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OBSTRUCTIONS FOR DEFORMATIONS OF
COMPLEXES

by Frauke M. BLEHER & Ted CHINBURG (*)

Abstract. — We develop two approaches to obstruction theory for deforma-
tions of derived isomorphism classes of complexes of modules for a profinite group
G over a complete local Noetherian ring A of positive residue characteristic.
Résumé. — Nous développons deux approches de la théorie de l’obstruction des

déformations de classes d’isomorphisme dans la catégorie dérivée des complexes de
A[[G]]-modules lorsque G est un groupe profini et A un anneau local, noethérien
complet, de caractéristique positive résiduelle.

1. Introduction

Two basic tools of deformation theory are obstructions and parameteri-
zations of infinitesimal deformations. Obstructions determine when an ob-
ject has an infinitesimal deformation. When such an obstruction vanishes,
one would like to parameterize all such infinitesimal deformations. In this
paper we develop these tools in the context of deforming derived isomor-
phism classes of complexes Z• of modules for a profinite group G over a
complete local Noetherian ring A having a fixed residue field k of positive
characteristic `.
The infinitesimal deformation problem we consider has to do with lift-

ing the isomorphism class of Z• in the derived category D−(A[[G]]) of
bounded above complexes of pseudocompact A[[G]]-modules to a class in
D−(A′[[G]]) when A′ → A is a surjection of complete local Noetherian

Keywords: Versal and universal deformations, derived categories, obstructions, spectral
sequences.
Math. classification: 11F80, 20E18, 18E30, 18G40.
(*) The first author was partially supported by NSA Grant H98230-06-1-0021 and
NSF Grant DMS0651332.The second author was partially supported by NSF Grants
DMS0500106 and DMS0801030.



614 Frauke M. BLEHER & Ted CHINBURG

rings whose kernel J has square 0. The precise definition of the deforma-
tion functor we consider is given in § 2.
We give two different approaches to obstruction theory. The first, more

naive, method proceeds by first replacing Z• by a bounded above complex
of topologically free pseudocompact A[[G]]-modules. One can then sepa-
rately lift each term of Z• to an A′[[G]]-module. By considering the obstruc-
tion to lifting the boundaries of Z• so as to obtain a complex of A′[[G]]-
modules, one arrives at a lifting obstruction ω(Z•, A′) in Ext2

D−(A[[G]])(Z•,
J⊗̂L

AZ
•). Here ⊗̂L is the left derived tensor product discussed in Re-

mark 2.5.
The second method uses a construction of Gabber and a suggestion of

Illusie. This interprets the obstruction to lifting Z• as the image of a certain
canonical element under a boundary map in a spectral sequence which
computes Ext groups over D−(A′[[G]]) via Ext groups over D−(A[[G]])
and TorA

′
complexes. We will describe this in more detail below.

When the lifting obstruction vanishes, each of the two above meth-
ods describes all local isomorphism classes of lifts of Z• over A′ as a
principal homogeneous space for Ext1

D−(A[[G]])(Z•, J⊗̂
L
AZ
•). The spectral

sequence method has the advantage of identifying this principal homo-
geneous space as a particular coset of Ext1

D−(A[[G]])(Z•, J⊗̂
L
AZ
•) inside

Ext1
D−(A′[[G]])(Z•, J⊗̂

L
AZ
•). This identifies the local deformation functor

as a subfunctor of a functor defined by Ext1 groups over D−(A′[[G]]).
The spectral sequence also gives a natural filtration of Ext1

D−(A′[[G]])(Z•,
J⊗̂L

AZ
•). We obtain an interpretation of the last two terms in this filtration

via exact sequences of complexes which satisfy additional conditions.
The spectral sequence we study is

(1.1) Ep,q2 = ExtpD−(A[[G]])(H
−q(A⊗̂L

A′Z
•), J⊗̂L

AZ
•)

=⇒ Extp+qD−(A′[[G]])(Z
•, J⊗̂L

AZ
•).

Here H−q(A⊗̂L
A′Z

•) is a Tor complex whose jth term is TorA
′

q (Zj , A) (see
Definition 3.5). We will show in Theorem 3.12 that the lifting obstruction
ω(Z•, A′) is the image under d0,1

2 : E0,1
2 → E2,0

2 of a canonical element ι in
E0,1

2 . In Theorem 3.9 (see also Lemmas 3.19 and 3.22), Gabber’s construc-
tion will be shown to arise from the exact sequence of low degree terms

(1.2) 0→ E1,0
∞ → F 0

II → E0,1
2 /W 0,1

2
d0,1

2−−→ E2,0
2

ANNALES DE L’INSTITUT FOURIER



OBSTRUCTIONS 615

where F 0
II = F 0

II Ext1
D−(A′[[G]])(Z•, J⊗̂

L
AZ
•) is the second to last term

in the second filtration of the total cohomology of a bicomplex whose
first total cohomology group is Ext1

D−(A′[[G]])(Z•, J⊗̂
L
AZ
•) and E0,1

∞ =
Ker(d0,1

2 )/W 0,1
2 (see Definition 3.7). We will interpret F 0

II as the set of
extension classes arising from short exact sequences of bounded above com-
plexes of pseudocompact A′[[G]]-modules

(1.3) 0→ X• → Y • → Z• → 0

in which X• is annihilated by J and isomorphic to J⊗̂L
AZ
• in D−(A[[G]]).

We will show in Lemma 3.10 that if (Z•, ζ) has a lift over A′, then the
local isomorphism class of every lift of (Z•, ζ) over A′ contains a lift (Y •, υ)
such that Y • occurs as the middle term of a short exact sequence of the
form (1.3). We will show in Theorem 3.12 that if a lift of (Z•, ζ) over
A′ exists, then the set of all local isomorphism classes of such lifts is in
bijection with the full preimage of ι+W 0,1

2 under the map F 0
II → E0,1

2 /W 0,1
2

in (1.2). This proves that the set of all local isomorphism classes of such
lifts is a principal homogeneous space for E1,0

∞ and it gives a description of
the local isomorphism classes of lifts of (Z•, ζ) over A′ in terms of classes
in F 0

II ⊂ Ext1
D−(A′[[G]])(Z•, J⊗̂

L
AZ
•). Moreover, if a lift of (Z•, ζ) over A′

exists, we will show that Ep,02 = Ep,0∞ for all p. This partial degeneration is
stronger than what is implied by the naive method, which deals only with
the case p = 1.
We now describe the sections of this paper.
In § 2 we recall the definitions and notations needed to state the main

result of [1] concerning the existence of versal and universal deformations of
derived isomorphism classes of bounded complexes V • inD−(k[[G]]). When
V • has only one non-zero term, this is the deformation theory of continuous
G-modules developed by Mazur in [8] using work of Schlessinger in [10].
We also define local isomorphism classes of lifts over A′ of complexes Z•
in D−(A[[G]]) relative to a surjection of complete local Noetherian rings
A′ → A with residue field k having a square zero kernel.
The naive approach to obstruction theory is given in §3.1. An outline of

the spectral sequence approach, beginning with the case of modules rather
than complexes, is given in § 3.2. The details of this approach for complexes
are developed in § 3.3 - § 3.8. The two methods are compared in § 3.9.

The results of this paper are used in [2] to study a new finiteness prob-
lem concerning deformations of arithmetically defined Galois modules. The
particular result needed in [2] is Proposition 4.2, which shows that to de-
termine versal deformations, one can take the quotient of G by any closed

TOME 63 (2013), FASCICULE 2



616 Frauke M. BLEHER & Ted CHINBURG

normal pro-prime-to-` group which acts trivially on V • where ` is the char-
acteristic of k.

Acknowledgments. — The authors would like to thank Ofer Gabber
for explaining his approach to obstruction theory and for many helpful
comments. The authors would also like to thank Luc Illusie for many valu-
able discussions without which this paper would not have been possible. It
was Illusie’s idea to ask Gabber about obstructions, and he also suggested
the idea of formulating Gabber’s obstruction theory in terms of spectral
sequences. The authors would also like to thank the Banff International
Research Station for support during the preparation of part of this paper.

2. Quasi-lifts and deformation functors

Let G be a profinite group, let k be a field of positive characteristic `, and
letW be a complete local commutative Noetherian ring with residue field k.
Define Ĉ to be the category of complete local commutative Noetherian W -
algebras with residue field k. The morphisms in Ĉ are continuousW -algebra
homomorphisms that induce the identity on k. Let C be the subcategory
of Artinian objects in Ĉ. If R ∈ Ob(Ĉ), let R[[G]] be the completed group
algebra of the usual abstract group algebra R[G] of G over R, i.e. R[[G]]
is the projective limit of the ordinary group algebras R[G/U ] as U ranges
over the open normal subgroups of G.

Definition 2.1. — A topological ring Λ is called a pseudocompact ring
if Λ is complete and Hausdorff and admits a basis of open neighborhoods
of 0 consisting of two-sided ideals J for which Λ/J is an Artinian ring.

Suppose Λ is a pseudocompact ring. A complete Hausdorff topological
Λ-module M is said to be a pseudocompact Λ-module if M has a basis
of open neighborhoods of 0 consisting of submodules N for which M/N

has finite length as Λ-module. We denote by PCMod(Λ) the category of
pseudocompact Λ-modules. (If not stated otherwise, our modules are left
modules.)
A pseudocompact Λ-module M is said to be topologically free on a set

X = {xi}i∈I if M is isomorphic to the product of a family (Λi)i∈I where
Λi = Λ for all i.
Suppose R is a commutative pseudocompact ring. A complete Hausdorff

topological ring Λ is called a pseudocompact R-algebra if Λ is an R-algebra
in the usual sense, and if Λ admits a basis of open neighborhoods of 0 con-
sisting of two-sided ideals J for which Λ/J has finite length as R-module.

ANNALES DE L’INSTITUT FOURIER



OBSTRUCTIONS 617

Suppose Λ is a pseudocompact R-algebra, and let ⊗̂Λ denote the com-
pleted tensor product in the category PCMod(Λ) (see [3, §2]). If M is a
right (resp. left) pseudocompact Λ-module, then M⊗̂Λ− (resp. −⊗̂ΛM) is
a right exact functor. Moreover, M is said to be topologically flat, if the
functor M⊗̂Λ− (resp. −⊗̂ΛM) is exact.

Remark 2.2. — Pseudocompact rings, algebras and modules have been
studied, for example, in [4, 5, 3]. The following statements can be found in
these references. Suppose Λ is a pseudocompact ring.

(i) The ring Λ is the projective limit of Artinian quotient rings having
the discrete topology. A Λ-module is pseudocompact if and only if
it is the projective limit of Λ-modules of finite length having the
discrete topology. The category PCMod(Λ) is an abelian category
with exact projective limits.

(ii) Every topologically free pseudocompact Λ-module is a projective
object in PCMod(Λ), and every pseudocompact Λ-module is the
quotient of a topologically free Λ-module. Hence PCMod(Λ) has
enough projective objects.

(iii) Every pseudocompact R-algebra is a pseudocompact ring, and a
module over a pseudocompact R-algebra has finite length if and
only if it has finite length as R-module.

(iv) Suppose Λ is a pseudocompact R-algebra, and M and N are pseu-
docompact Λ-modules. Then we define the right derived functors
ExtnΛ(M,N) by using a projective resolution of M .

(v) Suppose R ∈ Ob(Ĉ). Then R is a pseudocompact ring, and R[[G]]
is a pseudocompact R-algebra.

Remark 2.3. — Let R be an object in Ĉ and letmR be its maximal ideal.
Suppose [(R/mi

R)Xi] is an abstractly free (R/mi
R)-module on the finite

topological space Xi for all i, and that {Xi}i forms an inverse system. De-
fine X = lim

←−
i

Xi and R[[X]] = lim
←−
i

[(R/mi
R)Xi]. Then R[[X]] is a topologi-

cally free pseudocompact R-module onX. In particular, every topologically
free pseudocompact R[[G]]-module is a topologically free pseudocompact
R-module.

Remark 2.4. — Suppose R is an object in Ĉ and Λ = R or R[[G]]. Let
M be a pseudocompact right (resp. left) Λ-module.

(i) If M is finitely generated as a pseudocompact Λ-module, it follows
from [3, Lemma 2.1(ii)] that the functorsM⊗Λ− andM⊗̂Λ− (resp.
−⊗Λ M and −⊗̂ΛM) are naturally isomorphic.

TOME 63 (2013), FASCICULE 2



618 Frauke M. BLEHER & Ted CHINBURG

(ii) By [3, Lemma 2.1(iii)] and [3, Prop. 3.1], M is topologically flat if
and only if M is projective.

(iii) If Λ = R and M is a pseudocompact R-module, it follows from [5,
Proof of Prop. 0.3.7] and [5, Cor. 0.3.8] that M is topologically flat
if and only if M is topologically free if and only if M is abstractly
flat. In particular, if R is Artinian, a pseudocompact R-module is
topologically flat if and only if it is abstractly free.

If Λ is a pseudocompact ring, let C−(Λ) be the abelian category of com-
plexes of pseudocompact Λ-modules that are bounded above, let K−(Λ)
be the homotopy category of C−(Λ), and let D−(Λ) be the derived cat-
egory of K−(Λ). Let [1] denote the translation functor on C−(Λ) (resp.
K−(Λ), resp. D−(Λ)), i.e. [1] shifts complexes one place to the left and
changes the sign of the differential. Note that a homomorphism in C−(Λ)
is a quasi-isomorphism if and only if the induced homomorphisms on all
the cohomology groups are bijective.

Remark 2.5. — Let X•, Y • ∈ Ob(K−(R[[G]])) and consider the double
complex K•,• of pseudocompact R[[G]]-modules with Kp,q = (Xp⊗̂RY q)
and diagonal G-action. We define the total tensor product X•⊗̂RY • to be
the simple complex associated to K•,•, i.e.

(X•⊗̂RY •)n =
⊕
p+q=n

Xp⊗̂RY q

whose differential is d(x ⊗̂ y) = dX(x) ⊗̂ y + (−1)x x ⊗̂ dY (y) for x ⊗̂ y ∈
Kp,q. Since homotopies carry over the completed tensor product, we have
a functor

⊗̂R : K−(R[[G]])×K−(R[[G]])→ K−(R[[G]]).
Using [11, Thm. 2.2 of Chap. 2 §2], we see that there is a well-defined
left derived completed tensor product ⊗̂L

R. Moreover, if X• and Y • are as
above, thenX•⊗̂L

RY
• may be computed inD−(R[[G]]) in the following way.

