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HODGE–TYPE STRUCTURES AS LINK INVARIANTS

by Maciej BORODZIK & András NÉMETHI (*)

Abstract. — Based on some analogies with the Hodge theory of isolated hy-
persurface singularities, we define Hodge–type numerical invariants of any, not
necessarily algebraic, link in a three–sphere. We call them H–numbers. They con-
tain the same amount of information as the (non degenerate part of the) real Seifert
matrix. We study their basic properties, and we express the Tristram–Levine sig-
natures and the higher order Alexander polynomial in terms of them. Motivated
by singularity theory, we also introduce the spectrum of the link (determined from
these H–numbers), and we establish some semicontinuity properties for it.

These properties can be related with skein–type relations, although they are not
so precise as the classical skein relations.
Résumé. — En se fondant sur des analogies avec la théorie de Hodge des sin-

gularités isolées des hypersurfaces, nous construisons des invariants numériques
de type de Hodge pour un entrelacs quelconque, pas forcément algébrique, dans
une sphère de dimension trois. Nous appelons ces invariants les H-nombres. Ils
contiennent la même information sur les entrelacs, que la partie non-dégénérée de
la matrice de Seifert modulo S-équivalence réelle. Nous étudions leurs propriétés,
en particulier, donnons une formule explicite pour les signatures de Tristram et
Levine et les polynômes d’Alexander de haut ordre en termes des H-nombres.

De plus, motivés par la théorie des singularités, nous introduisons le spectre
d’un entrelacs, qui, lui aussi, peut être exprimé en termes des H-nombres. Nous
établissons quelques propriétés de semicontinuité.

Ces propriétés, peuvent être reliées aux relations skein. Cependant, elles ne sont
pas aussi précises que les relations skein classiques.

1. Introduction

1.1.

Although a Seifert matrix of a link is not a link invariant itself, it al-
lows to define many link invariants, which are on the one hand very deep,

Keywords: Seifert matrix, Hodge numbers, Alexander polynomial, Tristram–Levine sig-
nature, variation structure, semicontinuity of the spectrum.
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270 Maciej BORODZIK & András NÉMETHI

and easy to compute on the other. These invariants include the Alexander
polynomial, the signature and the Tristram–Levine signatures. It might be
quite surprising that the signature and the Alexander polynomial, although
both come from a Seifert matrix, have completely different properties. For
example, the signature detects mirrors, and estimates the four-genus, while
the Alexander polynomial estimates the three-genus and does not detect
mirrors.
Apparently straying from the knot theory, let us consider a hypersurface

singularity in (Cn+1, 0). We can then associate many important objects
with it, as the intersection form on the middle homology of the Milnor
fiber, the monodromy matrix or the variation operator. These three ob-
jects, together with the space they act on, constitute a so–called varia-
tion structure. If the singularity is isolated, then its variation structure is
determined by the variation operator, which is equivalent with the non–
degenerate Seifert bilinear form associated with the germ of the singularity.
Up to real equivalence, each such variation structure is built of some explic-
itly written indecomposable pieces. The number of times each such piece
occurs in a concrete variation structure, is encoded in the so–called mod 2
equivariant (primitive) Hodge numbers associated with the singular germ.
The name is motivated by the fact that they are, indeed, mod 2 reduc-
tions of the equivariant Hodge numbers associated with the mixed Hodge
structure of the vanishing cohomology of the singularity, defined as in [20].
In this way one also sees that the information codified in these numbers is
equivalent with the real Seifert form [17].
From the mod 2 equivariant Hodge numbers many other invariants can

be reread, like the characteristic polynomial of monodromy, or different
signature–type invariants. In fact, if n = 1, then from them one can even
recover completely all the equivariant Hodge numbers of the mixed Hodge
structure of the vanishing cohomology.
The algebraic links (case n = 1) form a bridge between the singularity

theory and the knot theory (but the correspondences can be continued in
higher dimensions, too). The Alexander polynomial of an algebraic link is
exactly the characteristic polynomial of the monodromy of the correspond-
ing Milnor fibration. The Milnor fiber constitutes a natural Seifert surface
of an algebraic link. The corresponding Seifert matrix is the transposed
inverse of the variation operator. In other words, the variation structure of
(plane curve) singularities is deeply related to link invariants of algebraic
links.
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LINK INVARIANTS 271

Motivated strongly by the case of algebraic links, we associate a vari-
ation structure with any link in S3, and we define the analogs of mod 2
equivariant (primitive) Hodge numbers. The variation structure is built of
the real Seifert matrix of the link and determines the Seifert matrix up
to real S-equivalence. In fact, the newly defined numbers codify and de-
termine this structure. Although the present work does not contain any
Hodge theoretical discussion, motivated by the above correspondence we
still call the introduced numbers H–numbers. Actually, the nilpotent part
of the suitably defined monodromy operator defines a weight filtration, and
also one can define a mod 2–Hodge filtration similarly as in [17], hence a
“mod 2 Hodge structure” exists (it would be interesting to extend it to a
genuine Hodge structure).
Both the (higher) Alexander polynomial and the Tristram–Levine signa-

tures can be easily expressed in terms of the H–numbers of the link. Their
symmetries and their behaviour under taking mirrors, allow us to explain
e.g. why the Alexander polynomial does not distinguish mirrors, while the
signatures do.

In the Hodge theory of hypersurface singularities, the (numerical part)
of the mixed Hodge structure was codified by Steenbrink and Varchenko in
the so–called spectrum. This codification was motivated by the extremely
powerful and mysterious semicontinuity behavior of it under the deforma-
tion.

In our present context we also introduce the mod 2 spectrum of a link in
S3, and we relate it with the classical link invariants as the higher Alexan-
der polynomials and Tristram–Levine signatures. The relation between the
spectrum and Tristram–Levine signatures (see Proposition 4.14) is one of
the key ingredients of showing semicontinuity results for spectra by topo-
logical methods as in [3]. It also emphasizes the unifying power of the
newly introduced invariants, which gather together more conceptually all
the classical properties and invariants associated with real Seifert matrices.
On the other hand, since we know only the classification of the variation
structures over reals, and not over integers, in this discussion we loose some
information regarding the integer Seifert matrices, like the determinant.
After the foundations, we try to alloy the two main strategies used in the

two theories: the technique of skein relations of classical link theory with
the semicontinuity of the spectrum (known in singularity theory). Although
at the origin and substance of both sits surgery, for the second case one
needs a special surgery with intrinsic monotonicity structure (this, in the
singularity theory, is guaranteed by the presence of the deformation). In

TOME 63 (2013), FASCICULE 1



272 Maciej BORODZIK & András NÉMETHI

our results we will assume the monotonicity of the degree of the Alexander
polynomial.
The basic motivation for studying semicontinuity of our structures is

the following. First, we believe that the newly introduced H–numbers do
not admit so precise skein relations similarly as some of the classical link
invariants; or, their form should be packed in a more intelligent way. We
believe that this “packing” goes through the spectrum, and the correspond-
ing semicontinuity relations will guide the corresponding surgery formulas.
Similarly as in the case of analytic singularities, where the semicontinuity
had remarkable applications (see e.g. [22]), we expect in the future similar
consequences for the newly introduced spectrum too. For more comments
see (6.2).

1.2.

The structure of the paper is the following. We begin with a definition
and examples of variation structures in Section 2. Then we recall the classi-
fication theorem of [17] regarding real, simple (see Definition 2.3) variation
structures, and define the H–numbers for links. In Section 4 we relate the
classical link invariants (higher Alexander polynomials, rational Nakanishi
index, Tristram–Levine signatures) to the H–numbers. In the next section
we show some examples. In the last section we gather results about the
skein relation, the proofs mostly go through skein relation for the Alexan-
der polynomial or the signatures. Also, we establish some semicontinuity
results for the spectrum. By them we wish to draw the attention of the
readers to this new phenomenon with the hope that this will bring some
deep and powerful instrument in the near future.

Acknowledgements. The authors wish to express their thanks to Rényi In-
stitute for hospitality, to L. Kaufmann, A. Stoimenow, P. Traczyk, H. Trot-
ter and H. Zoladek for many fruitful discussions on the subject, and to
S. Friedl for pointing out the relation of the newly discussed invariants
with the Nakanishi index.

