomposition
reduces the problem to proving that one can obtain all divisors of each sin-
gle factor of each twisted sector by pull–back from R1(M1,n). The above
discussion shows that the set of divisor classes {dirr, dM}M⊂[n] surjects via
f∗ onto A1(Y,Q).

�

Here is another way to express this result.

Corollary 7.4. — If Y is a twisted sector, then the cohomology
H∗(Y,Q) is an H∗(M1,n,Q)-module generated by the fundamental class
[Y ].(5)

Following the plan established at the beginning of this section, we now
deal with point (2). As a combination of 2.5, 2.6 and (2.3), we have that
all cohomology classes ofM1,n can be written as sums of odd cohomology
classes, of subbanana cycles (Definition 2.9), and of products of divisors.
This leads to the decomposition

(7.2) H∗(M1,n) = Hodd(M1,n)⊕
(
Rdiv1,n +Rban1,n

)
,

where the sum of the last two terms is the vector space generated by bound-
ary strata classes. It is clear that the pull–back morphism f∗ is zero when
restricted to the odd cohomology classes. We now prove that f∗ is zero
when restricted to the vector subspace Rban1,n generated by the subbanana
cycles. Using Corollary 3.28 we explicitly express Y as a linear combination
of product of divisor classes in M1,n. The product of a subbanana cycle
with all the summands that contain a factor dirr is zero, because d2

irr = 0,
and because a subbanana cycle is, in particular, a closed substack of dirr.
All the other summands have product zero with the subbanana cycles,
because the set theoretic intersection of the substacks of M1,n that they
describe is empty. We can now conclude.

Proposition 7.5. — The pull–back morphism f∗ is determined by its
restriction to the subalgebra of H∗(M1,n,Q) generated by the divisors.

(5) Indeed H∗(Y,Q) is cyclic also as an R∗(M1,n)-module, or as a module over the
subring of the tautological ring generated by the divisors.
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7.2. Push–forwards

We now start the study of the push–forward morphism. Let

g : Z → Y, f : Y → X

be respectively the inclusion of a double twisted sector in a twisted sector
and of a twisted sector inside X = M1,n. We study the push–forward
morphism induced in cohomology by f and g. Here is an easy corollary of
Corollary 3.28 and Corollary 7.3.

Corollary 7.6. — The push–forward morphism

f∗ : A∗(Z,Q)→ A∗(M1,n,Q)

has image in the tautological ring. The same holds for the push– forward
map in cohomology.

Lemma 7.3 and Corollary 7.6 make it possible to define an orbifold tau-
tological ring in genus 1.

Definition 7.7. — We define the orbifold tautological ring in genus 1
• Let R∗CR(M1,n) be defined as R∗(M1,n) ⊕

⊕
H∗((Xi, gi),Q) as a

vector space, where Xi are all the twisted sectors and the grading
is inherited from H∗CR(M1,n,Q);

• the product is the product ∗CR restricted to this rationally graded
vector space.

Note that, as a consequence of Theorem 2.6, R∗CR(M1,n) is a Gorenstein
ring (a Poincaré duality ring).
We show how g∗([Z]) can be obtained as a pull–back of a class in X in

a canonical way.

Definition 7.8. — If λ = 4 or λ = 6, we define C∗λ via the following
pull–back diagram

C∗λ
� � //

�

��

M1,n

π1

��
Cλ

� � // M1,1.

Note that the equality: [C∗λ] = 2
λdirr holds in the tautological ring ofM1,n.

Proposition 7.9. — With the notation introduced in this section, for
Z a double twisted sector and Y a twisted sector, there is a canonical choice
of W closed substack ofM1,n, such that g∗([Z]) = f∗([W ]).
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Proof. — The only cases are, thanks to Proposition 5.6:
(1) it happens that Z = Y or Y = X. In all these cases we choose

W := X;
(2) either Z = C

[n]
λ for λ = 4, 6 and Y =A1

[n]. In these cases we choose
W := C∗λ;

(3) or Z = CI1,I2
λ and Y =A2

I1,I2 . In these cases we choose W = C∗λ.
One can easily check that these are all the cases that occur, and that the
intersections are transversal. �

We have just fixed the cohomology classes that represent via pull– back
the push–forward of all the fundamental classes. This choice determines
the top Chern class of the excess intersection bundles via the projection
formula.

Corollary 7.10. — Let now E be the excess intersection bundle over
the double twisted sector Z. Once the choice of 7.9 is fixed, a cohomology
class β onM1,n is determined such that:

g∗(ctop(E)) = f∗(β).

Proof. — If the top Chern class of E is zero, we fix β to be zero. When
the top Chern class is 1, the choice of Proposition 7.9 determines the class
β of this corollary too. The list of non trivial top Chern classes of excess
intersection bundles (non-zero and not 1), is given in 6.10. So, if the top
Chern class is a ψ class, there are only two possibilities: either the double
twisted sector Z is isomorphic to the twisted sector Y (case 1 of Corollary
6.10), or Z = C

[n]
λ and Y = A1

[n] (cases 2 and 3 of Corollary 6.10). In the
first case, we choose β to be d[n], the divisor with all markings on the genus
0 component, and in the second case we choose

β := d[n] ∪ [C∗λ],

where C∗λ is defined in 7.8. �

7.3. Products of the fundamental classes of the twisted sectors

If Xi, Xj are twisted sectors, in this section we compute all the products
1Xi ∗CR 1Xj . In the perspective of Theorem 3.23, this section and Section
7.1, provide the relations ofH∗CR(M1,n) as anH∗(M1,n)-algebra generated
by the fundamental classes of the twisted sectors.
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Remark 7.11. — An explicit computation of all intersections of the
twisted sectors, shows that besides the orbifold intersections of the kinds
(1Xi , α) ∗CR (1Xi , β), and besides the trivial products 1M1,n

∗CR 1Xi , the
only pairs of twisted sectors whose fundamental classes give rise to non-zero
Chen–Ruan products are in the following list:

(1) ((A1
[n]
,−1), (C [n]

4 , i/− i)),
(2) ((A1

[n]
,−1), (C [n]

6 , ε/ε2/ε4/ε5)),
(3) ((A2

I1,I2 ,−1), (CI1,I2
4 , i/− i)).