Take a bounded above complex Y ′
• of topologically flat pseudocompact

R[[G]]-modules with a quasi-isomorphism Y ′
• → Y • in K−(R[[G]]). Then

this quasi-isomorphism induces an isomorphism between X•⊗̂RY ′• and
X•⊗̂L

RY
• in D−(R[[G]]).

Definition 2.6. — We will say that a complex M• in K−(R[[G]]) has
finite pseudocompact R-tor dimension, if there exists an integer N such
that for all pseudocompact R-modules S, and for all integers i < N ,
Hi(S⊗̂L

RM
•) = 0. If we want to emphasize the integer N in this defini-

tion, we say M• has finite pseudocompact R-tor dimension at N .

ANNALES DE L’INSTITUT FOURIER



OBSTRUCTIONS 619

Remark 2.7. — SupposeM• is a complex inK−([[RG]]) of topologically
flat, hence topologically free, pseudocompact R-modules that has finite
pseudocompact R-tor dimension at N . Then the bounded complex M ′

•,
which is obtained fromM• by replacingMN byM ′N = MN/δN−1(MN−1)
and by setting M ′

i = 0 if i < N , is quasi-isomorphic to M• and has
topologically free pseudocompact terms over R.

Hypothesis 2.8. — Throughout this paper, we assume that V • is a
complex in D−(k[[G]]) that has only finitely many non-zero cohomology
groups, all of which have finite k-dimension.

Definition 2.9. — A quasi-lift of V • over an object R of Ĉ is a pair
(M•, φ) consisting of a complex M• in D−(R[[G]]) that has finite pseudo-
compact R-tor dimension together with an isomorphism φ : k⊗̂L

RM
• → V •

in D−(k[[G]]). Two quasi-lifts (M•, φ) and (M ′•, φ′) are isomorphic if there
is an isomorphism f : M• →M ′

• in D−(R[[G]]) with φ′ ◦ (k⊗̂L
f) = φ.

Theorem 2.10. — Suppose that Hi(V •) = 0 unless n1 6 i 6 n2. Every
quasi-lift of V • over an object R of Ĉ is isomorphic to a quasi-lift (P •, φ)
for a complex P • with the following properties:

(i) The terms of P • are topologically free R[[G]]-modules.
(ii) The cohomology group Hi(P •) is finitely generated as an abstract

R-module for all i, and Hi(P •) = 0 unless n1 6 i 6 n2.
(iii) One has Hi(S⊗̂L

RP
•) = 0 for all pseudocompact R-modules S unless

n1 6 i 6 n2.

Proof. — Part (i) follows from [1, Lemma 2.9]. Assume now that the
terms of P • are topologically free R[[G]]-modules, which means in par-
ticular that the functors −⊗̂L

RP
• and −⊗̂RP • are naturally isomorphic.

Let mR denote the maximal ideal of R, and let n be an arbitrary positive
integer. By [1, Lemmas 3.1 and 3.8], Hi((R/mn

R)⊗̂RP •) = 0 for i > n2
and i < n1. Moreover, for n1 6 i 6 n2, Hi((R/mn

R)⊗̂RP •) is a subquo-
tient of an abstractly free (R/mn

R)-module of rank di = dimk Hi(V •), and
(R/mn

R)⊗̂RP • has finite pseudocompact (R/mn
R)-tor dimension at N = n1.

Since P • ∼= lim
←−
n

(R/mn
R)⊗̂RP • and since by Remark 2.2(i), the category

PCMod(R) has exact projective limits, it follows that for all pseudocom-
pact R-modules S

Hi(S⊗̂RP •) = lim
←−
n

Hi
(

(S/mn
RS)⊗̂R/mn

R

(
(R/mn

R)⊗̂RP •
))

for all i. Hence Theorem 2.10 follows. �
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620 Frauke M. BLEHER & Ted CHINBURG

Definition 2.11. — Let F̂ = F̂V • : Ĉ → Sets be the functor which
sends an object R of Ĉ to the set F̂ (R) of all isomorphism classes of quasi-
lifts of V • over R, and which sends a morphism α : R→ R′ in Ĉ to the set
map F̂ (R) → F̂ (R′) induced by M• 7→ R′⊗̂L

R,αM
•. Let F = FV • be the

restriction of F̂ to the subcategory C of Artinian objects in Ĉ.
Let k[ε], where ε2 = 0, denote the ring of dual numbers over k. The set

F (k[ε]) is called the tangent space to F , denoted by tF .

Definition 2.12. — A profinite group G has finite pseudocompact co-
homology, if for each discrete k[[G]]-module M of finite k-dimension, and
all integers j, the cohomology group Hj(G,M) = Extjk[[G]](k,M) has finite
k-dimension.

Theorem 2.13 ([1],Thm. 2.14). — Suppose that G has finite pseudo-
compact cohomology.

(i) The functor F has a pro-representable hull R(G,V •) ∈ Ob(Ĉ)
(c.f. [10, Def. 2.7] and [9, §1.2]), and the functor F̂ is continuous
(cf. [9]).

(ii) There is a k-vector space isomorphism h : tF→Ext1
D−(k[[G]])(V•, V•).

(iii) If HomD−(k[[G]])(V•, V•) = k, then F̂ is represented by R(G,V •).

Remark 2.14. — By Theorem 2.13(i), there exists a quasi-lift (U(G,V •),
φU ) of V • over R(G,V •) with the following property. For each R ∈ Ob(Ĉ),
the map HomĈ(R(G,V•), R)→ F̂ (R) induced by α 7→R⊗̂L

R(G,V•),αU(G,V•)
is surjective, and this map is bijective if R is the ring of dual numbers k[ε]
over k where ε2 = 0.
In general, the isomorphism type of the pro-representable hull R(G,V •)

is unique up to non-canonical isomorphism. If R(G,V •) represents F̂ , then
R(G,V •) is uniquely determined up to canonical isomorphism.

Definition 2.15. — Using the notation of Theorem 2.13 and Remark
2.14, we call R(G,V •) the versal deformation ring of V • and (U(G,V •), φU )
a versal deformation of V •.
If R(G,V •) represents F̂ , then R(G,V •) will be called the universal

deformation ring of V • and (U(G,V •), φU ) will be called a universal de-
formation of V •.

Remark 2.16. — If V • consists of a single module V0 in dimension 0, the
versal deformation ring R(G,V •) coincides with the versal deformation ring
studied by Mazur in [8, 9]. In this case, Mazur assumed only that G satisfies
a certain finiteness condition (Φp), which is equivalent to the requirement
that H1(G,M) have finite k-dimension for all discrete k[[G]]-modules M of

ANNALES DE L’INSTITUT FOURIER



OBSTRUCTIONS 621

finite k-dimension. Since the higher G-cohomology enters into determining
lifts of complexes V • having more than one non-zero cohomology group,
the condition that G have finite pseudocompact cohomology is the natural
generalization of Mazur’s finiteness condition in this context.

We also need to set up some notation concerning local deformation func-
tors.

Definition 2.17. — Let V • be as in Hypothesis 2.8, let A be in Ĉ, and
let (Z•, ζ) be a quasi-lift of V • over A. Let A′ → A in Ĉ be a surjective
morphism in Ĉ whose kernel is an ideal J with J2 = 0.
A ( local) quasi-lift of (Z•, ζ) over A′ is a pair (Y •, υ) consisting of a

complex Y • inD−(A′[[G]]) that has finite pseudocompact A′-tor dimension
together with an isomorphism υ : A⊗̂L

A′Y
• → Z• in D−(A[[G]]). Note that

if (Y •, υ) is a quasi-lift of (Z•, ζ) over A′, then (Y •, ζ◦(k⊗̂L
υ)) is a quasi-lift

of V • over A′.
Two quasi-lifts (Y •, υ) and (Y ′•, υ′) of (Z•, ζ) over A′ are said to be lo-

cally isomorphic if there exists an isomorphism f : Y • → Y ′
• inD−(A′[[G]])

with υ′ ◦ (A⊗̂L
f) = υ.

3. Obstructions

Let V • be as in Hypothesis 2.8, let A be in Ĉ, and let (Z•, ζ) be a quasi-
lift of V • over A. Let A′ → A in Ĉ be a surjective morphism in Ĉ whose
kernel is an ideal J with J2 = 0. In this section, we develop the two different
approaches described in the introduction to finding a lifting obstruction

ω(Z•, A′) ∈ Ext2
D−(A[[G]])(Z•, J⊗̂

L
AZ
•)

which vanishes if and only if (Z•, ζ) can be lifted to A′. The naive approach
is given in § 3.1 while the spectral sequence approach is developed in § 3.2
- § 3.8. The two methods are compared in § 3.9. More precisely, we show
that the lifting obstruction from either method can be obtained from the
other by composing with suitable automorphisms of Z• and J⊗̂L

AZ
•[2],

respectively, in D−(A[[G]]).
Using the results from §2, we can make the following assumption con-

cerning V • and Z•.

Hypothesis 3.1. — Assume V • is as in Hypothesis 2.8 with Hi(V •) = 0
unless −p0 6 i 6 −1. Suppose 0 → J → A′ → A → 0 is an extension of
objects A′, A in Ĉ with J2 = 0. Let B′ = A′[[G]] and B = A[[G]].

TOME 63 (2013), FASCICULE 2



622 Frauke M. BLEHER & Ted CHINBURG

Let (Z•, ζ) be a quasi-lift of V • over A. By Theorem 2.10 and Re-
mark 2.7, we can make the following assumptions: The complex Z• is a
bounded complex of pseudocompact B-modules whose terms Zi are zero
unless −p0 6 i 6 −1. The terms Zi are topologically flat, hence projec-
tive, pseudocompact B-modules for i 6= −p0, and Z−p0 is topologically flat,
hence topologically free, over A.

Remark 3.2. — The functors A⊗̂A′− and B⊗̂B′− are naturally isomor-
phic functors PCMod(B′) → PCMod(B). Similarly to Remark 2.5, one
obtains a well-defined left derived completed tensor product B⊗̂L

B′−. The
functors A⊗̂L

A′− and B⊗̂L
B′− are naturally isomorphic functors D−(B′)→

D−(B).

3.1. A naive approach

In this subsection we describe a naive approach to obstruction theory.
We assume Hypothesis 3.1. Let (Z̃•, ζ̃) be a quasi-lift of V • over A that is
isomorphic to the quasi-lift (Z•, ζ) such that Z̃• is concentrated in degrees
6 −1 and all terms of Z̃• are topologically free pseudocompact B-modules.
For each j ∈ Z, let Y j be a topologically free pseudocompact B′-module
which is a lift of Z̃j over A′ and let ajY : Y j → Z̃j be the composition of the
natural surjection Y j → A⊗̂A′Y j followed by A⊗̂A′Y j

∼=−→ Z̃j . Moreover,
let cjY : Y j → Y j+1 be a homomorphism of pseudocompact B′-modules
such that aj+1

Y ◦ cjY = dj
Z̃
◦ajY for all j. In particular, Y j = 0 for j > 0, and

cjY = 0 for j > −1. Note that cj+1
Y ◦ cjY may be non-zero so that (Y j , cjY )j

is not necessarily a complex. However, (JY j , cjY
∣∣
JY j

)j defines a complex
JY • in C−(B) which is isomorphic to J⊗̂AZ̃• in C−(B). For all j ∈ Z,
define ω̃j : Z̃j → JY j+2 by

(3.1) ω̃j(ajY (y)) = cj+1
Y (cjY (y))

for all y ∈ Y j . Then ω̃ ∈ HomC−(B)(Z̃•, JY •[2]). Let ω0(Z•, A′) be the cor-
responding morphism in Ext2

D−(B)(Z•, J⊗̂AZ•) ∼= HomK−(B)(Z̃•, JY •[2]).
We will show in §3.9 that ω0(Z•, A′) is independent of choices by showing

that ω0(Z•, A′) can be obtained from the lifting obstruction defined by a
spectral sequence by composing with suitable automorphisms of Z• and
J⊗̂AZ•[2], respectively, in D−(B) (see Proposition 3.14).

In particular, by using a fixed versal deformation of V• overR = R(G,V•)
whose terms are topologically free pseudocompact R[[G]]-modules, we can
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assume that if there exists a quasi-lift of (Z•, ζ) over A′, then it is locally
isomorphic to a quasi-lift (Ỹ •, υ̃) of (Z•, ζ) over A′ satisfying Ỹ j = Y j for
all j.
Since ω0(Z•, A′) = 0 in D−(B) if and only if ω̃ is homotopic to zero in

C−(B), we see the following. If there exists a quasi-lift (Ỹ •, υ̃) of (Z•, ζ)
over A′ such that Ỹ j = Y j for all j, then the homotopy hj : Z̃j → JY j+1 =
JỸ j+1 defined by hj ◦ ajY = cjY − d

j

Ỹ
for all j can be used to show that

ω̃ = 0 in K−(B). On the other hand, if ω̃ is homotopic to zero in C−(B),
then the corresponding homotopy can be used to correct the maps cjY to
obtain a complex (Y •, dY ) in C−(B′) which defines a quasi-lift of (Z•, ζ)
over A′.
Suppose now that ω0(Z•, A′) = 0, and let (Y •0 , υ0) and (Y ′•, υ′) be two

quasi-lifts of (Z•, ζ) over A′. As seen above, we can assume without loss of
generality that Y j0 = Y j = Y ′

j for all j. For all j ∈ Z, define β̃jY ′ : Z̃j →
JY j+1 by

(3.2) β̃jY ′(a
j
Y (y)) = djY ′(y)− djY0

(y)

for y ∈ Y j0 = Y j = Y ′
j . Then β̃Y ′ ∈ HomC−(B)(Z̃•, JY •[1]). Let βY ′ be

the corresponding morphism in

Ext1
D−(B)(Z•, J⊗̂AZ•) ∼= HomK−(B)(Z̃•, JY •[1]).

We will show later that this can be used to prove that the set of all local
isomorphism classes of quasi-lifts of (Z•, ζ) over A′ is a principal homoge-
neous space for Ext1

D−(B)(Z•, J⊗̂AZ•), by relating this to the correspond-
ing result obtained from the spectral sequence method. More precisely, we
will show that if the local isomorphism classes of the quasi-lifts (Y •0 , υ0)
and (Y ′•, υ′) of (Z•, ζ) over A′ correspond to the classes η0 and η′, respec-
tively, in Ext1

D−(B′)(Z•, J⊗̂AZ•) by the spectral sequence method, then
the difference η′ − η0 in Ext1

D−(B′)(Z•, J⊗̂AZ•) is uniquely determined by
βY ′ (see Proposition 3.14).

