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MEAN-PERIODICITY AND ZETA FUNCTIONS

by Ivan FESENKO,
Guillaume RICOTTA & Masatoshi SUZUKI

Abstract. — This paper establishes new bridges between zeta functions in
number theory and modern harmonic analysis, namely between the class of complex
functions, which contains the zeta functions of arithmetic schemes and closed with
respect to product and quotient, and the class of mean-periodic functions in several
spaces of functions on the real line. In particular, the meromorphic continuation and
functional equation of the zeta function of an arithmetic scheme with its expected
analytic shape is shown to correspond to mean-periodicity of a certain explicitly
defined function associated to the zeta function. The case of elliptic curves over
number fields and their regular models is treated in more details, and many other
examples are included as well.
Résumé. — Cet article établit de nouveaux ponts entre les fonctions zeta en

théorie des nombres et l’analyse harmonique moderne, c’est-à-dire entre la classe
des fonctions de la variable complexe, qui contient les fonctions zeta des sché-
mas arithmétiques et est stable par produit et quotient, et la classe des fonctions
moyennes périodiques sur pluieurs espaces de fonctions de la droite réelle. En parti-
culier, il est démontré que le prolongement méromorphe et l’équation fonctionnelle
de la fonction zeta d’un schéma arithmétique correspond à la moyenne périodicité
d’une fonction explicitement définie et associée à cette fonction zeta. Le cas des
courbes elliptiques sur des corps de nombres et leurs modèles réguliers est traité
en détails, et de nombreux exemples supplémentaires sont inclus.
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1. Introduction

The Hecke-Weil correspondence between modular forms and Dirichlet se-
ries plays a pivotal role in number theory. In this paper we propose a new
correspondence between mean-periodic functions in several spaces of func-
tions on the real line and a class of Dirichlet series which admit meromor-
phic continuation and functional equation. This class includes arithmetic
zeta functions and their products, quotients, derivatives. In the first approx-
imation the new correspondence can be stated as this: the rescaled com-
pleted zeta-function of arithmetic scheme S has meromorphic continuation
of expected analytic shape and satisfies the functional equation s→ 1− s
with sign ε if and only if the function f(exp(−t)) − ε exp(t)f(exp(t)) is a
mean-periodic function in the space of smooth functions on the real line
of exponential growth, where f(x) is the inverse Mellin transform of the
product of an appropriate sufficiently large positive power of the completed
Riemann zeta function and the rescaled completed zeta function. For pre-
cise statements see Subsection 1.4 below and other subsections of this In-
troduction. For the best of our knowledge the correspondence in this paper
is the first correspondence which addresses the issue of functional analy-
sis property of functions associated to the zeta functions which guarantees
their meromorphic continuation and functional equation without asking for
the stronger automorphic property of its L-factors.
Whereas modular forms is a classical object investigated for more than

150 years, the theory of mean-periodic functions is a relatively recent part
of functional analysis whose relations to arithmetic zeta functions is studied
and described in this paper. The text presents the analytic aspects of the
new correspondence in accessible and relatively self-contained form.

As it is well known there is a large distance between the first important
stage of stating the correspondence between L-functions and automorphic
adelic representations and the second important stage of actually proving
it even for some of the simplest notrivial cases. This work plays the role
of the first stage for the new correspondence between the zeta functions in
arithmetic geometry and mean-periodicity.
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1.1. Boundary terms in the classical one-dimensional case

The completed zeta function of a number field K is defined on <e (s) > 1
by

ζ̂K(s) := ζ∞,K(s)ζK(s)
where ζK(s) is the classical Dedekind zeta function of K defined using the
Euler product over all maximal ideal of the ring of integers of K and ζK,∞(s)
is a finite product of Γ-factors defined in (5.6). It satisfies the integral
representation (see [43])

ζ̂K(s) =
∫
A×K

f(x) |x|s µA×K
(x)

where f is an appropriately normalized function in the Schwartz-Bruhat
space on AK and | | stands for the module on the ideles A×K of K. An
application of analytic duality on K ⊂ AK leads to the decomposition

ζ̂K(s) = ξ (f, s) + ξ
(
f̂ , 1− s

)
+ ωf (s)

where f̂ is the Fourier transform of f , ξ(f, s) is an entire function and

ωf (s) =
∫ 1

0
hf (x)xsx

x

with

hf (x) := −
∫
γ∈A1

K/K×

∫
β∈∂K×

(
f(xγβ)− x−1f̂

(
x−1γβ

))
µ(β)µ(γ).