2. Variations structures. Definitions and examples

2.1. Definitions

Here we recall some definitions from [18, Section 2]. We begin with fixing
some standard notation.

ANNALES DE L’INSTITUT FOURIER
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For a finite dimensional complex vector space U , we denote its dual by
U∗. The natural isomorphism θ : U → U∗∗ is given by θ(u)(φ) = φ(u). The
complex conjugation is denoted by a bar ·̄; for any φ : U → V its dual map
is denoted by φ∗ : V ∗ → U∗. Let us also recall that, if φ is represented by
a matrix S in some basis, then φ∗ is represented by a transpose ST in the
dual basis. For a matrix S, Skl or Sk,l denotes the coefficient of S in k-th
row and l-th column.
It is convenient to regard hermitian forms in the following way.

Definition 2.1. — A C–linear endomorphism b : U → U∗ with b∗ ◦ θ =
εb (where ε = ±1) is called ε–hermitian form on U .

Remark, that we do not assume here that b is non–degenerate. The auto-
morphisms of b consists of isomorphisms h : U → U preserving b, i.e., with
h̄∗ ◦ b ◦ h = b.

Definition 2.2. — An ε–hermitian variation structure (abbreviated by
HVS) over C is a quadruple (U ; b, h, V ), where

(1) U is finite dimensional vector space over C;
(2) b : U → U∗ is an ε–hermitian form on U ;
(3) h : U → U is a b–orthogonal automorphism of U ;
(4) V : U∗ → U is a C–linear endomorphism such that

θ−1 ◦ V ∗ = −εV ◦ h∗

V ◦ b = h− I.

Here and afterwards I denotes the identity map. The name of the struc-
ture is inherited from the operator V , which usually is a “variation map”,
cf. (2.4). V , respectively h will be called variation, respectively monodromy
operator.

Observe that from (4) it follows immediately that

(2.1) b ◦ V = h
∗−1
− I and h ◦ V ◦ h̄∗ = V.

Definition 2.3. — The HVS (U ; b, h, V ) will be called non–degenerate
(respectively simple) if b (respectively V ) is an isomorphism.

We will need following lemmas from [17]:

Lemma 2.4. — For a triple (U ; b, h) satisfying points (1)–(3) from Def-
inition 2.2, if b is non–degenerate, then there exists a unique V , namely
V = (h− I)b−1, such that (U ; b, h, V ) constitutes a HVS.

The non–degenerate triplets (U ; b, h) are classified by Milnor [13], see
also [19].

TOME 63 (2013), FASCICULE 1



274 Maciej BORODZIK & András NÉMETHI

Lemma 2.5. — For a pair (U ;V ) with V an isomorphism, there exist
unique b and h such that (U ; b, h, V ) is a HVS. Indeed, h = −εV V̄ ∗−1 and
b = −V −1 − εV̄ ∗−1 satisfy the axioms.

From the last lemma it follows that the classification of simple HVS is
equivalent to the classification of C–linear isomorphisms V : U∗ → U .

There is a natural notion of an isomorphism of a HVS:

Definition 2.6.
(a) Two HVS (U ; b, h, V ) and (U ′; b′, h′, V ′) are isomorphic, denoted by
', if there exists an isomorphism φ : U → U ′ such that b = φ̄∗b′φ,
h = φ−1h′φ, and V = φ−1V ′(φ̄∗)−1.

(b) If (U1; b1, h1, V1) and (U2; b2, h2, V2) are two HVS with the same sign
ε, their direct sum is given by (U1 ⊕ U2; b1 ⊕ b2, h1 ⊕ h2, V1 ⊕ V2).
For sum of m copies of V we write m · V.

(c) The conjugate of V = (U ; b, h, V ) is defined as V̄ = (U ; b̄, h̄, V̄ ).

2.2. Examples and classification of HVS

Here we shall follow closely [17], unless stated otherwise all results in this
section are proved in [17]. For k > 1, Jk denotes the (k × k)–Jordan block
with eigenvalue 1.

Example 2.7. — For λ ∈ C∗ \ S1 and k > 1, the quadruple

V2k
λ =

(
C2k;

(
0 I

εI 0

)
,

(
λJk 0

0 1
λ
J∗k
−1

)
,

(
0 ε(λJk − I)

1
λ
J∗k
−1 − I 0

))
defines a HVS. Moreover, V2k

λ and V2k
1/λ̄ are isomorphic.

Before we show the next example we need a computational lemma; here
one needs to consider the two square roots of ε. The two canonical sign
choices for them are motivated by Hodge theoretical sign–conventions (cf.
[17], Sections 5 and 6) of the variation structures associated with isolated
hypersurface singularities (Cn+1, 0)→ (C, 0), where ε = (−1)n.

Lemma 2.8. — For any k > 1 there are precisely two non-degenerate
ε–hermitian forms (up to a real positive scaling), denoted by bk±, such that

b̄∗ = εb and J∗k bJk = b.

By convention, the signs are fixed by (bk±)1,k = ±i−n2−k+1, where ε =
(−1)n. b is also left diagonal, i.e., the entries of b also satisfy: bi,j = 0 for
i+ j 6 k and bi,k+1−i = (−1)i+1b1,k.

ANNALES DE L’INSTITUT FOURIER
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Example 2.9. — Let λ ∈ S1. Up to isomorphism there are two non–
degenerate HVS such that h = λJk. These are

Vkλ(±1) =
(
Ck; bk±, λJk, (λJk − I)(bk±)−1) .

Notice that these structures are simple unless λ = 1. In fact, if λ 6= 1
then any HVS with h = λJk is both non-degenerate and simple. The case
with eigenvalue 1 admits also a pair of degenerate HVS.

Lemma 2.10. — For k > 2 there are two degenerate HVS with h = Jk.
They are

Ṽk1 (±1) =
(
Ck; b̃±, Jk, Ṽ k±

)
,

where

b̃k± =
(

0 0
0 bk−1

±

)
and Ṽ k± is uniquely determined by b and h (up to an isomorphism). More-
over, Ṽk1 (±1) is simple. In fact, the entries of V −1 satisfy: (V −1)i,j = 0 for
i + j > k + 2, (V −1)i,k+1−i = ±(−1)i+1i−n

2−k. In order to recognize the
isomorphism type, we have to recognize these entries up to a real positive
re-scaling.

For k = 1 (i.e., U = C), and h = I, the structures can be written down
more explicitly; there are the following five ε–HVS’s with ε = (−1)n:

V1
1 (±1) = (C,±i−n

2
, I, 0)

Ṽ1
1 (±1) = (C, 0, I,±in

2+1)
T = (C, 0, I, 0).

From all these examples the structures Vk1 (±1) and T are non–simple,
and Ṽ1

1 (±1) are simple. Concluding, for any λ ∈ S1 and in each dimension
k, there are precisely two non-equivalent simple variation structures with
h = λJk. We use the following uniform notation for them:

(2.2) Wk
λ(±1) =

{
Vkλ(±1) if λ 6= 1
Ṽk1 (±1) if λ = 1.

Proposition 2.11. — A simple HVS is uniquely expressible as a sum
of indecomposable ones up to ordering of summands and up to an isomor-
phism. The indecomposable pieces are

Wk
λ(±1) for k > 1, λ ∈ S1

V2k
λ for k > 1, 0 < |λ| < 1.

TOME 63 (2013), FASCICULE 1



276 Maciej BORODZIK & András NÉMETHI

Convention 2.3. — From now on, all HVS we shall discuss, are as-
sumed to be simple.

The above proposition allows us to define some invariants of HVS.

Definition 2.12. — Let V be a simple HVS V. Let us express it, ac-
cording to Proposition 2.11, as

(2.4) V =
⊕

0<|λ|<1
k>1

qkλ · V2k
λ ⊕

⊕
|λ|=1

k>1, u=±1

pkλ(u) · Wk
λ(u),

where the expression of type r · V is a shorthand for a sum V ⊕ · · · ⊕ V
(r times), cf. (2.6). Then {qkλ}|λ|<1 and {pkλ(±1)}λ∈S1 are called the H–
numbers of V.

Remark 2.13. — The above classification result is over C or, equiva-
lently, over R. One can consider HVS’s over Z as well, but then the classi-
fication is unknown.