3.2. Outline of the spectral sequence approach

In this subsection we introduce the spectral sequence approach to ob-
struction theory by discussing the case of modules and by then indicating
what adjustments must be made for complexes. This method goes back
to Illusie in [7, §3.1]. It requires more effort than the naive approach, but
as indicated in the introduction, it places the local lifting problem in the
context of studying Ext1 groups.
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Let Z be a pseudocompact B-module which is (abstractly) free and
finitely generated over A. We have a convergent spectral sequence

(3.3) Ep,q2 = ExtpB(TorA
′

q (Z,A), J⊗̂AZ) =⇒ Extp+qB′ (Z, J⊗̂AZ).

This arises in the following way. To find the groups TorA
′

q (Z,A), one chooses
a resolution P • of Z by projective pseudocompact B′-modules. Then
TorA

′

q (Z,A) = H−q(A⊗̂A′P •), and the group Extp+qB′ (Z, J⊗̂AZ) is the group
Hp+q(HomB′(P •, J⊗̂AZ)). The key observation is that since J⊗̂AZ is a B-
module, the complex HomB′(P •, J⊗̂AZ) is canonically isomorphic to the
complex HomB(A⊗̂A′P •, J⊗̂AZ). A Cartan-Eilenberg resolution M•,• of
A⊗̂A′P • is a double complex of projective pseudocompactB-modules which
gives a resolution of each term of A⊗̂A′P • which is compatible with bound-
ary maps and has some additional splitting properties (see [6, §(11.7) of
Chap. 0]). One arrives at a double complex L•,• of B-modules given by
Lq,p = HomB(M−q,−p, J⊗̂AZ) such that

Hp+q(Tot(L•,•)) = Hp+q(HomB(A⊗̂A′P •, J⊗̂AZ)) = Extp+qB′ (Z, J⊗̂AZ).

The spectral sequence (3.3) is then the spectral sequence of L•,• relative to
the second filtration of the total complex Tot(L•,•). We obtain the following
exact sequence of low degree terms associated to the spectral sequence (3.3):

(3.4) 0→ E1,0
2 → Ext1

B′(Z, J⊗̂AZ)→ E0,1
2

d0,1
2−−→ E2,0

2

We now sketch Gabber’s approach to realizing the obstruction to lifting
Z from A to A′ via the spectral sequence (3.3). We can find an exact
sequence

(3.5) 0→ T
δ−→ P 0 ε−→ Z → 0

in which P 0 is a finitely generated projective pseudocompact B′-module.
Applying the functor A⊗̂A′− to (3.5), we obtain a Tor sequence

(3.6) 0→ TorA
′

1 (A,Z) σ−→ A⊗̂A′T
A⊗̂A′δ−−−−→ A⊗̂A′P 0 A⊗̂A′ ε−−−−→ Z → 0.

Applying the functor −⊗̂A′Z to the exact sequence

0→ J → A′ → A→ 0,

we obtain a canonical isomorphism

(3.7) ι : TorA
′

1 (A,Z)→ J⊗̂A′Z = J⊗̂AZ

since A⊗̂A′Z = Z. Combining (3.6) and (3.7) gives an exact sequence

(3.8) 0→ J⊗̂AZ
σ◦ι−1

−−−−→ A⊗̂A′T
A⊗̂A′δ−−−−→ A⊗̂A′P 0 A⊗̂A′ ε−−−−→ Z → 0.
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Let ω(Z,A′) be the class of (3.8) in Ext2
B(Z, J⊗̂AZ). Using the fact that

Ep,q2 = Hp
II(H

q
I (L•,•)) one can show that ω(Z,A′) is the image of

ι ∈ HomB(TorA
′

1 (A,Z), J⊗̂AZ) = E0,1
2

under the boundary map

d0,1
2 : E0,1

2 → E2,0
2

associated to the spectral sequence (3.3).
We now sketch why ω(Z,A′) is the obstruction to lifting Z to a pseu-

docompact B′-module Y which is (abstractly) free and finitely generated
over A′ such that A⊗̂A′Y ∼= Z. If such a lift Y exists, one has an exact
sequence of B′-modules

(3.9) 0→ X → Y → Z → 0

in which X is isomorphic to JY = J⊗̂AZ. The associated Tor sequence

(3.10) 0→ TorA
′

1 (A,Z) f−→ A⊗̂A′X → A⊗̂A′Y
υ−→ Z → 0

has the property that υ is an isomorphism, so f is an isomorphism. Thus
(3.10) has trivial extension class. By constructing a map from (3.6) to (3.10)
which is an identity on the leftmost and rightmost terms we see ω(Z,A′) =
0. Conversely, suppose that ω(Z,A′) = 0. Define D to be the kernel of
the homomorphism A⊗̂A′ε in (3.6). By dimension shifting, ω(Z,A′) = 0
implies that the exact sequence

(3.11) 0→ J⊗̂AZ
σ◦ι−1

−−−−→ A⊗̂A′T
A⊗̂A′δ−−−−→ D = Image(A⊗̂A′δ)→ 0

is split by a homomorphism κ : A⊗̂A′T → J⊗̂AZ of pseudocompact B-
modules. We now define Y to be the pushout of T δ−→ P 0 in (3.5) and
the composition T → A⊗̂A′T

κ−→ J⊗̂AZ. One then has an exact sequence
of the form (3.9) with X = J⊗̂AZ. On identifying f in the resulting se-
quence (3.10) with κ ◦ σ = ι, one sees that f is an isomorphism. Therefore
υ in (3.10) is an isomorphism, which shows Y is a lift of Z.

It follows from the sequence (3.4) of low degree terms that if there exists
a lift of Z over A′, i.e. if ω(Z,A′) = 0, then the set of all local isomorphism
classes of lifts of Z over A′ is in bijection with the full preimage of ι in
Ext1

B′(Z, J⊗̂AZ) and is therefore a principal homogeneous space for E1,0
2 =

Ext1
B(Z, J⊗̂AZ).

We now describe the counterpart of the spectral sequence (3.3) for a
complex Z• in place of Z. Assume Hypothesis 3.1. The main point of
assuming that Hi(V •) = 0 unless −p0 6 i 6 −1 is that this allows us
to work in the abelian categories C0(B) and C0(B′) of bounded above
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complexes that are concentrated in degrees 6 0. Moreover, by insisting
that H0(V •) is zero, we can make sure there exists an acyclic complex
of projective pseudocompact B′-modules P 0,• in C0(B′) together with a
morphism ε : P 0,• → Z• in C0(B′) that is surjective on terms. One can now
generalize the spectral sequence (3.3) by choosing a projective resolution
P •,• of Z• of projective objects in C0(B′) such that P 0,• has the nice
properties above. We then work with a triple complex M•,•,• which is a
Cartan-Eilenberg resolution of A⊗̂A′P •,•. The double complex L•,• of B-
modules which leads to the spectral sequence we require is a partial total
complex of the quadruple complex HomB(M•,•,•, J⊗̂AZ•). The spectral
sequence which results has the form
(3.12)
Ep,q2 = ExtpD−(B)(H

−q
I (A⊗̂A′P •,•), J⊗̂AZ•) =⇒ Extp+qD−(B′)(Z

•, J⊗̂AZ•)

(see also (3.16)). As in the module case, we obtain an exact sequence
of low degree terms, which looks slightly more complicated than the se-
quence (3.4):

(3.13) 0→ E1,0
2 /W 1,0

2 → F 0
II H1(Tot(L•,•))→ E0,1

2 /W 0,1
2

d0,1
2−−→ E2,0

2

(see also (3.24)). Here E1,0
∞ = E1,0

2 /W 1,0
2 , E0,1

∞ = Ker(d0,1
2 )/W 0,1

2 and
F 0
II H1(Tot(L•,•)) is the second to last term in the second filtration of

H1(Tot(L•,•)) = Ext1
D−(B′)(Z•, J⊗̂AZ•). The details of the set-up of the

spectral sequence (3.12) and the sequence of low degree terms (3.13) for
complexes Z• are explained in § 3.3.
To define lifting obstructions, we follow the outlined construction in the

module case given by equations (3.5) – (3.8). We assume as before that P 0,•

is an acyclic complex of projective pseudocompact B′-modules in C0(B′). In
particular, ι is an isomorphism in C−(B) and our candidate for the lifting
obstruction ω(Z•, A′) is an element of Ext2

D−(B)(Z•, J⊗̂AZ•). Using the
definition of L•,• and the projective Cartan-Eilenberg resolution M•,•,• of
A⊗̂A′P •,•, we see, similarly to the module case, that ω(Z•, A′) is the image
of ι under the boundary map d0,1

2 associated to the spectral sequence (3.12)
(see Lemma 3.17).
A complication in the case of complexes compared to the module case is

that in the sequence of low degree terms (3.13) the term F 0
II =

F 0
II H1(Tot(L•,•)) is usually a proper subspace of Ext1

B′(Z•, J⊗̂AZ). There-
fore, we analyze in § 3.5 this subspace F 0

II . We use Gabber’s ideas to see
that F 0

II consists precisely of those elements in Ext1
B′(Z•, J⊗̂AZ) which

can be realized by short exact sequences in C−(B′) of the form

ξ : 0→ X• → Y • → Z• → 0
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where the terms ofX• are annihilated by J and there exists an isomorphism
hξ : X• → J⊗̂AZ• inD−(B). A crucial step in showing this is to rewrite the
elements of F 0

II in terms of morphisms κ ∈ HomD−(B)(A⊗̂A′T •, J⊗̂AZ•)
(see Definition 3.18 and Lemma 3.19). We then use the definition of L•,• and
in particular the triple complex M•,•,• to represent the class in Ext1

B′(Z•,
J⊗̂AZ) given by (ξ, hξ) explicitly as an element in L1,0, and hence as an
element in F 0

II . Finally we analyze the image of E1,0
∞ = E1,0

2 /W 1,0
2 in F 0

II

in (3.13) and describe the map F 0
II → E0,1

2 /W 0,1
2 in (3.13) to show that

every element in F 0
II can be represented by a short exact sequence ξ and

an isomorphism hξ as above. These steps are carried out in the proof of
Lemma 3.21.
The proof that ω(Z•, A′) = 0 if and only if Z• has a quasi-lift over A′

is then done in a very similar way to the module case (see Lemmas 3.22
and 3.25).
Another complication in the complex case is that the left most term in

the sequence (3.13) is E1,0
∞ = E1,0

2 /W 1,0
2 rather than E1,0

2 = Ext1
D−(B)(Z•,

J⊗̂AZ•). As in the module case, we can directly use (3.13) together with
our analysis of F 0

II to show that if ω(Z•, A′) = 0 then the set of all local
isomorphism classes of quasi-lifts of Z• over A′ is a principal homogeneous
space for E1,0

∞ . We then show that the existence of a quasi-lift of Z• over
A′ implies that the spectral sequence (3.12) partially degenerates. More
precisely, we show that the inflation map

InfB
′

B : ExtpD−(B)(Z
•, J⊗̂AZ•)→ ExtpD−(B′)(Z

•, J⊗̂AZ•)

is injective for all p if ω(Z•, A′) = 0. This is carried out in the proof of
Lemma 3.25.

3.3. A spectral sequence

In this subsection we describe the spectral sequence we will use for the
obstructions. The definition of this spectral sequence follows (the dual of)
Grothendieck’s construction in [6, §(11.7) of Chap. 0]. The following re-
mark describes certain subcategories of C−(B′) and C−(B) which play an
important role in this construction.

Remark 3.3. — Suppose Λ = B′ or B. Let C−0 (Λ) be the full sub-
category of C−(Λ) whose objects are bounded above complexes M• with
M i = 0 for i > 0. Then C−0 (Λ) is an abelian category with enough projec-
tive objects. More precisely, we have the following result which provides a
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slight correction of [6, Lemma 11.5.2.1], but which is proved in a similar
fashion.
Let P be the set of all complexes P • = (P−n)n>0 in C−0 (Λ) having the

following properties: Every P−n is projective, B−n(P •) is a direct summand
of P−n for n > 0, and B−n(P •) = Z−n(P •) for n > 1. Then

(i) P is the set of projective objects in C−0 (Λ), and
(ii) every M• in C−0 (Λ) is a homomorphic image of a complex in

P • ∈ P.
Note that P • ∈ P is not acyclic in general, but that H−n(P •) = 0 for

n > 1 and H0(P •) is a projective pseudocompact Λ-module.

We will use a projective resolution P •,• of Z• in the category C0(B′) of
the following kind.

Definition 3.4. — Choose a resolution of Z• by projective objects in
C−0 (B′)

(3.14) · · · → P−2,• → P−1,• → P 0,• ε−→ Z• → 0

such that P−x,−y = 0 unless x > 0 and 0 6 y 6 p0.
Note that P •,• has commuting differentials d′P and d′′P . We use the same

convention as in [6, §(11.3) of Chap. 0] with respect to the differential of
the total complex Tot(P •,•). Namely, Tot(P •,•)−n =

⊕
−x−y=−n P

−x,−y

and the differential is given by d a = d′P a+ (−1)x d′′P a for a ∈ P−x,−y.
Define the map πP : Tot(P •,•) → Z• by letting π−nP : Tot(P •,•)−n →

Z−n be the composition of the natural projection Tot(P •,•)−n → P 0,−n

with ε−n : P 0,−n → Z−n. Then πP defines a quasi-isomorphism in C−0 (B′)
that is surjective on terms.

Using the projective resolution P •,• of Z• in C0(B′), we can describe the
spectral sequence as follows.

Definition 3.5. — Assume the notation of Definition 3.4. Taking the
contravariant functor

HomB(−, J⊗̂AZ•) : PCMod(B)→ C−(B),

one shows similarly to [6, §(11.7) of Chap. 0] that there is a convergent
spectral sequence

(3.15) Hp(R Hom•B(H−qI (A⊗̂A′P •,•), J⊗̂AZ•))

=⇒ Hp+q(R Hom•B(A⊗̂A′P •,•, J⊗̂AZ•)).
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Here H−qI (A⊗̂A′P •,•) is the complex resulting from taking the −qth coho-
mology in the first direction of A⊗̂A′P •,•. Using that R Hom•B(A⊗̂A′P •,•,
J⊗̂AZ•) ∼= R Hom•B′(P •,•, J⊗̂AZ•), the spectral sequence (3.15) becomes

(3.16) Ep,q2 = ExtpD−(B)(H
−q
I (A⊗̂A′P •,•), J⊗̂AZ•)

=⇒ Extp+qD−(B′)(Z
•, J⊗̂AZ•).

