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HYPERCYCLICITY OF CONVOLUTION OPERATORS
ON SPACES OF ENTIRE FUNCTIONS

by F.J. BERTOLOTO, G. BOTELHO,
V.V. FÁVARO & A.M. JATOBÁ (*)

Abstract. — In this paper we use Nachbin’s holomorphy types to generalize
some recent results concerning hypercyclic convolution operators on Fréchet spaces
of entire functions of bounded type of infinitely many complex variables
Résumé. — Dans cet article, nous utilisons les types d’holomorphie de Nachbin

pour généraliser certains résultats récents concernant les opérateurs de convolu-
tions hypercycliques sur les espaces de Fréchet de fonctions d’un nombre infini de
variables complexes, entières, de type borné.

1. Introduction

A mapping f : X −→ X, where X is a topological space, is hypercyclic
if the set {x, f(x), f2(x), . . .} is dense in X for some x ∈ X. In this case, x
is said to be a hypercyclic vector for f .
The study of hypercyclic translation and differentiation operators on

spaces of entire functions of one complex variable can be traced back to
Birkhoff [3] and MacLane [19]. Godefroy and Shapiro [14] pushed these re-
sults quite further by proving that every convolution operator on spaces of
entire functions of several complex variables which is not a scalar multiple
of the identity is hypercyclic. Results on the hypercyclicity of convolution
operators on spaces of entire functions of infinitely many complex variables
appeared later (see, e.g., [1, 17, 26, 27]). Recently, Carando, Dimant and
Muro [6] proved some far-reaching results - including a solution to a prob-
lem posed in [2] - that encompass as particular cases several of the above

Keywords: Fréchet spaces of entire functions, hypercyclicity, convolution operators.
Math. classification: 32DXX, 47A16, 46G20.
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mentioned results. The main tool they use are the so-called coherent se-
quences of homogeneous polynomials, introduced by themselves in [7] based
on properties of polynomials ideals previously studied in [5, 4].
The aim of this paper is to generalize the results of [6]. We accomplish

this task by proving results (Theorems 2.7 and 2.8) of which the main re-
sults of [6] ([6, Theorem 4.3] and [6, Corollary 4.4]) are particular cases.
Furthermore we give some concrete examples (Example 3.11) that are cov-
ered by our results but not by the results of [6]. Being strictly more general
than the results of [6], our results also generalize the ones first generalized
by [6].

Our approach differs from the approach of [6] in our use of holomorphy
types (in the sense of Nachbin [25]) instead of coherent sequences of poly-
nomials. More precisely, we use the π1-π2-holomorphy types introduced by
the third and fourth authors in [11]. Although we already knew that π1-
π2-holomorphy types could be used in this context, it was only reading [6]
that we realized that the original definitions could be refined (see Defini-
tion 2.5) to prove such general results on the hypercyclicity of convolution
operators on spaces of entire functions. Holomorphy types are a somewhat
old-fashioned topic in infinite-dimensional analysis, so it is quite surpris-
ing that our holomorphy type-oriented-approach turned out to be more
effective than the coherent sequence-oriented-approach.
The paper is organized as follows: in Section 2 we state our main re-

sults, in Section 3 we prove that our results are more general - not only
formally but also concretely - than the results of [6], and in Section 4 we
prove our main results. In Section 5 we extend to our context some related
results that appeared in the literature, including results on surjective hy-
percyclic convolution operators and connections with the existence of dense
subspaces formed by hypercyclic functions for convolution operators.

Throughout the paper N denotes the set of positive integers and N0 de-
notes the set N∪{0}. The letters E and F will always denote complex Ba-
nach spaces and E′ represents the topological dual of E. The Banach space
of all continuous m-homogeneous polynomials from E into F endowed with
its usual sup norm is denoted by P(mE;F ). The subspace of P(mE;F ) of
all polynomials of finite type is represented by Pf (mE;F ). The linear space
of all entire mappings from E into F is denoted by H(E;F ). When F = C
we write P(mE), Pf (mE) and H(E) instead of P(mE;C), Pf (mE;C) and
H(E;C), respectively. For the general theory of homogeneous polynomials
and holomorphic functions we refer to Dineen [9] and Mujica [23].

ANNALES DE L’INSTITUT FOURIER
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2. Main results

In this section we state the main results of the paper and give the defi-
nitions needed to understand them.

Definition 2.1. — Let U be an open subset of E. A mapping f : U −→
F is said to be holomorphic on U if for every a ∈ U there exists a se-
quence (Pm)∞m=0, where each Pm ∈ P(mE;F ) (P(0E;F ) = F ), such that
f(x) =

∑∞
m=0 P

m(x− a) uniformly on some open ball with center a. The
m-homogeneous polynomial m!Pm is called the m-th derivative of f at a
and is denoted by d̂mf(a). In particular, if P ∈ P(mE;F ), a ∈ E and
k ∈ {0, 1, . . . ,m}, then

d̂kP (a)(x) = m!
(m− k)! P̌ (x, . . . , x︸ ︷︷ ︸

k times

, a, . . . , a)

for every x ∈ E, where P̌ is the unique symmetric m-linear mapping asso-
ciated to P . For any unexplained notation we refer to [9, 23, 25].

Definition 2.2 (Nachbin [25]). — A holomorphy type Θ from E to F
is a sequence of Banach spaces (PΘ(mE;F ))∞m=0, the norm on each of them
being denoted by ‖ · ‖Θ, such that the following conditions hold true:

(1) Each PΘ(mE;F ) is a linear subspace of P(mE;F ).
(2) PΘ(0E;F ) coincides with P(0E;F ) = F as a normed vector space.
(3) There is a real number σ > 1 for which the following is true: given

any k ∈ N0, m ∈ N0, k 6 m, a ∈ E and P ∈ PΘ(mE;F ), we have

d̂kP (a) ∈ PΘ(kE;F ) and∥∥∥∥ 1
k! d̂

kP (a)
∥∥∥∥

Θ
6 σm‖P‖Θ‖a‖m−k.

