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SINGULAR DISTRIBUTIONS, DIMENSION OF
SUPPORT, AND SYMMETRY OF FOURIER

TRANSFORM

by Gady KOZMA & Alexander OLEVSKĬI

Abstract. — We study the “Fourier symmetry” of measures and distributions
on the circle, in relation with the size of their supports. The main results of this
paper are:
(i) A one-side extension of Frostman’s theorem, which connects the rate of decay
of Fourier transform of a distribution with the Hausdorff dimension of its support;
(ii) A construction of compacts of “critical” size, which support distributions (even
pseudo-functions) with anti-analytic part belonging to l2.
We also give examples of non-symmetry which may occur for measures with “small”
support. A number of open questions are stated.
Résumé. — On étudie la “symétrie de Fourier” des mesures et des distributions

sur le cercle en rapport avec la dimension de leurs supports. Les résultats essentiels
du présent travail sont les suivants :
(i) L’extension unilatérale du théorème de Frostman qui met en rapport la vitesse
de décroissance de la transformation de Fourier d’une distribution et la dimension
de Hausdorf de son support.
(ii) La construction des compacts d’une taille “critique” qui peut supporter des
distributions (voire des pseudo-fonctions) avec une partie anti-analytique apparte-
nant à l2.
On donne également quelques exemples de l’asymétrie qui peut se produire pour
des mesures à “petit” support. Plusieurs questions ouvertes sont formulées.

I

Let K be a compact subset of the circle group T. Frostman’s theorem
allows to characterize the Hausdorff dimension of K by examining (non-
trivial) measures supported on K. The most common version states that

dimK = sup
{
α : ∃µ supported on K with

∫∫
dµ(x) dµ(y)
|x− y|α

<∞
}
.

Keywords: Hausorff dimension, Frostman’s theorem, Fourier symmetry.
Math. classification: 42A63, 42A50, 42A20, 28A80.



1206 Gady KOZMA & Alexander OLEVSKĬI

It is not difficult to translate this theorem to the language of Fourier coef-
ficients. One then gets

dimK = sup
{
α : ∃µ supported on K with

∞∑
n=−∞

|µ̂(n)|2

|n|1−α + 1 <∞

}
.

(1.1)
Beurling showed that one may replace measures with arbitrary (Schwartz)
distributions. The following version of Frostman’s theorem thus holds ([2]
or [7, p. 40]),

Theorem A. — Let 0 < α 6 1. Then
(i) If there is a (non-trivial) distribution S supported on K such that

∞∑
n=−∞

|Ŝ(n)|2

|n|1−α + 1 <∞, (1.2)

then dimK > α.
(ii) If dimK > α then there is probability measure S, satisfying (1.2).

We will show that a one-side estimate of Ŝ is already sufficient in (i).

Theorem 1.1. — Suppose that there is a non-trivial Schwartz distri-
bution S supported on K with

−1∑
n=−∞

|Ŝ(n)|2

|n|1−α
<∞. (1.3)

Then dimK > α.

We denote by D∗ the space of Schwartz distributions, and by D∗(K) the
space of Schwartz distributions supported on some compact K.

Corollary. — If there is an S ∈ D∗(K) with Ŝ(n) = O(|n|−α/2),
n < 0 then dimK > α.

Somewhat reminiscent results have to do with symmetry properties of
individual measures. For example, a theorem of Rajchman ([19] or [10,
§1.4]) states that for any given complex measure µ, if limn→∞ µ̂(n) = 0 then
it follows that limn→−∞ µ̂(n) = 0. See [14] for an interesting generalization.
Another interesting result is that of Hruščev and Peller [5, Corollary 3.26],
which state that for any complex measure µ, if

∞∑
n=1

|µ̂(n)|2

n
<∞

ANNALES DE L’INSTITUT FOURIER



SINGULAR DISTRIBUTIONS AND DIMENSION 1207

then also
−1∑

n=−∞

|µ̂(n)|2

|n|
<∞.

Such a result cannot hold with |n| replaced by |n|1−α for some α > 0.
Indeed,

∞∑
n=1

eint

n1−α ∈ L
1 ∀α > 0

(see e.g. [21, chap. V] where the cos and sin terms are handled indepen-
dently). Hence one can construct L1 examples with any desired polynomial
tail decay on the left and independently on the right.

Question. Does this symmetry result still hold if n is replaces by n logn?

It is occasionally useful to have the following terminology

Definition. — For a Schwartz distribution S we define its analytic part
as the distribution S′ satisfying

Ŝ′(n) =
{
Ŝ(n) n > 0
0 otherwise.

The anti-analytic part is S − S′.

Proof of theorem 1.1. Let us first reduce the general case to the case
that α = 1. Suppose by contradiction that

dimK < α. (1.4)

By convolution with an appropriate measure we want to prepare a new
distribution, S′ supported by a compact of dimension < 1 such that the
anti-analytic part of S′ would belong to L2(T). This will lead to a contra-
diction. The measure will be taken from the following result of Salem:

Lemma 1.2. — For every δ , 0 < δ < 1 there is a compact set E ⊂ T
such that

(i) dimMink(E) 6 δ;
(ii) For every β < δ there exists a positive measure µβ supported on

E such that |µ̂β(n)| 6 C|n|−β/2.