If V is defined over the real numbers, then the above decomposition has
some symmetries. Let s be 1 if λ = 1 and 0 if λ ∈ S1 \ {1}. Then, with
ε = (−1)n,

(2.5) V2k
λ = V2k

λ̄
for λ 6∈ S1, and

(2.6) Wk
λ(±1) =Wk

λ̄
(±(−1)n+k+1+s) for λ ∈ S1.

Therefore we have the following result

Lemma 2.14. — If in the HVS V, the matrix V is defined over reals,
then

qkλ = qk
λ̄

(for |λ| < 1) and pkλ(±1) = pk
λ̄
(±(−1)n+k+1+s) (for |λ| = 1).

Moreover, by an easy check of the coefficient bk,1 one has

Lemma 2.15. — Let V be the variation operator of the simple structure
V. Let −V be the structure corresponding to the variation operator −V (see
Lemma 2.5). Then −Wk

λ(±1) ' Wk
λ(∓1), and −V2k

λ ' V2k
λ .

One needs slightly more computations to verify:

Lemma 2.16. — Let V be the variation operator of the simple structure
V. Let VT be the structure determined by the variation operator V T . Then
VT and V are isomorphic.

ANNALES DE L’INSTITUT FOURIER
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Proof. — The statement is clear for V = V2k
λ . Hence, assume that V =

(U ; b, h, V ) is Wk
λ(±1). Consider the new structure with variation operator

W = V T . Since for φ = V T one has φ−1V Tφ
∗,−1 = V

−1, the variation
structures associated with W and V

−1 are isomorphic. The monodromy
operator of V −1 is −εV −1

V ∗ = h∗ = λJTk . Next, consider the anti-diagonal
matrix A with Aij = 1 if i + j = k + 1 and zero otherwise; it satisfies
A = A−1 = AT = A. Base change by A has the effect A(λJTk )A = λJk,
hence the monodromy operator is twisted to a “normal form”, which agrees
with h. In particular, it is enough to compare the two variation operators
V and AV

−1
A. If λ = 1, by the last sentence of (2.10), it is enough to

compare the anti-diagonals of these two operators, which clearly agree. If
λ 6= 1 use (2.8) and the same type of argument. �

2.3. Spectrum and the extended spectrum

One can extract from a variation structure a weaker invariant, whose
motivation will be explained in the next subsection when we discuss the
spectrum of an isolated hypersurface singularity.

Definition 2.17. — Let V be a HVS. Themod 2–spectrum (or, shortly,
the spectrum) of V is a finite set Sp of real numbers from (0, 2] such that
any real non-integer number α ∈ (0, 2] occurs in Sp precisely s(α) times,
where

s(α) =
∑
k odd
u=±1

k − uv
2 · pkλ(u) +

∑
k even
u=±1

k

2 · p
k
λ(u),

where
e2πiα = λ and (−1)bαc = v.

The H–numbers pk1(±1) correspond to elements 1 and 2 in the spectrum,
appearing precisely k/2 times each if k is even, and (k±1)/2 and (k∓1)/2
times if k is odd.

A consequence of Lemma 2.14 is the following symmetry property

Corollary 2.18. — If V is a real matrix, and ε = −1, then Sp \ Z is
symmetric with respect to 1.

Notice that Sp contains no information regarding the blocks with eigen-
values λ 6∈ S1. To enclose the information regarding {qkλ}|λ|<1 we define
the extended spectrum.

Remark that, this construction has no counterpart in the classical Hodge
theory.

TOME 63 (2013), FASCICULE 1



278 Maciej BORODZIK & András NÉMETHI

Definition 2.19. — The extended spectrum ESp of a HVS V is a finite
subset of complex numbers from (0, 2] × iR of the form ESp = Sp ∪ ISp,
where ISp ∩ R = ∅ and any non-real number z ∈ (0, 2] × iR, z = x + iy,
occurs in ISp precisely s(z) times, where

s(z) =


∑
k · qkλ if x 6 1, y > 0 and e2πiz = λ∑
k · qkλ if x > 1, y < 0 and e2πiz = 1/λ̄

0 if x 6 1 and y < 0, or x > 1 and y > 0.

In other words, a block V2k
λ (where |λ| < 1) contributes k times to both

x+ iy and 1 + x− iy, if e2π(−y+ix) = λ and x ∈ (0, 1].
We have the following two important properties of ESp.

Lemma 2.20. — For any u ∈ (0, 1), let Hu = (u, u + 1) × iR. Then, if
ISp ∩ ∂Hu = ∅, we have

#ISp ∩Hu = #ISp \Hu.

Proof. — This follows directly from a simple observation that out of two
numbers x+ iy and 1 + x− iy, one lies in Hu and one does not. �

Lemma 2.21. — If V is real and ε = −1, then ESp \ Z is symmetric
(via point–reflection) with respect to 1.

Proof. — By Corollary 2.18, it is enough to prove that ISp is symmetric.
But this follows from the fact that λ = e2π(−y+ix) yields the points x+ iy

and 1 + x − iy in ISp, while λ̄ = e2π(−y−ix) the points 1 − x + iy and
2− x− iy. �

2.4. Variations structures of Milnor fibers

The motivation of the definition of HVS comes from the topological in-
variants of complex isolated hypersurface singularities and their relation-
ship with the mixed Hodge structure on the vanishing cohomology.

Let f : (Cn+1, 0)→ (C, 0) (n > 0) be an analytic germ such that f−1(0)
has an isolated singularity at the origin. Let S2n+1 be a small sphere around
0, K = S2n−1 ∩ {f = 0} the link, and

φ : S2n+1 \K → S1, φ(z) = f(z)/|f(z)|

the Milnor fibration (see [12]) with fiber F = φ−1(1). Set Ft = φ−1(e2πit)
for t ∈ [0, 1) (with F = F0). Then the trivialization of the bundle over [0, 1)
gives diffeomorphisms (defined up to isotopy) γt : F → Ft for t ∈ [0, 1), and
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extended to t = 1, the geometric monodromy γ1 : F → F . They give rise
to a well-defined map

Γt : H̃n(F1)→ H̃n(Ft)

and the monodromy map

h = Γ1 : H̃n(F )→ H̃n(F ).

One also defines the intersection form on b : H̃n(F )⊗2 → R which is
(−1)n symmetric. Since γ1 is chosen such that it is identity on ∂F , one
also defines a variation map V : H̃n(F, ∂F )→ H̃n(F ) (see [23, Chapter 4.2]
or [1, Chapter 1.2]). Here, by Lefschetz duality one has the identification
H̃n(F, ∂F ) ' Hom(H̃n(F ),R). The next fact is well–known (see e.g. [17]):

Proposition 2.22. — The quadruple (U = H̃n(F,C), b, h, V ) form a
HVS with ε = (−1)n.

Definition 2.23. — The variation structure defined above is called the
variation structure of the singularity f and it is denoted by Vf .

Notice that Vf is defined over R. Additionally, it has some other particu-
lar properties as well. First of all, by the Monodromy Theorem (see e.g. [1,
Theorems 3.11 and 3.12] or [23, Chapter 7, §4]), all the eigenvalues of h are
roots of unity. Moreover, the block–decomposition of Vf is closely related
with the mixed Hodge structure of U .
Recall (see e.g. [17] for the facts below) that U carries a mixed Hodge

structure compatible with the monodromy action. Let us denote the cor-
responding equivariant Hodge numbers by ha,bλ . The nilpotent part of the
monodromy defines a morphism of Hodge structures of type (−1,−1), let us
denote by pa,bλ the dimensions of the corresponding primitive λ–generalized
eigenspaces, which are, in general, non–trivial for a+ b > n+ s. Then

pa,bλ = ha,bλ − h
a+1,b+1
λ and ha,bλ =

∑
l>0

pa+l,b+l
λ

for any a+ b > n+ s. Moreover, since ha,bλ = hn+s−a,n+s−b
λ̄

, the system of
Hodge numbers {ha,bλ }a,b is equivalent with the system of primitive Hodge
numbers {pa,bλ }a+b>n+s.

The point is that by [17, Theorem 6.1] one has the following isomorphism
of variation structures:

Vf '
⊕
λ

⊕
2n>a+b>n+s

pa,bλ · W
a+b+1−n−s
λ ((−1)b).