Note that H−qI (A⊗̂A′P •,•) is the Tor complex H−q(A⊗̂L
A′Z

•) from (1.1).

The proof of the convergence of the spectral sequence (3.15) relies on the
existence of a projective Cartan-Eilenberg resolution M•,•,• of A⊗̂A′P •,•.
Moreover, the triple complex M•,•,• allows us to realize the spectral se-
quence (3.16) as a spectral sequence of a double complex L•,• relative to
the second filtration of Tot(L•,•). We now give the definition of M•,•,•
and L•,•.

Definition 3.6. — Let P •,• be as in Definition 3.4. As described in [6,
§(11.7) of Chap. 0], A⊗̂A′P •,• admits a projective Cartan-Eilenberg resolu-
tionM•,•,• = (M−x,−y,−z) where x, z > 0 and 0 6 y 6 p0. This means that
the terms M−x,−y,−z are projective pseudocompact B-modules, and for
all x, M−x,•,• (resp. B−xI (M•,•,•), resp. Z−xI (M•,•,•), resp. H−xI (M•,•,•))
forms a projective resolution of A⊗̂A′(P−x,•) (resp. B−xI (A⊗̂A′P •,•), resp.
Z−xI (A⊗̂A′P •,•), resp. H−xI (A⊗̂A′P •,•)) in the abelian category C−0 (B). In
particular, M−x,−y,• → A⊗̂A′P−x,−y → 0 is a projective resolution in the
category PCMod(B) for all x, y. The Cartan-Eilenberg property implies
that we have for all x, z split exact sequences of complexes in C−0 (B)

0→ B−xI (M•,•,−z)→ Z−xI (M•,•,−z)→ H−xI (M•,•,−z)→ 0,(3.17)

0→ Z−xI (M•,•,−z)→M−x,•,−z
dM,x−−−→ B−x+1

I (M•,•,−z)→ 0.(3.18)

Since M•,•,• has commuting differentials dM,x, dM,y and dM,z, we use
again the convention in [6, §(11.3) of Chap. 0] with respect to the differen-
tial of the total complex Tot(M•,•,•). Define the map πM : Tot(M•,•,•)→
Tot(A⊗̂A′P •,•) by letting π−nM be the composition of the natural projection
Tot(M•,•,•)−n →

⊕
−x−y=−nM

−x,−y,0 with the direct sum of the surjec-
tions M−x,−y,0 → A⊗̂A′P−x,−y. Then πM defines a quasi-isomorphism in
C−0 (B′) that is surjective on terms.
Define a double complex L•,• of B-modules by

(3.19) Lq,p =
⊕

−i+y+z=p
HomB(M−q,−y,−z, J⊗̂AZ−i).
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Since 1 6 i 6 p0, 0 6 y 6 p0 and z > 0, it follows that for each integer
p, there are only finitely many triples (y, z, i) with −i + y + z = p. So we
could also have used

∏
instead of

⊕
in defining Lq,p. Note that Lq,p = 0

unless q > 0 and p > −p0. In particular, for each integer n there are only
finitely many pairs (q, p) with q + p = n and Lq,p 6= 0. The differentials

dq,pI : Lq,p → Lq+1,p and dq,pII : Lq,p → Lq,p+1

are described as follows:

dq,pI (g) = g ◦ d−q−1,−y,−z
M,x ,(3.20)

dq,pII (g) = g ◦ d−q,−y−1,−z
M,y + (−1)y g ◦ d−q,−y,−z−1

M,z(3.21)

+ (−1)p+1 d−i
J⊗̂AZ

◦ g

for g ∈ HomB(M−q,−y,−z, J⊗̂AZ−i). Since dI and dII commute, the total
complex of L•,• whose nth term is

Tot(L•,•)n =
⊕

q+(−i+y+z)=n

HomB(M−q,−y,−z, J⊗̂AZ−i)

has differential d with d g = dq,pI (g)+(−1)q dq,pII (g) for g ∈ HomB(M−q,−y,−z,
J⊗̂AZ−i). Note that Tot(L•,•) is the total Hom complex corresponding to
the quadruple complex

(
HomB(M−q,−y,−z, J⊗̂AZ−i)

)
q,y,z,i

.

The following definition pertains to realizing the spectral sequence (3.16)
as the spectral sequence of L•,• relative to the second filtration of Tot(L•,•).
This then leads to the sequences of low degree terms corresponding
to (3.16).

Definition 3.7. — Assume the notation of Definitions 3.4 – 3.6. Let
(F rII(Tot(L•,•)))r∈Z be the filtration of the total complex Tot(L•,•) defined
by

(3.22) F rII(Tot(L•,•))n =
⊕

q+p=n,p>r
Lq,p.

Define F rII Hn(Tot(L•,•)) to be the image in Hn(Tot(L•,•)) of the n-cocycles
in F rII(Tot(L•,•)), i.e. of the elements in F rII(Tot(L•,•))n that are in the
kernel of the nth differential of Tot(L•,•).

The spectral sequence (3.16) coincides with the spectral sequence of
the double complex L•,• relative to the filtration (F rII(Tot(L•,•)))r∈Z of
Tot(L•,•) in (3.22). In particular,

Ep,q2 = Hp
II(H

q
I(L
•,•))
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and
Hp+q(Tot(L•,•)) = Extp+qD−(B′)(Z

•, J⊗̂AZ•).
We have a short exact sequence of low degree terms

(3.23) 0→ E1,0
∞

ψ0
II−−→ F 0

II H1(Tot(L•,•)) ϕ0
II−−→ E0,1

∞ → 0.

Here E1,0
∞ is the quotient of E1,0

2 by the subgroup W 1,0
2 which is defined as

the sum of the preimages in E1,0
2 of the successive images of d−1,1

2 , d−2,2
3 , . . ..

Similarly E0,1
∞ is the quotient of Ker(d0,1

2 ) by the subgroup W 0,1
2 which is

defined as the sum of the preimages in Ker(d0,1
2 ) of the successive images

of d−2,2
2 , d−3,3

3 , . . .. Since d0,1
2 : E0,1

2 → E2,0
2 sends W 0,1

2 identically to zero,
the short exact sequence (3.23) results in an exact sequence of low degree
terms

(3.24) 0→ E1,0
∞

ψ0
II−−→ F 0

II H1(Tot(L•,•)) ϕ̃0
II−−→ E0,1

2 /W 0,1
2

d0,1
2−−→ E2,0

2 .

3.4. Obstruction results

In this subsection we list the main results concerning the obstruction
to lifting (Z•, ζ) to A′. A key ingredient is a careful analysis of the exact
sequence of low degree terms in (3.23). The following definition is used
to relate the term F 0

II H1(Tot(L•,•)) in (3.23) to extension classes arising
from short exact sequences of bounded above complexes of pseudocompact
B′-modules.

Definition 3.8. — In Ext1
D−(B′)(Z•, J⊗̂AZ•) let F̃ 0

II be the subset of
classes represented by short exact sequences in C−(B′)

(3.25) ξ : 0→ X•
uξ−→ Y •

vξ−→ Z• → 0

such that the terms ofX• are annihilated by J , and there is an isomorphism
hξ : X• → J⊗̂AZ• in D−(B). Note that hξ defines an isomorphism in
D−(B′). The triangle associated to the sequence ξ in (3.25) has the form

(3.26) X•
uξ−→ Y •

vξ−→ Z•
wξ−−→ X•[1]

where ηξ = hξ[1] ◦ wξ ∈ HomD−(B′)(Z•, J⊗̂AZ•[1]) = Ext1
D−(B′)(Z•,

J⊗̂AZ•) is the class represented by (ξ, hξ). Applying the functor A⊗̂A′−
to (3.25) gives the long exact Tor sequence in C−(B)
(3.27)
· · · → TorA

′

1 (Y •, A)→ TorA
′

1 (Z•, A) fξ−→ X• → A⊗̂A′Y • → Z• → 0

where TorA
′

1 (Z•, A) = H−1
I (A⊗̂A′P •,•) since P •,• in Definition 3.4 is a

projective resolution of Z•.
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Theorem 3.9. — Assume Hypothesis 3.1 and the notation introduced
in Definitions 3.4 – 3.8. The short exact sequence (3.23) has the following
properties.

(i) The group F 0
II H1(Tot(L•,•)) equals the subset F̃ 0

II from Defini-
tion 3.8.

(ii) The image of E1,0
∞ under ψ0

II in F 0
II H1(Tot(L•,•)) = F̃ 0

II is equal
to the subset of F̃ 0

II consisting of classes represented by short exact
sequences as in (3.25) where Y • is in C−(B).

(iii) The map ϕ0
II : F 0

II H1(Tot(L•,•))→ E0,1
∞ is defined in the following

way. Represent a class in F 0
II H1(Tot(L•,•)) = F̃ 0

II by (ξ, hξ) as in
Definition 3.8. Let fξ : TorA

′

1 (Z•, A) = H−1
I (A⊗̂A′P •,•) → X• be

as in (3.27). Then (ξ, hξ) is sent to the class of hξ ◦ fξ in E0,1
∞ .

We obtain the following connection between the local isomorphism classes
of quasi-lifts of (Z•, ζ) over A′ and the classes in F 0

II H1(Tot(L•,•)) = F̃ 0
II

defined by short exact sequences ξ as in (3.25).

Lemma 3.10. — Assume the hypotheses of Theorem 3.9. If (Z•, ζ) has
a quasi-lift over A′, then the local isomorphism class of every quasi-lift of
(Z•, ζ) over A′ contains a quasi-lift (Y •, υ) such that Y • occurs as the
middle term of a short exact sequence ξ as in (3.25).

The obstruction ω(Z•, A′) to lifting (Z•, ζ) to A′ is defined in terms of
the following natural homomorphism in C−(B).

Definition 3.11. — Let ι : H−1
I (A⊗̂A′P •,•) = TorA

′

1 (Z•, A)→ J⊗̂AZ•
be the natural homomorphism in C−(B) resulting from tensoring the short
exact sequence 0→ J → A′ → A→ 0 with Z• over A′. Because the terms
of Z• are topologically flat A-modules by Hypothesis 3.1 , we get an exact
sequence in C−(B)

(3.28) 0→ H−1
I (A⊗̂A′P •,•)

ι−→ J⊗̂A′Z• → A′⊗̂A′Z•
∼=−→ A⊗̂A′Z• → 0.

Hence ι is an isomorphism in C−(B).

Theorem 3.12. — Assuming the hypotheses of Theorem 3.9, let
ι : H−1

I (A⊗̂A′P •,•) → J⊗̂AZ• be the isomorphism in C−(B) from Defi-
nition 3.11. If [ι] is the class of ι in E0,1

2 /W 0,1
2 , let ω = ω(Z•, A′) be the

class ω = d0,1
2 ([ι]) = d0,1

2 (ι) ∈ E2,0
2 = Ext2

D−(B)(Z•, J⊗̂AZ•).
(i) The class ω is zero if and only if there is a quasi-lift (Y •, υ) of

(Z•, ζ) over A′.
(ii) If ω = 0, then [ι] ∈ E0,1

∞ and the set of all local isomorphism classes
of quasi-lifts of (Z•, ζ) over A′ is in bijection with the full preimage
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of [ι] in F 0
II H1(Tot(L•,•)) = F̃ 0

II under ϕ0
II . In other words, the set

of all local isomorphism classes of quasi-lifts of (Z•, ζ) over A′ is a
principal homogeneous space for E1,0

∞ .
(iii) If ω = 0, then Ep,02 = Ep,0∞ for all p, i.e. the spectral sequence (3.16)

partially degenerates.

We will see in Remark 3.26 that if the lifting obstruction ω(Z•, A′) 6= 0,
then E1,0

∞ is a proper quotient of E1,0
2 in general.

With respect to automorphisms of quasi-lifts, we get the following result.

Lemma 3.13. — Assume the notation of Theorem 3.12, and suppose
that ω(Z•, A′) = 0. Let (Y •, υ) be a quasi-lift of (Z•, ζ) over A′. Define
Aut0

D−(B′)(Y •) to be the group of automorphisms θ of Y • in D−(B′) for
which υ ◦ (A⊗̂L

A′θ) = υ in D−(B), i.e. A⊗̂L
A′θ is equal to the identity on

A⊗̂L
A′Y

• in D−(B). Then

Aut0
D−(B′)(Y •) ∼= HomD−(B)(Z•, J⊗̂AZ•)/ Image(Ext−1

D−(B)(Z
•, Z•)).

Here Image(Ext−1
D−(B)(Z

•, Z•)) is the image of Ext−1
D−(B)(Z

•, Z•) in
HomD−(B)(Z•, J⊗̂AZ•) under the map which is induced by the homomor-
phism A⊗̂L

A′Y
•[−1]→ J⊗̂L

A′Y
• in the triangle A⊗̂L

A′Y
•[−1]→ J⊗̂L

A′Y
• →

A′⊗̂L
A′Y

• → A⊗̂L
A′Y

• in D−(B′).

We obtain the following connection between the lifting obstruction
ω(Z•, A′) of Theorem 3.12 and the lifting obstruction ω0(Z•, A′) result-
ing from the naive approach described in § 3.1.

Proposition 3.14. — Assume the notation of § 3.1 and Theorem 3.12.
There exists an automorphism u (resp. v) of Z• (resp. J⊗̂AZ•) in D−(B)
such that ω0(Z•, A′) = v[2] ◦ ω(Z•, A′) ◦ u in D−(B).
Suppose ω(Z•, A′) = 0. There exists an automorphism u′ (resp. v′) of

Z• (resp. J⊗̂AZ•) in D−(B′) with the following property: Let (Y •0 , υ0)
and (Y ′•, υ′) be two quasi-lifts of (Z•, ζ) over A′ whose local isomorphism
classes correspond to ηξ0 and ηξ′ , respectively, in F 0

II H1(Tot(L•,•)) = F̃ 0
II

according to Lemma 3.10 and Theorem 3.12(ii). Then ηξ′ − ηξ0 = v′[1] ◦
ϕ0
II(βY ′) ◦ u′ in D−(B′).

The proofs of Theorems 3.9, 3.12, Lemma 3.13 and Proposition 3.14 are
carried out in several sections.
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3.5. Gabber’s construction

In this subsection we prove a result due to Gabber which is the key to
relating the term F 0

II H1(Tot(L•,•)) from the sequence (3.24) to the set F̃ 0
II

from Definition 3.8.