This result is essentially due to Salem but all references we could find
were for the usual Hausdorff dimension while we need the Minkowski di-
mension. We recall that dimMink, the Minkowski dimension (also known as

TOME 63 (2013), FASCICULE 4



1208 Gady KOZMA & Alexander OLEVSKĬI

the upper box dimension) is defined by

dimMink(E) = lim
ε→0

log Cov(E; [0, ε])
log 1/ε

where Cov(E;A) is the cover number of the set E by the set A i.e. the
minimal number of translates of A required to cover E. Directly from the
definition we see that dimMink(E) > dimHaus E. Of course, by Frostman’s
theorem clause (ii) implies that dimHaus > δ so in fact the set E of lemma
1.2 satisfies dimHaus(E) = dimMink(E) = δ. A common way to refer to
Frostman and Salem’s results in the literature is via the notion of the
Fourier dimension [6, §17]:

Definition. — For a compact set K ⊂ T the supremum of numbers a
such thatK supports a positive (non-zero) measure µ with |µ̂(u)|2 6 C/|u|a
is known as the Fourier dimension of K. We denote it by dimF(K).

With this definition we have the following succinct statements
Frostman’s theorem: dimF(E) 6 dimHaus(E).
Salem’s theorem: For every 0 < δ < 1 there exists some E with

dimF(E) = dimHaus(E) = δ.

Lemma 1.2: For every 0 < δ < 1 there exists some E with

dimF(E) = dimHaus(E) = dimMink(E) = δ.

Proof of lemma 1.2. — By [6, chap. 17, thm. 4] the image of any set of
dimension δ/2 by a Brownian bridge is a Salem set. Recall that a Brownian
bridge is B = W +L whereW is usual Brownian motion while L is a linear
term that makes B continuous on the circle (see e.g. [6, §16.3 & §17.5] where
the Brownian bridge is called “the Wiener function”). Thus it remains to
show that the Brownian image of, for example, a Cantor-like set has the
required Minkowski dimension, almost surely. Now, our Cantor set K can
be covered by intervals I1, . . . , IN (N being a power of 2) of length N−2/δ.
By definition, the image of each Ii by Brownian motion is an interval, whose
length has expectation 6 CN−1/δ. Let Xi be the number of intervals of
length N−1/δ required to cover WIi. Then Xi are i.i.d. random variables
with expectation some constant C. We get

ECov
( N⋃
i=1

WIi; [0, N−1/δ]
)
6
∑
i

EXi = NC

The linear term L is negligible in comparison: if Cov(BIi; [0, N−1/δ]) >
Cov(WIi; [0, N−1/δ]) + 1 then this means that the derivative of the linear

ANNALES DE L’INSTITUT FOURIER



SINGULAR DISTRIBUTIONS AND DIMENSION 1209

term must be > N−1/δ which can only happen for a finite number of N .
Hence for all N sufficiently large

ECov(BK; [0, N−1/δ]) 6 ECov
( N⋃
i=1

BIi; [0, N−1/δ]
)
6 NC

and by Tchebyshev’s inequality, for any η > 0,

P(Cov(BK; [0, N−1/δ]) > N1+η) 6 CN−η.

Summing this over N = 2n for all n we get that with probability 1, for all
N sufficiently large Cov(BK; [0, N−1/δ]) 6 N1+η. By the monotonicity of
the covering numbers we can move from a specific sequence of ε, ε = 2−n/δ
to a general ε and lose only a constant. Hence

Cov(BK; [0, ε]) 6 Cε−δ−ηδ

So dimMink(BK) 6 δ+ηδ. Since η > 0 was arbitrary, the lemma is proved.
�

We remark that we use Kahane’s approach to the construction of a Salem
set for convenience only. In fact one may check that Salem’s original ap-
proach ([7, chap. VIII] or [17, §3]) as well as Kaufman’s [9] also give sets
with the correct Minkowski dimension.

We need to consider the Minkowski dimension due to the following lemma

Lemma 1.3. — For any compacts K, E,

dimHaus(K + E) 6 dimHaus K + dimMink(E).

(The Minkowski dimension on the right hand side can not be replaced
by the Hausdorff one, see e.g. [4, example 7.8]).

Proof. — By [16, §8.10 (4)],

dimHaus(K × E) 6 dimHaus(K) + dimMink(E)

and the set K + E is a Lipschitz map of K × E. �

Returning to the proof of Theorem 1.1 take

1− dimK > δ > 1− α (1.5)

and find E and µ from lemma 1.2 with βlemma 1.2 = 1−α. What we would
like to do next is to define a distribution T by T = S ∗µ. However, we have
to consider the unlikely situation that this convolution is 0. Definitely,
though, we may find some m such that T = S ∗ (eimtµ) is not zero and
we define T this way. eimtµ still satisfies the crucial property of µ i.e.
|êimtµ(n)| 6 C|n|(α−1)/2. We get

T ∈ D∗(K ′) where K ′ := K + E.

TOME 63 (2013), FASCICULE 4



1210 Gady KOZMA & Alexander OLEVSKĬI

Due to (1.5) and lemma 1.3 we get:

dimK ′ < 1.

(when we do not state which dimension it is, we mean the Hausdorff di-
mension). On the other hand,∑

n<0
|T̂ (n)|2 6

∑
n<0
|Ŝ(n)|2 · C|n|α−1 <∞.

In other words we have reduced the problem to the case that α = 1. Hence
the following lemma concludes the proof:

Lemma 1.4. — Let K be a compact with the Hausdorff measure
Λx log 1/x(K) = 0. In particular, this is satisfied if dimK < 1. Let S ∈
D∗(K). If Ŝ(n) ∈ l2(Z−) then S = 0.

(the notation Ŝ(n) ∈ l2(Z−) is short for
∑
n<0 |Ŝ(n)|2 <∞). We remind

the reader that the Hausdorff measure Λh for an increasing function h with
h(0) = 0 is the natural generalization of the usual α-Hausdorff measure
ones gets by examining

∑
h(diamBi) for a covering of a set by balls Bi.