TOME 63 (2013), FASCICULE 1
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In particular, for any k > 1 and u = ±1 one has

(2.7) pkλ(u) =
∑

a+b=k+n+s−1
(−1)b=u

pa,bλ .

This fact motivates to call the numbers pkλ(u) the mod–2 primitive Hodge
numbers of f , or of the corresponding variation structure.
This relation with Hodge theory can be continued. Recall that for any f

as above one extracts from the equivariant Hodge numbers the spectrum.
Now, if V is a variation structure associated to an isolated hypersurface
singularity, then Sp (defined in (2.17)) is the spectrum of the singularity
reduced modulo 2, i.e., if α belongs to the spectrum, then α mod 2 ∈ (0, 2]
belongs to Sp. In the case of isolated curve singularities Sp is just the
spectrum of the singular germ.
Obviously, in general, Sp does not always contain enough information to

recover V. However, if all the monodromy eigenvalues are different, then
the dimension of all Jordan blocks is one, and V is determined by Sp.
This simple case contains for example all spectra of cuspidal plane curve
singularities.
At the end of this subsection we recall the connection of the variation

structures with the Seifert form.

Definition 2.24. — Let us be given two cycles α, β ∈ H̃n(F ). The
Seifert form of the Milnor fibration is defined to be

(2.8) S(α, β) = L(α,Γ1/2β),

where L is the linking number of two n-dimensional cycles in S2n+1.

There is a standard fact that S(α, β) = 〈V −1(α), β〉, where 〈·, ·〉 is the
Lefschetz pairing H̃n(F, ∂F )× H̃n(F )→ R . In particular, in matrix nota-
tions, the variation operator is the transposed inverse of the Seifert form.

3. H–numbers for links

3.1. Definitions and first properties

Let us consider S3 with its standard orientation, and let L ⊂ S3 be an
oriented link. Let S be its (integral) Seifert form. By our convention, the
Seifert form is S(α, β) = L(α, β+), where α, β are cycles on the Seifert
surface and β+ is the push-forward of β in the positive direction. This is
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the convention adopted by e.g. [4, 11, 15]. Some authors like [6, 7] define
S(α, β) as L(α+, β). This amounts to transposition of S.
Recall, that two matrices S and S′ are congruent if there exists an in-

vertible matrix A such that S′ = ASAT .
The next results were proved in [8] as a generalization of Theorem 12.2.9

of [7] (we would like to thank H. Trotter for drawing our attention to Keef’s
paper):

Proposition 3.1.
(a) [8, Proposition 3.1] Let S : V × V → R be a Seifert form of a link.

Then, either S is real S–equivalent to the empty matrix or is real

S-equivalent to
(
S0 0
0 Sndeg

)
, where detSndeg 6= 0 and S0 is a zero

matrix.
(b) [8, Theorem 3.5] Let us be given two matrices S and T , which are

S-equivalent. Assume that they are of the form S =
(
S0 0
0 Sndeg

)
,

T =
(
T0 0
0 Tndeg

)
. Then Sndeg and Tndeg are congruent and

dimS0 = dimT0.

Let us define
V := (STndeg)−1.

and take the associated HVS with ε = −1. Its parts are the following:
U = Cm, where m := rank(V ), b = Sndeg−STndeg, and h = (STndeg)−1 ·Sndeg.
Observe that taking a congruent of the Seifert matrix results in an iso-

morphism of HVS. Hence, the whole structure is independent (up to an
isomorphism) of the specific choice of the Seifert matrix. Hence it is a link
invariant.

Definition 3.2. — The variation structure (U ; b, h, V ) defined above is
called the variation structure of the link L and is denoted by VL.

According to Definition 2.12, we can define the numbers {qkλ}|λ|<1 and
{pkλ(±1)}λ∈S1 of the corresponding HVS.

Definition 3.3. — The numbers {qkλ}|λ|<1 and {pkλ(±1)}λ∈S1 will be
called the H–numbers of the link L.

From basic properties of Seifert matrices we get
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Lemma 3.4.
(a) The H–numbers are symmetric in the sense that for 0 < |λ| < 1 one

has qkλ = qk
λ̄
, and

pkλ(±1) = pk
λ̄
(±(−1)k+s) for λ ∈ S1.

(b) H–numbers are additive with respect to the connected sum of links.
(c) If Lor is the link L with all its components with opposite orientation,

then the H–numbers of L and Lor are the same.
(d) If Lmir is the mirror of L, then the H–numbers are changed as

follows: qkλ(Lmir) = qkλ(L) for any |λ| < 1 and

pkλ(±1)(Lmir) = pkλ(∓1)(L) for λ ∈ S1.

Proof. — (a) follows immediately from Lemma 2.14. As for (b), observe
that the Seifert matrix of the connected sum is the direct sum of the Seifert
matrices of the summands. (c) and (d) follows from the classical facts that
the S(Lor) = S(L)T and S(Lmir) = −S(L)T , cf. [15] Propositions (5.4.6)
and (5.4.7), combined with (2.14), (2.15) and (2.16). �

If L is an algebraic link, i.e., a link of a plane curve singularity, it has two
HVS’s: the variation structure of the singularity Vf (see Definition 2.23)
and the variation structure of the oriented link VL. Obviously, they agree
Vf ' VL, thanks to the relation V = (ST )−1, cf. the discussion after
Definition 2.24.
One has very strong restrictions for H–numbers of algebraic links: from

the classical monodromy theorem (see e.g. [1] or [23, Chapter 7, §4]) one
reads:

Corollary 3.5. — If L is an algebraic link then qkλ = 0 for any |λ| < 1.
Moreover, pkλ(±1) = 0 if at least one of the following conditions is satisfied

• λ is not a root of unity;
• λ 6= 1 and k > 2;
• λ = 1 and k > 1.

Corollary 3.5 admits further improvements, see e.g. [17, Proposition 6.14].

Lemma 3.6. — If L is algebraic link and λ ∈ S1 \ {1}, then p2
λ(−1) = 0

(p2
λ(+1) can be positive) and p1

1(−1) = 0.

4. Classical link invariants and H–numbers

Having defined the H–numbers, we wish to study their relationship with
classical invariants of the link L. Recall that we have the decomposition
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S = Sndeg ⊕ S0 and the newly defined numbers are associated with Sndeg,
see (3.3).

4.1. Alexander polynomial

Define the polynomial P (t) ∈ R[t] by

P (t) :=
∏
|λ|=1

(t− λ)
∑

k,u
kpkλ(u) ∏

0<|λ|<1

(
(t− λ)(t− 1/λ̄)

)∑
k
kqkλ .

Lemma 4.1. — The Alexander polynomial ∆(t) is zero if S0 6= 0, and
it equals P (t) (up to an invertible element of R[t, t−1]) otherwise. In this
second case, the degree of ∆(t) is equal to the cardinality of the extended
spectrum ESp.

Proof. — We have ∆(t) = det(Sndeg−tSTndeg) = detSTndeg·det(h−tI). �
As the Alexander polynomial of a knot has no root at t = 1, we get:

Corollary 4.2. — If L is a knot then pk1(±1) = 0.

The symmetry property of H–numbers (Lemma 2.14) explains (once
again) the well-known property of the Alexander polynomial, namely, if
we write ∆ = a0 + a1t+ · · ·+ amt

m, then an = (−1)mam−n.

4.2. Higher Alexander polynomials

Let us recall briefly the construction of the higher order Alexander poly-
nomials (see [4, Definition 8.10]) via higher order elementary ideals of the
matrix S − tST . We remark that our construction differs slightly from the
standard one, because we consider ideals in R[t, t−1] instead of Z[t, t−1]
(hence we loose some information about Z–torsion elements).
Let ` be a positive integer. Consider an `× ` matrix H over R[t, t−1]. For

0 6 n < `, let En be the ideal in R[t, t−1] generated by the determinants of
all (`− n)× (`− n) minors of H. As R[t, t−1] is a principal ideal domain,
the ideal En is generated by a single element ∆H

n (t) ∈ R[t, t−1]. ∆H
n (t) is

defined only up to an invertible element in R[t, t−1], multiplying it by t in
the appropriate power we can guarantee that ∆H

n is in fact a polynomial
and, unless it is the zero polynomial, that ∆H

n (0) 6= 0.