It is plain that each inclusion PΘ(mE;F ) ⊆ P(mE;F ) is continuous and
that ‖P‖ 6 σm‖P‖Θ for every P ∈ PΘ(mE;F ).

Definition 2.3 (Gupta [15, 16]). — Let (PΘ(mE;F ))∞m=0 be a holo-
morphy type from E to F . A given f ∈ H(E;F ) is said to be of Θ-
holomorphy type of bounded type if

(1) 1
m! d̂

mf(0) ∈ PΘ(mE;F ) for all m ∈ N0,

(2) lim
m→∞

(
1
m!‖d̂

mf(0)‖Θ
) 1
m

= 0.

The linear subspace of H(E;F ) of all functions f of Θ-holomorphy type of
bounded type is denoted by HΘb(E;F ).

TOME 63 (2013), FASCICULE 4
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Remark 2.4. — (a) The inequality ‖·‖ 6 σm‖·‖Θ implies that each entire
mapping f of Θ-holomorphy type of bounded type is an entire mapping
of bounded type in the sense of Gupta in [16], that is, f is bounded on
bounded subsets of E.

(b) It is clear that PΘ(mE;F ) ⊆ HΘb(E;F ) for each m ∈ N0.

For each ρ > 0, condition (2) of Definition 2.3 guarantees that the cor-
respondence

f ∈ HΘb(E;F ) 7→ ‖f‖Θ,ρ =
∞∑
m=0

ρm

m! ‖d̂
mf(0)‖Θ <∞

is a well defined seminorm on HΘb(E;F ). We shall henceforth consider
HΘb(E;F ) endowed with the locally convex topology generated by the
seminorms ‖ · ‖Θ,ρ, ρ > 0. This topology shall be denoted by τΘ. It is
well known that (HΘb(E;F ), τΘ) is a Fréchet space (see, e.g., [11, Proposi-
tion 2.3]).
Next definitions are refinements of the concepts of π1-holomorphy type

and π2-holomorphy type introduced in [11].

Definition 2.5. — (a) A holomorphy type (PΘ(mE;F ))∞m=0 from E to
F is said to be a π1-holomorphy type if the following conditions hold:
(a1) Polynomials of finite type belong to (PΘ(mE;F ))∞m=0 and there

exists K > 0 such that

‖φm · b‖Θ 6 Km‖φ‖m · ‖b‖

for all φ ∈ E′, b ∈ F and m ∈ N;
(a2) For each m ∈ N0, Pf (mE;F ) is dense in (PΘ(mE;F ), ‖ · ‖Θ).

(b) A holomorphy type (PΘ(mE))∞m=0 from E to C is said to be a π2-
holomorphy type if for each T ∈ [HΘb(E)]′, m ∈ N0 and k ∈ N0, k 6 m,
the following conditions hold:
(b1) If P ∈ PΘ(mE) and A : Em −→ C is the unique continuous sym-

metric m-linear mapping such that P = Â, then the (m− k)-
homogeneous polynomial

T
(
Â(·)k

)
: E −→ C

y 7→ T
(
A(·)kym−k

)
belongs to PΘ(m−kE);

(b2) For constants C, ρ > 0 such that

|T (f)| 6 C ‖f‖Θ,ρ for every f ∈ HΘb(E),

ANNALES DE L’INSTITUT FOURIER
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which exist because T ∈ [HΘb(E)]′, there is a constant K > 0 such
that

‖T (Â(·)k)‖Θ 6 C ·Kmρk‖P‖Θ for every P ∈ PΘ(mE).

Definition 2.6. — Let Θ be a holomorphy type from E to C.
(a) For a ∈ E and f ∈ HΘb(E), the translation of f by a is defined by

τaf : E −→ C , (τaf) (x) = f (x− a) .

By [11, Proposition 2.2] we have τaf ∈ HΘb(E).
(b) A continuous linear operator L : HΘb(E) −→ HΘb(E) is called a

convolution operator onHΘb(E) if it is translation invariant, that is,

L(τaf) = τa(L(f))

for all a ∈ E and f ∈ HΘb(E).
(c) For each functional T ∈ [HΘb(E)]′, the operator Γ̄Θ(T ) is defined by

Γ̄Θ(T ) : HΘb(E) −→ HΘb(E) , Γ̄Θ(T )(f) = T ∗ f,

where the convolution product T ∗ f is defined by

(T ∗ f) (x) = T (τ−xf) for every x ∈ E.

(d) δ0 ∈ [HΘb(E)]′ is the linear functional defined by

δ0 : HΘb(E) −→ C , δ0(f) = f(0).

The main results of this paper read as follows:

Theorem 2.7. — Let E′ be separable and (PΘ(mE))∞m=0 be a π1-holo-
morphy type from E to C. Then every convolution operator on HΘb(E)
which is not a scalar multiple of the identity is hypercyclic.

Theorem 2.8. — Let E′ be separable, (PΘ(mE))∞m=0 be a π1-π2-holo-
morphy type and T ∈ [HΘb(E)]′ be a linear functional which is not a scalar
multiple of δ0. Then Γ̄Θ(T ) is a convolution operator that is not a scalar
multiple of the identity, hence hypercyclic.

Example 2.9. — To give a simple application of our main results, ob-
serve that making E = Cn and PΘ(mCn) = P(mCn), we get HΘb(Cn) =
H(Cn), and in this case Theorem 2.7 recovers the result of Godefroy and
Shapiro [14] on the hypercyclicity of convolution operators on H(Cn) which
are not scalar multiples of the identity. More sophisticated applications will
be given in Example 3.11 and in Example 5.3.