See e.g. [6, §10.2, remark 4].
Lemma 1.4 is a consequence of results by Dahlberg [3] and Berman [1].

For the convenience of the reader, let us quote the relevant result from [1]
(almost) literally and then show how it implies lemma 1.4.

Theorem B. — Let ω : R+ → R+ satisfy that ω(x)/x is decreasing
and ω′(0) = ∞. Let F be an analytic function on the disk D = {|z| < 1}
satisfying

log |F (z)| 6 Cω(1− |z|)
1− |z| . (1.6)

Let K ⊂ ∂D be a set satisfying.
(a) Λω(K) = 0
(b) For any ζ ∈ ∂D \ K there exists a path ρ in D ending in ζ such

that F is bounded on ρ.
Assume g ∈ L1(T) and

lim inf
r→1

log |F (reit)| 6 g(t) a.e. (1.7)

Then log |F (z)| 6 G(z) for all z ∈ D, where G(z) is the harmonic extension
of g to D.

See [1], the corollary to theorem 5 on page 479. Actually, the theorem
there is more general: all conditions are necessary only on an arc γ (except
for a very mild global growth condition) and the result is that log |F | 6 G
in a neighborhood of γ.

ANNALES DE L’INSTITUT FOURIER



SINGULAR DISTRIBUTIONS AND DIMENSION 1211

Proof of lemma 1.4. — Examine the analytic function

F (z) =
∞∑
n=0

Ŝ(n)zn.

We need two properties of F :
(i) For every u 6∈ K, the limit limz→eiu F (z) exists and is finite.
(ii) The (a.e. defined) limit function f(u) = limz→eiu F (z) is in L2(T).

We remark on (i) that we need much less — we only need that the limit
exists along some path ρ, e.g. radially. But as we will see, the function F
is continuous in a neighborhood of u.

To show property (i) write, for z ∈ D

F (z) =
∞∑
n=0

zn
∫
S(t)e−intdt =

∫
S(t)Qz(t) dt

where Qz =
∑∞

0 zne−int = 1
1−ze−it (this is the kernel of the Cauchy trans-

form, which is also the sum of the Poisson kernel and the conjugate Pois-
son kernel, but this is not important at this point). Note that because S
is a distribution, the notation S(t) is slightly misleading — the integral∫
S(t)Qz(t) dt though is well defined. Let ψ be a C∞ function supported

on [u− ε, u+ ε] with ψ ≡ 1 on [u− 1
2ε, u+ 1

2ε], where ε = 1
2 dist(u,K). Then∫

S(t)Qz(t)ψ(t) dt = 0

because ψ is 0 on a neighborhood of K and S is supported on K. On the
other hand,

lim
z→eiu

∫
S(t)Qz(t)(1− ψ(t)) dt =

∫
S(t) (Qeiu(t)(1− ψ(t))) dt

since after multiplication by 1 − ψ(t) we get that Qz(1 − ψ(t)) is smooth
and its derivatives depend continuously on z all the way up to eiu. This
shows that the limit function f exists and is finite outside K i.e. proves
property (i).
For property (ii) examine the usual Poisson kernel

Pz(t) =
∞∑
n=0

zne−int +
−1∑

n=−∞
z̄neint = 1− |z|2

1− 2|z| cos(t− arg z) + |z|2 .

Any distribution is Abel summable to 0 outside its support [7, Proposition
2, appendix I, p. 162] which means that for any u 6∈ K,

lim
r→1

∫
S(t)Preiu(t) = 0.

TOME 63 (2013), FASCICULE 4



1212 Gady KOZMA & Alexander OLEVSKĬI

and hence

f(u) = lim
r→1

∫
S(t) (Qreiu(t)− Preiu(t)) dt.

However, Q− P = −
∑∞

1 z̄neint so we get

f(u) = lim
r→1

∞∑
n=1
−Ŝ(−n)

(
re−iu

)n
But

∑∞
1 |Ŝ(−n)|2 <∞! We get that f ∈ L2, showing property (ii).

We now apply Berman’s theorem. Let ω(x) = x log(2/x). We first note
that F satisfies (1.6) because

log |F (z)|= log
( ∞∑
n=0

Ŝ(n)zn
)
6 log

( ∞∑
n=0

(C + nC)|z|n
)
6C log

(
1

1− |z|

)
(the middle inequality holds because any Schwarz distribution S has that
Ŝ grows no faster than polynomially). Next, K satisfies (a) by assumption
and (b) from property (i) which shows that we may take ρ to be simply
the radius. Define now

g(t) = max{0, log |f(t)|}.

g is in L1 because f ∈ L2 — we cannot control (log f)− but (log f)+ is
definitely well-behaved. We get (1.7) again from the continuity of F . Hence
Berman’s theorem holds and we get log |F | 6 G, where G is as in Berman’s
theorem namely the harmonic extension of g to D. To estimate G we note
that by definition G(z) =

∫
Pz(t)g(t) dt, and hence by Jensen’s inequality,

e2G(z) = exp
(∫

T
Pz(t)2g(t) dt

)
6
∫
T
Pz(t)e2g(t) dt. (1.8)

This observation gives that F is in the Hardy space H2 because∫
|z|=r

|F (z)|2 d|z| 6
∫
|z|=r

e2G(z) d|z|
(1.8)
6
∫
|z|=r

∫
T
Pz(t)e2g(t) dt d|z| =

=
∫
T
e2g(t) dt 6 2π +

∫
T
|f(t)|2 dt <∞.

