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LOCAL-GLOBAL PRINCIPLE FOR QUADRATIC
FORMS OVER FRACTION FIELDS OF

TWO-DIMENSIONAL HENSELIAN DOMAINS

by Yong HU

Abstract. — Let R be a 2-dimensional normal excellent henselian local domain
in which 2 is invertible and let L and k be its fraction field and residue field
respectively. Let ΩR be the set of rank 1 discrete valuations of L corresponding to
codimension 1 points of regular proper models of Spec R. We prove that a quadratic
form q over L satisfies the local-global principle with respect to ΩR in the following
two cases: (1) q has rank 3 or 4; (2) q has rank > 5 and R = A[[y]], where A is a
complete discrete valuation ring with a not too restrictive condition on the residue
field k, which is satisfied when k is C1.
Résumé. — Soit R un anneau local intègre de dimension 2, normal, excellent et

hensélien dans lequel 2 est inversible. Soient L son corps de fractions et k son corps
résiduel. Soit ΩR l’ensemble des valuations discrètes de rang 1 de L correspondant
aux points de codimension 1 des modèles propres réguliers de Spec R. On démontre
qu’une forme quadratique q sur L satisfait le principe local-global par rapport à
ΩR dans les deux cas suivants : (1) q est de rang 3 ou 4 ; (2) q est de rang > 5 et
R = A[[y]], où A est un anneau de valuation discrète complet, avec une condition
sur le corps résiduel k qui est satisfaite lorsque k est C1.

1. Statements of results

Let R be a 2-dimensional excellent henselian local domain and let L
and k be respectively its fraction field and residue field. Assume that the
characteristic of k is not 2.

Colliot-Thélène, Ojanguren and Parimala [2] proved that any quadratic
form of rank at least 5 over L is isotropic when k is separably closed, and
that the local-global principle with respect to all discrete valuations (of

Keywords: 2-dimensional local ring, local-global principle, quadratic forms, complete
local domain.
Math. classification: 11E04, 11E08, 11D88, 14G99.
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rank 1) on L holds for quadratic forms of rank 3 or 4 when k is separably
closed or finite. For the first result, the special case where R = C[[x, y]]
was proven earlier in [1] using the Weierstraß preparation theorem. On the
other hand, Jaworski [6] proved that if k is an algebraically closed field,
then quadratic forms of any rank over L = k((x, y)) satisfy the local-global
principle with respect to all discrete valuations on L.
In the case where k is finite, however, whether the local-global principle

holds for quadratic forms of rank > 5 is left an open question. In this paper,
we give an affirmative answer to this question in the case where R = A[[y]]
is the ring of formal power series in one variable over a complete discrete
valuation ring A. Also, we prove that the result of Colliot-Thélène, Ojan-
guren and Parimala about the local-global principle for quadratic forms of
rank 3 or 4 is still valid without the assumption that k is separably closed
or finite.
The more precise statements are the following.

Theorem 1.1. — Let R be a 2-dimensional normal excellent henselian
local domain in which 2 is invertible. Let L and k be respectively the
fraction field and the residue field of R. For any regular integral schemeM
equipped with a proper birational morphismM→ SpecR, let ΩM denote
the set of rank 1 discrete valuations of L that correspond to codimension 1
points ofM. Let ΩR be the union of all ΩM.

Then the local-global principle with respect to ΩR holds for quadratic
forms of rank 3 or 4 over L. Namely, if a quadratic form of rank 3 or 4 over
L has a nontrivial zero over the w-adic completion Lw for every w ∈ ΩR,
then it has a nontrivial zero over L.

Theorem 1.2. — Let A be a complete discrete valuation ring in which 2
is invertible, and let K and k be respectively its fraction field and residue
field. Let R = A[[y]] and L = Frac(R) the fraction field of R. Define ΩR as
in Theorem 1.1.
Assume that the residue field k has the following property:
(∗) for every finite field extension k′/k, every quadratic form of rank
> 3 over k′ is isotropic.

Then the local-global principle with respect to discrete valuations in ΩR

holds for quadratic forms of rank > 5 over L.

Recall that a field k is called a Ci field if every homogeneous polynomial
of degree d in n > di variables has a nontrivial zero over k. A finite field
extension of a Ci field is again a Ci field. Clearly, a C1 field k has prop-
erty (∗). So as typical examples to which Theorem 1.2 applies, we may take
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R = F[[x, y]] where F is a finite field of characteristic > 2, or R = OK [[y]]
where OK is the ring of integers of a p-adic number field K (p is an odd
prime).