TOME 63 (2013), FASCICULE 4
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3. Comparison with known results

Before proceeding to the proofs we shall establish that Theorems 2.7 and
2.8 are strictly more general than [6, Theorem 4.3] and [6, Corollary 4.4],
respectively. First of all we have to give the definitions needed to understand
these results from [6].

Definition 3.1. — For P ∈ P(kE), a ∈ E and r ∈ N, Par denotes the
(k − r)-homogeneous polynomial on E defined by

Par (x) = A(a, . . . , a︸ ︷︷ ︸
r times

, x, . . . , x),

where, as before, A stands for the continuous symmetric k-linear form such
that P (x) = A(x, . . . , x) for every x ∈ E.

Definition 3.2 (Carando, Dimant, Muro [7, 6]). — For each k ∈ N0,
Ak(E) andBk(E) are linear subspaces of P(kE) containing the polynomials
of finite type which are Banach spaces with norms ‖ · ‖Ak(E) and ‖ · ‖Bk(E),
respectively. Ak(E) and Bk(E) are also asked to be continuously contained
in P(kE).

A sequence A (E) = {Ak (E)}k∈N0
is said to be a coherent sequence of

homogeneous polynomials if there exist positive constants C and D such
that the following conditions hold for all k:

(a) For each P ∈ Ak+1 (E) and a ∈ E, Pa ∈ Ak (E) and

‖Pa‖Ak(E) 6 C‖P‖Ak+1(E)‖a‖.

(b) For each P ∈ Ak (E) and γ ∈ E′, γP ∈ Ak+1 (E) and

‖γP‖Ak+1(E) 6 D‖γ‖‖P‖Ak(E).

As usual, for k = 0, A0 (E) is the 1-dimensional space of constant functions
on E, that is A0 (E) = C.

The coherent sequence A (E) = {Ak (E)}k is said to be multiplicative if
there exists M > 0 such that PQ ∈ Ak+l (E) and

‖PQ‖Ak+l(E) 6M
k+l‖P‖Ak(E)‖Q‖Al(E),

whenever P ∈ Ak (E) and Q ∈ Al (E).

Remark 3.3. — Note that the case k = 0 implies that the constant C
of condition 3.2(a) is greater than or equal to 1. From [4, Theorem 3.2]
it follows that every coherent sequence {Ak (E)}k∈N0

is a holomorphy type
with constant σ = C. So,

‖P‖ 6 Ck‖P‖Ak(E)

ANNALES DE L’INSTITUT FOURIER
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for all P ∈ Ak (E) and k ∈ N0.

Let A (E) = {Ak (E)}k be a coherent sequence of homogeneous polyno-
mials on E. Since A (E) is a holomorphy type by Remark 3.3, we can con-
sider the space HA(E)b(E) of holomorphic functions of A (E)-holomorphy
type of bounded type according to Definition 2.3. Following the notation
of [6] we shall henceforth represent this space by the symbol HbA(E). So
HbA(E) becomes a Fréchet space with the topology generated by the family
of seminorms {pρ}ρ>0, where

pρ (f) =
∞∑
k=0

ρk

k! ‖d̂
kf(0)‖Ak(E),

for f ∈ HbA(E).
Next we define the polynomial Borel transform in the context of coherent

sequences:

Definition 3.4. — Let A (E) = {Ak (E)}k be a coherent sequence. For
each k the polynomial Borel transform is defined by

Bk : Ak (E)′ −→ P
(
kE′
)
, Bk (ϕ) (γ) = ϕ

(
γk
)
.

From now on, the expression Ak (E)′ = Bk (E′) will always mean that
the polynomial Borel transform Bk : Ak (E)′ −→ Bk (E′) is an isometric
isomorphism.

The main hypercyclicity results of [6] are the following:

Theorem 3.5 ([6] Theorem 4.3). — Suppose that E′ is separable. Let
{Bk(E′)}k be a coherent sequence and {Ak(E)}k be such that Ak(E)′ =
Bk(E′) for every k. Then, every convolution operator on HbA(E) which is
not a scalar multiple of the identity is hypercyclic.

Corollary 3.6 ([6] Corollary 4.4). — Suppose that E′ is separable.
Let {Bk(E′)}k be a coherent multiplicative sequence and {Ak(E)}k be
such that Ak(E)′ = Bk(E′) for every k. For every ϕ ∈ [HbA(E)]′ which is
not a scalar multiple of δ0, the operator

Tϕ : HbA(E) −→ HbA(E) , Tϕ(f) = ϕ ∗ f,

is hypercyclic.

The next result proves that Theorem 3.5 is a particular case of Theo-
rem 2.7:

TOME 63 (2013), FASCICULE 4
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Proposition 3.7. — Let {Bk(E′)}k be a coherent sequence and
{Ak(E)}k be such that Ak(E)′ = Bk(E′) for all k. Then {Ak(E)}k is a
π1-holomorphy type from E to C.

Proof. — By [6, Proposition 2.5] we know that {Ak(E)}k is a coher-
ent sequence, hence it is a holomorphy type by Remark 3.3. As to condi-
tion 2.5(a2), [6, Lemma 2.1] shows that

Pf (kE)
Ak = Ak(E) for every k.