This however is impossible: if F ∈ H2 then by the definition of F we get
that

∑∞
n=0 |Ŝ(n)|2 < ∞ and since we already know that for the negative

Fourier coefficients we get that S is an L2 function. But it is supported on
K which has zero measure. Hence it is identically 0. �

ANNALES DE L’INSTITUT FOURIER



SINGULAR DISTRIBUTIONS AND DIMENSION 1213

Question. Frostman’s theorem for the case α = 0 states that a compact
K supports a distribution S with∑

n

|Ŝ(n)|2

|n|+ 1 <∞

if and only if it has positive logarithmic capacity [7, chapter III, theorem
V]. Does this theorem have a one-sided analog? We recall again the theorem
of Hruščev and Peller which states that for any measure µ, the one-sided
estimate

∑
n>0 |µ̂(n)|2/n < ∞ implies the two-sided estimate above. So

the question is really only about distributions.

II

There is a delicate difference between the two-sided and one-sided results.
The condition (1.2) in fact implies that the compact K has positive α-
measure, see [6, §10.3, theorem 2, p. 132]. The condition (1.3) does not (at
least for α = 1). Indeed, the following, quite surprising, result was proved
in [11]

Theorem 2.1. — There exist a singular (non-trivial) pseudo-function
S such that Ŝ ∈ l2(Z−).

(recall that a pseudo-function is a distribution with lim|n|→∞ Ŝ(n) = 0).
This is surprising because it follows that the L2 function f(t) =∑
n<0 Ŝ(n)eint has an a.e. converging representation by an analytic sum

which is different from its Fourier expansion. However, such representa-
tions are unique (by Privalov’s theorem). Thus theorem 2.1 contradicted a
long-established view that if a method of representation by a trigonometric
expansion is unique, it must be the Fourier expansion. We named the space
of functions that have an analytic representation of this sort PLA. See [11]
for more details.
Theorem 2.1 can be strengthened to show that the anti-analytic am-

plitudes of S may vanish faster then any power of 1/|n|, see [12], where
the precise threshold for the decay is found. The class PLA was further
analyzed in [13].
Our goal now is to find the threshold for the size of support in The-

orem 2.1 in terms of Hausdorff Λ-measure. By lemma 1.4 we see that if
Λx log 1/x(K) = 0, no such example may exist, and the condition that the
positive Fourier coefficients tend to 0 is not needed for this (the assumption
that S is a Schwartz distribution does imply that the positive coefficients

TOME 63 (2013), FASCICULE 4



1214 Gady KOZMA & Alexander OLEVSKĬI

do not grow faster than polynomial). We now show that this condition is
precise.

Theorem 2.2. — There exist a non-trivial pseudo-function S with
Ŝ(n) ∈ l2(Z−) supported on a compact of finite t log 1/t-Hausdorff measure.

The idea of the proof is as follows. Take the natural measure µ on some
symmetric compact of the exact size. Extend it to a harmonic function
on the disk, and let F = eµ+iµ̃ be an analytic function inside the disk.
Let f be its almost-everywhere boundary limit. S = F − f is the required
object, except it might not be a pseudo-function. To solve this problem we
introduce a random perturbation in the compact (and hence in µ, F , f
and S). If one does not require from S to be a pseudo-function then the
probabilistic part of the proof is not needed. We shall therefore note in the
proof what is needed to get the simpler result, which we shall refer to as
“the corollary”:

Corollary. — There exist a non-trivial Schwartz distribution S with
Ŝ(n) ∈ l2(Z−) supported on a compact of finite t log 1/t-Hausdorff measure.

Question. What about the analog for α < 1? Namely, is it true that for
any α < 1 there exists a pseudo-function S supported on a set of zero
Λxα-Hausdorff measure with

∑
n<0

∣∣∣Ŝ(n)
∣∣∣2

|n|1−α
<∞?

Proof of theorem 2.2 and of the corollary. As mentioned above, our con-
struction is similar to that of [11] in that we take a singular measure µ and
define F = eµ+iµ̃. For the theorem we will take µ to be random, an idea
used also in [12], to get improved smoothness of the Fourier transform, but
for the corollary that will not be needed. Here are the details. Define

σn = 2π
n2n , τn = 1

6(σn−1 − 2σn) n > 0. (2.1)

Hence,
τn
σn

= 1
3(n− 1) . (2.2)

Let s(n, k) be a collection of numbers between 0 and 1, for each n ∈ N and
each 0 6 k < 2n. Most of the proof will hold for any choice of s(n, k), but in
the last part we shall make them random, and prove that the constructed
function will have the required properties for almost any choice of s(n, k).

ANNALES DE L’INSTITUT FOURIER



SINGULAR DISTRIBUTIONS AND DIMENSION 1215

For the corollary one may take them to be 0. Define now inductively inter-
vals I(n, k) = [a(n, k), a(n, k) +σn] (we call these I(n, k) “intervals of rank
n”) using the following: I(0, 0) = [0, 2π] and for n > 0, 0 6 k < 2n

a(n+ 1, 2k) = a(n, k) + τn+1(1 + s(n+ 1, 2k))
a(n+ 1, 2k + 1) = a(n, k) + 1

2σn + τn+1(1 + s(n+ 1, 2k + 1)) (2.3)

In other words, at the nth step, inside each interval of rank n (which has
length σn), situate two disjoint intervals of rank n + 1 of lengths σn+1 in
random places (but not too near the boundary of I(n, k) or its middle).
Define

K :=
∞⋂
n=1

Kn, Kn :=
2n−1⋃
k=0

I(n, k).

K◦ := eiK K◦n := eiKn .

Note that |Kn| = 2π
n and hence K has zero measure and finite Λt log 1/t-

measure. Define a measure µ by the weak limit of the measures with density
1
|Kn|1Kn ,

µ = lim
n→∞

1
|Kn|

1Kn .