Definition 3.15. — Assume Hypothesis 3.1 and the notation intro-
duced in Definitions 3.4 – 3.8. We have a short exact sequence in C−(B′)

(3.29) 0→ T •
δ−→ P 0,• ε−→ Z• → 0

where T • = Ker(ε) and δ is inclusion. Recall that P 0,• is a projective object
in C−0 (B′). Since Z0 = 0, we can, and will, assume that P 0,• is an acyclic
complex of projective pseudocompact B′-modules. Tensoring (3.29) with
A over A′ gives an exact sequence of complexes in C−(B)

(3.30) 0→ TorA
′

1 (Z•, A) σ−→ A⊗̂A′T •
A⊗̂A′δ−−−−→ A⊗̂A′P 0,• A⊗̂A′ ε−−−−→ Z• → 0

where TorA
′

1 (Z•, A) = H−1
I (A⊗̂A′P •,•). Write (3.30) as the Yoneda com-

position of two short exact sequences in C−(B)

0→ D•
δD−−→ A⊗̂A′P 0,• A⊗̂A′ ε−−−−→ Z• → 0,(3.31)

0→ H−1
I (A⊗̂A′P •,•)

σ−→ A⊗̂A′T •
τ−→ D• → 0.(3.32)

Then the triangles in D−(B) associated to (3.31) and to (3.32) have the
form

D•
δD−−→ A⊗̂A′P 0,• A⊗̂A′ ε−−−−→ Z•

α1−→ D•[1],(3.33)
H−1
I (A⊗̂A′P •,•)

σ−→ A⊗̂A′T •
τ−→ D•

α2−→ H−1
I (A⊗̂A′P •,•)[1].(3.34)

We first express the differential d0,1
2 : E0,1

2 → E2,0
2 in terms of the mor-

phisms α1 and α2 in the triangles (3.33) and (3.34) in D−(B).

Remark 3.16. — By (3.16) and Definition 3.7,

(3.35) Ep,q2 = ExtpD−(B)(H
−q
I (A⊗̂A′P •,•), J⊗̂AZ•) = Hp

II(H
q
I (L•,•)).

Thus the elements in Ep,q2 are represented by elements β ∈ Lq,p satisfying
dq,pI (β) = 0 and dq,pII (β) ∈ Image(dq−1,p+1

I ). It follows from (3.19) that

(3.36) Lq,p =
⊕
j

HomB(Tot(M−q,•,•)−j , J⊗̂AZ−j+p),

which is equal to the 0th term in the total Hom complex Hom•B(Tot(M−q,•,•),
J⊗̂AZ•[p]).
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Lemma 3.17. — Assume the notation of Definition 3.15 and Remark
3.16, and in particular the notation of (3.33), (3.34) and (3.35). If

f ∈ E0,1
2 = HomD−(B)(H−1

I (A⊗̂A′P •,•), J⊗̂AZ•),

then d0,1
2 (f) = f [2]◦α2[1]◦α1 ∈ HomD−(B)(Z•, J⊗̂AZ•[2]) = Ext2

D−(B)(Z•,
J⊗̂AZ•) = E2,0

2 .

Proof. — It follows from Remark 3.16 that if βf ∈ L1,0 represents f ∈
E0,1

2 , then there exists γf ∈ L0,1 with d1,0
II (βf ) = d0,1

I (γf ). Hence d0,1
2 (f) ∈

E2,0
2 is represented by d0,1

II (γf ) ∈ L0,2. A calculation using (3.20) and (3.21)
shows that d0,1

II (γf ) also represents f [2] ◦ α2[1] ◦ α1 ∈ E2,0
2 . In carrying out

this calculation, it is useful to represent α1 explicitly in (3.33) using a quasi-
isomorphism between the mapping cone of δD and Z•, and similarly for α2
in (3.34). �

The next definition gives a connection between morphisms κ in HomD−(B)

(A⊗̂A′T •, J⊗̂AZ•) and elements in F̃ 0
II . This is the key to relating F̃ 0

II to
F 0
II H1(Tot(L•,•)).

Definition 3.18. — Assume the notation of Definition 3.15, so that
in particular, P 0,• is an acyclic complex of projective pseudocompact B′-
modules. Suppose κ : A⊗̂A′T • → J⊗̂AZ• is a homomorphism in D−(B).
Then κ can be represented as

(3.37) κ = s−1 ◦ κ̃

for suitable homomorphisms s : J⊗̂AZ• → X• and κ̃ : A⊗̂A′T • → X• in
C−(B) such that s is a quasi-isomorphism. We obtain a pushout diagram
in C−(B′)

(3.38) 0 // T •

aT

��

δ // P 0,• ε //

λ

��

Z• // 0

A⊗̂A′T •

κ̃

��
0 // X•

uξ // Y •
vξ // Z• // 0

where aT : T • → A⊗̂A′T • is the natural homomorphism in C−(B′). Let
ξ be the bottom row of (3.38) and let hξ = s−1 in D−(B). Then (ξ, hξ)
represents a class ηξ ∈ F̃ 0

II as in Definition 3.8. Considering the triangles
associated to the top and bottom rows of (3.38), we obtain a commutative
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diagram in D−(B′)

(3.39) T •

λ̃

��

δ // P 0,• ε //

λ

��

Z•
ηT // T •[1]

λ̃[1]
��

X•
uξ // Y •

vξ // Z•
wξ // X•[1]

where λ̃ = κ̃ ◦ aT . Hence ηξ = hξ[1] ◦ wξ = s−1[1] ◦ κ̃[1] ◦ aT [1] ◦ ηT =
κ[1] ◦ aT [1] ◦ ηT . Thus the class ηξ ∈ F̃ 0

II is independent of the choice of
the triple (X•, s, κ̃) used to represent κ, and we denote this class by ηκ. In
particular,

(3.40) ηκ = κ[1] ◦ aT [1] ◦ ηT .

Since P 0,• is acyclic, it follows that ηT : Z• → T •[1] is an isomorphism in
D−(B′). Therefore it follows from (3.40) that if κ, κ′ ∈ HomD−(B)(A⊗̂A′T •,
J⊗̂AZ•), then ηκ = ηκ′ if and only if κ ◦ aT = κ′ ◦ aT in D−(B′).

Lemma 3.19 (O. Gabber). — Assume the notation of Definition 3.15, so
that in particular, P 0,• is an acyclic complex of projective pseudocompact
B′-modules.

(i) Let (ξ, hξ) represent a class ηξ in F̃ 0
II as in Definition 3.8, and

let fξ : TorA
′

1 (Z•, A) = H−1
I (A⊗̂A′P •,•) → X• be as in (3.27).

Then d0,1
2 (hξ ◦ fξ) = 0. Moreover, there exists κξ ∈ HomD−(B)

(A⊗̂A′T •, J⊗̂AZ•) such that hξ ◦ fξ = κξ ◦ σ and ηξ = ηκξ , where
σ is as in (3.32) and ηκξ is the class in F̃ 0

II defined by κξ as in
Definition 3.18.

(ii) Conversely, suppose f ∈ E0,1
2 = HomD−(B)(H−1

I (A⊗̂A′P •,•),
J⊗̂AZ•) satisfies d0,1

2 (f) = 0. Then there exists κ ∈ HomD−(B)
(A⊗̂A′T •, J⊗̂AZ•) such that κ◦σ = f . Moreover, if κ′ ∈ HomD−(B)
(A⊗̂A′T •, J⊗̂AZ•) also satisfies κ′ ◦ σ = f , then there exists α ∈
HomD−(B)(D•, J⊗̂AZ•) ∼= Ext1

D−(B)(Z•, J⊗̂AZ•) = E1,0
2 with κ−

κ′ = α◦τ . Let ηκ ∈ F̃ 0
II be the class defined by κ as in Definition 3.18

and let (ξ, hξ) be a representative. Then the corresponding mor-
phism fξ : H−1

I (A⊗̂A′P •,•)→ X• from (3.27) satisfies hξ ◦ fξ = f .
(iii) Let F̃ 1

II be the subset of F̃ 0
II consisting of classes represented by

short exact sequences as in (3.25) where Y • is in C−(B). Then F̃ 1
II

is equal to the set of all classes ηκα in F̃ 0
II defined by κα = α ◦ τ as

in Definition 3.18 as α varies over all elements in HomD−(B)(D•,
J⊗̂AZ•) ∼= E1,0

2 .
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Proof. — Since P 0,• is acyclic, the morphism α1 : Z• → D•[1] from (3.33)
is an isomorphism in D−(B). Thus HomD−(B)(D•, J⊗̂AZ•) ∼= Ext1

D−(B)

(Z•, J⊗̂AZ•) = E1,0
2 . Moreover, using Lemma 3.17, we have that d0,1

2 (f) =
0 if and only if f [1] ◦ α2 = 0 in D−(B).
For part (i), let (ξ, hξ) be as in Definition 3.8, where ξ : 0 → X•

uξ−→
Y •

vξ−→ Z• → 0. Since P 0,• is a projective object in C−(B′), there exists a
commutative diagram in C−(B′) of the form

(3.41) 0 // T •
δ //

λ̃

��

P 0,• ε //

λ

��

Z• // 0

0 // X•
uξ // Y •

vξ // Z• // 0.

Because J annihilates the terms of X•, λ̃ factors as λ̃ = (A⊗̂A′ λ̃) ◦ aT .
Hence ξ is the bottom row of a pushout diagram as in (3.38) with κ̃ =
A⊗̂A′ λ̃. Letting κξ = hξ ◦ (A⊗̂A′ λ̃) gives ηξ = ηκξ by Definition 3.18.
Tensoring (3.41) with A over A′ and using 3.30 shows that (A⊗̂A′ λ̃) ◦
σ = fξ. Since α2 and σ[1] are consecutive maps in the triangle obtained
by shifting (3.34), this implies that fξ[1] ◦ α2 = 0 in D−(B), and hence
d0,1

2 (hξ ◦ fξ) = 0. Moreover, hξ ◦ fξ = κξ ◦ σ.
For part (ii), assume d0,1

2 (f) = 0. Applying the functor HomD−(B)(−,
J⊗̂AZ•) to the triangle (3.34), we obtain a long exact Hom sequence. By
the first paragraph of the proof, f ◦ α2[−1] = 0, which shows that there
exists κ ∈ HomD−(B)(A⊗̂A′T •, J⊗̂AZ•) with κ◦σ = f . Let ηκ ∈ F̃ 0

II be the
class defined by κ as in Definition 3.18 and let (ξ, hξ) be a representative.
In particular, κ = hξ ◦ κ̃ where κ̃ is as in (3.38) and ξ is the bottom row
of (3.38). Tensoring (3.38) with A over A′ and using (3.30) shows that
κ̃ ◦ σ = fξ. This implies that hξ ◦ fξ = κ ◦ σ = f .

For part (iii), let first α ∈ HomD−(B)(D•, J⊗̂AZ•) and let κ = α ◦ τ .
Following the construction of the class ηκ ∈ F̃ 0

II in Definition 3.18 which
has representative (ξ, hξ), we see that we can choose κ̃ in (3.37) and in
(3.38) to be of the form κ̃ = µ̃ ◦ τ for a suitable µ̃ : D• → X• in C−(B).
Using the definitions of δD and τ in (3.31) and (3.32), it follows that ξ is
the bottom row of a pushout diagram in C−(B)

(3.42) 0 // D•

µ̃

��

δD // A⊗̂A′P 0,•
A⊗̂A′ ε//

µ

��

Z• // 0

0 // X•
uξ // Y •

vξ // Z• // 0
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where the first row is given by (3.31). This implies that ηκ = ηξ lies in
F̃ 1
II . To prove the converse direction, one takes the representative (ξ, hξ) of

a class in F̃ 1
II and uses that A⊗̂A′P 0,• is a projective object in C−(B) to

realize ξ as the bottom row of a diagram as in (3.42). Letting κ̃ = µ̃ ◦ τ ,
it follows that ξ is also the bottom row of a pushout diagram as in (3.38).
Define κ = hξ ◦ κ̃ and α = hξ ◦ µ̃ ∈ HomD−(B)(D•, J⊗̂AZ•). Then κ = α◦τ
and ηξ = ηκ. �

3.6. Proof of Theorem 3.9

In this subsection we prove Theorem 3.9 by proving Lemma 3.21 given
below. We use the following notation.

Definition 3.20. — Suppose Λ = B′ or B, and M•1 and M•2 are com-
plexes in C−(Λ). We say a homomorphism f ∈ HomD−(Λ)(M•1 ,M•2 ) is rep-
resented by a homomorphism f ′ : M ′1

• → M ′2
• in C−(Λ) (resp. in D−(Λ))

if there exist isomorphisms si : M•i → M ′i
• in D−(Λ) for i = 1, 2 with

f = s−1
2 ◦ f ′ ◦ s1 in D−(Λ).

Lemma 3.21. — Assume the notation of Definition 3.15, so that in
particular, P 0,• is an acyclic complex of projective pseudocompact B′-
modules. Let (ξ, hξ) represent a class ηξ in F̃ 0

II as in Definition 3.8, where
ξ : 0 → X•

uξ−→ Y •
vξ−→ Z• → 0. Let wξ ∈ HomD−(B′)(Z•, X•[1]) be as

in (3.26), and let fξ : H−1
I (A⊗̂A′P •,•)→ X• be the connecting homomor-

phism as in (3.27).
(i) The class ηξ = hξ[1] ◦wξ lies in F 0

II H1(Tot(L•,•)). More precisely,
ηξ defines an element βξ ∈ L1,0 which lies in the kernel of the
first differential of Tot(L•,•). This identifies F̃ 0

II with a subset of
F 0
II H1(Tot(L•,•)).

(ii) The map ϕ0
II : F 0

II H1(Tot(L•,•)) → E0,1
∞ in (3.23) sends ηξ =

hξ[1] ◦ wξ to the class of hξ ◦ fξ in E0,1
∞ . This gives a surjection

F̃ 0
II → E0,1

∞ .
(iii) The image of E1,0

∞ in F 0
II H1(Tot(L•,•)) under ψ0

II is equal to the
subset F̃ 1

II of F̃ 0
II consisting of classes represented by short exact

sequences as in (3.25) where Y • is in C−(B).
(iv) Fix an element f ∈ Ker(d0,1

2 : E0,1
2 → E2,0

2 ) as in Lemma 3.19(ii).
Let κ vary over all choices of elements of HomD−(B)(A⊗̂A′T •,
J⊗̂AZ•) for which κ ◦σ = f . Then the classes ηκ in F̃ 0

II , as defined
in Definition 3.18, form a coset of ψ0

II(E1,0
∞ ) in F 0

II H1(Tot(L•,•)).
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In particular, F̃ 0
II = F 0

II H1(Tot(L•,•)).