Consider the weakest topology on AK, in which every character (namely
continuous homomorphism to the unit circle) of AK is continuous. Then,
the closure of K× is K and the boundary ∂K× of K× is K \ K× = {0}.
The meromorphic continuation and the functional equation for ζ̂K(s) are
equivalent to the meromorphic continuation and the functional equation
for ωf (s). Let us remark that ωf (s) is the Laplace transform of Hf (t) :=
hf (e−t) thanks to the change of variable x = e−t. The properties of the
functions hf (x) andHf (t), which are called the boundary terms for obvious
reason, are crucial in order to have a better understanding of ωf (s). We
have

hf (x) = −µ
(
A1

K
/
K×
) (
f(0)− x−1f̂(0)

)
,

Hf (t) = −µ
(
A1

K
/
K×
) (
f(0)− etf̂(0)

)
since ∂K× is just the single point 0, with the appropriately normalized
measure on the idele class group. As a consequence, ωf (s) is a rational
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1822 Ivan FESENKO, Guillaume RICOTTA & Masatoshi SUZUKI

function of s invariant with respect to f 7→ f̂ and s 7→ (1− s). Thus, ζ̂K(s)
admits a meromorphic continuation to C and satisfies a functional equation
with respect to s 7→ (1− s).

1.2. Mean-periodicity and analytic properties of Laplace
transforms

The previous discussion in the one-dimensional classical case naturally
leads to the analytic study of Laplace transforms of specific functions.
In particular, the meromorphic continuation and functional equation for
Mellin transforms of real-valued functions f on R×+ of rapid decay at +∞
and polynomial order at 0+ is equivalent to the meromorphic continuation
and functional equation of

ωf (s) :=
∫ 1

0
hf (x)xsx

x
=
∫ +∞

0
Hf (t)e−stt

with

hf (x) = f(x)− εx−1f
(
x−1)

and Hf (t) = hf (e−t), where ε = ±1 is the sign of the expected functional
equation (see Section 3). The functions hf (x) and Hf (t) are called the
boundary terms by analogy.
The main question is the following one. What property of hf (x) or Hf (t)

implies the meromorphic continuation and functional equation for ωf (s)?
One sufficient answer is mean-periodicity(1) . Mean-periodicity is an easy
generalization of periodicity; a function g of a functional space X is X-
mean-periodic if the space spanned by its translates is not dense in X.
When the Hahn-Banach theorem is available in X, g is X-mean-periodic
if and only if g satisfies a convolution equation g ∗ ϕ = 0 for some non-
trivial element ϕ of the dual space X∗ and a suitable convolution ∗. Such a
convolution equation may be thought as a generalized differential equation.
Often(2) mean-periodic functions are limits of exponential polynomials sat-
isfying the same convolution equation. Exponential polynomials were used
already by Euler in his method of solving ordinary differential equations
with constant coefficients.

(1)The general theory of mean-periodicity is recalled in Section 2.
(2) In this case one says that the spectral synthesis holds in X (see Section 2.1).

ANNALES DE L’INSTITUT FOURIER
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The functional spaces X which will be useful for number theory purposes
are

X× =


C(R×+) the continuous functions on R×+ (Section 2.2),
C∞(R×+) the smooth functions on R×+ (Section 2.2),
C∞poly(R×+) the smooth functions on R×+ of at most polynomial

growth (see (2.4))

in the multiplicative setting, which is related to hf (x) and

X+ =


C(R) the continuous functions on R (Section 2.2),
C∞(R) the smooth functions on R (Section 2.2),
C∞exp(R) the smooth functions on R of at most exponential

growth (see (2.3))

in the additive setting, which is related to Hf (t). A nice feature is that
the spectral synthesis holds in both X+ and X×. The general theory of
X×-mean-periodic functions shows that if hf (x) is X×-mean-periodic then
ωf (s) has a meromorphic continuation given by the Mellin-Carleman trans-
form of hf (x) and satisfies a functional equation. Similarly, if Hf (t) is X+-
mean-periodic then ωf (s) has a meromorphic continuation given by the
Laplace-Carleman transform of Hf (t) and satisfies a functional equation.
See Theorem 3.2 for an accurate statement. Note that in general ωf (s)
can have a meromorphic continuation to C and can satisfy a functional
equation without the functions hf (x) and Hf (t) being mean-periodic (see
Remark 3.1 for explicit examples).