So all that is left to check is the inequality in condition (a1) of Definition 2.5.
By assumption we know that ‖T‖Ak(E)′ = ‖Bk(T )‖Bk(E′) for every T ∈
Ak(E)′. Let C be the constant of condition 3.2(a) for the coherent sequence
{Bk(E′)}k. By the inequality in Remark 3.3,

‖Bk(T )‖ 6 Ck‖Bk(T )‖Bk(E′),

for all T ∈ Ak(E)′ and k ∈ N0. Thus,

‖φk‖Ak(E) = sup
‖T‖Ak(E)′=1

|T (φk)| = sup
‖T‖Ak(E)′=1

|Bk(T )(φ)|

6 ‖φ‖k · sup
‖T‖Ak(E)′=1

‖Bk(T )‖

6 ‖φ‖k · Ck · sup
‖T‖Ak(E)′=1

‖Bk(T )‖Bk(E′)

= ‖φ‖k · Ck · sup
‖T‖Ak(E)′=1

‖T‖Ak(E)′ = Ck · ‖φ‖k,

for all φ ∈ E′ and k ∈ N0. �

To continue we need the following result:

Proposition 3.8 ([6] Lemma 3.3). — Let {Bk (E′)}k be a coherent
multiplicative sequence and {Ak(E)}k be such that Ak (E)′ = Bk (E′) for
every k. Let k > l, P ∈ Ak (E) and ϕ ∈ Ak−l (E)′ be given. Then the
l-homogeneous polynomial x ∈ E 7→ ϕ (Pxl) ∈ C belongs to Al (E) and

‖x 7→ ϕ (Pxl) ‖Al(E) 6M
k‖ϕ‖Ak−l(E)′‖P‖Ak(E).

Proposition 3.9. — Let {Bk (E′)}k be a coherent multiplicative se-
quence and {Ak(E)}k be such that Ak(E)′ = Bk(E′) for every k. Then
A (E) = {Ak (E)}k is a π2-holomorphy type from E to C.

Proof. — Again by [6, Proposition 2.5] we get that {Ak(E)}k is a coher-
ent sequence, so the space HbA(E) is well defined. Let T ∈ [HbA(E)]′ and
m, k ∈ N0 with k 6 m be given. Note that

T
(
Â(·)k

)
= (x 7→ T (Pxm−k))

ANNALES DE L’INSTITUT FOURIER
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for every P ∈ Am (E) , where A is the m-linear symmetric mapping on Em

such that P = Â. Therefore from Proposition 3.8 it follows that T
(
Â(·)k

)
belongs to Am−k (E) and

‖T (Â(·)k)‖Am−k(E) = ‖x 7→ T (Pxm−k) ‖Am−k(E)

6Mm · ‖T |Ak(E)‖Ak(E)′ · ‖P‖Am(E),

where T |Ak(E) obviously means the restriction of T to Ak (E). Since T ∈
[HbA(E)]′ , there are C > 0 and ρ > 0 such that

|T (f)| 6 C · pρ (f)

for every f ∈ HbA(E). In particular,

|T (Q)| 6 C · pρ (Q) = C · ρk · ‖Q‖Ak(E)

for every Q ∈ Ak (E), so

‖T |Ak(E)‖Ak(E)′ 6 C · ρk.

Therefore,

‖T (Â(·)k)‖Am−k(E) 6M
m · ‖T |Ak(E)‖Ak(E)′ · ‖P‖Am(E)

6 C ·Mm · ρk · ‖P‖Am(E),

which completes the proof. �

A combination of Proposition 3.7 with Proposition 3.9 makes clear that
Corollary 3.6 is a particular case of Theorem 2.8:

Corollary 3.10. — Let {Bk (E′)}k be a coherent multiplicative se-
quence and {Ak(E)}k be such that Ak(E)′ = Bk(E′) for every k. Then
A (E) = {Ak (E)}k is a π1-π2-holomorphy type.

Now we prove that our results are more than formal generalizations of
the known results, in the sense that there are concrete cases covered by our
results and not covered by the results of [6]. Of course it is enough to give
examples of {Ak(E)}k such that:

(i) {Ak(E)}k is a π1-π2-holomorphy type,
(ii) Ak(E)′ = Bk(E′) for every k,
(iii) {Bk (E′)}k fails to be a coherent sequence.

Example 3.11. — (a) Consider the space P(p,m(s;q)) (mE) of all abso-
lutely (p,m (s; q))-summing m-homogeneous polynomials on E introduced
by Matos [21, Section 3], where 0 < q 6 s 6 +∞ and p > q. In gen-
eral

(
P(p,m(s;q)) (mE)

)
m∈N0

is not a holomorphy type, hence fails to be
a coherent sequence. For example, making s = q = p > 1, the space

TOME 63 (2013), FASCICULE 4
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P(p,m(p;p)) (mE) coincides with the space of absolutely p-summingm-homo-
geneous polynomials (see [21, p. 843]), which is not a holomorphy type by
[8, Example 3.2].
On the other hand, Matos proved in [22, Section 8.2] that if E′ has the

bounded approximation property, then the Borel transform B
Ñ,(s;(r,q)) es-

tablishes an isometric isomorphism between
[
P
Ñ,(s;(r,q)) (mE)

]′
and

P(s′,m(r′;q′)) (mE′), where P
Ñ,(s;(r,q))(

mE) denotes the space of all (s; (r, q))-
quasi-nuclear m-homogeneous polynomials on E (as usual s′, r′, q′ denote
the conjugates of s, r, q, respectively). So

(3.1)
[
P
Ñ,(s;(r,q)) (mE)

]′
= P(s′,m(r′;q′)) (mE′) for every m.

The proof that P
Ñ,(s;(r,q)) (mE) is a π1-holomorphy type can be found

in [22, Sections 8.2 and 8.3] and that it is a π2-holomorphy type in [22,
Proposition 9.1.5].
(b) X. Mujica proved in [24, Teorema 2.5.1] that if E′ has the bounded

approximation property, p > 1 and F is reflexive, then the Borel transform
Bσ(p) establishes an isometric isomorphism between

[
Pσ(p) (mE;F )

]′ and
Pτ(p) (mE′;F ′), where Pσ(p) (mE;F ) denotes the space of all σ(p)-nuclear
m-homogeneous polynomials from E into F , and Pτ(p) (mE′;F ′) denotes
the space of all τ(p)-summing m-homogeneous polynomials from E′ into
F ′. Making F = C we get[

Pσ(p) (mE)
]′ = Pτ(p) (mE′) for every m.