Definition 4.3. — The polynomial ∆H
n (t) for H = S − tST is called

the n-th Alexander polynomial of the link L and denoted by ∆n(t).
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The indexing was chosen so that ∆0 is the standard Alexander polyno-
mial. If m0 is the rank of S0, then ∆n = 0 for 0 6 n < m0 and ∆m0 = P ,
cf. (4.1).
Our goal now is to express ∆n in terms of the primitive numbers. Notice

that multiplying H by a non-degenerate matrix independent of t or taking
its transpose does not change the polynomials ∆n. Therefore, ∆S−tST

n+m0
=

∆h−tI
n . By choosing a suitable basis of U we may also assume that h is

in the Jordan form. Moreover, if H = λJk − tI, then ∆H
0 = (t − λ)k and

∆H
1 = 1. Next, we need to see what happens when we take a direct sum of

several matrices.

Lemma 4.4. — Let H1 and H2 be two square matrices, H = H1 ⊕H2,
and ∆H1

i , ∆H2
j , ∆H

k the corresponding higher Alexander polynomials. For
fixed λ ∈ C∗, let ai (respectively bj , ck) be the multiplicity of (t − λ) in
∆H1
i (respectively ∆H2

j , ∆H3
k ). Then

ck = min{ai + bj : i+ j = k}.

Proof. — It is enough to use the fact that for arbitrary minors A1, A2
of H1 and H2, A1 ⊕ A2 is a minor of H. Moreover, any minor of H with
non-zero determinant arises in this way. �

Remark 4.5. — Lemma 4.4 works if some Alexander polynomials ∆H1
i

or ∆H2
j are identically zero. We only have to agree that the multiplicity of

(t− λ) in a zero polynomial is +∞.

Fix µ ∈ C∗ and set for each k > 1

(4.1) sk(µ) :=
{
pkµ(+1) + pkµ(−1) if µ ∈ S1,
qkλ if µ ∈ {λ, 1/λ̄}, (|λ| < 1).

i.e., sk(µ) is the number of Jordan blocks of size k with eigenvalue µ. Now let
Θ := {θ1, . . . , θr}, θ1 6 · · · 6 θr, be a set of integers, such that each k ∈ Z
is contained in Θ precisely sk(µ) times (hence r = r(µ) = #Θ =

∑
sk(µ)).

Define the function

I(n) =
{∑r(µ)−n

i=1 θi for n < r(µ)
0 otherwise.

The above facts combined provide:

Proposition 4.6. — The multiplicity of the root µ in the n–th Alexan-
der polynomial ∆h

n is I(n).

In Lemma 4.1 and Proposition 4.6 the exponents of the monomials (t−λ)
depended on the sums pkλ(+1) + pkλ(−1). This, together with Lemma 3.4,
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explains in this terminology, why the higher Alexander polynomials of a
link and its mirror are the same.

4.3. Rational Nakanishi index

We begin with recalling the definition of the Nakanishi index (see e.g.
[7, Section 5.4]). Let Λ = Z[t, t−1] be a ring of Laurent polynomials with
integer coefficient and ΛQ = Q[t, t−1]. For a knot K, set X = S3 \K and
let us consider the Alexander module of K, i.e., the homology group of X

H = H1(X; Λ)

with coefficients in Λ. This group can be regarded as the homology group of
the universal abelian cover of X. It has a natural structure of a Λ module,
where t and t−1 are deck transformations.

Definition 4.7. — A square presentation matrix for H is a square
matrix A with entries in Λ such that H ∼= Λn/AΛn, where n is the size of
A. The Nakanishi index n(K) is the minimal size of a square presentation
matrix of the module H.

Since we are allowed to perform row operations on a square presentation
matrix and, independently, column operations, we can always assume that
A is diagonal.

It is well known [7, Proposition 5.4.1], that if S is a Seifert matrix of K,
then tS − ST is a square presentation matrix for H. However, in general,
its size is not minimal possible. For example, for all torus knots n(K) = 1.

We show a relationship between our primitive numbers and the Nakanishi
index defined over rational numbers instead of integers.

Definition 4.8. — The rational Nakanishi index nQ(K) is a minimal
size of a square matrix AQ with entries in ΛQ such that

H ⊗Q ∼= ΛnQ/AQΛnQ.

Obviously we have n(K) > nQ(K). In [16] it is proved that n(K) is a
lower bound for the unknotting number, hence nQ(K) is a lower bound
for it, too. Moreover, nQ(K) is related to the Alexander polynomials in a
following way.

Proposition 4.9. — If ∆0(K), . . . ,∆n(K) are higher order Alexander
polynomials with ∆0 the ordinary Alexander polynomial, then

nQ = min{k : ∆k(K) ≡ 1}.
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In particular nQ is the maximal number of Jordan blocks of the monodromy
matrix with the same eigenvalue

(4.2) nQ = max
λ

r(λ) = max

max
|λ|=1

∑
k,u

pkλ(u), max
0<|λ|<1

∑
k

qkλ

 .

Proof. — First of all observe that given a square presentation matrix AQ
of size n, ∆l(K) is the generator of ideal spanned by all (n − l) × (n − l)
minors of l (see Section 4.2). Hence, if the l−th Alexander polynomial ∆l

is non-trivial, it follows that the size of AQ is at least l.
Conversely, if ∆k−1 6≡ 1 and ∆k ≡ 1 we may define AQ to be a diagonal

k × k matrix with ∆l−1/∆l on the (l, l)-th place. Then ΛkQ/AQΛkQ is easily
seen to be isomorphic as a ΛQ-module to ΛnQ/(tS − ST ).

Equation (4.2) follows now from Proposition 4.6. �

4.4. Signatures

Besides Alexander polynomials, the Tristram–Levine signatures can also
be computed from the H–numbers. We begin by recalling their definition.

Definition 4.10. — Let L be a link and S a Seifert matrix of L. The
Tristram–Levine signature (or the signature function) is the function asso-
ciating to each ζ ∈ S1 \ {1} the signature σ(ζ) of the Hermitian form given
by

(4.3) MS(ζ) := (1− ζ)S + (1− ζ̄)ST .

The nullity n(ζ) is the nullity of the above form (i.e., dim kerMS(ζ)).

Remark 4.11. — Some authors, like [14, Definition 3.11], define n(ζ) as
the nullity increased by 1. It is merely a matter of convention, we stick to
the notation we find more common.

Clearly, in the definition of σ (but not n(ζ)) one can replace S by Sndeg.
Hence, in the sequel, for the simplicity of the notations, S will denote Sndeg.
Then, MS(ζ) equals

(4.4) S((ζζ̄ − ζ)I + (1− ζ̄)S−1ST )) = (1− ζ̄)S · (h−1 − ζI).

It is not hard to express these signatures by H–numbers: we compute the
signature function associated with each irreducible simple HVS and then
we use the additivity of signatures. Notice that for non–real matrices S,
MS(ζ) in (4.3) should be replaced by (1− ζ)S + (1− ζ̄)S̄T .
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Lemma 4.12. — Let V be the variation operator of V2k
λ (see Exam-

ple 2.7). Let S = (V̄ T )−1. Then the signature of MS(ζ) is zero and the
form is non-degenerate for any ζ.

Proof. — The non–degeneracy follows from (4.4). For vanishing of the

signature notice that MS(ζ) has the block form
(

0 A

ĀT 0

)
with A non–

degenerate. Hence the signature is zero by elementary linear algebra. �

The case of HVS Wk
λ(u) for |λ| = 1 is slightly more complicated.

Lemma 4.13. — Set S = (V̄ T )−1, where V is the variation operator of
Wk
λ(u). Then the formMS(ζ) is non-degenerate for all ζ 6= λ̄. If ζ = λ̄ then

it has a one–dimensional kernel. In particular, the nullity of the link L is
equal to

n(ζ) =
∑
k,u

pk
ζ̄
(u) + dimS0.

Proof. — The first part follows from (4.4). To show the formula for
n(ζ) it is enough to observe that if we decompose S = S0 ⊕ Sndeg, and
write MS and MSndeg for corresponding matrices (4.3), then dim kerMS −
dim kerMSndeg = dimS0. �

The next result is computational. To formulate it we need the next

Convention 4.5. — Let α, β ∈ S1. We say that

α < β

if α = e2πix, β = e2πiy with x, y ∈ [0, 1) and x < y.