1.3. Arithmetic zeta functions and higher dimensional adelic
analysis

For a scheme S of dimension n its arithmetic (Hasse) zeta function

ζS(s) :=
∏
x∈S0

(1− |k(x)|−s)−1

whose Euler factors correspond to all closed points x of S, say x ∈ S0, with
finite residue field of cardinality |k(x)|, is the most fundamental object in
number theory. Not much is known about it when n > 1.
The higher dimensional adelic analysis aims to study the zeta functions

ζS(s) using integral representations on higher adelic spaces and analytic
duality. It employs geometric structures of a regular model of an ellip-
tic curve which are difficult to see directly at purely analytic level. It is

TOME 62 (2012), FASCICULE 5
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expected that the n-th power of the completed versions of the zeta func-
tions ζS(s) times a product of appropriately completed and rescaled lower
dimensional zeta functions can be written as an adelic integral over an
appropriate higher dimensional adelic space against an appropriate trans-
lation invariant measure. Then a procedure similar to the one-dimensional
procedure given above leads to the decomposition of the completed zeta
functions into the sum of two entire functions and another term, which in
characteristic zero is of the type

ωS(s) :=
∫ 1

0
hS(x)xsx

x
=
∫ +∞

0
HS(t)e−stt

where hS(x) and HS(t) := hS(e−t) are called the boundary terms for the
following reason. The functions hS(x) are expected to be an integral over
the boundary of some higher dimensional space over some suitably nor-
malised measure. Let us mention that the structure of both the boundary
and the measure is quite mysterious. In particular, the boundary is expected
to be a very large object, which is totally different from the one-dimensional
situation. For the case of arithmetic surfaces E corresponding to a regular
model of an elliptic curve over a global field see [13], [14].

1.4. Boundary terms of zeta functions and mean-periodicity

The papers [13], [14] suggested to use the theory of mean-periodicity
of the functions hS(x) in an appropriate functional space for the study
of the meromorphic continuation and the functional equation of the zeta
functions ζS(s). This work demonstrates novel important links between
the world of certain Dirichlet series which include the zeta functions ζS(s)
coming from number theory and the class of mean-periodic functions in
appropriate functional spaces, in a self-contained manner independently of
higher dimensional adelic analysis.
Let us give a flavour of these links (see Theorem 5.18 for a precise state-

ment).
Let S be an arithmetic scheme proper flat over SpecZ with smooth

generic fibre. We prove that if its zeta function ζS(s) extends to a mero-
morphic function on the complex plane with special (and typical in number
theory) analytic shape, and satisfies a functional equation with sign ε, then
there exists an integer mζS > 1 such that for every integer m > mζS the
(ample) boundary term hζS ,m(x), given by

hζS ,m(x) := fζS ,m(x)− εx−1fζS ,m(x−1)

ANNALES DE L’INSTITUT FOURIER
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where fζS ,m(x) is the inverse Mellin transform of the mth power of the
completed Riemann zeta function times the completed and rescaled version
of the zeta function ζS(s), is C∞poly(R×+)-mean-periodic. The proof uses some
of analytic properties of arithmetic zeta functions and does not appeal to
higher dimensional adelic analysis. Conversely, if the function hζS ,mζS (x)
is C∞poly(R×+)-mean-periodic then ζS(s) has a meromorphic continuation to
C and satisfies the expected functional equation, whose sign is ε. Note that
a similar statement holds for HζS ,m(t) := hζS ,m(e−t). In particular, as a
consequence, we get a correspondence

C : S 7→ hζS ,mζS

from the set of arithmetic schemes whose zeta function ζS(s) has the ex-
pected analytic properties to the space of C∞poly(R×+)-mean-periodic func-
tions.
It should be mentioned that a study of relations with mean-periodic

functions and Dirichlet series which do not include arithmetic zeta functions
was conducted in [2].

1.5. The case of zeta functions of models of elliptic curves

Let E be an elliptic curve over the number field K and qE its conductor.
We denote r1 the number of real archimedean places ofK and r2 the number
of conjugate pairs of complex archimedean places of K. A detailed study of
essentially three objects associated to E is done in this work namely

• the L-function L(E, s), whose conjectural sign of functional equa-
tion is ωE = ±1,

• the Hasse-Weil zeta function ζE(s). It can be defined as the product
of factors over all valuations of K each of which is the zeta func-
tion of the one-dimensional model corresponding to a local minimal
Weierstrass equation of E with respect to the valuation. Taking into
account the computation of the zeta functions for curves over finite
fields we get

ζE(s) = ζK(s)ζK(s− 1)
L(E, s) ,

• the arithmetic Hasse zeta function ζE(s) of a regular proper model
E of E. We get

ζE(s) = nE(s)ζE(s)
where the factor nE(s) is the product of finitely many, say J , zeta
functions of affine lines over finite extensions of the residue field

TOME 62 (2012), FASCICULE 5
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of bad reduction primes. The square of ζE(s) occurs in the two-
dimensional zeta integral defined and studied in the two dimensional
adelic analysis.