It is easy to see that the limit exists and is supported on K. However, we
will need later on a more quantitative version of this convergence. Define
therefore

gn = 1
|Kn|

1Kn

and let Gn be the harmonic extension of gn to the disk D.

Lemma 2.3. — For any z ∈ D \K◦n

|Gn+1(z)−Gn(z)| 6 C

2nd(z,K◦n) . (2.4)

Further, this holds also for the conjugate harmonic functions G̃n,

|G̃n+1(z)− G̃n(z)| 6 C

2nd(z,K◦n) . (2.5)

Proof. — For any n and k,
∫
I(n,k) gn = 2−n. Subtracting we get∫

I(n,k)
(gn+1(x)− gn(x)) dx = 0. (2.6)

and because gn+1 − gn is non-zero only on the intervals I(n, k),∣∣∣ ∫ u

t

gn+1(x)− gn(x) dx
∣∣∣ 6 2−n ∀t, u ∈ [0, 1], ∀n (2.7)

TOME 63 (2013), FASCICULE 4



1216 Gady KOZMA & Alexander OLEVSKĬI

Write G(z) =
∫
T g(t)Pz(t), where Pz is the Poisson kernel. We divide into

two cases: if 1− |z| > 1
2d(z,K◦n) then∫
T
|P
′

z| 6
C

(1− |z|) 6
C

d(z,K◦n) .

(the first inequality is a well known property of the Poisson kernel). On
the other hand, if 1− |z| 6 1

2d(z,K◦n) then gn+1 − gn is zero in an interval
J := [t − cd(z,K◦n), t + cd(z,K◦n)] for some c sufficiently small, where t is
given by eit = z/|z|, and ∫

T\J
|P
′

z| 6
C

d(z,K◦n) .

In either case , a simple integration by parts gives (2.4) on D. Finally, on
∂D\K we have Gn+1(eit)−Gn(eit) = gn+1(t)−gn(t) = 0 for every t 6∈ Kn.
The proof for G̃n is identical except the Poisson kernel Pz has to be

replaced with the conjugate kernel Qz. �

Let G be the harmonic extension of µ into the unit disc i.e. the Poisson
transform of µ (equivalently you may define G as the limit of the Gn). Let
G̃ be the harmonic conjugate of G. Let δ ∈ (0,1) be some sufficiently small
number (we will fix its value later). Let F = exp

(
δ(G+ iG̃)

)
. We note the

following properties of F
(i) F is unbounded in the unit disc.
(ii) F has a boundary limit at almost every point of the boundary of

the disk, and this limit is uniform on every closed interval disjoint
from K◦. Denote the boundary limit by f ,

f(t) := lim
z→eit

F (z).

(iii) The function f is bounded.
All properties are simple. The first follows from the fact that for any t ∈ K,
limz→eit G(z) =∞ and |F (z)| = eδG(z). The second follows because G and
G̃ have boundary limits outside of K — recall that G is the harmonic
extension of a measure µ supported on the compact K. The third follows
because for any t 6∈ K limz→eit G(z) = 0 and hence |f(t)| = 1.
We now define our distribution S by “F − f” or formally by

Ŝ(m) = F̂ (m)− f̂(m)

where F̂ are the Taylor coefficients of the analytic function F at 0 namely

F (z) =
∞∑
m=0

F̂ (m)zm F̂ (−m) = 0∀m ∈ N
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and f̂ are the Fourier coefficients of f . Because F̂ (−m) = 0 and f ∈ L2 we
immediately get that Ŝ ∈ l2(Z−). The uniform convergence of F outside K
shows that S is supported onK. Thus, for the corollary it is enough to show
that S is a Schwartz distribution i.e. that Ŝ(m) 6 CmC for some constant
C, while for the theorem it is necessary to show that S is a pseudo-function
i.e. that

lim
m→∞

Ŝ(m) = 0.

Since this holds for f , we need only verify that F̂ (m) → 0, with probabil-
ity 1.

The Taylor coefficients of F . We will now show that with probability
1, F̂ (m) → 0 as m → ∞. The first step is to define Fn = eδ(Gn+iG̃n) and
find some n such that F̂n(m) approximates F̂ (m). Summing (2.4) and (2.5)
over n we get

|(Gn + iG̃n)(z)− (G+ iG̃)(z)| 6 C

(1− |z|)2n .

Fix, therefore, n = n(m) := dC logme for some C sufficiently large, and
get, for every z with |z| = 1− 1

m that |(Gn+ iG̃n)(z)− (G+ iG̃)(z)| 6 1/m.
Now,

sup
z∈D
|Gn(z)| = sup

t∈[0,2π]
|gn(t)| = 1

|Kn|
= n

so |Fn(z)| 6 eδn. Hence for |z| = 1− 1
m ,

|Fn(z)− F (z)| 6 |Fn(z)||1− exp(δ((Gn + iG̃n)(z)− (G+ iG̃)(z)))|

6 C
eδn

m
(2.8)

and if δ is taken sufficiently small, this is 6 Cm−1/2. Finally we use

F̂ (m) = 1
m!F

(m)(0) =
∫
|z|=1−1/m

z−m−1F (z) dz

so

|F̂n(m)− F̂ (m)| =

∣∣∣∣∣
∫
|z|=1−1/m

z−m−1(Fn(z)− F (z)) dz

∣∣∣∣∣ 6 Cm−1/2 (2.9)

and we see that it is enough to calculate F̂n(m). At this point the proof of
the corollary is complete. Indeed, we may write

F̂n(m) 6 ‖Fn‖2 6 e
δn 6 mδC

and hence F̂ (m) 6 CmC , S is a Schwartz distribution and the corollary is
proved. From now on we focus on proving the theorem.
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Since Fn is a bounded function on the disk, its Taylor coefficients at 0
are identical to the Fourier coefficients of its boundary value. Denote the
boundary value by fn(t) = Fn(eit). Thus we have reduced our problem to
that of estimating

f̂n(m) =
∫
fn(t)e−imt dt.