Proposition 4.14. — Let L be a link, and consider the primitive num-
bers of the variation structure VL associated with its Seifert for as above.
Let ζ ∈ S1 \ {1}. Then the Tristram–Levine signature of L is equal to

σ(ζ) = σ(ζ̄) = −
∑
λ<ζ
k odd
u=±1

upkλ(u) +
∑
λ>ζ
k odd
u=±1

upkλ(u) +
∑
k even
u=±1

upkζ (u).

Sketch of proof. — By additivity of signatures under the direct sum, it
is enough to prove the statement if VL = Vkλ(u) for some λ ∈ S1, k > 1
and u = ±1. Let V be the variation operator corresponding to Vkλ(u).
By Lemma 2.8, V is right diagonal (because b−1 is right diagonal) so the
corresponding form MS(ζ) (see (4.3)) is left diagonal.
Assume that λ 6= ζ. Then MS(ζ) is non-degenerate. If k is even, we

deduce thatMS(ζ) has a k/2-dimensional metabolic subspace, so signature
of MS is zero. If k is odd, the metabolic subspace is (k− 1)/2 dimensional,
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so the signature of MS is ±1, more precisely, it is equal to sign detMS(ζ)
which can be explicitely computed.
If λ = ζ, thenMS(ζ) is degenerate, we can easily compute that its kernel

is one dimensional. If k is odd, it follows that the signature is equal to zero.
If k is even, the signature is ±1. The precise computation of the signature
in this case requires much more effort (one can for instance compute V
explicitely from the definition) and will not be shown here. �

As a corollary, if ζ ∈ S1 is not an eigenvalue of monodromy, the signature
σ(ζ) can be expressed in terms of the (mod 2) spectrum alone.

Corollary 4.15.
(a) Let Sp be the (mod 2)–spectrum of a variation structure VL (see

Definition 2.17). Let ζ = e2πix, where x ∈ (0, 1). Then

σ(ζ) = −#Sp ∩ (x, x+ 1) + #Sp \ [x, x+ 1] +
∑
k even
u=±1

upkζ (u).

In particular, if ζ is not an eigenvalue of the monodromy h then

σ(ζ) = −#Sp ∩ (x, x+ 1) + #Sp \ (x, x+ 1).

(b) Let ESp be the extended spectrum of the variation structure VL
and let ζ = e2πix, x ∈ (0, 1). Let Hx = (x, x+ 1)× iR and assume
that ESp ∩ ∂Hx = ∅. Then

σ(ζ) = −#ESp ∩Hx + #ESp \Hx.

Remark 4.16. — (a) Corollary 4.15(a) can be compared with [10, Propo-
sition 1], where the signatures of the iterated torus knots are computed. In
fact, the spectrum of the torus knot (k, l), or equivalently, the spectrum of
the singularity {xk + yl = 0}, is

Sp =
{ i
k

+ j

l
, 1 6 i 6 k − 1, 1 6 j 6 l − 1

}
.

(b) The equivariant signatures of any HVS were computed in [17] and are
expressible in terms of H–numbers (primitive equivariant Hodge numbers).
However, in general, they are not expressible in terms of the spectrum
alone.

For instance, for plane curve singularities, the equivariant signature σ−1
cannot be determined, in general, from the spectrum. This is the case with
the Tristram–Levine signature σ(−1) too. In fact, σ(−1) is the signature of
S + ST . If S is the Seifert form of the plane curve singularity f(x, y), then
σ(S+ST ) is the signature of the suspension surface singularity f(x, y)+z2.
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For a pair of singularities with the same spectrum but with different σ(−1)
see e.g. [17, (6.10)].
This also shows that H–numbers of a link are not determined by Tristram-

Levine signatures and orders of higher Alexander polynomials alone. This
can be exemplified by a model situation as follows. Take some λ ∈ S1 \ {1}
and consider structures such that

p3
λ(+1) = p1

λ(−1) = 1 respectively p3
λ(−1) = p1

λ(+1) = 1,

and all other pk’s for this λ are zero. The two structures are different, but
they provide the same contribution to signatures, and orders of zeros of
subsequent Alexander polynomials at t = λ are in both cases 4, 1, 0, . . . .
(c) On the other hand, the higher Alexander polynomials with a set of

“higher equivariant signatures” determines the set of H–numbers. They are
defines as follows, cf. [17, (4.4)]. Let (U ; b, h, V ) be a variation structure,
let Uλ ⊂ U be the generalized λ–eigenspace of h, and for each integer
k > 1 consider U (k)

λ := ker((h − λI)k|Uλ). On U
(k)
λ /U

(k−1)
λ one defines

a (±1)–hermitian form by B
(k)
λ (x, y) = B(x, λ1−k(h − λI)k−1y), where

B(x, y) = b(x)(ȳ). Let n(k)
λ be the dimension of U (k)

λ , while σ(k)
λ the signa-

ture of B(k)
λ . Then the collection of the integers {n(k)

λ }k,λ is equivalent with
the collection of higher order Alexander polynomials, while the collection
of pairs of integers {n(k)

λ , σ
(k)
λ }k,λ characterizes completely the variation

structure (i.e the real Seifert form).

5. Some examples

5.1.

Let us consider a (right-handed) trefoil with non-degenerate Seifert ma-
trix

S =
(
−1 0
−1 −1

)
.

The variation matrix V = (ST )−1 and monodromy matrix h = V ·(V T )−1 =
V · S are

V =
(
−1 1
0 −1

)
h =

(
0 −1
1 1

)
.

The eigenvalues of h are λ1 = 1
2 −

1
2 i
√

3 and λ2 = 1
2 + 1

2 i
√

3. We need to
diagonalise h. Let us put

A = − 1
i 4
√

3

(
− 1

2 −
1
2 i
√

3 −1
1
2 −

1
2 i
√

3 1

)
.
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Then AhA−1 is diagonal with diagonal entries λ1 and λ2, and

AV ĀT = 1√
3

(
− 3

2 + i 1
2
√

3 0
0 − 3

2 − i
1
2
√

3

)
=
(
−i(λ1 − 1) 0

0 i(λ2 − 1)

)
.

Thus the HVS of a trefoil is

V = V1
λ1

(−1)⊕ V1
λ2

(+1).

The spectrum is { 5
6 ,

7
6}.

5.2.

Let us consider the knot 820. We have by [5]:

S =


−1 −1 −1 −1
0 0 −1 −1
0 −1 0 −1
0 0 −1 0

 , V = (ST )−1 =


−1 0 0 0
0 1 0 −1
1 −1 0 0
1 −1 −1 1

 .

And

h = V · S =


1 1 1 1
0 0 0 −1
−1 −1 0 0
−1 0 −1 1

 .

The monodromy h has eigenvalues λ1 = 1
2 −

1
2 i
√

3 and λ2 = 1
2 + 1

2 i
√

3. It
has two Jordan blocks of size 2. Let A be such matrix that AhA−1 is in
the Jordan form. e.g. :

A =


−1 2 −2 3

2 −
3
2
√

3i√
3i
√

3i − 3
2 + 1

2
√

3i 0
1 −2 2 − 3

2 −
3
2
√

3i√
3i
√

3i 3
2 + 1

2
√

3i 0

 .

Then we have

W = AV A
T =


3
2 −

1
6 i
√

3 1
2 −

1
2 i
√

3 0 0
1 0 0 0
0 0 3

2 + 1
6 i
√

3 1
2 + 1

2 i
√

3
0 0 1 0

 .

Then W12 = (−1) · (λ1 − 1), W34 = (−1) · (λ2 − 1). Now the size of each
Jordan block is k = 2 and ik = −1. Hence both signs in the direct sum
decompositions are ’+’ and

V = V2
λ1

(+1)⊕ V2
λ2

(+1).
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This is with the agreement with the fact that the Tristram–Levine signature
of W is zero, only it is +1 at ζ = λ1,2. The knot 820 is also reversible.

5.3.