We now compute the products of the pairs just described. Here if (X,α)
is a twisted sector, we write H∗((X,α),Q), which is a direct summand of
H∗CR(M1,n,Q) with its own grading. In other words, we implicitly assume
the inclusion

i : H∗((X,α),Q) ⊂ H∗CR(M1,n,Q)
shifts the degree by twice the age of (X,α). As usual, −p∗1(ψ•) is the Chern
class of Corollary 6.10 and Theorem 6.11.

Corollary 7.12. — With our usual notation for the twisted sectors,
and with the notation introduced above, here is the explicit result of all
the Chen–Ruan products described in Remark 7.11:

(1) [(C [n]
4 , i)] ∗CR [(A1

[n]
,−1)] = p∗1(−ψ•) ∈ H2((C [n]

4 ,−i),Q),
(2) [(C [n]

4 ,−i)] ∗CR [(A1
[n]
,−1)] = [C [n]

4 ] ∈ H0((C [n]
4 , i),Q),

(3) [(C [n]
6 , ε)] ∗CR [(A1

[n]
,−1)] = p∗1(−ψ•) ∈ H2((C [n]

6 , ε4),Q),
(4) [(C [n]

6 , ε2)] ∗CR [(A1
[n]
,−1)] = p∗1(−ψ•) ∈ H2((C [n]

6 , ε5),Q),
(5) [(C [n]

6 , ε4)] ∗CR [(A1
[n]
,−1)] = [C [n]

6 ] ∈ H0((C [n]
6 , ε),Q),

(6) [(C [n]
6 , ε5)] ∗CR [(A1

[n]
,−1)] = [C [n]

6 ] ∈ H0((C [n]
6 , ε2),Q),

(7) [(A2
I1,I2

,−1)] ∗CR [(CI1,I2
4 , i)] = 0 ∈ H2((CI1,I2

4 ,−i),Q),
(8) [(A2

I1,I2
,−1)] ∗CR [(CI1,I2

4 ,−i)] = [CI1,I2
4 ] ∈ H2((CI1,I2

4 , i),Q),

Corollary 7.13. — With our usual notation for the twisted sectors,
and with the notation introduced above, here we recollect all the products
of the kind (1Xi , α) ∗CR (1Xi , β):

(1) [(X,α)] ∗CR [(X,α−1)] = [X] ∈ H∗(M1,n,Q),
(2) [(C [n]

4 , i)] ∗CR [(C [n]
4 , i)] = p∗1(−ψ•) ∩ [C [n]

4 ] ∈ H4((A1
[n]
,−1),Q),

(3) [(C [n]
4 ,−i)] ∗CR [(C [n]

4 ,−i)] = [C [n]
4 ] ∈ H2((A1

[n]
,−1),Q),

(4) [(CI1,I2
4 , i)] ∗CR [(CI1,I2

4 , i)] = 0 ∈ H4((A2
I1,I2

,−1),Q),
(5) [(CI1,I2

4 ,−i)] ∗CR [(CI1,I2
4 ,−i)] = [CI1,I2

4 ] ∈ H2((A2
I1,I2

,−1),Q),
(6) [(C [n]

6 , ε)] ∗CR [(C [n]
6 , ε)] = 0 ∈ H4((C [n]

6 , ε2),Q),
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(7) [(C [n]
6 , ε)] ∗CR [(C [n]

6 , ε2)] = p∗1(−ψ•) ∩ [C [n]
6 ] ∈ H4((A1

[n]
,−1),Q),

(8) [(C [n]
6 , ε)] ∗CR [(C [n]

6 , ε4)] = 0 ∈ H4((C [n]
6 , ε5),Q),

(9) [(C [n]
6 , ε2)] ∗CR [(C [n]

6 , ε2)] = p∗1(−ψ•) ∈ H2((C [n]
6 , ε4),Q),

(10) [(C [n]
6 , ε2)] ∗CR [(C [n]

6 , ε5)] = p∗1(−ψ•) ∈ H2((C [n]
6 , ε),Q),

(11) [(C [n]
6 , ε4)] ∗CR [(C [n]

6 , ε4)] = 0 ∈ H2((C [n]
6 , ε2),Q),

(12) [(C [n]
6 , ε4)] ∗CR [(C [n]

6 , ε5)] = [C [n]
6 ] ∈ H2((A1

[n]
,−1),Q),

(13) [(C [n]
6 , ε5)] ∗CR [(C [n]

6 , ε5)] = [C [n]
6 ] ∈ H0((C [n]

6 , ε4),Q),
(14) [(CI1,I2,I3

6 , ε2)] ∗CR [(CI1,I2,I3
6 , ε2)] = 0 ∈ H4((CI1,I2,I3

6 , ε4),Q) and
the result still holds when I3 = ∅,

(15) [(CI1,I2,I3
6 , ε4)] ∗CR [(CI1,I2,I3

6 , ε4)] = 0 ∈ H2((CI1,I2,I3
6 , ε2),Q) and

the result still holds when I3 = ∅,
Moreover, the product of two fundamental classes of twisted sectors that
do not belong to this list, nor to the one of Corollary 7.12, is zero.
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