Now, fn = eδ(gn+ig̃n) so on Kn it is large (|fn(t)| = eδn for any t ∈ Kn)
while outside of Kn it has absolute value 1. Let us first show that the part
outside of Kn is irrelevant. As in (2.8) above we use lemma 2.3 and sum
over n. We get

|fn(t)− f(t)| 6 min
(

2, C

2nd(t,K)

)
∀t 6∈ Kn

and by integrating∫
[0,2π]\Kn

|fn(t)− f(t)| dt 6
∫ 2π

0
min

(
2, C

2nd(t,K)

)
dt −−−−→

n→∞
0

since K is a compact of measure zero. The convergence above is uniform
in the choice of the translations s(n, k) that we used to construct K. Since
f̂(n)→ 0, f being a bounded function, we get that it is enough to show∫

Kn

fn(t)e−imt dt→ 0 (2.10)

where the limit is as m→∞ and n = dC logme. Here is where we will use
that Kn was a random set, and we will show that this convergence holds
for almost every choice of s(n, k).

Probability. Take s(n, k) to be independent and uniformly distributed on
[0, 1]. We shall estimate the integral (2.10) by moment methods. Unfortu-
nately, it seems we need the fourth moment. We start with a lemma that
contains the calculation we need without referring to analytic functions

Lemma 2.4. — Let Ii be 4 intervals and let τ, α, β > 0 be some numbers.
Let h1, h2, h3 be functions satisfying∫

Ii

|hj | 6 α, i = j or i = 4 and j = 3 (2.11)

|hj(x)| = 1, |h′j(x)| 6 β, |h′′j (x)| 6 β2 (2.12)
∀x ∈ Ii + [−τ, τ ] otherwise

where “+” stands for regular set addition. See table 1. Let t1 and t2 be
two random variables, uniformly distributed on [0, τ ], and let t3 = t4 = 0.
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Define
f(x) = ft1,t2(x) := h1(x− t1)h2(x− t2)h3(x). (2.13)

Then

E :=

∣∣∣∣∣E
( 4∏
i=1

∫
Ii+ti

f(xi)e−imxi dxi

)∣∣∣∣∣ 6 C α4

m2

(
max β, 1

τ

)2
. (2.14)

Proof. — See [12, lemma 9, page 1050]. The proof is essentially nothing
more than two integrations by parts, each one giving a 1

m factor (from
integrating e−imx) and a β factor from differentiating the h-s. The 1

τ factors
come from the boundary conditions. �

I1 I2 I3 I4

h1

∫
I1

|h1| 6 α h
(k)
1 6 βk h

(k)
1 6 βk h

(k)
1 6 βk

h2 h
(k)
2 6 βk

∫
I2

|h2| 6 α h
(k)
2 6 βk h

(k)
2 6 βk

h3 h
(k)
3 6 βk h

(k)
3 6 βk

∫
I3

|h3| 6 α
∫
I4

|h3| 6 α

Table 1. Relations between the functions h and the intervals I. k is 0,
1 or 2.

Continuing the proof of the theorem, for every 0 6 k < 2n denote

Ik =
∫
I(n,k)

fn(x)e−imx dx

Recall that on I(n, k) |fn| = eδn, so

|Ik| 6
∫
I(n,k)

|fn(x)| = 2π
n2n e

δn =: α. (2.15)

In other words, α = α(n) is a bound for |Ik| independent of k.

Lemma 2.5. — Let 0 6 k1, k2, k3, k4 < 2n and let 1 6 r < n, and
assume that the I(n, ki) belong to at least three different intervals of rank
r. Then

|E(Ik1Ik2Ik3Ik4)| 6 α4 Cn
2

m2τ3
r

.

(recall that τr were defined in (2.1))
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Proof. — Define q1, . . . , q4 using I(n, ki) ⊂ I(r, qi). We may assume with-
out loss of generality that the two qi-s which may be equal are q3 and q4. Let
X be the σ-field spanning all s except s(r, q1) and s(r, q2). We shall show

|E(Ik1Ik2Ik3Ik4 |X )| 6 α4 Cn
2

m2τ3
r

and then integrating over X will give the result. We note that conditioning
on X is in effect fixing everything except the positions of I(r, q1) and I(r, q2)
inside I(r−1, bqi/2c). Denote Jj := I(r, qj) (j = 1, 2) and J3 = T\(J1∪J2).
Assume for a moment that s(r, q1) = s(r, q2) = 0 and define, using this as-
sumption,

ηj := gn|Jj j = 1, 2, 3, hj := eηj+iη̃j ,

Ii := I(n, ki) i = 1, 2, 3, 4.
(2.16)

Under the assumption s(r, q1) = s(r, q2) = 0 we clearly have fn = h1h2h3
and when we remove this assumption, the only change is a translation of
h1 and h2. In other words, if we define ti = s(r, qi)τr then fn(x) = h1(x−
t1)h2(x− t2)h3(x). Examining (2.13) we see that |E(Ik1Ik2Ik3Ik4 |X )| = E

where E is defined by (2.14); where the Ii of (2.14) are the same as those
of (2.16); and where the τ of (2.14) is τr and where the α of (2.11) is our
α. To make (2.14) concrete we need to specify a value for the β of (2.12)
and prove that it holds. We define