The boundary terms associated to these particular zeta functions are
given by

hE(x) := fZE (x)− (−1)r1+r2ωEx
−1fZE

(
x−1) ,

HE(t) := hE
(
e−t
)
,

hE(x) := fZE (x)− (−1)r1+r2+JωEx
−1fZE

(
x−1) ,

HE(t) := hE
(
e−t
)

where fZE (x) is the inverse Mellin transform of

ZE(s) := ΛK(s)
(
NK|Q(qE)−1)2s/2 ζE(2s)

and fZE (x) is the inverse Mellin transform of

ZE(s) :=
( ∏

16i6I
ΛKi(s)

)(
c−1
E
)2s/2

ζE(2s),

I > 1 being the number of chosen horizontal curves in the two-dimensional
zeta integral briefly mentioned before. It is shown in this paper that

• if the completed L-function Λ(E, s) can be extended to a mero-
morphic function of expected analytic shape on C and satisfies
the functional equation then hE(x) and hE(x) are C∞poly(R×+)-mean-
periodic(3) ,

• if hE(x) is C∞poly(R×+)-mean-periodic or hE(x) is C∞poly(R×+)-mean-
periodic then the Hasse-Weil zeta function ζE(s) can be extended
to a meromorphic function on C and satisfies the expected func-
tional equation and the zeta function ζE(s) can be extended to a
meromorphic function on C and satisfies the expected functional
equation.

See Theorem 5.6 and Theorem 5.13 for complete statements. Very briefly,
the proofs employ the following three properties:

(1) polynomial bound in t for |L(E, σ + it)| in vertical strips;
(2) exponential decay of the gamma function in vertical strips;
(3) polynomial bound in tn for |L(E, σ + itn)|−1 in vertical strips for

certain sequences tn tending to infinity.

(3)Note that the C∞poly(R×+)-mean-periodicity of hE(x) (respectively hE(x)) is equivalent
to the C∞exp(R)-mean-periodicity of HE(t) (respectively HE(t)).

ANNALES DE L’INSTITUT FOURIER
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The first and second properties are essential in the proof of Theorem 4.8,
the last property is used in the proof of Theorem 4.2.

The right spaces in which the functions are mean-periodic is one of the
results of this paper. It is explained in Remark 5.12 that the function
hE(x) cannot be C(R×+)-mean periodic or C∞(R×+)-mean-periodic and
that the function HE(t) cannot be C(R)-mean periodic or C∞(R)-mean-
periodic. Roughly speaking, the main issue with these spaces of continuous
or smooth functions is that their duals are too small. As a consequence, the
Mellin-Carleman transform of hE(x) and the Laplace-Carleman transform
of HE(t) belong to a class of meromorphic functions, which cannot encom-
pass the L-functions arising from number theory. More precisely, the density
of the poles of these meromorphic functions have too stringent restrictions,
which are incompatible with the density of the zeros of L-functions.

Remark 5.9 focuses on the fact that the function hE(x) encodes in its
Fourier series some information on the poles of ζE(s), which are mainly the
non-trivial zeros of L(E, s).

The zeta functions of arithmetic schemes is the fundamental object in
number theory. The pioneering papers of Hecke and Weil initiated a fruit-
ful development in number theory, which emphasized the use of modular
functions in the study of L-functions. The zeta function of an arithmetic
scheme is the product of first or minus first powers of some L-functions of
the scheme, which are called the L-factors of the zeta function. Currently,
modularity of all L-factors of the zeta function of an arithmetic scheme
of dimension greater than one is known only in very few cases. Several
decades of the study led to the proof of modularity of the L-function of
elliptic curves over rationals by Wiles and others. An expected extension
of that method to elliptic curves over totally real fields and their qua-
dratic imaginary extensions would lead to the meromorphic continuation
and functional equation of their L-function. In particular, in all such cases
we get mean-periodicity of the function HE associated to the zeta function
of the curve over those number fields, see 5.6. Unfortunately, the method
of the proof of the Wiles theorem does not seem to be extendable to handle
the general case of elliptic curves over number fields.
This paper suggests to study the conjectural meromorphic continuation

and functional equation of the zeta functions of arithmetic schemes without
dealing with the L-factors of the zeta functions and without proving their
modularity. Instead it relates those properties of the zeta functions to mean-
periodicity of associated functions. We expect mean-periodicity to be very
useful in the study of the zeta function of arithmetic schemes. We hope
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it is easier to establish mean-periodicity of associated functions for the
whole zeta function than to prove automorphic properties of all L-factors
of the zeta function. In particular, the two-dimensional adelic analysis uses
underlying geometric structures and is expected to help to prove mean-
periodicity of HE for all elliptic curve over arbitrary global fields without
any restrictions. This text concentrates just one the first properties of the
new correspondence without attempting to directly prove mean-periodicity
of the associated functions to the zeta functions in any nontrivial situation.