Consider, for any n 6= 0, the following link

n full twists

1

This link represents two unlinks with linking number n. The shaded part
between the two strands forms a Seifert surface of genus 1. The Seifert
matrix in (n). Hence the variation structure is Ṽ1

1 (−1) for n > 0 and Ṽ1
1 (+1)

for n < 0 and apart of that does not depend on n. Therefore we do not see
the linking numbers, or the integral Seifert form from the H–numbers.

5.4.

According to [5], there are five knots with up to 12 crossings with the
Alexander polynomial

1− 4t+ 10t2 − 16t3 + 19t4 − 16t5 + 10t6 − 4t7 + t8 = (t− µ)4(t− µ̄)4,

where µ = eπi/3. These are L1 = 1099, L2 = 12n106, L3 = 12n508, L4 =
12n604 and L5 = 12n666. Their monodromy matrices (ST )−1S are respec-
tively h1, h2, h3, h4 and h5. Here we consider h1 and h2:

h1 =



0 0 −1 0 0 0 0 0
0 0 0 0 0 0 −1 0
2 1 2 −1 0 −1 1 0
0 1 0 0 0 0 1 −1
−1 −1 −1 1 1 1 −1 1
1 0 1 −1 0 0 0 0
−1 1 0 0 0 0 1 −1
0 0 0 0 −1 0 0 0
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h2 =



0 −1 0 0 0 0 0 0
1 1 −1 0 −1 −1 −1 −1
1 1 1 1 0 0 0 0
0 0 −1 1 −1 −1 −1 −1
0 0 0 0 0 0 0 −1
−1 −1 0 −1 1 1 1 1
0 0 0 0 −1 0 0 0
1 1 0 1 0 −1 0 0


The matrix h1 has four Jordan blocks of size two, we easily get in this case

p2
µ(+1) = p2

µ(−1) = p2
µ̄(+1) = p2

µ̄(−1) = 1.

The matrix h2 has a single Jordan block for each eigenvalue. We have

p4
µ(−1) = p4

µ̄(−1) = 1.

The matrices h3 and h5 have two Jordan blocks of size one and two of
size 3. We conclude that

p1
µ(−1) = p3

µ(−1) = p1
µ̄(+1) = p3

µ̄(+1) = 1.

In case of h4 we have similarly two Jordan blocks of size one and two of
size 3. We can compute that

p1
µ(+1) = p3

µ(+1) = p1
µ̄(−1) = p3

µ̄(−1) = 1.

Hence, only the knots 12n508 and 12n666 are undistinguishable by H–
numbers.
Observe that if we take a connected sum of three left–handed trefoils and

one right–handed one, then the Alexander polynomial and the signatures
for ζ 6= µ, µ̄, shall be the same as in the case of the knots 12n508 and 12n666,
but the Jordan block structure is different.

6. Skein relations for H–numbers

6.1. Signatures

Although we do not have a precise skein relation for H–numbers, there
are several constrains for them, coming mostly from relations for classical
invariants.

As usually in skein relation, we consider the three links L0, L+ and
L−. Their Seifert matrices S0, S+ and S− can be chosen (see [6, Proof of
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Theorem 7.10]) so that S+ and S− are (n+1)× (n+1) matrices, such that

(6.1) S+ − S− =


0

0
...
0

0 . . . 0 1

 ,

where 0 denotes an n × n zero matrix. Moreover S0 arises from S+ by
deleting the (n+ 1)-st row and (n+ 1)-st column.
The following fact is classical (see [7, Lemma 12.3.4] or [14]).

Proposition 6.1. — For any ζ ∈ S1\{1}, we have the following bounds

|σL±(ζ)− σL0(ζ)|+ |nL±(ζ)− nL0(ζ)| 6 1.

Proof. — We follow the proof of [7]. For fixed ζ, let M+, M− and M0
denote the forms (4.3) for S+, S− and S0, respectively. Let p+, p−, p0,
q+, q−, q0 and n+, n−, n0 be the maximal dimension of subspaces on which
M+,M−,M0 are, respectively, positive definite, negative definite and zero.
As S0 is submatrix of S+,M0 is a restriction ofM+ onto an n−dimensional
subspace. It follows that

p0 6 p+ 6 p+ + 1
q0 6 q+ 6 q+ + 1
n0 6 n+ 6 n+ + 1.

As p0 + q0 + n0 + 1 = p+ + q+ + n+, the statement follows. �

The above proposition and (4.14) give restriction for possible H–numbers
of L± and L0, when the primitive numbers of one of them are known.

6.2. Semicontinuity of the extended spectrum

The inequality of (6.1) can be used to prove a variant of the semiconti-
nuity of spectra.

Here some comments are in order. The semicontinuity property of (gen-
uine) spectrum of hypersurface singularities says the following: if {ft :
t ∈ (C, 0)} is a family of isolated singularities, then for any interval I =
[α, α + 1) the spectral numbers {Spec(ft)}t associated with ft satisfies:
# Spec(f0) ∩ I > # Spec(ft6=0) ∩ I, see [21, 22]. The semicontinuity prin-
ciple is codified in the very geometric substance of the deformation. In

TOME 63 (2013), FASCICULE 1



294 Maciej BORODZIK & András NÉMETHI

particular, several invariants behave semicontinuously, e.g. for the Milnor
number µ(f0) > µ(ft 6=0). If one tries to study this phenomenon in the case
of arbitrary links, one needs to assume that the geometric situation mimics
in the right way the presence of the deformation. In the next proposition
we will assume that deg ∆ (i.e., the Milnor number in algebraic case) is
monotone.

Proposition 6.2. — Let L1 and L2 are two links. Let ESp1 and ESp2
be the corresponding extended spectra. Let ∆Li (i = 1, 2) be the charac-
teristic polynomial of the monodromy operator associated with the non–
degenerate part of the Seifert form; in other words, the first non–zero higher
order Alexander polynomial. (If the Seifert forms are non–degenerate then
∆Li is just the Alexander polynomial. See subsections 4.1 and 4.2).

Assume also that x ∈ (0, 1) is such that ∂Hx∩(ESp1∪ESp2) = ∅ (where
Hx = (x, x+ 1)× iR as above). Moreover assume that one of the following
holds.

(a) L1 arises from L2 by changing a negative (or left-handed) crossing
to positive (or right-handed) crossing (see [11, Exercise 3.2.5] for
the necessary definitions) and deg ∆L1 > deg ∆L2 ;

(b) L1 arises from L2 by changing one crossing and deg ∆L1 > deg ∆L2 ;
(c) L1 arises from L2 by a hyperbolic transformation (i.e., L1 and L2

can play a role of L0 and L∞ at some diagram, see [7, Defini-
tion 12.3.3]) and deg ∆L1 > deg ∆L2 .

Then
#ESp1 ∩Hx > #ESp2 ∩Hx.

Proof. — Let a1 = #ESp1 ∩Hx, a2 = #ESp2 ∩Hx, b1 = #ESp1 \Hx,
b2 = #ESp2 \Hx. Then by Corollary 4.15(b) we have

a1 + b1 = deg ∆L1 a2 + b2 = deg ∆L2

−a1 + b1 = σL1(e2πix) −a2 + b2 = σL2(e2πix).

Thus

a1 − a2 = 1
2

(
deg ∆L1 − deg ∆L2 − σL1(e2πix) + σL2(e2πix)

)
.

Now, in the case (a), as deg ∆L1 > deg ∆L2 and L1 and L2 have the same
number of components, the degrees differ at least by 2. The signatures
cannot differ by more than 2 by Proposition 6.1. In the case (b), signature
of L1 is not larger than that of L2, in case (c), both degree of Alexander
and signature cannot differ by more than one. �
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The above results is enough to prove a variant of Theorem 6.7 from [2]
with ESp ∩Hx instead of Tristram–Levine signatures. Since for algebraic
links the ESp is the same as the ordinary spectrum, we can relate the
spectra of singularities of a plane curve with the spectrum of the singularity
at infinity. See [3] for details.

Remark 6.3. — In singularity theory the signature is not semicontinu-
ous, see e.g. [9]. Hence we do not have the semicontinuity property for each
particular Hodge number either. Similar behavior can be observed in the
knot theory: the condition deg ∆L1 > deg ∆L2 (in the notation from Propo-
sition 6.2) alone is not sufficient to determine the sign of σL1(ζ)−σL2(ζ), so
we do not have a strong “semicontinuity property” for signatures of knots.
We cannot also expect the semicontinuity property for each H–number of
links.