Again, and for the same reason,
(
Pτ(p) (mE′)

)∞
m=0 is not a holomorphy type

in general, consequently it fails to be a coherent sequence. Condition (a1) of
Definition 2.5 follows easily because Pσ(p) is a polynomial ideal. Condition
(a2) is proved in [24, Proposição 2.4.4], so Pσ(p) (mE) is a π1-holomorphy
type. The fact that Pσ(p) (mE) is a π2-holomorphy type is proved in [24,
Lema 3.2.6] with K = 1.

4. Proofs of the main results

The first step is the definition of the Borel transform. A holomorphy type
from E to F shall be denoted by either Θ or (PΘ(mE;F ))∞m=0.

Definition 4.1. — (a) Let Θ be a π1-holomorphy type from E to F .
It is clear that the Borel transform

BΘ : [PΘ(mE;F )]′ −→ P(mE′;F ′) , BΘT (φ)(y) = T (φmy),
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for T ∈ [PΘ(mE;F )]′, φ ∈ E′ and y ∈ F , is well defined and linear.
Moreover, BΘ is continuous and injective by conditions (a1) and (a2) of
Definition 2.5. So, denoting the range of BΘ in P(mE′;F ′) by PΘ′(mE′;F ′),
the correspondence

BΘT ∈ PΘ′(mE′;F ′) 7→ ‖BΘT‖Θ′ := ‖T‖,

defines a norm on PΘ′(mE′;F ′). In this fashion the spaces
(
[PΘ(mE;F )]′ , ‖·‖

)
and (PΘ′(mE′;F ′), ‖ · ‖Θ′) are isometrically isomorphic.
(b) Let (PΘ(mE))∞m=0 be a π1-holomorphy type from E to C. A holo-

morphic function f ∈ H(E′) is said to be of Θ′-exponential type if:
(b1) d̂mf(0) ∈ PΘ′(mE′) for every m ∈ N0;
(b2) There are constants C > 0 and c > 0 such that

‖d̂mf(0)‖Θ′ 6 Ccm,

for all m ∈ N0.
The vector space of all such functions is denoted by ExpΘ′(E′).

The change we made in the definition of π1-holomorphy types does not
affect the validity of [11, Corollary 2.1]. So if Θ is a π1-holomorphy type
from E to C, then all nuclear entire functions of bounded type belong to
HΘb(E). In particular, the functions of the form eφ, for φ ∈ E′, belong to
HΘb(E). The proof of [11, Theorem 2.1] is not affected either:

Proposition 4.2 ([11] Theorem 2.1). — If Θ is a π1-holomorphy type
from E to C, then the Borel transform

B : [HΘb(E)]′ −→ ExpΘ′(E′) , BT (φ) = T (eφ),

for all T ∈ [HΘb(E)]′ and φ ∈ E′, is an algebraic isomorphism.

Proposition 4.3. — Let Θ be a π1-holomorphy type from E to C and
U be a non-empty open subset of E′. Then the set

S = span{eφ : φ ∈ U}

is dense in HΘb(E).

Proof. — Assume that S is not dense in HΘb(E). In this case, the geo-
metric Hahn-Banach Theorem gives a nonzero functional T ∈ [HΘb(E), τΘ]′
that vanishes on S. In particular T (eφ) = 0 for each φ ∈ U . So BT (φ) =
T (eφ) = 0 for every φ ∈ U . Thus BT is a holomorphic function that van-
ishes on the open non-void set U . It follows that BT ≡ 0 on E′. Since B
is injective by Proposition 4.2, T ≡ 0. This contradiction proves that S is
dense in HΘb(E). �
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Let Θ be a holomorphy type from E to C. The linear space of all convo-
lution operators on HΘb(E) is denoted by O(HΘb(E)). We define the map
ΓΘ by

ΓΘ : O(HΘb(E)) −→ [HΘb(E)]′

L 7→ ΓΘ(L) : HΘb(E) −→ K
f 7→ ΓΘ(L)(f) := (L (f))(0).

Remember the definition of δ0 to see that ΓΘ(L) = δ0 ◦ L. It is clear that
ΓΘ is a well defined linear map.

Lemma 4.4. — Let Θ be a π1-holomorphy type from E to C and L ∈
O(HΘb(E)) be given. Then:

(a) L(eφ) = B(ΓΘ(L))(φ) · eφ for every φ ∈ E′.
(b) L is a scalar multiple of the identity if and only if B(ΓΘ(L)) is

constant.

Proof. — (a) Since ΓΘ(L) ∈ [HΘb(E)]′, from Theorem 4.2 we know that

B(ΓΘ(L))(φ) = ΓΘ(L)(eφ) = L(eφ)(0)

for each φ ∈ E′. Therefore

L(eφ)(y) = [τ−y(L(eφ))](0)

= [L
(
τ−y(eφ)

)
](0)

= [L
(
eφ(y) · eφ

)
](0)

= eφ(y) · L(eφ)(0)

= eφ(y) · B(ΓΘ(L))(φ)

=
(
B(ΓΘ(L))(φ) · eφ

)
(y),

for all y ∈ E.
(b) Let λ ∈ C be such that B(ΓΘ(L))(φ) = λ for every φ ∈ E′. By (a) it

follows that
L(eφ) = B(ΓΘ(L))(φ) · eφ = λeφ

for every φ ∈ E′. The continuity of L and the denseness of {eφ : φ ∈ E′}
in HΘb(E) (Proposition 4.3) yield that L(f) = λf for every f ∈ HΘb(E).
Conversely, let λ ∈ C be such that L(f) = λf for every f ∈ HΘb(E).