Remark 1.3. — Note that property (∗) implies the following:

(∗∗) for every finite field extension K ′/K, every quadratic form of rank
> 5 over K ′ is isotropic.

Indeed, the integral closure A′ of A in K ′ is a complete discrete valuation
ring and is finite over A (cf., [12, p. 28, § II.2, Prop. 3]). The residue field
k′ of A′ is a finite extension of k. Any quadratic form q over K ′ is isometric
to a form q1⊥t.q2, where t is a uniformizer of A′ and the coefficients of
q1, q2 are all units in A′. When q has rank > 5 and k has property (∗), a
standard argument using Springer’s lemma (cf., Lemma 4.1) shows that q
is isotropic over K ′.

Let A, k,K and so on be as in Theorem 1.2. Let x ∈ A be a uniformizer of
A and F = K(y) the function field of P1

K . For any regular integral scheme
P equipped with a proper flat morphism P → SpecA with generic fiber
P ×A K ∼= P1

K , let ΩP denote the set of rank 1 discrete valuations of F
that correspond to codimension 1 points of P. Let ΩA be the union of all
ΩP . Then we have the following proposition.

Proposition 1.4. — With notation as above, let q/F = 〈a1, . . . , ar〉 be
a nonsingular diagonal quadratic form of rank r > 5 with ai ∈ A[y]. Let
Σ ⊆ A be a fixed set of representatives of k∗ in A. Assume that

(1.1) ai = λi.x
ni .Pi,

where λi ∈ Σ, ni ∈ { 0, 1 } and Pi is a distinguished polynomial of degree
mi in A[y] (meaning that Pi is a monic polynomial in A[y] whose reduction
mod x is ymi ∈ k[y]).
If for every w ∈ ΩR, q is isotropic over the completion Lw of L with

respect to w, then for every v ∈ ΩA, q is isotropic over the completed
field Fv.

As we shall see at the end of the paper, Theorem 1.2 follows by combining
the above proposition with a theorem of Colliot-Thélène, Parimala and
Suresh [3] on quadratic forms over F = K(y), whose proof builds upon
earlier work of Harbater, Hartmann and Krashen [4].
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2. Valuations coming from blow-ups

Lemma 2.1. — Let A be an excellent local domain with residue field k
and X an integral A-scheme of finite type. Let F be the function field of X
and v a rank 1 discrete valuation of F with valuation ring Ov. Assume that
v is centered on X at a point x in the closed fiber X := X ×Ak and that the
residue field κ(v) of Ov has transcendence degree trdegk κ(v) = dimX − 1
over k. Let Y = SpecOv and y ∈ Y the closed point of Y. Let f : Y → X be
the natural morphism induced by the inclusion OX ,x ⊆ Ov. Define schemes
Xn, n ∈ N and morphisms fn : Y → Xn, n ∈ N as follows:
Set X0 = X and f0 = f . When fi : Y → Xi is already defined, let

Xi+1 → Xi be the blow-up of Xi along the closure of xi := fi(y) and let
fi+1 : Y → Xi+1 be the induced morphism.
Then for some large enough n, the morphism fn : Y → Xn induces an

isomorphism OXn,xn
∼= Ov.

Proof. — The following proof is an easy adaptation of the proof of the
geometric case, as given in [7, p. 61, Lemma 2.45].

Let On := OXn,xn
. The ring theoretic construction of On is as follows.

Assume that On (with maximal ideal mn) is already defined. Pick a system
of generators z1, . . . , zr of mn such that v(z1) 6 · · · 6 v(zr). Let O ′n =
On[z2/z1, . . . , zr/z1]. Then On+1 is the localization of O ′n at O ′n∩mv, where
mv denotes the maximal ideal of Ov.

The same argument as in the proof of [7, p. 61, Lemma 2.45] applies here
and shows that Ov =

⋃
n>0 On. Pick elements u1, . . . , ut ∈ Ov ⊆ F such

that the reductions ui form a transcendence basis of κ(v) = Ov/mv over
k. Choose n big enough so that u1, . . . , ut ∈ On. Then κ(v) = Ov/mv is an
algebraic extension of κ(xn) = On/mn and

trdegk κ(xn) = trdegk κ(v) = dimX − 1.