1.6. Other results

The location of poles of ζ(s) and single sign property of hζ(x), whose
study was initiated in [14, Section 4.3], [13, Section8] and [42], is the subject
of a general Proposition 4.11.
The poles of the inverse of the Dedekind zeta functions are studied from

this point of view in Proposition 6.1 and Proposition 6.3.
Products and quotients of completed L-functions associated to cuspidal

automorphic representations are briefly discussed in Section 6.2.
From Eisenstein series we get continuous families of mean-periodic func-

tions constructed in Section 6.3, which leads to several interesting ques-
tions.

Corollary 4.6 contains a general explicit formula, which involves the sum
over all integers and thus differs from the standard explicit formulas for L-
functions. The authors have been pointed out by the referee of this paper
that such summation formula could be seen as a higher dimensional ana-
logue of an identity found by S. Ramanujan ([44, Chapter IX Section 9.8]).
A variety of open interesting questions naturally arizes. One of them is

this: in the context of automorphic representations, there are many op-
erations (tensor product, symmetric power, exterior power, functoriality),
which give rise to different automorphic L-functions. Is it possible to trans-
late these operations in the world of mean-periodic functions? Another
fundamental question is to study the image of the map C.

1.7. Organisation of the paper

The authors designed a self-contained paper in the hope that it would
be accessible to at least analytic number theorists and arithmetic geome-
ters, who could equally get interested in the results proved throughout this
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document. Unfortunately, it irremediably entails some lengthy sections and
some repetitions such as in the introduction and in sections 2 and 3. The
authors apologize for such annoyances.
The general background on mean-periodic functions is given in Section 2.

In Section 3, we give some sufficient conditions, which implie that the
Mellin transforms of real-valued function on R×+ of rapid decay at +∞ and
polynomial order at 0+ have a meromorphic continuation to C and sat-
isfies a functional equation (see Theorem 3.2). All the general results on
mean-periodic functions are proved in Section 4. In the next two sections,
we go in the opposite direction, deducing from analytic properties of zeta
functions mean-periodicity of associated functions. Various links between
mean-periodicity and analytic properties of zeta functions of schemes, in
particular zeta functions of models of elliptic curves, are shown in Section 5.
Section 6 provides many further instances of mean-periodic functions aris-
ing from number theory including those coming from Dedekind zeta func-
tions, standing in the denominator, and families of mean-periodic functions.
Appendix A contains an analytic estimate for general L-functions, which
enables us to apply the general results on mean-periodicity in relevant cases
for number theory.

Notations 1.1. — Z+ stands for the non-negative integers and R×+ for
the positive real numbers. If k is an integer and x is a positive real number
then logk (x) := (log x)k.

2. Mean-periodic functions

In this section, we give some information on mean-periodic functions,
which first appeared in Delsarte [11] but whose theory has been initially
developed by Schwartz in [35]. The general theory of mean-periodic func-
tions can be found in Kahane [21], especially the theory of continuous
mean-periodic functions of the real variable. [30, Section 11.3] is a com-
plete survey on the subject. [1, Chapter 6] is a nice reference for the smooth
mean-periodic functions of the real variable whereas [15, Chapter 4] deals
with smooth mean-periodic functions of the real variable but focuses on
convolution equations. We also suggest the reading of [3], [28, Pages 169–
181] and [31].

TOME 62 (2012), FASCICULE 5
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2.1. Generalities

Three definitions of mean-periodicity are given in a very general context
and links between them are mentioned. Let X be a locally convex separated
topological C-vector space. Such space is specified by a suitable family of
seminorms. In this paper, it will always be a Fréchet space or the inductive
or projective limit of Fréchet spaces. Let G be a locally compact topological
abelian group. Denote by X∗ the topological dual space of X for some
specified topology. We assume that there is a (continuous) representation

τ : G→ End(X)
g 7→ τg.

For f ∈ X, we denote by T (f) the closure of the C-vector space spanned
by {τg(f), g ∈ G} namely

T (f) := VectC ({τg(f), g ∈ G}).

Definition 2.1. — f ∈ X is X-mean-periodic if T (f) 6= X.

Let us assume that there exists an involution map

ˇ : X → X

f 7→ f̌ .

For f ∈ X and ϕ ∈ X∗, we define the convolution f ∗ ϕ : G→ C by

(f ∗ ϕ)(g) := 〈τg f̌ , ϕ〉

where 〈 , 〉 is the pairing on X ×X∗.