Calling on (a) again we get

λeφ = L(eφ) = B(ΓΘ(L))(φ) · eφ,

hence B(ΓΘ(L))(φ) = λ for every φ ∈ E′. �
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In the proof of our main result we shall use the following criterion, which
was obtained, independently, by Kitai [18] and Gethner and Shapiro [13]:

Theorem 4.5 (Hypercyclicity Criterion). — Let X be a separable
Fréchet space. A continuous linear operator T : X −→ X is hypercyclic
if there are dense subsets Z, Y ⊆ X and a map S : Y −→ Y satisfying the
following three conditions:

(a) For each z ∈ Z, Tn(z) −→ 0 when n −→∞;
(b) For each y ∈ Y , Sn(y) −→ 0 when n −→∞;
(c) T ◦ S = IY .

The last ingredient we need to give the proof of Theorem 2.7 is the next
result.

Proposition 4.6. — Let (PΘ(mE))∞m=0 be a π1-holomorphy type from
E to C. Then the set

B = {eφ : φ ∈ E′}
is a linearly independent subset of HΘb(E).

Proof. — We have already remarked that {eφ : φ ∈ E′} ⊆ HΘb(E) when-
ever Θ is a π1-holomorphy type. Given a ∈ E, from [11, Propostion 3.1(i)]
we know that the differentiation operator

Da : HΘb(E) −→ HΘb(E) , Da (f) = df (·) (a)

is well defined. Now one just has to follow the lines of the proof of [1,
Lemma 2.3] to get the result. �

Proof of Theorem 2.7. — Let L : HΘb(E) −→ HΘb(E) be a convolution
operator which is not a scalar multiple of the identity. We shall show that
L satisfies the Hypercyclicity Criterion of Theorem 4.5. First of all, since
E′ is separable and Θ is a π1-holomorphy type, we have that HΘb(E) is
separable as well. We have already remarked that HΘb(E) is a Fréchet
space. By ∆ we mean the open unit disk in C. Consider the sets

V = {φ ∈ E′ : |B(ΓΘ(L))(φ)| < 1} = B(ΓΘ(L))−1(∆)

and

W = {φ ∈ E′ : |B(ΓΘ(L))(φ)| > 1} = B(ΓΘ(L))−1(C−∆).

Since L is not a scalar multiple of the identity, Lemma 4.4(b) yields that
B(ΓΘ(L)) is non constant. Therefore, it follows from Liouville’s Theorem
that V and W are non-empty open subsets of E′. Consider now the follow-
ing subspaces of HΘb(E):

HV = span{eφ : φ ∈ V } and HW = span{eφ : φ ∈W}.
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By Proposition 4.3 we know that both HV and HW are dense in HΘb(E).
Let us deal with HV first. Given φ ∈ V , from Lemma 4.4(a) we have

L(eφ) = B(ΓΘ(L))(φ) · eφ ∈ HV .

So L(HV ) ⊆ HV because L is linear. Applying Lemma 4.4(a) and the
linearity of L once again we get

Ln(eφ) = [B(ΓΘ(L))(φ)]n · eφ

for all n ∈ N and φ ∈ V . Consequently,

Ln(f) = [B(ΓΘ(L))(φ)]n · f

for all n ∈ N and f ∈ HV . Since |B(ΓΘ(L))(φ)| < 1 whenever φ ∈ V , it
follows that Ln(f) −→ 0 when n −→∞ for each f ∈ HV .

Now we handle HW . For each φ ∈W , B(ΓΘ(L))(φ) 6= 0, so we can define

S(eφ) := eφ

B(ΓΘ(L))(φ) ∈ HΘb(E).

By Proposition 4.6, {eφ : φ ∈ W} is a linearly independent set, so we can
extend S to HW by linearity. Therefore S(HW ) ⊆ HW and

Sn(f) = f

[B(ΓΘ(L))(φ)]n

for all f ∈ HW and n ∈ N. Since |B(ΓΘ(L))(φ)| > 1 whenever φ ∈ W , it
follows that Sn(f) −→ 0 when n −→∞ for each f ∈ HW .
Finally, L ◦ S(f) = f for every f ∈ HW , so L is hypercyclic. �

Let us proceed to the proof of Theorem 2.8. The next result is needed. It
is an adaptation of [11, Theorem 3.1] to the new definition of π2-holomorphy
type. In this case it is worth giving the details.

Proposition 4.7. — If (PΘ(mE))∞m=0 is a π2-holomorphy type from
E to C, T ∈ [HΘb(E)]′ and f ∈ HΘb(E), then T ∗ f ∈ HΘb(E) and the
mapping T∗ defines a convolution operator on HΘb(E).

Proof. — Since T ∈ [HΘb(E)]′, there are constants C > 0 and ρ > 0
such that

|T (f)| 6 C ‖f‖Θ,ρ
for all f ∈ HΘb(E). By [11, Proposition 3.1],

(T ∗ f)(x) = T (τ−xf) = T

( ∞∑
m=0

1
m! d̂

mf(x)
)

=
∞∑
m=0

1
m!

∞∑
k=0

1
k!T (

(((hhh
dk+mf(0)(·)k )(x)(4.1)
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for every x ∈ E. By Definition 2.5(b) there is a constant K such that

T

(
(((hhh
dk+mf(0)(·)k

)
∈ PΘ(mE) and

∥∥∥∥∥T
(
(((hhh
dk+mf(0)(·)k

)∥∥∥∥∥
Θ

6 CKm+kρk
∥∥∥d̂m+kf(0)

∥∥∥
Θ

for all k,m ∈ N0. For ρ0 > ρ we can write∥∥∥∥∥
∞∑
k=0

1
k!T

(
(((hhh
dk+mf(0)(·)k

)∥∥∥∥∥
Θ

6
∞∑
k=0

1
k!