β = C1
n

τ
3/2
r

for some sufficiently large constant C1 to be fixed later. Notice that β is
obviously larger than 1/τr. With all these, lemma 2.5 would follow from
lemma 2.4 once we show (2.12).
Examining the definitions of ηj and I(n, k) it is easy to see that ηj(x) = 0

for x ∈ Ii + [−τ, τ ] when i 6= j except when j = 3 and i = 4 (recall that
in (2.3) we left a little space in the sides of the intervals — this is the
reason). This immediately shows |hj(x)| = 1. Further, h′j = hj(η′j + iη̃′j)
gives |h′j | = |η̃′j | and h′′j = hj((η′j+ iη̃′j)2 +η′′j + iη̃′′j ) gives |h′′j | 6 |η̃′j |2 + |η̃′′j |.
Now, the derivatives of η̃j have the representations

η̃′j(x) =
∫
T
ηj(x− t)H ′(t) dt η̃′′j (x) =

∫
T
ηj(x− t)H ′′(t) dt

where H is the Hilbert kernel. This again works because ηj is zero in a
neighborhood of x, otherwise there would be extra terms (the derivatives
of H are distributions with a singular part at 0, but here we may consider
them as just functions). We may therefore estimate

η̃′j(x) 6 ‖η‖2
∥∥H ′|T\[−τr,τr]

∥∥
2 η̃′′j (x) 6 ‖η‖2

∥∥H ′′|T\[−τr,τr]
∥∥

2 . (2.17)
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Now, it is well known that for any D > 0, the Dth derivative of H satisfies

|H(D)(t)| 6 C(D)
|eit − 1|D+1 . (2.18)

So ∥∥H ′|[−τr,τr]c
∥∥

2 ≈ τ
−3/2
r

∥∥H ′′|[−τr,τr]c
∥∥

2 ≈ τ
−5/2
r .

and since ‖η‖2 6 Cn we get the estimate we need:

|h′j | 6 Cτ−3/2
r n |h′′j | 6 Cτ−3

r n2.

We may now fix the value of C1 from the definition of β. With this the
conditions of lemma 2.4 are fulfilled and we are done. �

End of the proof of theorem 2.2. — We return to the bound on

X :=
∫
Kn

fn(t)e−imt dt.

We shall do so by estimating E|X|4. Let

E(k1, k2, k3, k4) :=
∣∣∣E∏ Iki∣∣∣

let r(k1, . . . , k4) be the minimal r such that the I(n, ki)-s are contained in
at least 3 distinct intervals of rank r. A simple calculation shows

#{(k1, . . . , k4) : r(k1, . . . , k4) = r} ≈ 24n−2r.

If τr is too small then the estimate of lemma 2.5 is useless and it would
be better to estimate |E(k1, . . . , k4)| 6 α4. Let R be some number. Then
for large r we have the estimate

E1:=
∑

r(k1,...,k4)>R

E(k1, . . . , k4)6Cα424n−2R
(2.15)
6 Ce4δn2−2R6CmCδ2−2R.

(2.19)
For small r we use the lemma to get a better estimate. Examine one such

k1, . . . , k4 and let r = r(k1, . . . , k4). Lemma 2.5 gives

E(k1, . . . , k4) 6 α4 Cn
2

m2τ3
r

= α4

m2−o(1)τ3
r

.

Therefore

E2 : =
∑

r(k1,...,k4)<R

E(k1, . . . , k4) 6 α424nm−2+o(1)
R∑
r=1

2−2rτ−3
r

(2.1,2.15)= m−2+Cδ+o(1)
R∑
r=1

2r+o(r) = m−2+Cδ+o(1)2R+o(R). (2.20)
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Taking R =
⌊ 2

3 log2 m
⌋
and summing (2.19) and (2.20) we get

E|X|4 6 m−4/3+Cδ+o(1). (2.21)

With δ sufficiently small this is summable. Hence

E
∑
m

|Xm|4 =
∑

E |Xm|4 <∞

In particular, with probability 1, Xm → 0. As remarked above, this shows
that f̂n(m)→ 0 and hence F̂ (m)→ 0 which concludes the theorem. �

Let us remark that we do not know if the probabilistic part of the proof
is really necessary. In fact it is quite possible that the non-probabilistic
construction (i.e. setting all s(n, k) to 0) also satisfies that F̂ (m)→ 0. What
we do know is that the theorem does not follow formally from the corollary,
i.e. there exists a singular distribution S with Ŝ(n) ∈ l2(Z−) which is not
a pseudo-function. The construction is very similar to that of the theorem
except one takes δ — the δ from the definition F = exp(δ(G+iG̃)) — large
rather than small. It then follows that ‖Fn‖2 is a large power of m leading
to F̂ (m) being unbounded. We omit all other details.

III

Let now K be some fixed compact. Suppose K supports a non-trivial
measure with some one-sided smoothness property. Does it imply that K
in fact supports a measure with a two-sided property? What about distri-
butions? We summarize some relations of this sort in the tables in figure 1.
Each arrow denotes an implication which holds for any compact. For ex-

ample, the arrow labelled “B” in the top right corner is a result of Beurling
that any compact K which supports a distribution S with∑

|Ŝ(n)|2|n|α−1 <∞

also supports a measure µ with the same property [2]. In the top-right table
we assume α < 1 and in the bottom-left 2 < q <∞. The abbreviations are
KO for [11], Ri for the Riesz analyticity theorem, PS for Piatetski-Shapiro
[18] and Ra for Rajchman [19]. The arrow marked LO comes from [15]
and noting that the set constructed in [15] is a Helson set, so it cannot
support even a measure µ with µ̂(n) → 0. The unmarked arrow on the
top-left is trivial, while the unmarked arrow on the bottom-right and the
two unmarked arrows on the bottom left follow from the other arrows in
their diagrams. All missing arrows are unknown to us.
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Distribution Measure