Definition 2.2. — f ∈ X is X-mean-periodic if there exists a non-
trivial element ϕ of X∗ satisfying f ∗ ϕ = 0.

Finally, let us assume that
• G = R (respectively R×+),
• X is a C-vector space of functions or measures or distributions on
G,

• there exists an open set Ω ⊂ C such that the exponential polynomial
P (t)eλt (respectively xλP (log x)) belongs to X for any polynomial
P with complex coefficients and any λ ∈ Ω.

Definition 2.3. — f ∈ X is X-mean-periodic if f is a limit (with
respect to the topology ofX) of a sum of exponential polynomials belonging
to T (f) .

ANNALES DE L’INSTITUT FOURIER
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The first and second definitions are equivalent in a large class of spaces
X where the Hahn-Banach theorem is applicable. The equivalence between
the first and third definitions depends on X and is related to the following
spectral problems (see [21, Section 2.3]). The spectral synthesis holds in
X if

T (f) =

VectC ({P (t)eλt ∈ T (f), λ ∈ Ω}) if G = R,

VectC ({xλP (log x) ∈ T (f), λ ∈ Ω}) if G = R×+.

for any f in X satisfying T (f) 6= X. A representation of a mean-periodic
function as a limit of exponential polynomials generalizes the Fourier series
representation for continuous periodic functions. If X = C(R) (see [21,
Sections 4 and 5] and [28]) or C∞(R) (see [35]) then the three definitions are
equivalent since the spectral synthesis holds in these spaces. The spectral
analysis holds in X if for any f in X there exists a finite-dimensional
translation invariant subspace X0 of X contained in T (f). For instance,
T (tneλt) is a finite-dimensional invariant subspace if G = R.

2.2. Quick review on continuous and smooth mean-periodic
functions

Let X = C(R) be the space of continuous functions on R with the com-
pact uniform convergence topology. It is a Fréchet space, hence completed
and locally convex, whose dual spaceX∗ = M0(R) is the space of compactly
supported Radon measures. The pairing between f ∈ C(R) and µ ∈M0(R)
is given by

〈f, µ〉 =
∫
R
fµ.

Let G = R. The additive involution is defined by

(2.1) ∀x ∈ R,∀f ∈ X, f̌(x) = f(−x)

and the additive representation τ+ by

(2.2) ∀(x, y) ∈ R2,∀f ∈ X, τ+
x (f)(y) := f(y − x).

such that the additive convolution ∗+ is

∀x ∈ R, (f ∗+ µ)(x) :=
∫
R
f(x− y)µ(y).

The space C(R) has two important properties. Firstly, the definitions 2.1, 2.2
and 2.3 are equivalent. In other words, the spectral synthesis holds for this
space (see [21, Sections 4 and 5], [28]). Secondly, it is possible to develop
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the theory of Laplace-Carleman transforms of C(R)-mean-periodic func-
tions. It turns out that Laplace-Carleman transforms in mean-periodicity
are as important as Fourier transforms in harmonic analysis. Their theory
is developed in Section 2.5 in a more general context but let us justify a
little bit the analogy. If f is any non-trivial C(R)-mean-periodic function
then its Laplace-Carleman transform LC(f)(s) is a meromorphic function
on C having at least one pole, otherwise f = 0. In addition, its denom-
inator belongs to the Cartwright class C defined in (5.15), for which the
distribution of zeros is quite regular ([25, Chapter 17]). The set of all poles
of LC(f)(s) with multiplicity is called the spectrum of f . The exponential
polynomials belonging to T (f) are completely determined by the spectrum
of f and f is characterized by the principal parts of the poles of LC(f)(s)
(see [21, Sections 4-6]). Let us just mention that if X = C∞(R), the space
of smooth functions on R with the compact uniform convergence topology,
then all what has been said above for C(R) holds. In particular, the spectral
synthesis holds in C∞(R) (see [35]). Finally, we would like to say that the
spaces of continuous functions C(R×+) and smooth functions C∞(R×+) on
R×+ share the same properties than C(R) and C∞(R). In particular, we can
develop the theory of Mellin-Carleman transform via the homeomorphisms

HC : C(R×+)→ C(R)
f(x) 7→ f

(
e−t
)

and

HC∞ : C∞(R×+)→ C∞(R)
f(x) 7→ f

(
e−t
)
.

This will be done in a more general context in Section 2.6.