∥∥∥∥∥T
(
(((hhh
dk+mf(0)(·)k

)∥∥∥∥∥
Θ

6
∞∑
k=0

1
k!CK

m+kρk
∥∥∥d̂m+kf(0)

∥∥∥
Θ

6
∞∑
k=0

1
k!CK

m+kρk0

∥∥∥d̂m+kf(0)
∥∥∥

Θ

= C
m!
ρm0

∞∑
k=0

(m+ k)!
m!k! · Km+k

(m+ k)!ρ
m+k
0

∥∥∥d̂m+kf(0)
∥∥∥

Θ

6 C
m!
ρm0

∞∑
k=0

(2K)m+k

(m+ k)! ρ
m+k
0

∥∥∥d̂m+kf(0)
∥∥∥

Θ

= C
m!
ρm0

∥∥∥∥∥
∞∑
k=m

1
k! d̂

kf(0)

∥∥∥∥∥
Θ,2Kρ0

6 C
m!
ρm0
‖f‖Θ,2Kρ0 <∞.

This means that

Pm =
∞∑
k=0

1
k!T

(
(((hhh
dk+mf(0)(·)k

)
belongs to PΘ(mE) and

(4.2) ‖Pm‖Θ 6 C
m!
ρm0
‖f‖Θ,2Kρ0 .

Hence

lim
m→∞

(
1
m!‖Pm‖Θ

) 1
m

6
1
ρ0

for every ρ0 > ρ. This implies that

lim
m→∞

(
1
m!‖Pm‖Θ

) 1
m

= 0.
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Therefore, it follows from (4.1) that (T ∗ f) =
∞∑
m=0

1
m!Pm ∈ HΘb(E). It is

clear that T∗ is linear. For ρ1 > 0, from (4.2) we get

‖T ∗ f‖Θ,ρ1 =
∞∑
m=0

ρm1
m! ‖Pm‖Θ

6
∞∑
m=0

Cρm1
m!

m!
(ρ1 + ρ)m ‖f‖Θ,2K(ρ1+ρ)

=
( ∞∑
m=0

Cρm1
(ρ1 + ρ)m

)
‖f‖Θ,2K(ρ1+ρ),

proving that T∗ is continuous. Now we have

(T ∗ τaf)(x) = T (τ−x ◦ τaf) = T (τ−x+af)
= (T ∗ f)(−(−x+ a))
= (T ∗ f)(x− a) = τa(T ∗ f)(x),

for all x, a ∈ E. This completes the proof that T∗ is a convolution operator.
�

Proof of Theorem 2.8. — The operator Γ̄Θ(T ) is a convolution operator
for each T ∈ [HΘb(E)]′ by Proposition 4.7. Suppose that there is λ ∈ C
such that Γ̄Θ(T )(f) = λ · f for all f ∈ HΘb(E). Then

λ · f(x) = Γ̄Θ(T )(f)(x) = (T ∗ f)(x) = T (τ−xf)

for every x ∈ E. In particular,

λ · δ0(f) = λ · f(0) = T (τ0f) = T (f)

for every f ∈ HΘb(E). Hence T = λ · δ0. This contradiction shows that
Γ̄Θ(T ) is not a scalar multiple of the identity, hence hypercyclic by Theo-
rem 2.7. �

5. Further results

In this section we show that several related results that appear in the
literature have analogues in the context of πj-holomorphy types, j = 1, 2.

We start with an analogue of [2, Corollary 8]:

Proposition 5.1. — If E′ is separable and (PΘ(nE))∞n=0 is a π1-holo-
morphy type from E to C, then every nonzero convolution operator on
HΘb(E) has dense range.
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Proof. — Let L 6= 0 be a convolution operator. If L is a scalar multiple of
the identity, then clearly L is surjective. Suppose now that L is not a scalar
multiple of the identity. By Proposition 4.3, span{eφ : φ ∈ E′} is dense in
HΘb(E). By Lemma 4.4, L(eφ) = B(ΓΘ(L))(φ) · eφ for every φ ∈ E′, and
this implies that each eφ belongs to the range of L. Therefore,

HΘb(E) = span{eφ : φ ∈ E′}
τθ = L(HΘb(E)))

τθ
.

�

We can go farther with π1-π2-holomorphy types. The following result is
closely related to a result of Malgrange [20] on the existence of solutions of
convolution equations. Its proof follows the sames steps of the proof of [11,
Theorem 4.4]:

Theorem 5.2. — Let (PΘ(nE))∞n=0 be a π1-π2-holomorphy type from
E to C such that ExpΘ′(E′) is closed under division, that is: if f, g ∈
ExpΘ′(E′) are such that g 6= 0 and f/g is holomorphic, then f/g ∈
ExpΘ′(E′). Then every nonzero convolution operator on HΘb(E) is sur-
jective.

Example 5.3. — (a) Let E′ have the bounded approximation property
and (PN (mE))∞m=0 be the holomorphy type of nuclear homogeneous poly-
nomials on E. To see that this is a π1-π2-holomorphy type, regard it as a
particular case of the quasi-nuclear holomorphy types considered in Exam-
ple 3.11(a) or see it directly in [15, page 15 and Lemma 7.2]. By [15, Propo-
sition 7.2], in this case the role of ExpΘ′(E′) is played by the space Exp(E′)
of all entire mappings of exponential-type on E′ [15, Definition 7.5]. Also,
Exp(E′) is closed under division [15, Proposition 8.1]. Hence, it follows
from Theorem 5.2 that every nonzero convolution operator on HNb(E) is
surjective.
(b) As we saw in Example 3.11(a), if E′ has the bounded approximation

property, then
(
P
Ñ,(s;(r,q))(

mE)
)∞
m=0

is a π1-π2-holomorphy type, and, ac-
cording to the duality (3.1), in this case the role of ExpΘ′(E′) is played
by Exp(s′,m(r′;q′))(E′). Making A = B = 0 in [10, Theorem 3.8] one gets
that Exp(s′,m(r′;q′))(E′) is closed under division (alternatively, see [22, The-
orem 5.4.8]). Hence, it follows from Theorem 5.2 that every nonzero con-
volution operator on H

Ñ,(s;(r,q))b(E) is surjective.