The closure Zn := {xn } of xn in Xn is an algebraic scheme over k. So we
have

dimZn = trdegk κ(xn) = dimX − 1.
By [10, p. 334, Coro. 8.2.7], we have dimXn = dimX . Hence,

dim On = codim(Zn,Xn) 6 dimXn − dimZn = 1.

But On ⊆ Ov and the discrete valuation ring Ov is unequal to its fraction
field F = Frac(Ov) = Frac(On), so dim On = 1. Let R′ ⊆ F be the normal-
ization of On and let m′ = mv ∩R. Then R′ is a Dedekind domain and R′m′

is a discrete valuation ring contained in Ov with fraction field F . Therefore,
R′m′ = Ov. The ring On is a Nagata ring (see e.g., [10, p. 340, Prop. 8.2.29
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and p. 343, Thm 8.2.39]). So R′ is a finitely generated On-module. Thus
we have R′ ⊆ ON for some large N ∈ N. Then it follows that Ov = ON+1.
The lemma is thus proved. �

3. Proof of Theorem 1.1

Theorem 1.1 is a statement generalizing [2, Thm 3.1], where the result is
only established under the hypothesis that k is separably closed or finite. In
our proof the observation that [2, Prop. 1.14] holds over an arbitrary field
k is the key point which makes it possible to get rid of this restriction on
k. In addition, Lemma 2.1 will be used in order to obtain the local-global
principle for valuations in the subset ΩR instead of the set of all discrete
valuations.

Lemma 3.1. — Let R be a two-dimensional normal excellent henselian
local domain with fraction field L, L′/L a finite field extension and R′ the
integral closure of R in L′. Let w′ be a discrete valuation of L′ lying over
a discrete valuation w of L.
If w′ corresponds to a codimension 1 point on a regular proper model X ′

of R′ (i.e., X ′ is a regular integral scheme equipped with a proper birational
morphism X ′ → SpecR′), then w corresponds to a codimension 1 point on
a regular proper model X of R.

Proof. — Let k (resp. k′) be the residue field of R (resp. R′). Since R
is excellent, R′ is finite over R and hence k′/k is a finite extension. Let
x′ ∈ X ′ be the center of w′ on X ′, p′ the canonical image of x′ in SpecR′
and p the canonical image of p′ in SpecR.
If p is not the closed point of SpecR, then it has codimension 1 in SpecR

and the valuation ring Ow of w is equal to the local ring of p in SpecR, since
R is a 2-dimensional normal local domain. Let V be the complement of the
closed point in SpecR. For any regular proper model π : X → SpecR,
which exists by resolution of singularities, π−1(V )→ V is an isomorphism
since R is normal (cf., [10, p. 150, Coro. 4.4.3]). Hence, the point x = π−1(p)
has codimension 1 in X and is the center of w on X .

Now assume that p is the closed point of SpecR. Then x′ ∈ X ′ lies in
the closed fiber of X ′/R′ and is the generic point of an integral curve over
k′ = κ(p′). Hence, the residue field κ(w′) of w′ has transcendence degree 1
over k′. Since k′/k and κ(w′)/κ(w) are finite extensions, this implies that
the residue field κ(w) has transcendence degree 1 over k. By taking any
regular proper model X → SpecR and applying Lemma 2.1 to the ring

TOME 62 (2012), FASCICULE 6
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R and the R-scheme X , we conclude that there is a morphism Xn → X
obtained by a sequence of blow-ups such that the center of w on Xn is a
point of codimension 1, which completes the proof. �

Given a scheme Y , we will denote by Br(Y ) = H2
ét(Y,Gm) its cohomo-

logical Brauer group.

Proof of Theorem 1.1. — For any a, b ∈ L∗, the isotropy of the rank 3
form 〈1, a, b〉 is equivalent to the isotropy of the rank 4 form 〈1, a, b, ab〉. So
we may restrict to the case of rank 4 forms. Let q be a rank 4 quadratic form
over L which is isotropic over Lw for every w ∈ ΩR. After scaling we may
assume without loss of generality that q = 〈1, a, b, abd〉 with a, b, d ∈ L∗.