2.3. Some relevant spaces with respect to mean-periodicity

In this section, we introduce several spaces for which the elements of the
dual space are not necessarily compactly supported. Let C∞exp(R) be the
C-vector space of smooth functions on R, which have at most exponential
growth at ±∞ namely

(2.3) ∀n ∈ Z+,∃m ∈ Z+, f (n)(x) = O (exp (m |x|))
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as x→ ±∞. This space is a LF-space, namely an inductive limit of Fréchet
spaces (Fm)m>1, the topology on each Fm (m > 1) being induced from the
following family of seminorms

‖f‖m,n = sup
x∈R

∣∣∣f (n)(x) exp (−m |x|)
∣∣∣

for any n > 0. Let C∞poly(R×+) be the C-vector space of smooth functions on
R×+, which have at most polynomial growth at 0+ and at +∞ namely

(2.4) ∀n ∈ Z+,∃m ∈ Z, f (n)(t) = O (tm)

as t → +∞ and t → 0+. The space C∞poly(R×+) is endowed with a topology
such that the bijection

HC∞∗ : C∞exp(R)→ C∞poly(R×+)
f(t) 7→ f(− log x)

becomes a homeomorphism. Let C∞exp(R)∗ be the dual space of C∞exp(R)
equipped with the weak ∗-topology. The dual space C∞exp(R)∗ (respectively
C∞poly(R×+)∗) is considered as a space of distributions on R (respectively R×+)
having an over exponential decay (respectively over polynomial decay) in
a suitable sense. In fact, every smooth function g on R satisfying |g(x)| =
O(exp (−a |x|)) for every real number a > 0 is identified with an element
of C∞exp(R)∗. Let 〈 , 〉 be the pairing between C∞exp(R)∗ and C∞exp(R) namely
〈ϕ, f〉 = ϕ(f) for ϕ ∈ C∞exp(R)∗ and f ∈ C∞exp(R). The additive convolution
f ∗+ ϕ of f ∈ C∞exp(R) and ϕ ∈ C∞exp(R)∗ is defined as

∀x ∈ R, (f ∗+ ϕ)(x) := 〈ϕ, τ+
x f̌〉

where the definitions of the involution ˇ and of the representation τ+ are
adapted from (2.1) and (2.2). One can define the multiplicative convolu-
tion f ∗× ϕ : R×+ → C of f ∈ C∞poly(R×+) and ϕ ∈ C∞poly(R×+)∗ thanks to the
homeomorphism HC∞∗ .

Let S(R) be the Schwartz space on R which consists of smooth functions
on R satisfying

(2.5) ‖f‖m,n = sup
x∈R

∣∣∣xmf (n)(x)
∣∣∣ <∞

for all m and n in Z+. It is a Fréchet space over the complex numbers with
the topology induced from the family of seminorms ‖ ‖m,n. Let us define
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the Schwartz space S(R×+) on R×+ and its topology via the homeomorphism

HS : S(R)→ S(R×+)
f(t) 7→ f(− log x).

The strong Schwartz space S(R×+) is defined by

(2.6) S(R×+) :=
⋂
β∈R

{
f : R×+ → C,

[
x 7→ x−βf(x)

]
∈ S(R×+)

}
.

One of the family of seminorms on S(R×+) defining its topology is given by

(2.7) ‖f‖m,n = sup
x∈R×+

∣∣∣xmf (n)(x)
∣∣∣

for m ∈ Z and n ∈ Z+. The strong Schwartz space S(R×+) is a Fréchet
space over the complex numbers where the family of seminorms defining
its topology is given in (2.7). In fact, it is a projective limit of Fréchet
spaces (Fm)m>1 since a decreasing intersection of Fréchet spaces is still a
Fréchet space. This space is closed under the multiplication by a complex
number and the pointwise addition and multiplication ([27]). The strong
Schwartz space S(R) and its topology are defined via the homeomorphism

(2.8)
HS : S(R×+)→ S(R)

f(x) 7→ f
(
e−t
)
.

Let us mention that the Fourier transform is not an automorphism of S(R)
since the Fourier transform of an element f ∈ S(R) does not necessary
belong to S(R). This feature is different from what happens in S(R). Let
S(R×+)∗ be the dual space of S(R×+) equipped with the weak ∗-topology,
whose elements are called weak-tempered distributions. The pairing be-
tween S(R×+) and S(R×+)∗ is denoted 〈 , 〉 namely

〈f, ϕ〉 = ϕ(f)

for f ∈ S(R×+) and ϕ ∈ S(R×+)∗. A linear functional ϕ on S(R×+) is a weak-
tempered distribution if and only if the condition limk→+∞ ‖fk‖m,n = 0
for all multi-indices m, n implies limk→+∞〈fk, ϕ〉 = limk→+∞ ϕ(fk) = 0.
The multiplicative representation τ× of R×+ on S(R×+) is defined by