Now we establish a connection with the fashionable subject of lineability
(for detailed information see, e.g., [12] and references therein).
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Definition 5.4. — A subset A of an infinite-dimensional topological
vector space E is said to be dense-lineable in E if A∪{0} contains a dense
subspace of E.

Next result is closely related to (actually is a generalization of) [2, Corol-
lary 12]:

Proposition 5.5. — Let E′ be separable, (PΘ(nE))∞n=0 be a π1-holo-
morphy type from E to C and L be a convolution operator on HΘb(E)
that is not a scalar multiple of the identity. Then the set of hypercyclic
functions for L is dense-lineable in HΘb(E).

Proof. — The convolution operator L is hypercyclic by Theorem 2.7, so
we can take a hypercyclic function f for L. Define

M =
{

m∑
i=0

λiL
i (f) : m ∈ N0, λ0, λ1, . . . , λm ∈ C

}
,

where L0 denotes the identity on HΘb(E). Clearly M is a vector subspace
of HΘb(E) and, since {Ln (f) : n ∈ N0} is contained in M , M is a dense
subset of HΘb(E). Now we only have to prove that every nonzero ele-
ment of M is hypercyclic for L, that is, for every g ∈ M, g 6= 0, the
set {g, L (g) , . . . , Ln (g) , . . .} is dense in HΘb(E). If g ∈ M, g 6= 0, then
g =

m∑
i=0

λiL
i(f), with λ0, λ1, . . . , λm ∈ C. Note that

m∑
i=0

λiL
i 6= 0 because

g 6= 0. Since
m∑
i=0

λiL
i is a convolution operator, it follows from Propo-

sition 5.1 that
m∑
i=0

λiL
i has dense range. Using that {Ln (f) : n ∈ N0} is

dense in HΘb(E) and that
m∑
i=0

λiL
i is continuos and has dense range, we

conclude that the set
m∑
i=0

λiL
i ({Ln (f) : n ∈ N0})

is dense in HΘb(E). So,

{g, L(g), . . . , Ln(g), . . . , } = {Ln (g) : n ∈ N0}

=
{
Ln

(
m∑
i=0

λiL
i (f)

)
: n ∈ N0

}

=
m∑
i=0

λiL
i ({Ln (f) : n ∈ N0})

is dense in HΘb(E), proving that g is hypercyclic for L. �
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Combining Theorem 2.8 with Proposition 5.5 we get:

Corollary 5.6. — Let E′ be separable, (PΘ(mE))∞m=0 be a π1-π2-
holomorphy type and T ∈ [HΘb(E)]′ be a linear functional which is not
a scalar multiple of δ0. Then the set of hypercyclic functions for Γ̄Θ(T ) is
dense-lineable in HΘb(E).

A result similar to [6, Proposition 4.1] is the following:

Proposition 5.7. — Let (PΘ(mE))∞m=0 be a π1-holomorphy type from
E to C. Then for every convolution operator L : HΘb(E) −→ HΘb(E), the
functional ΓΘ(L) is the unique functional in [HΘb(E)]′ such that L(f) =
ΓΘ(L) ∗ f for every f ∈ HΘb(E).

Proof. — Let L : HΘb(E) −→ HΘb(E) be a convolution operator. By the
definition of ΓΘ we have that ΓΘ ∈ [HΘb(E)]′ and

L(f)(x) = L(f)(0− (−x)) = [τ−xL(f)](0)
= L(τ−xf)(0) = ΓΘ(L)(τ−xf)
= ΓΘ(L) ∗ f(x)

for all f ∈ HΘb(E) and x ∈ E. Thus, L(f) = ΓΘ(L) ∗ f for every f ∈
HΘb(E). Let us prove the uniqueness: if S ∈ [HΘb(E)]′ is such that L(f) =
S ∗ f , then

L(eφ)(x) = S ∗ eφ(x) = S(τ−xeφ) = S(eφ) · eφ(x) = BS(φ) · eφ(x)

for all φ ∈ E′ and x ∈ E. Hence L(eφ) = BS(φ) · eφ for every φ ∈ E′. It
follows from Lemma 4.4(a) that B(ΓΘ(L))(φ) = BS(φ) for every φ ∈ E′. So
S = ΓΘ(L) by the injectivity of the Borel transform (Proposition 4.2). �
We finish the paper exploring the multiplicative structure of [HΘb(E),τΘ]′:

Definition 5.8. — Let (PΘ(mE))∞m=0 be a π2-holomorphy type from
E to C. For T1, T2 ∈ [HΘb(E)]′ we define the convolution product of T1
and T2 in [HΘb(E)]′ by

T1 ∗ T2 := ΓΘ(O1 ◦O2) ∈ [HΘb(E)]′,

where O1 = T1∗ and O2 = T2∗.

It is easy to see that [HΘb(E)]′ is an algebra under this convolution
product with unity δ0. Furthermore, the convolution product satisfies the
following property:

(T1 ∗ T2) ∗ f = T1 ∗ (T2 ∗ f) ,

for all T1, T2 ∈ [HΘb(E)]′ and f ∈ HΘb(E).
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The same proof of [11, Theorem 3.3] provides the following analogue of
[6, Corollary 4.2]:

Theorem 5.9. — If (PΘ(mE))∞m=0 is a π1-π2-holomorphy type, then
the Borel transform is an algebra isomorphism between [HΘb(E), τΘ]′ and
ExpΘ′(E′).
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