Proof. — Let κξ ∈ HomD−(B)(A⊗̂A′T •, J⊗̂AZ•) be as in Lemma 3.19(i).
It follows from (3.40) that we can write ηξ as

(3.43) ηξ = κξ[1] ◦ aT [1] ◦ ηT

where ηT ∈ HomD−(B′)(Z•, T •[1]) is as in (3.39) and aT : T • → A⊗̂A′T • is
the natural homomorphism in C−(B′).

To prove part (i), one uses the projective Cartan-Eilenberg resolution
M•,•,• of A⊗̂A′P •,• from Definition 3.6 to represent κξ by the homotopy
class in K−(B) of a homomorphism

(3.44) κξ,] : Tot(M−1,•,•)
Tot(B−1

I (M•,•,•))
→ J⊗̂AZ•

in C−(B). To find κξ,], one first identifies T • with B0
I(P •,•) by (3.29) and

then shows that there are quasi-isomorphisms

(3.45) Tot(M−1,•,•)
Tot(B−1

I (M•,•,•))
π−1,•
M−−−−→ A⊗̂A′P−1,•

B−1
I (A⊗̂A′P •,•)

A⊗̂A′d′P−−−−−→

A⊗̂A′ B0
I(P •,•) = A⊗̂A′T •

in C−(B), where π−1,•
M is induced by the quasi-isomorphism πM from Defi-

nition 3.6. Using (3.17) and (3.18), it follows that Tot(M−1,•,•) /
Tot(B−1

I (M•,•,•)) is a bounded above complex of projective pseudocom-
pact B-modules. Hence the composition of κξ with the quasi-isomorphisms
in (3.45) represents κξ in D−(B) and is given by the homotopy class in
K−(B) of a homomorphism κξ,] as in (3.44).

Let πB−1
I

: Tot(M−1,•,•)→ Tot(M−1,•,•) / Tot(B−1
I (M•,•,•)) be the nat-

ural projection in C−(B) and define βξ,j ∈ HomB(Tot(M−1,•,•)−j ,
J⊗̂AZ−j) by

(3.46) βξ,j = κ−jξ,] ◦ π
−j
B−1
I

for all j. By (3.36), βξ = (βξ,j) defines an element in L1,0. It follows from
the construction that d1,0

I (βξ) = 0 = d1,0
II (βξ). By considering the effect

of making a different choice of κξ in (3.43), one sees that the class [βξ] in
F 0
II H1(Tot(L•,•)) only depends on ηξ ∈ F̃ 0

II . Hence the map ηξ 7→ [βξ]
shows that F̃ 0

II ⊆ F 0
II H1(Tot(L•,•)).

Part (ii) is proved by considering the restriction of the homomorphism
κξ,] in C−(B) from (3.44) to Tot(H−1

I (M•,•,•)). By Lemma 3.19(i), we have
hξ ◦ fξ = κξ ◦ σ, where σ : H−1

I (A⊗̂A′P •,•)→ A⊗̂A′ B0
I(P •,•) = A⊗̂A′T • is
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the homomorphism from (3.32). Using the projective Cartan-Eilenberg res-
olutionM•,•,•, one sees that σ is represented in D−(B) by the restriction of
the composition of the quasi-isomorphisms in (3.45) to Tot(H−1

I (M•,•,•)).
Since κξ,] represents the composition of κξ with the quasi-isomorphisms
in (3.45), it follows that the restriction of κξ,] to Tot(H−1

I (M•,•,•)) repre-
sents κξ ◦ σ = hξ ◦ fξ. This implies that ϕ0

II sends ηξ to the class of hξ ◦ fξ
in E0,1

∞ . It follows from Lemma 3.19(ii) that the restriction of ϕ0
II to F̃ 0

II

gives a surjection F̃ 0
II → E0,1

∞ .
To prove part (iii), one relates the elements of F̃ 1

II and of F 1
II H1(Tot(L•,•))

to elements in L0,0, using the differentials in (3.20) and (3.21). Let first
(ξ, hξ) represent a class in F̃ 1

II . By Lemma 3.19(iii), there exists a mor-
phism αξ ∈ HomD−(B)(D•, J⊗̂A′Z•) such that ηξ = ηκξ for κξ = αξ ◦ τ .
By analyzing the construction of βξ = (βξ,j) ∈ L1,0 in (3.46) for κξ = αξ◦τ ,
one shows that there exists γ = (γj) ∈ L0,0 such that

(3.47) [βξ] = [−d0,0
II (γ)]

in F 0
II H1(Tot(L•,•)). To construct γ = (γj), one represents αξ by a homo-

morphism of complexes

(3.48) αξ,] : Tot(B0
I(M•,•,•))→ J⊗̂AZ•

in C−(B) and defines γj ∈ HomB(Tot(M0,•,•)−j , J⊗̂AZ−j) by

(3.49) γj = α−jξ,] ◦ proj0,j ,

where proj0,j : Tot(M0,•,•)−j → Tot(B0
I(M•,•,•))−j is induced by the pro-

jections M0,−y,−z → B0
I(M•,−y,−z) for all y, z with y + z = j coming

from the split exact sequences (3.17) and (3.18). Using (3.20), one checks
that [βξ] = [d0,0

I (γ)] in F 0
II H1(Tot(L•,•)), which implies (3.47) because

[d0
Tot(L)(γ)] = 0. Hence [βξ] is equal to an element in F 1

II H1(Tot(L•,•)) =
ψ0
II(E1,0

∞ ).
Conversely, suppose β = (βj) ∈ L0,1 =

⊕
j HomB(Tot(M0,•,•)−j ,

J⊗̂AZ−j+1) represents a class in F 1
II H1(Tot(L•,•)) = ψ0

II(E1,0
∞ ). One uses

β to construct a representative (ξ, hξ) in F̃ 1
II such that the corresponding

element βξ = (βξ,j) ∈ L1,0 defined by (3.46) satisfies

(3.50) [β] = [βξ]

in F 0
II H1(Tot(L•,•)). To find (ξ, hξ), one first shows that there exists an

element γβ = (γβ,j) ∈ L0,0 with

(3.51) [β] = [−d0,0
I (γβ)]

ANNALES DE L’INSTITUT FOURIER



OBSTRUCTIONS 641

in F 0
II H1(Tot(L•,•)). To define γβ , let fβ : Tot(M0,•,•) → J⊗̂AZ•[1] be

the map given by f−jβ = βj for all j. Because (βj) ∈ L0,1, it follows that
fβ is a homomorphism in C−(B) that factors through Tot(H0

I(M•,•,•)) =
Tot(M0,•,•) / Tot(B0

I(M•,•,•)). Let

(3.52) fβ : Tot(H0
I(M•,•,•))→ J⊗̂A′Z•[1]

be the induced homomorphism in C−(B). Since P 0,• is acyclic, the mor-
phism α1 : Z• → D•[1] from (3.33) is an isomorphism in D−(B), and we
can use the projective Cartan-Eilenberg resolution M•,•,• to represent the
inverse of α1 by a quasi-isomorphism

(3.53) ψ1 : Tot(B0
I(M•,•,•))[1]→ Tot(H0

I(M•,•,•))

in C−(B). Define γβ = (γβ,j) ∈ L0,0 by

(3.54) γβ,j = fβ
−j−1 ◦ ψ−j−1

1 ◦ proj0,j

where proj0,j is as in (3.49). Using (3.21), one checks that [β] = [d0,0
II (γβ)]

in F 0
II H1(Tot(L•,•)), which implies (3.51). Define α̂β : Tot(B0

I(M•,•,•))→
J⊗̂AZ• in C−(B) by

(3.55) α̂β = −fβ [−1] ◦ ψ1[−1].

It follows that α̂β represents a morphism α ∈ HomD−(B)(D•, J⊗̂AZ•). By
Lemma 3.19(iii), α ◦ τ defines a class in F̃ 1

II . Let (ξ, hξ) be a representative
of this class. Since ηξ = ηκξ for κξ = α ◦ τ , one can take the morphism αξ
from the beginning of the proof of part (iii) to be αξ = α. This implies that
in (3.48) one can take αξ,] = α̂β . Using (3.47) and comparing γj in (3.49)
to γβ,j in (3.54), one sees (3.50).

Part (iv) follows from part (iii) above and from parts (ii) and (iii) of
Lemma 3.19. �

3.7. Proof of Lemma 3.10 and Theorem 3.12

In this subsection we prove Lemma 3.10 and Theorem 3.12 by proving
Lemmas 3.24 and 3.25 below. The proof relies on Lemmas 3.19 and 3.21
and the following result.

Lemma 3.22 (O. Gabber). — Assume Hypothesis 3.1, and suppose we
have a short exact sequence in C−(B′)

(3.56) ξ : 0→ X•
uξ−→ Y •

vξ−→ Z• → 0
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where the terms of X• are annihilated by J . Let fξ : H−1
I (A⊗̂A′P •,•) =

TorA
′

1 (Z•, A) → X• be the homomorphism in C−(B) resulting from ten-
soring ξ with A over A′. Then fξ is an isomorphism in D−(B) if and only
if the homomorphism υ : A⊗̂L

A′Y
• → Z• induced by A⊗̂L

A′− is an isomor-
phism in D−(B).

Remark 3.23. — The homomorphism υ : A⊗̂L
A′Y

• → Z• in D−(B) in
Lemma 3.22 is given as follows. Let Q• be a bounded above complex of pro-
jective pseudocompact B′-modules such that there is a quasi-isomorphism
ρ : Q• → Y • in C−(B′) that is surjective on terms. Then υ is represented
in D−(B) by a homomorphism υQ : A⊗̂A′Q• → Z• in C−(B) which is the
composition

(3.57) A⊗̂A′Q•
A⊗̂A′ρ−−−−→ A⊗̂A′Y •

A⊗̂A′vξ−−−−−→ A⊗̂A′Z• = Z•.

Proof. — Let Q•, ρ and υQ be as in Remark 3.23 so that υQ represents υ.
We obtain a commutative diagram in C−(B′) with exact rows

(3.58) 0 // J⊗̂A′Q•

µY ◦(J⊗̂A′ρ)
��

// Q• //

ρ

��

A⊗̂A′Q• //

υQ

��

0

0 // X•
uξ // Y •

vξ // Z• // 0

where µY : J⊗̂A′Y • → X• is the composition of the natural homomor-
phisms J⊗̂A′Y • → JY • → X•. By tensoring the diagram (3.58) with A

over A′, and by also tensoring υQ : A⊗̂A′Q• → Z• with 0 → J → A′ →
A→ 0 over A′, one sees that in C−(B)

(3.59) µY ◦ (J⊗̂A′ρ) = fξ ◦ ι−1 ◦ (J⊗̂AυQ),

where ι : H−1
I (A⊗̂A′P •,•) → J⊗̂AZ• is the isomorphism in C−(B) from

Definition 3.11.
To prove the lemma, suppose first that υ, and hence υQ, is an isomor-

phism in D−(B). Since ρ is a quasi-isomorphism in C−(B′), one sees, us-
ing (3.58), that µY ◦ (J⊗̂A′ρ) is a quasi-isomorphism in C−(B). By (3.59),
this implies that fξ is an isomorphism in D−(B).
Conversely, suppose that fξ is an isomorphism in D−(B). Rewriting

(3.58) with the aid of (3.59), one obtains a commutative diagram with
exact rows in C−(B′)
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(3.60) 0 // J⊗̂A′Q• //

J⊗̂AυQ
��

Q• //

ρ

��

A⊗̂A′Q• //

υQ

��

0

J⊗̂AZ•
u′ξ //

��

Y •
vξ //

��

Z• //

��

0

C(J⊗̂AυQ)• // C(ρ)• // C(υQ)•

where u′ξ = uξ ◦fξ ◦ ι−1. Because fξ ◦ ι−1 : J⊗̂AZ• → X• is an isomorphism
in D−(B′), the rows in (3.60) represent triangles in D−(B′). Using the
triangle corresponding to the last row in (3.60), one argues inductively
that C(υQ)• is acyclic. To make this argument, one uses that C(ρ)• is
acyclic, that the terms of C(υQ)• are topologically free over A and that all
complexes involved are bounded above. The acyclicity of C(υQ)• implies
that υQ, and hence υ, is an isomorphism in D−(B). �

We also need the following result which relates quasi-lifts of (Z•, ζ) over
A′ to short exact sequences ξ in C−(B′) as in Definition 3.8.

Lemma 3.24. — Assume Hypothesis 3.1 and the notation introduced in
Definition 3.8. Suppose (Y •, υ) is a quasi-lift of (Z•, ζ) over A′. Then there
exists a quasi-lift (Y ′•, υ′) of (Z•, ζ) over A′ which is locally isomorphic to
(Y •, υ) with the following properties:

(a) There is a short exact sequence ξ′ : 0 → X ′
• → Y ′

• → Z• → 0 in
C−(B′) as in Definition 3.8, i.e. the terms of X ′• are annihilated
by J and there is an isomorphism X ′

• → J⊗̂AZ• in D−(B).
(b) The isomorphism υ′ : A⊗̂L

A′Y
′• → Z• is the homomorphism in

D−(B) from Lemma 3.22 which is induced by A⊗̂L
A′− relative to ξ′.

Proof. — Using Theorem 2.10 and Remark 2.7, we may assume that the
terms Y i of Y • are zero for i < −p0 and i > −1, they are projective pseudo-
compact B′-modules for −p0 < i 6 −1, and Y −p0 is topologically free over
A′. Since the terms Zi of Z• are projective pseudocompact B-modules for
i > −p0, it follows that the inverse of the isomorphism υ : A⊗̂A′Y • → Z•

in D−(B) can be represented by a quasi-isomorphism χ : Z• → A⊗̂A′Y • in
C−(B). We obtain a pullback diagram in C−(B′) with exact rows
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(3.61) 0 // J⊗̂A′Y • // Y ′• //

χY

��

Z• //

χ

��

0

0 // J⊗̂A′Y • // Y • // A⊗̂A′Y • // 0.