First assume that d is a square in L. Then the quadratic form q is isomor-
phic to the norm form of a quaternion algebra, whose class in the Brauer
group Br(L) will be denoted by α. The form q is isotropic if and only if
α = 0 in the Brauer group.
Take a proper birational morphism X → SpecR with X a regular integral

scheme such that the closed fiber X of X/R is a curve over k. For each
w ∈ ΩR corresponding to a codimension 1 point of X , the canonical image
αw of α in Br(Lw) is trivial since q is isotropic over Lw by assumption. In
particular, the residue of α at every codimension 1 point of X is trivial.
Since X is a regular integral scheme, it follows that α ∈ Br(L) lies in the
subgroup Br(X ). By [2, Thm 1.8 (c) and Lemma 1.6], we have canonical
isomorphisms Br(X ) ∼= Br(X) ∼= Br(Xred). Identify α ∈ Br(X ) with its
canonical image in Br(Xred). We will apply [2, Prop. 1.14] to show that
α = 0.

Let f : Z → Xred be the normalization of the reduced curve Xred/k

and let D ⊆ Xred be the closed subscheme defined by the conductor of f .
Then [2, Prop. 1.14] says that the natural map Br(Xred)→ Br(Z)×Br(D)
is injective. Let (α1, α2) ∈ Br(Z) × Br(D) be the image of α ∈ Br(Xred).
Each reduced irreducible component T of Z is a regular integral curve
whose function field k(T ) is the residue field κ(w) of a codimension 1 point
w of the 2-dimensional regular scheme X . Since α vanishes in Br(Lw) by
hypothesis, the specialisation of α in Br(κ(w)) = Br(k(T )) is zero. The
natural map Br(T ) → Br(k(T )) is an injection for the regular scheme T ,
so the canonical image of α in Br(T ) is zero. Since this holds for every
irreducible component T of Z, we have α1 = 0 in Br(Z).

To show that α2 = 0 in Br(D), it suffices to prove that α2 vanishes at
each closed point x of Xred, by a 0-dimensional variant of [2, Lemma 1.6].
The point x is also a closed point of X . We may choose a 1-dimensional
closed integral subscheme C of X which contains x as a regular point and
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let ω ∈ X be the generic point of C. Our hypothesis implies that α ∈ Br(X )
vanishes at ω, and it follows that there is a regular open subscheme U of
C, containing x, such that α|U = 0 in Br(U) ⊆ Br(κ(ω)). Hence, α2(x) =
α(x) = 0. We have thus proved that α = 0 in Br(L), whence the isotropy
of the rank 4 quadratic form q = 〈1, a, b, abd〉.
Now suppose that d is not a square in L. Let L′ = L(

√
d) and R′ the

integral closure of R in L′. Then R′ and L′ satisfy the same assumptions
as R and L. Let w′ be a discrete valuation on L′ corresponding to a codi-
mension 1 point of a regular proper model X ′/R′. By Lemma 3.1, w′ lies
over a discrete valuation w in ΩR. The isotropy of q over Lw implies the
isotropy of qL′ over L′w′ .
Thus the quadratic form qL′ over L′ has trivial determinant and is

isotropic over L′w′ for every w′ ∈ ΩR′ , where the set ΩR′ of discrete valua-
tions of L′ is defined in the same way as ΩR. By the previous case, qL′ is
isotropic over L′. By [8, p. 197, Chap. VII, Thm 3.1], either q is isotropic
over L or q contains a multiple of 〈1,−d〉. In the latter case, since det(q) = d

mod (L∗)2, q also contains a rank 2 form of determinant −1. Hence q is
isotropic over L, which completes the proof. �

4. Valuations centered on the special fiber

Most of the present section and the next will be devoted to the proof of
Proposition 1.4. The lemma below will be used frequently and referred to
as Springer’s lemma in what follows.

Lemma 4.1 (Springer’s lemma, [8, p. 148, Prop. VI.1.9]). — Let A be
a complete discrete valuation ring in which 2 is invertible. Let K and k be
respectively its fraction field and residue field. Let α1, . . . , αr and β1, . . . , βs

be units of A and let αi ∈ k and βj ∈ k be their residue classes. Let π be
a uniformizer of A.

Then the quadratic form 〈α1, . . . , αr〉⊥π.〈β1, . . . , βs〉 over K is anisotro-
pic if and only if the two residue forms

〈α1, . . . , αr〉 and 〈β1, . . . , βs〉

are both anisotropic over k.