6.3. Higher Alexander polynomials
and rational Nakanishi index

Next, we wish to connect the higher order Alexander polynomials asso-
ciated with S± and S0, cf. (6.1). In order to formulate the result, we need
to introduce some additional notation.

Convention 6.4.
(a) Let us fix λ ∈ C for this section. For any matrix H with coefficients

in C[t] we define

d(H) = ordt=λ detH.

(b) For any m ×m matrix K and 1 6 i, j 6 m, we define Ki,j as the
(m− 1)× (m− 1) minor resulting from K by removal of i−th row
and j−th column.

The next easy lemma will be important in the sequel.

Lemma 6.5. — For any matrix H of size m×m and for any 1 6 j 6 m
one has

d(H) > min{d(Hi,j) : 1 6 i 6 m}.

Proof. — detH =
∑
i(−1)i+jHi,j detHi,j by the Laplace expansion of

detH along the j−th column. (Recall that Hi,j denotes the element of H
at i−th row and j−th column.) It follows that, if all detHi,j are divisible
by (t− λ)d, so will be detH. �
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The definition of d(H) is motivated by the higher order Alexander poly-
nomials. Namely, if S is an m×m Seifert matrix and H = S − tST , then
the multiplicity of a root of the k−th Alexander polynomial (see Defini-
tion 4.3) of H at t = λ can be expressed as the minimum of d(K), where
K runs through all (m− k)× (m− k) minors of H:

(6.2) ordt=λ ∆H
k = min{d(K) : K is an (m− k)× (m− k) minor of H}.

For Seifert matrices S+, S− and S0 of links L+, L− and L0 (notation
from Section 6.1) let us define H∗ = S∗ − tST∗ (’∗’ is one of ’+’, ’−’ or ’0’)
and

d∗k = ordt=λ ∆H∗
k .

An immediate consequence of Lemma 6.5 is that for any k and ∗∈{+,−, 0}:

(6.3) d∗k > d
∗
k+1

The skein relation gives the following restrictions for values of d∗k.

Proposition 6.6. — The integers d+
k , d

−
k and d0

k satisfy the following
relations:

d0
k > d

±
k+1(6.4a)

d±k > d
0
k+1(6.4b)

d±k > d
∓
k+1 if λ 6= 1(6.4c)

d±k > min(d∓k+1 + 1, d∓k ) if λ = 1.(6.4d)

Proof. — Let m be the size of H0. H0 can be regarded as an m × m

minor of both H+ and H− (cf. (6.1)). Then any (m− k)× (m− k) minor
of H0 is also an ((m+ 1)− (k+ 1))× ((m+ 1)− (k+ 1)) minor of H+ and
of H−. It follows that d±k+1 6 d

0
k, because in d±k+1 we take a minimum over

larger set. Equation (6.4a) follows.
As for (6.4b), we can divide all possible (m+ 1−k)× (m+ 1−k) minors

of H+ in three categories.

• Akα, α ∈ A, will denote minors lying entirely in H0;
• Bkβ , β ∈ B, will denote minors containing a part of the last column
or row of H+ but not containing the corner;

• Ckγ , γ ∈ C, will denote minors containing the element of H+ lying
in (m+ 1)st row and (m+ 1)st column.

Graphically we can present these minors like that
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By (6.2) one has (where d(α) = d(Akα), and similarly for d(β) and d(γ)):

(6.5) d+
k = min

(
min
α∈A

d(α),min
β∈B

d(β),min
γ∈C

d(γ)
)
.

We need to show that all three minima are greater than d0
k+1.

First of all minα∈A d(α) is precisely d0
k−1.

Let Bj,m+1−k
β be the minor of H+ resulting by removing the last column

and j−th row from Bβ (assuming that Bβ contains a part of (m + 1)-st
column of H+ as on the picture, not a part of (m+ 1)st row). Remark that
Bj,m+1−k
β is an (m− k)× (m− k) minor of H0. By Lemma 6.5 we have

d(Bβ) > min
j=1,...,m+1−k

d(Bj,m+1−k
β ).

Thus
min
β∈B

d(Bβ) > d0
k.

In order to deal with d(Cγ) we need to do expand detCγ first along the
last row and then along the last column. Applying Lemma 6.5 twice we get

d(Cγ) > min
16j,j′6m+1−k

d
(
C(j,m+1−k),(j′,m+1−k)
γ

)
,

where C(j,m+1−k),(j′,m+1−k)
γ arises from Cγ by deleting j−th and (m+ 1−

k)−th column and j−th and (m+ 1− k)−th row. It is thus an (m− (k +
1))× (m− (k+1)) minor of H+ and also of H0, because it does not contain
neither the last column, nor the last row of H+. Hence, d(Cγ) > d0

k+1.
Finally, using (6.2) and (6.5) we obtain d+

k > min(d0
k−1, d

0
k, d

0
k+1) = d0

k+1.
Hence the inequality (6.4b) is proved.
In order to prove the last two inequalities, let us consider two (m+ 1−

k)× (m+ 1− k) minors K+ and K− of H+ and H− obtained by removing
the same columns and the same rows from matrices H+ and H−.
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As H+ − H− is a matrix with (t − 1) in the place (m + 1,m + 1), and
zeros everywhere else, K+ = K− unless they contain the element at the
bottom right corner of H+ and H−. If they do not contain,

detK+ = detK−, so d(K+) = d(K−)

If they do,
detK+ = detK− + (t− 1) detK0,

where K0 = Km+1−k,m+1−k
± arises from K± by removing the last column

and the last row. In this case we deduce that

d(K+) > min(d(K−), d(K0) + s),

where s = 1 if λ = 1 and 0 otherwise.
This shows in particular that

d+
k > min(d−k , s+ d0

k).

Now it is enough to observe that by (6.4b) d0
k > d

−
k−1. �

In order to apply this skein relation, let us fix λ with 0 < |λ| 6 1 and
consider the set Θ (defined after the proof of Lemma 4.4) associated with
λ. For any N > 1 set

(6.6) PN = #{θ ∈ Θ : θ > N}.

PN can be interpreted as the number of the Jordan blocks of size at least
N with eigenvalue λ of the monodromy matrix h; i.e., with the notation of
(4.1), one has:

PN =
∑
k>N

sk(λ).

Corollary 6.7. — Fix some λ. Let P+
N and P−N be the PN numbers

associated to the links L+ and L− respectively as in (6.6). Then for any
N > 2 one has

|P+
N − P

−
N | 6 2N

while for N = 1, |P+
1 − P

−
1 | 6 1.

Proof. — For N > 1, assume that P+
N −P

−
N = a > 0. By Proposition 4.6

for any i < P+
N we get

(6.7) d+
i − d

+
i+1 > N,

and for i > P−N
(6.8) d−i − d

−
i+1 6 N − 1.
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Therefore, we obtains the next sequence of inequalities:

d+
P+
N
−1

(∗)
> d−

P+
N

(∗∗)
> d−

P−
N

− a(N − 1)
(∗)
>

> d+
P−
N

+1 − a(N − 1)
(∗∗∗)
> d+

P+
N
−1 + (a− 2)N − a(N − 1).

Here the inequalities denoted by (∗) follow from (6.4c), (∗∗) from (6.8) and
(∗ ∗ ∗) from (6.7). Hence (a− 2)N − a(N − 1) 6 0, or 2N > a.
So now assume that N = 1. Then P±1 = min{i > 0: d±i = 0}. So let

us take k such that d−k > 0 = d−k+1 (i.e., P−1 = k + 1). By (6.4c) we
have d+

k−1 > d−k , hence d
−
k−1 > 0, so P+

1 > k. The argument follows from
symmetry. �

For knots, the maximum of the values P1 for all λ 6= 1 is, by Proposi-
tion 4.9, equal to the Nakanishi index nQ. Therefore, Corollary 6.7 implies:

Corollary 6.8. — Let K+ and K− be two knots differing by one
change of crossing. Then

|nQ(K+)− nQ(K−)| 6 1.

In particular, we reprove a theorem of Nakanishi in a weaker version:

Corollary 6.9. — The rational Nakanishi index of a knot K is boun-
ded from above by the unknotting number of K.
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