It follows that χY is a quasi-isomorphism in C−(B′). LettingX ′•= J⊗̂A′Y •,
the top row of (3.61) defines a short exact sequence ξ′ as in part (a). To
prove part (b), let υ′ : A⊗̂L

A′Y
′• → Z• be the homomorphism in D−(B)

from Lemma 3.22, which is induced by A⊗̂L
A′− relative to the top row

ξ′ of (3.61). By representing υ′ by a homomorphism in C−(B) as in Re-
mark 3.23, one sees that in D−(B)

A⊗̂L
A′χY = χ ◦ υ′ = υ−1 ◦ υ′.

Hence υ′ is an isomorphism in D−(B), and χY defines a local isomorphism
between the quasi-lifts (Y •, υ) and (Y ′•, υ′) of (Z•, ζ) over A′. �

Lemma 3.25. — Assume the notation of Definition 3.15, so that in par-
ticular, P 0,• is an acyclic complex of projective pseudocompact B′-modules.
Let ι : H−1

I (A⊗̂A′P •,•)→ J⊗̂AZ• be the isomorphism in C−(B) from Def-
inition 3.11, so ι ∈ E0,1

2 . Let ω = ω(Z•, A′) be the class ω = d0,1
2 (ι) ∈

E2,0
2 = Ext2

D−(B)(Z•, J⊗̂AZ•).
(i) Suppose (Z•, ζ) has a quasi-lift (Y •, υ) over A′. Then ω = 0.
(ii) Conversely, suppose that ω = 0.

(a) There exists κ ∈ HomD−(B)(A⊗̂A′T •, J⊗̂AZ•) with κ ◦ σ = ι.
Let (ξ, hξ) represent the class ηκ in F̃ 0

II , as defined in Def-
inition 3.18, where ξ : 0 → X•

uξ−→ Y •
vξ−→ Z• → 0. Let

υ : A⊗̂L
A′Y

• → Z• be the homomorphism in D−(B) from Lem-
ma 3.22 relative to ξ. Then (Y •, υ) is a quasi-lift of (Z•, ζ) over
A′, which we denote by (Y •κ , υκ).

(b) Let Ξ be the set of the classes ηκ in F̃ 0
II as κ varies over

all choices of elements of HomD−(B)(A⊗̂A′T •, J⊗̂AZ•) with
κ ◦ σ = ι. Then the map ηκ 7→ [(Y •κ , υκ)] defines a bijection
between Ξ and the set Υ of all local isomorphism classes of
quasi-lifts of (Z•, ζ) over A′.

(c) Let [ι] be the class of ι in E0,1
∞ . The set of all local isomor-

phism classes of quasi-lifts of (Z•, ζ) over A′ is in bijection
with the full preimage of [ι] in F 0

II H1(Tot(L•,•)) = F̃ 0
II under

ϕ0
II . In other words, the set of all local isomorphism classes
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of quasi-lifts of (Z•, ζ) over A′ is a principal homogeneous
space for E1,0

∞ . The set of all κ ∈ HomD−(B)(A⊗̂A′T •, J⊗̂AZ•)
with κ ◦ σ = ι is a principal homogeneous space for E1,0

2 =
Ext1

D−(B)(Z•, J⊗̂AZ•).
(d) We have Ep,02 = Ep,0∞ for all p, i.e. the spectral sequence (3.16)

partially degenerates.

Proof. — For part (i), suppose (Y •, υ) is a quasi-lift of (Z•, ζ) over A′.
Using Theorem 2.10, we may assume that the terms of Y • are projective
pseudocompact B′-modules. Moreover, by adding an acyclic complex of
topologically free pseudocompact B′-modules to Y • if necessary, we can
assume that υ : A⊗̂A′Y • → Z• is given by a quasi-isomorphism of com-
plexes in C−(B) that is surjective on terms. Hence we a have a short exact
sequence in C−(B′) of the form

(3.62) 0→ K• → Y •
vY−−→ Z• → 0,

where vY is the composition Y • → A⊗̂A′Y •
υ−→ Z• and K• = Ker(vY ).

Note thatK• may or may not be annihilated by J . Since P 0,• is a projective
object in C−(B′), we obtain a commutative diagram in C−(B′) whose top
(resp. bottom) row is given by (3.29) (resp. (3.62)). Tensoring this diagram
with A over A′, we get a commutative diagram in C−(B) with exact rows
(3.63)

0 // H−1
I (A⊗̂A′P •,•)

σ // A⊗̂A′T •

��

A⊗̂A′δ// A⊗̂A′P 0,•

��

A⊗̂A′ ε// Z• // 0

0 // H−1
I (A⊗̂A′P •,•)

fY // A⊗̂A′K• // A⊗̂A′Y •
υ // Z• // 0

whose top row is given by (3.30). Using the definition of α1 and α2 in (3.33)
and (3.34), one sees that the top row of (3.63) defines the class α2[1] ◦ α1
in Ext2

D−(B)(Z•,H
−1
I (A⊗̂A′P •,•)). Because υ is an isomorphism in D−(B),

the bottom row of (3.63) shows that fY is also an isomorphism in D−(B).
Therefore, α2[1] ◦ α1 = 0 in D−(B). Since ω = d0,1

2 (ι) = ι[2] ◦ α2[1] ◦ α1 by
Lemma 3.17, this implies ω = 0 in D−(B).

For part (ii), assume that ω = d0,1
2 (ι) = 0. By Lemma 3.19(ii), there

exists κ : A⊗̂A′T • → J⊗̂AZ• in D−(B) with κ ◦ σ = ι. Let (ξ, hξ) and
υ be as in the statement of part (ii)(a), where ξ : 0 → X•

uξ−→ Y •
vξ−→

Z• → 0. Let fξ : H−1
I (A⊗̂A′P •,•) → X• be the homomorphism in C−(B)

resulting from tensoring ξ with A over A′. By Lemma 3.19(ii), hξ ◦ fξ = ι,
which implies that fξ is an isomorphism in D−(B). Hence by Lemma 3.22,
υ : A⊗̂L

A′Y
• → Z• is an isomorphism in D−(B). Using the isomorphism υ
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together with the fact that Z• has finite pseudocompact A-tor dimension,
it follows that there exists an integer N such that Hi(S⊗̂L

A′Y
•) = 0 for all

i < N and for all pseudocompact A-modules S. Since for all pseudocompact
A′-modules S′ we have that JS′ and S′/JS′ are annihilated by J and thus
pseudocompact A-modules, one sees that Hi(S′⊗̂L

A′Y
•) = 0 for all i < N .

Hence (Y •, υ) is a quasi-lift of (Z•, ζ) over A′, which we denote by (Y •κ , υκ).
Let Ξ and Υ be as in the statement of part (ii)(b). We need to show that

the map

Ξ −→ Υ(3.64)
ηκ 7−→ [(Y •κ , υκ)]

is a bijection. This map is well-defined, since, as seen at the end of Def-
inition 3.18, ηκ = ηκ′ if and only if κ ◦ aT = κ′ ◦ aT in D−(B′) and the
construction in Definition 3.18 shows that κ ◦ aT determines the local iso-
morphism class [(Y •κ , υκ)].

We first prove that (3.64) is surjective. Given a quasi-lift (Y •, υ) of
(Z•, ζ) over A′, we may assume by Lemma 3.24 that there is a short
exact sequence ξ : 0 → X•

uξ−→ Y •
vξ−→ Z• → 0 in C−(B′) as in Defi-

nition 3.8 and that the isomorphism υ : A⊗̂L
A′Y

• → Z• is the homomor-
phism in D−(B) from Lemma 3.22 relative to ξ. Since υ is an isomor-
phism in D−(B), it follows from Lemma 3.22 that the homomorphism fξ :
H−1
I (A⊗̂A′P •,•)→ X• is an isomorphism in D−(B). Letting hξ = ι ◦ f−1

ξ ,
it follows that (ξ, hξ) represents a class ηξ in F̃ 0

II . By Lemma 3.19(i), there
exists κ ∈ HomD−(B)(A⊗̂A′T •, J⊗̂AZ•) such that κ ◦ σ = hξ ◦ fξ = ι and
ηξ = ηκ in F̃ 0

II . Following the definition of (Y •κ , υκ), one sees that (Y •κ , υκ)
and (Y •, υ) are locally isomorphic quasi-lifts of (Z•, ζ) over A′.

To prove that (3.64) is injective, let ηκ, ηκ′ ∈ Ξ be such that (Y •κ , υκ)
and (Y •κ′ , υκ′) are locally isomorphic quasi-lifts of (Z•, ζ) over A′. This
means that there exists an isomorphism θ : Y •κ → Y •κ′ in D−(B′) with
υκ′ ◦ (A⊗̂L

A′θ) = υκ. Consider the triangle in D−(B′)

(3.65) J⊗̂L
A′Y

•
κ −→ A′⊗̂L

A′Y
•
κ −→ A⊗̂L

A′Y
•
κ

ηL
κ−−→ J⊗̂L

A′Y
•
κ [1],

which is associated to the short exact sequence obtained by applying the
functor −⊗̂L

A′Y
•
κ to the sequence 0 → J → A′ → A → 0. Using the

definition of υκ, one sees that ηκ ◦υκ = (J⊗̂L
Aυκ[1])◦ηL

κ . On replacing κ by
κ′, one obtains a similar equation relating ηκ′ and ηL

κ′ . Since (J⊗̂L
A′θ[1]) ◦

ηL
κ = ηL

κ′ ◦ (A⊗̂L
A′θ), this implies that ηκ = ηκ′ .
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The first statement of part (ii)(c) follows from part (ii)(b) above and from
Lemma 3.21(iv). For the second statement of part (ii)(c), one notes that
since ω = ι[2] ◦ α2[1] ◦ α1 = 0 and ι and α1 are isomorphisms in D−(B),
one has α2 = 0. Replacing α2 = 0 in the triangle (3.34) and applying
the functor HomD−(B)(−, J⊗̂AZ), one obtains a short exact sequence of
abelian groups

(3.66) 0 −→ Hom(D•, J⊗̂AZ•)
τ∗−→ Hom(A⊗̂A′T •, J⊗̂AZ•)

σ∗−→ Hom(H−1
I (A⊗̂A′P •,•), J⊗̂AZ•) −→ 0,

where Hom stands for HomD−(B). Since

HomD−(B)(D•, J⊗̂AZ•) ∼= Ext1
D−(B)(Z•, J⊗̂AZ•),

part (ii)(c) follows.
To prove part (ii)(d), we show that for all p the inflation map

InfB
′

B : ExtpD−(B)(Z
•, J⊗̂AZ•) −→ ExtpD−(B′)(Z

•, J⊗̂AZ•)

is injective, which implies that Ep,0∞ = Ep,02 = ExtpD−(B)(Z
•, J⊗̂AZ•). Let

(Y •, υ) be a quasi-lift of (Z•, ζ) such that Y • is a bounded above complex
of topologically free pseudocompact B′-modules. Let aY : Y • → A⊗̂A′Y •
be the natural homomorphism in C−(B′), and let πP : Tot(P •,•)→ Z• be
the quasi-isomorphism in C−(B′) from Definition 3.4. Then g = π−1

P ◦ υ ◦
aY ∈ HomD−(B′)(Y •,Tot(P •,•)) = HomK−(B′)(Y •,Tot(P •,•)). Suppose
f ∈ ExtpD−(B)(Z

•, J⊗̂AZ•) and InfB
′

B (f) = 0 in ExtpD−(B′)(Z
•, J⊗̂AZ•).

Since A⊗̂A′Y • is a bounded above complex of topologically free pseudocom-
pact B-modules, it follows that f ◦ υ ∈ HomK−(B)(A⊗̂A′Y •, J⊗̂AZ•[p]).
Since InfB

′

B (f) = 0 and πP is a quasi-isomorphism in C−(B′), it follows that
F = f ◦πP : Tot(P •,•)→ J⊗̂AZ•[p] is homotopic to zero in C−(B′). Then
(f ◦υ)◦aY = (f ◦πP )◦(π−1

P ◦υ◦aY ) = (f ◦πP )◦g = F ◦g, which implies that
(f ◦ υ) ◦ aY is homotopic to zero in C−(B′). Applying A⊗̂A′− shows that
f ◦ υ is homotopic to zero in C−(B). Since υ is an isomorphism in D−(B)
and HomK−(B)(A⊗̂A′Y •, J⊗̂AZ•[p]) = HomD−(B)(A⊗̂A′Y •, J⊗̂AZ•[p]), it
follows that f = 0 in D−(B) which proves part (ii)(d). �

Remark 3.26. — If ω = ω(Z•, A′) 6= 0, i.e. if there is no quasi-lift
of (Z•, ζ) over A′, then E1,0

∞ is a proper quotient of E1,0
2 in general. For

example, let k = Z/2, A = k[t]/(t4), A′ = k[t]/(t6) and let π : A′ → A

be the natural surjection. Let G be the trivial group, so that B = A and
B′ = A′. Suppose V • = k

0−→ k
0−→ k and Z• = A

t3−→ A
t−→ A are both

concentrated in degrees −3,−2,−1. Then J⊗̂AZ• = A/t2A
0−→ A/t2A

t−→
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A/t2A is also concentrated in degrees −3,−2,−1. We now show that the
inflation map

InfA
′

A : Ext1
D−(A)(Z•, J⊗̂AZ•) −→ Ext1

D−(A′)(Z•, J⊗̂AZ•)

is not injective. This implies that E1,0
∞ is a proper quotient of E1,0

2 =
Ext1

D−(A)(Z•, J⊗̂AZ•), since A = B and A′ = B′ and E1,0
∞ is isomorphic

to the image of InfA
′

A . Consider the map of complexes f : Z• → J⊗̂AZ•[1]
in C−(A) where f j = 0 for all j 6= −3 and f−3 : Z−3 = A → A/t2A =
J⊗̂AZ−2 sends 1 ∈ A to t ∈ A/t2A. Then f is not homotopic to zero which
implies that f is not zero in D−(A) since the terms of Z• are topologically
free pseudocompact A-modules. To show that InfA

′

A (f) = 0 in D−(A′),
we construct a suitable bounded above complex Q• of topologically free
pseudocompact A′-modules together with a quasi-isomorphism sQ : Q• →
Z•. Namely, let

Q• : · · · (A′)2

(
t3 0
0 t5

)
−−−−−→ (A′)2

(
t3 0
0 0
0 t

)
−−−−−→ (A′)3

( 0 1 0
0 0 t5

)
−−−−−−→ (A′)2 ( 0 t )−−−→ A′

be concentrated in degrees 6 −1, and let sQ =
(
sjQ

)
where sjQ = 0 for

j 6∈ {−3,−2,−1} and s−1
Q = π, s−2

Q = (t3 π, π), s−3
Q = (t π, π, 0). It follows

that f ◦ sQ is homotopic to zero, and hence equal to zero in D−(A′), by
defining hj : Qj → J⊗̂AZj [1] = J⊗̂AZj+1 by hj = 0 for all j 6= −2 and
h−2 = (t π, 0) where π : A′ → A/t2 is the natural surjection. Since sQ is
an isomorphism in D−(A′), this implies that InfA

′

A (f) = (f ◦ sQ) ◦ (sQ)−1

is zero in D−(A′).