We shall now start the proof of Proposition 1.4. Recall that ΩA is the
union of all ΩP , where P is a regular integral proper flat A-scheme with
generic fiber P ×A K ∼= P1

K and ΩP is the set of rank 1 discrete valuations
on F = K(y) that correspond to codimension 1 points of P. We will fix a
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discrete valuation v ∈ ΩA and let Ov ⊆ F denote the valuation ring of v,
πv ∈ Ov a uniformizer of v, mv = πvOv and κ(v) the residue field of Ov.
The v-adic completion of Ov ⊆ F will be written as Ôv ⊆ Fv. If w is a
discrete valuation of L, similar notations like Ow, mw, κ(w), Ôw ⊆ Lw and
so on will be used.
Put X = P1

A. Let XK = P1
K and Xs = P1

k be respectively the generic and
special fiber of X over A. Let η ∈ Xs = P1

k denote the generic point of Xs.
The valuation v ∈ ΩA has a unique center on the model X = P1

A, which
will be denoted P ∈ X . We have the following cases:

(1) P ∈ Xs = P1
k, P 6= 0,∞, η;

(2) P = η ∈ Xs = P1
k;

(3) P =∞ ∈ Xs = P1
k or P =∞ ∈ XK = P1

K ;
(4) P = 0 ∈ Xs = P1

k;
(5) P is a closed point of A1

K ⊆ XK = P1
K .

Our proof of Proposition 1.4 will be a case-by-case argument, which is
divided into two parts with details in what follows.

Proof of Proposition 1.4 (Part I). — In the first part of the proof, we
treat cases (1)–(4).
Case (1). The valuation v is centered at P ∈ Xs \ { 0,∞, η }.
In this case, we have v(x) > 0 and v(y) = 0. We may assume without

loss of generality that for some 0 6 r1 6 r, the numbers ni in (1.1) satisfy:

(4.1) n1 = · · · = nr1 = 0 and nr1+1 = · · · = nr = 1.

Then a1, . . . , ar1 and a′r1+1 = ar1+1/x, . . . , a
′
r = ar/x are units for v. Let

(4.2) q1 = 〈a1, . . . , ar1〉 and q2 = 〈a′r1+1, . . . , a
′
r〉.

Then q = 〈a1, . . . , ar〉 = q1⊥x.q2 is anisotropic only if q1 and q2 are both
anisotropic. By Springer’s lemma (or Hensel’s lemma), qi is anisotropic
over Fv if and only if its residue form qi := qi (mod mv) is anisotropic
over κ(v). In the present situation, the two residue forms qi, i = 1, 2 have
coefficients in the subfield κ(P ) ⊆ κ(v). Since r > 5, either q1 or q2 has
rank > 3. Assume for example q1 has rank > 3. The residue field κ(P ) is a
finite extension of k, so property (∗) implies that q1 is isotropic over κ(P )
and a fortiori over κ(v). It follows that q is isotropic over Fv as desired.

Case (2). The valuation v is centered at the generic point η of the special
fiber Xs = P1

k.
In this case, v is the x-adic valuation on A[y] and κ(v) = k(y). Let w be

the x-adic valuation on A[[y]], so that w|A[y] = v|A[y] and κ(w) = k((y)).
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Define q1 and q2 as in (4.2). We have

q1 := q1 (mod mw) = 〈λ1y
m1 , . . . , λr1y

mr1 〉,
q2 := q2 (mod mw) = 〈λr1+1y

mr1+1 , . . . , λry
mr 〉.

(4.3)

Here we have identified each λi ∈ Σ ⊆ A with its canonical image in k. By
hypothesis and Springer’s lemma, we may assume one of the two residue
forms, say q1, is isotropic over k((y)). By (4.3), q1 has coefficients in k(y)
and is isometric to µ1 ⊥ y.µ2 over k(y) for some nonsingular quadratic
forms µi over k. Indeed, if I (resp. J) denotes the subset of { 1, . . . , r1 }
consisting of indices i such that mi is even (resp. odd), then we may take
µ1 = 〈λi〉i∈I (resp. µ2 = 〈λi〉i∈J). Applying Springer’s lemma to the form
q1/k((y)) with respect to the discrete valuation ring k[[y]], we conclude that
either µ1 or µ2 is isotropic over k. Then it is clear that q1

∼= µ1 ⊥ y.µ2 is
isotropic over k(y) = κ(v). Since the residue forms of q mod v coincide with
those mod w, it follows from Springer’s lemma that q is isotropic over Fv.

Case (3). The valuation v is centered at P =∞ ∈ Xs = P1
k or P =∞ ∈

XK = P1
K .