∞∑
n=−∞

|Ŝ(n)|2

n1−α <∞

∞∑
n=0

|Ŝ(n)|2

n1−α <∞

Distribution Measure

KO

KO Ri

B

PS

Ra

Distribution MeasureDistribution Measure

∞∑
n=0

|Ŝ(n)|2 <∞

∞∑
n=−∞

|Ŝ(n)|2 <∞

|n| → ∞

n→∞
Ŝ(n)→ 0

∞∑
n=0

|Ŝ(n)|q <∞

Ŝ(n)→ 0
∞∑

n=−∞

|Ŝ(n)|q <∞

LO

Figure 1. Properties for specific compacts.

Our last result is to show that a certain “non-symmetry” is possible for
singular measures supported by compacts of dimension α < 1. It does not
fit in any of the tables above, but it is very close in spirit.

Theorem 3.1. — Let K be a compact on T , dimF(K) = d > 0. Then
for every p > 2/d there exists a (complex) measure ν ∈M(K) such that

ν̂ ∈ lp(Z−), ν̂ /∈ lp(Z+).

(recall the definition of the Fourier dimension on page 1208).

Lemma 3.2. — Let µ be a non-atomic positive measure, g be a function
in C(T). Then for every δ > 0 there is a positive integer l such that∫

|g(lt)| dµ <
∫
|g(t)|dµ+ δ (3.1)

Proof. — Clearly it is enough to consider g as a positive trigonometric
polynomial. Assume first that µ̂(n) = o(1) as |n| → ∞ (the only case
needed for the proof of Theorem 3.1). Then we have∫

g(lt)dµ =
∑

ĝ(n)µ̂(ln)

and for a large l the right-hand side is < ĝ(0)µ̂(0) + δ which gives (3.1).
For a general non-atomic µ we can use Wiener’s theorem [8, §I.7.11] to

get
1

2N + 1
∑
|n|6N

|µ̂(n)|2 = o(1).
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From this it follows that for a random lN between N/2K and N/K,

lim
N→∞

∑
0<|n|6K

|µ̂(lNn)| = 0

and the argument can be completed in the same way. �

Proof of Theorem 3.1. — Let dimF K = d , p > 2/d. According to
the definition of the Fourier dimension we can find a positive measure
µ ∈ M(K) such that µ̂ ∈ lp(Z). We can assume that ||µ̂||lp(Z) = 1. Now
we define inductively a sequence of (complex) measures νk. Let us describe
the kth step of the induction. Choose a number s = sk > 0 such that
||µ̂||lp(−∞,−s) < 2−k. Set

gk(t) := 4−k
4k∑
j=1

eiq(j)t

By choosing the frequencies s < q(1) < ... < q(4k) sparse enough one can
satisfy the inequality:

||µ̂gk||lp(Z+) > 1/2||µ̂||lp ||ĝk||l1 = 1/2

and it will hold true when replace gk(t) by gk(lt) for l > 1. So for νk :=
gk(l)µ we will have ||νk||lp(Ik) > 1/2 for a certain finite interval Ik ⊂
Z+, and ||νk||lp(Z−) < 2−k. In addition, choosing l from lemma 3.2 for
sufficiently small δ we get from (3.1)

‖νk‖M(T)
(3.1)
< 2 ‖gk‖1 ‖µ‖M(T) 6 2 ‖gk‖2 = 2−k+1

Certainly in the above induction we can get the intervals Ik to be disjoint.
It follows that the measure ν =

∑
νk satisfies the requirements of the

theorem. �

Remark. — The restriction p > 2/d in theorem 3.1 is essentially sharp.
Indeed, take a Salem set K of given dimension, that is dimK = dimF K =
d. Suppose there is a measure ν ∈ M(K) such that ν̂ ∈ lp(Z−) for some
p < 2/d. Then the condition (1.3) is satisfied for some α > d. So Theorem
1.1 implies dimK > d. Which is a contradiction.

Questions.
(i) In the spirit of Theorem 3.1 one may ask the following. Let K be

a compact with dimK = d. Does it follow that for any 0 < α < d

there is a measure µ supported on K with∑
n<0

|µ̂(n)|2

|n|1−α
<∞

∑
n>0

|µ̂(n)|2

|n|1−α
=∞? (3.2)
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The following strict version is also open: Let K be some compact
which supports a measure µ with

∑
n 6=0 |µ̂(n)|2|n|α−1 < ∞. Is it

always true that it also supports a measure µ with (3.2)?
(ii) Does there exist a compact of uniqueness K (see e.g. the book [10]

for sets of uniqueness) which supports a pseudo-measure S with
Ŝ(n) = o(1) as n→ +∞? One can show that Cantor sets with any
ratio of dissection do not (in fact any H(n)-set does not support
such a pseudo-measure, the argument of Piatetski-Shapiro applies,
see [10, chap. III, thm. 4]).

(iii) One can introduce diml(K) as

sup{a : K supports a measure µ such that µ̂ ∈ l2/a(Z)} .

Then dimF K 6 diml K 6 dimK. Is it any easier to construct a
set with dimK = diml K than a Salem set? One may call such sets
“quasi-Salem sets”.
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[10] A. S. Kechris & A. Louveau, Descriptive set theory and the structure of sets of
uniqueness, London Mathematical Society Lecture Note Series, vol. 128, Cambridge
University Press, Cambridge, 1987.
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