3.8. Proof of Lemma 3.13

As in the statement of Lemma 3.13, suppose that (Y •, υ) is a quasi-lift
of (Z•, ζ) over A′. Using Theorem 2.10, we may assume that the terms
of Y • are projective pseudocompact B′-modules. Consider the triangle in
D−(B′)

(3.67) A⊗̂A′Y •[−1] a−→ J⊗̂A′Y •
b−→ Y •

c−→ A⊗̂A′Y •,

which is associated to the short exact sequence obtained by applying the
functor −⊗̂L

A′Y
• = −⊗̂A′Y • to the sequence 0 → J → A′ → A → 0.

Applying the functor HomD−(B′)(Y •,−) to the triangle (3.67), one obtains
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a long exact Hom sequence
(3.68)

· · · // HomD−(B′)(Y •, Y •[−1]) // HomD−(B′)(Y •, A⊗̂A′Y
•[−1])

(a)∗

rreeeeeeeeeeeeeeeeeeeeeeeeee

HomD−(B′)(Y•, J⊗̂A′Y
•)

(b)∗ // HomD−(B′)(Y•, Y•) (c)∗ // HomD−(B′)(Y•, A⊗̂A′Y
•) // · · ·

Using that Image((b)∗) is a two-sided ideal with square 0 in HomD−(B′)
(Y •, Y •), one sees that
(3.69)
Aut0

D−(B′)(Y •) ∼= Image((b)∗) ∼= HomD−(B′)(Y •, J⊗̂A′Y •)/ Image((a)∗).

Since Y • is a bounded above complex of projective pseudocompact B′-
modules, c induces an isomorphism (c)∗ : HomD−(B)(A⊗̂A′Y •,W •)

∼=−→
HomD−(B′)(Y •,W •) for all complexes W • in C−(B). Thus (3.69) implies

(3.70) Aut0
D−(B′)(Y •) ∼= HomD−(B)(A⊗̂A′Y •, J⊗̂A′Y •)/

Image(Ext−1
D−(B)(A⊗̂A′Y

•, A⊗̂A′Y •)),

where Image(Ext−1
D−(B)(A⊗̂A′Y

•, A⊗̂A′Y •)) is the image of HomD−(B)

(A⊗̂A′Y •, A⊗̂A′Y •[−1]) in HomD−(B)(A⊗̂A′Y •, J⊗̂A′Y •) under the com-
position ((c)∗)−1 ◦ (a)∗ ◦ (c)∗. Since υ induces an isomorphism J⊗̂Aυ :
J⊗̂A′Y • → J⊗̂AZ• in D−(B), Lemma 3.13 follows.

3.9. Proof of Proposition 3.14

As in the statement of Proposition 3.14, we assume the notation of §3.1
and Theorem 3.12. For simplicity, we identify A⊗̂A′Y j = Z̃j for all j and
we identify Z• with the truncation Trunc−p0(Z̃•) of Z̃• at −p0 which is
obtained from Z̃• by replacing Z̃−p0 by Z̃−p0/ Image(d−p0−1

Z̃
) and Z̃j by 0

for all j < −p0. Let sZ : Z̃• → Z• be the resulting quasi-isomorphism where
s−p0
Z : Z̃−p0 → Z̃−p0/ Image(d−p0−1

Z̃
) = Z−p0 is the natural surjection.

To be able to compare the two lifting obstructions ω(Z•, A′) and
ω0(Z•, Z ′), we define a particular P 0,• and a particular ε : P 0,• → Z• as
in Definition 3.15 by using (Y j , cjY ) from §3.1. By following Grothendieck’s
construction discussed in Remark 3.3, we define

P 0,0 = Y −1, P 0,−j = Y −j−1 ⊕ Y −j (1 6 j 6 p0 − 1), P 0,−p0 = Y −p0
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and the differentials as

d−1
P 0,• =

(
−c−2

Y , 1
)
,

d−jP 0,• =
(

−c−j−1
Y 1

−c−jY ◦ c
−j−1
Y c−jY

)
(2 6 j 6 p0 − 1),

d−p0
P 0,• =

(
1

c−p0
Y

)
.

Moreover, we define ε by

ε0 = 0, ε−j = (0, a−jY ) (1 6 j 6 p0 − 1), ε−p0 = s−p0
Z ◦ a−p0

Y

where a−jY : Y −j → A⊗̂A′Z̃−j is the natural surjection for 1 6 j 6 p0.
Following Definition 3.15, one now computes explicitly T • = Ker(ε) and

D• = Ker(A⊗̂A′ε) and identifies H−1
I (A⊗̂A′P •,•) with the kernel of the sur-

jection τ : A⊗̂A′T • → D•. This computation shows that H−1
I (A⊗̂A′P •,•)

can be identified with the truncation Trunc−p0(JY •) of the complex JY • at
−p0 which is obtained from JY • by replacing JY −p0 by JY −p0/

Image(d−p0−1
JY ) and JY j by 0 for all j < −p0.

We use the definition of ω(Z•, A′) = d0,1
2 (ι) in Theorem 3.12 which is by

Lemma 3.17 equal to

ω(Z•, A′) = ι[2] ◦ α2[1] ◦ α1

where α1 and α2 are the homomorphisms in D−(B) which occur in the
triangles (3.33) and (3.34) in Definition 3.15. Using the mapping cones
of the homomorphisms δD : D• → A⊗̂A′T • and σ : H−1

I (A⊗̂A′P •,•) →
A⊗̂A′T • in (3.33) and (3.34), respectively, one sees that one can express
α2[1] ◦ α1 ∈ HomD−(B)(Z•,H−1

I (A⊗̂A′P •,•)[2]) as

(3.71) α2[1] ◦ α1 = sJ [2] ◦ ω̃ ◦ (sZ)−1

where (sZ)−1 is the inverse in D−(B) of the quasi-isomorphism sZ , ω̃ is as
in (3.1) and

(3.72) sJ : JY • → Trunc−p0(JY •) = H−1
I (A⊗̂A′P •,•)

is the quasi-isomorphism in C−(B) resulting from truncation such that
s−p0
J is the natural surjection. It follows that

ω(Z•, A′) = ι[2] ◦ α2[1] ◦ α1 = (ι ◦ sJ)[2] ◦ ω̃ ◦ (sZ)−1

in D−(B), which proves the first part of Proposition 3.14.
For the second part of Proposition 3.14, let (Y •0 , υ0) and (Y ′•, υ′) be two

quasi-lifts of (Z•, ζ) over A′. Without loss of generality, we can assume that
Y j0 = Y j = Y ′

j for all j, by using a fixed versal deformation (U•, φU ) of V •
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over R = R(G,V •) such that U• is concentrated in degrees 6 −1 and all
terms of U• are topologically free pseudocompactR[[G]]-modules. In partic-
ular, this implies that JY •0 = JY • = JY ′

• and Z̃• = A⊗̂A′Y •0 = A⊗̂A′Y ′•

as complexes in C−(B). We have short exact sequences in C−(B′) of the
form 0 → JY • → Y •0

aY0−−→ Z̃• → 0 and 0 → JY • → Y ′
• aY ′−−→ Z̃• → 0.

Truncating these complexes at −p0 in the same way as we have done several
times above and using that we have assumed that Z• = Trunc−p0(Z̃•), we
obtain short exact sequences in C−(B′) of the form

ξ0 : 0→ Trunc−p0(JY •)→ Trunc−p0(Y •0 )
Trunc−p0 (aY0 )
−−−−−−−−−→ Z• → 0,(3.73)

ξ′ : 0→ Trunc−p0(JY •)→ Trunc−p0(Y ′•)
Trunc−p0 (aY ′ )−−−−−−−−−→ Z• → 0.(3.74)

Since we have seen above that H−1
I (A⊗̂A′P •,•) can be identified with

Trunc−p0(JY •), letting hξ0 = hξ′ = ι we arrive at the class ηξ0 (resp.
ηξ′) in F̃ 0

II = F 0
II H1(Tot(L•,•)) represented by (ξ0, hξ0) (resp. (ξ′, hξ′))

as described in Definition 3.8. It follows from Lemma 3.25, parts (ii)(a)
and (ii)(b), that ηξ0 (resp. ηξ′) is the class in F̃ 0

II = F 0
II H1(Tot(L•,•))

corresponding to the local isomorphism class of (Y •0 , υ0) (resp. (Y ′•, υ′)).
Following Definition 3.18, we now find homomorphisms λ0 : P 0,• →

Trunc−p0(Y •0 ) and λ′ : P 0,• → Trunc−p0(Y ′•) in C−(B′) such that
Trunc−p0(aY0) ◦ λ0 = ε = Trunc−p0(aY ′) ◦ λ′. Namely,

λ0
0 = 0, λ−j0 = (d−jY0

− c−jY , 1) (2 6 j 6 p0 − 1), λ−p0
0 = e0

where e0 : Y −p0 → Y −p0/ Image(d−p0−1
Y0

) is the natural surjection. Simi-
larly, we define λ′ by replacing dY0 by dY ′ and e0 by the natural surjection
e′ : Y −p0 → Y −p0/ Image(d−p0−1

Y ′ ). Letting λ̃0 (resp. λ̃′) be the restriction
of λ0 (resp. λ′) to T •, we obtain by using triangle diagrams in D−(B′)
similarly to (3.39) that

(3.75) ηξ0 = ι[1] ◦ λ̃0[1] ◦ ηT and ηξ′ = ι[1] ◦ λ̃′[1] ◦ ηT

in D−(B′), where ηT is the connecting homomorphism in the top row
of (3.39). Using the explicit computations of T •, D• and τ : A⊗̂A′T • → D•

as before, one sees that there exists a quasi-isomorphism sD : Z̃•[−1]→ D•

in C−(B), which is independent of the local isomorphism classes of (Y •0 , υ0)
and (Y ′•, υ′), such that

λ̃′ − λ̃0 = sJ ◦ β̃Y ′ [−1] ◦ (sD)−1 ◦ (τ ◦ aT )

in D−(B′) where sJ is as in (3.72), β̃Y ′ is as in (3.2) and aT : T • → A⊗̂A′T •
is the natural surjection. Note that τ ◦aT : T • → D• is a quasi-isomorphism
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in C−(B′). Hence

ηξ′ − ηξ0 = ι[1] ◦ (λ̃0 − λ̃′)[1] ◦ ηT
= (ι ◦ sJ)[1] ◦ β̃Y ′ ◦

(
(sD)−1[1] ◦ (τ ◦ aT )[1] ◦ ηT

)
in D−(B′), completing the proof of Proposition 3.14.

4. Quotients by pro-`′ groups

In this section, we give an application of the obstructions to lifting quasi-
lifts as determined in §3. As we have assumed throughout this paper, the
field k has positive characteristic `, and V • is a complex in D−(k[[G]]) that
has only finitely many non-zero cohomology groups, all of which have finite
k-dimension. Without loss of generality, we may assume that Hi(V •) = 0
unless −p0 6 i 6 −1.

Remark 4.1. — Suppose there is a short exact sequence of profinite
groups

(4.1) 1→ K → G→ ∆→ 1,

where K is a closed normal subgroup which is a pro-`′ group, i.e. the
projective limit of finite groups that have order prime to `. Let R be an
object in Ĉ, and suppose M is a projective pseudocompact R[[∆]]-module.
Then the inflation InfG∆ M is a projective pseudocompact R[[G]]-module.

Proposition 4.2. — Suppose G and ∆ are as in Remark 4.1, G has
finite pseudocompact cohomology, and V • is isomorphic to the inflation
InfG∆ V •∆ of a bounded above complex V •∆ of pseudocompact k[[∆]]-modules.
Then the two deformation functors F̂G = F̂GV • and F̂∆ = F̂∆

V •∆
which are de-

fined according to Definition 2.11 are naturally isomorphic. In consequence,
R(G,V •) ∼= R(∆, V •∆) and (U(G,V •), φU ) ∼= (InfG∆ U(∆, V •∆), InfG∆ φU ).

Proof. — It follows from the definition of finite pseudocompact coho-
mology (see Definition 2.12) and from Remark 4.1 that ∆ also has finite
pseudocompact cohomology. It will be enough to show that the two defor-
mation functors F̂G = F̂GV • and F̂∆ = F̂∆

V •∆
are naturally isomorphic.

Let 0 → J → A′ → A → 0 be an extension of objects A′, A in Ĉ with
J2 = 0, and let (Z•∆, ζ∆) be a quasi-lift of V •∆ over A. By Theorem 2.10,
we may assume that the terms of Z•∆ are projective pseudocompact A[[∆]]-
modules. Hence (Z•, ζ) = (InfG∆ Z•∆, InfG∆ ζ∆) is a quasi-lift of V • over A,
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and by Remark 4.1 the terms of Z• are projective pseudocompact A[[G]]-
modules. By Remark 2.7, we can truncate Z•∆, and hence Z• = InfG∆ Z•∆,
so as to be able to assume Hypothesis 3.1 for both Z•∆ and Z•. Moreover,
in view of Remark 4.1, we can choose the projective resolutions P •,• →
Z• → 0 and P •,•∆ → Z•∆ → 0 in Definition 3.4 such that P •,• = InfG∆ P •,•∆
and such that P 0,•

∆ , and hence P 0,•, is acyclic. We can also arrange that the
projective Cartan-Eilenberg resolutionsM•,•,• andM•,•,•∆ in Definition 3.6
satisfy M•,•,• = InfG∆ M•,•,•∆ . Following the definition of (3.23) and (3.24),
we see that the natural inflation homomorphisms from ∆ to G identify the
sequences of low degree terms for G and for ∆. Using Theorem 3.12(i), it
follows that the obstruction to lifting (Z•∆, ζ∆) over A′ vanishes if and only
if the obstruction to lifting (Z•, ζ) over A′ vanishes. Using Theorem 3.12(ii),
we see that if these obstructions vanish, then the set of all local isomorphism
classes of quasi-lifts of (Z•, ζ) over A′ is in bijection with the set of all
local isomorphism classes of quasi-lifts of (Z•∆, ζ∆) over A′. This implies
Proposition 4.2. �
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