In this case, we have v(y) < 0 and v(x) > 0. Put z = y−1 ∈ F = K(y).
We want to prove that q is isotropic over Fv.

Recall that the coefficients of the diagonal form q have the form ai =
λi.x

ni .Pi, where λi ∈ Σ, ni ∈ { 0, 1 } and Pi is a distinguished polynomial
in A[y] for each i. Let mi = degPi be the degree of Pi with respect to the
variable y. Then in F = K(y) we have

Pi(y) = ymi(1 + z.ρi) for some ρi ∈ A[z].

Set bi = λi.x
ni .ymi ∈ F and let q′/F be the diagonal quadratic form

〈b1, . . . , br〉. The two forms q = 〈ai〉 and q′ = 〈bi〉 are isometric over Fv

since 1+z.ρi is a square in Fv for each i. So it suffices to prove the isotropy
over Fv of the form q′ = 〈bi〉.
We may assume the numbers ni are given as in (4.1), so that q′ = q′1⊥x.q′2

with

q′1 = 〈λ1y
m1 , . . . , λr1y

mr1 〉 , q′2 = 〈λr1+1y
mr1+1 , . . . , λry

mr 〉.

There are diagonal quadratic forms µj , j = 1, . . . , 4, where µ1, µ2 have coef-
ficients in {λ1, . . . , λr1 } ⊆ Σ and µ3, µ4 have coefficients in {λr1+1, . . . , λr }
⊆ Σ, such that q′1 ∼= µ1⊥y.µ2 and q′2 ∼= µ3⊥y.µ4 over F = K(y). Observe
that the two residue forms of q with respect to the x-adic valuation on
F are isometric to the forms µ1⊥y.µ2 and µ3⊥y.µ4. A close inspection of
the above proof for case (2) shows that not all of the four forms µj are
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anisotropic over k. Since

q′ ∼= µ1⊥y.µ2⊥x.(µ3⊥y.µ4) over F = K(y),

it follows easily that q′ is isotropic over Fv, whence the isotropy of q over Fv.
Case (4). The valuation v is centered at the origin P = 0 ∈ P1

k of the
special fiber.
By the definition of the set ΩA, the valuation v ∈ ΩA corresponds to

a codimension 1 point p of a regular proper model P/A of P1
K . Since the

center of v on X lies in the special fiber, v(x) > 0. The point p ∈ P lies in
the special fiber of P/A since otherwise the valuation v must be trivial on
K = Frac(A). The residue field κ(v) is then the function field of a curve
over k. So we have

trdegk κ(v) = 1 = dimP1
A − 1.

By Lemma 2.1, there is a scheme Xn → X = P1
A obtained by a sequence

of blow-ups at closed points lying over 0 ∈ Xs = P1
k such that Ov =

OXn,xn ⊆ F for some codimension 1 point xn ∈ Xn. If we consider the
same sequence of blow-ups which is carried out on SpecA[[y]] this time,
then we get a discrete valuation w ∈ ΩR of L which extends v. Now we
have inclusions A[y] ⊆ Ov ⊆ Ow and κ(v) = κ(w). Let q1, q2 be diagonal
quadratic forms with coefficients in Ô∗v such that

q ∼= q1⊥ πv.q2 over Fv.

Since q is isotropic over Lw by assumption, applying Springer’s lemma to
w shows that q1 = q1 (mod mv) or q2 = q2 (mod mv) has a nontrivial zero
in κ(w) = κ(v). One more application of Springer’s lemma, with respect to
v this time, proves that q is isotropic over Fv. �

5. End of the proof

To prove Proposition 1.4 in case (5), we need the following form of the
Weierstraß preparation theorem.

Lemma 5.1 (Weierstraß). — Let A be a complete discrete valuation
ring and A[[y]] the ring of formal power series in one variable over A. Let
P ∈ A[y] be a distinguished polynomial and f ∈ A[y].

(i) For any g ∈ A[[y]], there is a unique expression

g = Q.P +R

ANNALES DE L’INSTITUT FOURIER



LOCAL-GLOBAL PRINCIPLE FOR QUADRATIC FORMS 2141

whereQ ∈ A[[y]] andR ∈ A[y] is a polynomial of degree6 degP−1.
In particular,

A[y]/(P ) ∼= A[[y]]/(P ).
(ii) If f divides P in A[y], then there is a unit u in A such that uf is a

distinguished polynomial.

Proof. — (i) See e.g., [13, p. 114, Prop. 7.4]. Note that the isomorphism
A[y]/(P ) ∼= A[[y]]/(P ) implies that P is irreducible in A[y] if and only if
P is irreducible in A[[y]] and that P divides a polynomial f in A[y] if and
only if P divides f in A[[y]].

(ii) Assume P = fg with g ∈ A[y]. The hypothesis implies that the
coefficient a0 of ydeg f in f is a unit in A since P is a monic polynomial.
Let k be the residue field of A and let A[y] → k[y], F 7→ F denote the
canonical reduction map. By considering the factorization ydeg P = P = f ·g
in k[y], we see that u := a−1

0 ∈ A∗ has the required property. �

Proof of Proposition 1.4 (Part II). — We now consider the only remain-
ing case, case (5). This is the case where the center P of the valuation v

lies in A1
K ⊆ XK = P1

K .
We have OX ,P = Ov since the two rings are both discrete valuation rings

with fraction field F . So v is defined by an irreducible polynomial f ∈ A[y]
with x - f .
If none of the polynomials Pi, i = 1, . . . , r is divisible by f , then q has

coefficients in O∗v = O∗X ,P . Now the residue field κ(v) = κ(P ) is a finite
extension of K and the residue form q = q (mod mv) has rank r > 5. By
property (∗∗) (cf., Remark 1.3), q is isotropic over κ(v). It follows from
Springer’s lemma (or Hensel’s lemma) that q is isotropic over Fv.

Assume next f divides some Pi, say f |P1. By Lemma 5.1, multiplying
f by a unit in A if necessary, we may assume that f is an irreducible
distinguished polynomial. In A[[y]], f is still an irreducible element. The
f -adic valuation on R = A[[y]] determines a discrete valuation w ∈ ΩR

which extends v ∈ ΩA. We have

κ(v) = Frac(A[y]/(f)) = Frac(A[[y]]/(f)) = κ(w)

and Fv ⊆ Lw. Using the argument with the first and second residue forms
and Springer’s lemma, we conclude as in case (4) that q is isotropic over
Fv. �

We are now ready to give the proof of Theorem 1.2.
Proof of Theorem 1.2. — Let q be any quadratic form of rank r > 5

over L = Frac(R) and assume that q is isotropic over Lw for every w ∈ ΩR.
Without loss of generality, we may assume q = 〈a1, . . . , ar〉 for some nonzero
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elements ai ∈ R = A[[y]]. By the usual form of the Weierstraß preparation
theorem (see e.g., [13, p. 115, Thm 7.3]), each ai may be written as

ai = xni .Pi.Ui with ni ∈ N, Ui ∈ R∗

and Pi a distinguished polynomial in A[y].

For any power series f =
∑∞

i=0 aiy
i ∈ R = A[[y]] which is invertible in R,

letting λ ∈ Σ be the unique element such that λ−1a0 ≡ 1 (mod xA), we
have

λ−1f ≡ 1 (mod mR).
Since R is complete, it follows that λ−1f is a square in R. So after scaling
out squares we may assume that the coefficients ai have the form described
in Proposition 1.4. Now the quadratic form q is defined over F = K(y) and
by Proposition 1.4, it is isotropic over Fv for every v ∈ ΩA. The local-global
principle with respect to discrete valuations in ΩA is proved for quadratic
forms of rank > 3 in [3, Thm 3.1 and Remark 3.2]. Hence, q is isotropic
over F and a fortiori over L. �

Remark 5.2. — In Theorem 1.2, assume that A = k[[x]] with k a C1
field of characteristic 6= 2 or A = OK with K a p-adic number field (p
an odd prime). Then every quadratic form of rank > 9 is isotropic over
F = K(y). In the former case, it is well-known that F = k((x))(y) is a C3
field. For the case A = OK , this statement is firstly proved by Parimala
and Suresh [11], and then two more recent proofs using different methods
are given in [4, Coro. 4.15] and [3, Coro. 3.4] as consequences of their main
theorems. Still another proof (including the case p = 2), which builds upon
the work of Heath-Brown [5], has been announced by Leep [9].
An easy argument using the Weierstraß preparation theorem shows that

every quadratic form of rank > 9 is isotropic over L = Frac(A[[y]]). So in
these cases, the local-global principle in Theorem 1.2 is only interesting for
quadratic forms of rank 5 6 r 6 8.
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