∀x ∈ R×+, τ×x f(y) := f(y/x)

and the multiplicative convolution f ∗× ϕ of f ∈ S(R×+) and ϕ ∈ S(R×+)∗
by

∀x ∈ R×+, (f ∗× ϕ)(x) = 〈τxf̌ , ϕ〉

ANNALES DE L’INSTITUT FOURIER



MEAN-PERIODICITY AND ZETA FUNCTIONS 1835

where the multiplicative involution is given by f̌(x) := f(x−1). One can
define the additive convolution f ∗+ ϕ : R→ C of f ∈ S(R) and ϕ ∈ S(R)∗
thanks to the homeomorphism HS. The multiplicative dual representation
τ×,∗ on S(R×+)∗ is defined by

〈f, τ×,∗x ϕ〉 := 〈τ×x f, ϕ〉.

One can define the additive dual representation τ+,∗ on S(R)∗ thanks to
the homeomorphism HS. If V is a C-vector space then the bidual space
V ∗∗ (the dual space of V ∗ with respect to the weak ∗-topology on V ∗) is
identified with V in the following way. For a continuous linear functional
F on V ∗ with respect to its weak ∗-topology, there exists v ∈ V such that
F (v∗) = v∗(v) for every v∗ ∈ V ∗. Therefore, we do not distinguish the
pairing on V ∗∗×V ∗ from the pairing on V ×V ∗. Under this identification,
it turns out that

C∞exp(R) ≺ S(R)∗, C∞poly(R×+) ≺ S(R×+)∗

and
S(R) ≺ C∞exp(R)∗, S(R×+) ≺ C∞poly(R×+)∗,

where A ≺ B means that A is a subset of B and that the injection map
A ↪→ B is continuous.

2.4. Mean-periodic functions in these relevant spaces

In this section, X always stands for one of the spaces C∞exp(R), C∞poly(R×+),
S(R)∗ and S(R×+)∗.

Definition 2.4 (additive). — Let X be C∞exp(R) or S(R)∗. x ∈ X is
said to be X-mean-periodic if there exists a non-trivial element x∗ in X∗

satisfying x ∗+ x∗ = 0.

Definition 2.5 (multiplicative). — Let X be C∞poly(R×+) or S(R×+)∗. x ∈
X is said to be X-mean-periodic if there exists a non-trivial element x∗ in
X∗ satisfying x ∗× x∗ = 0.

For x ∈ X, we denote by T (x) the closure of the C-vector space spanned
by {τg(x), g ∈ G} where

τ =


τ+ if G = R and X = C∞exp(R),
τ+,∗ if G = R and S(R)∗,
τ× if G = R×+ and X = C∞poly(R×+),
τ×,∗ if G = R×+ and X = S(R×+)∗.
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Hahn-Banach theorem leads to another definition of X-mean-periodic func-
tions.

Proposition 2.6. — An element x ∈ X is X-mean-periodic if and only
if T (x) 6= X.

The spectral synthesis holds for X = C∞exp(R), this follows from [16,
Theorem A, Page 627] which uses [24].
The previous definitions and identifications lead to the following links

between the different X-mean-periodicities. Let L1
loc,exp(R) be the space of

locally integrable functions H(t) on R satisfying H(t) = O(exp(a |t|)) as
|t| → +∞ for some real number a > 0.

Proposition 2.7. — Let H(t) ∈ L1
loc,exp(R).

• If H(t) ∈ C∞exp(R) is C∞exp(R)-mean-periodic and F ∗+ H = 0 for
some non-trivial F ∈ S(R) then H(t) is S(R)∗-mean-periodic.

• If H(t) is S(R)∗-mean-periodic and F ∗+H = 0 for some non-trivial
F ∈ S(R), which is continuous and compactly supported on R, then
H(t) is C(R)-mean-periodic.

2.5. Mean-periodicity and analytic properties of Laplace
transforms I

Let G = R and X be a locally convex separated topological C-vector
space consisting of functions or distributions on G. Developing the theory
of Laplace-Carleman transforms on X requires the following additional
properties on X:

• there exists an open set Ω ⊂ C such that every exponential mono-
mial tpeλt with p ∈ Z+ and λ ∈ Ω belongs to X,

• the two sided Laplace transform

L±(ϕ)(s) := 〈e−st, ϕ〉
(

=
∫ +∞

−∞
ϕ(t)e−stt

)
is a holomorphic function on Ω for all ϕ ∈ X∗.

• if f ∗+ ϕ = 0 for some ϕ ∈ X∗ \ {0} then the two sided Laplace
transforms

L±(f− ∗+ ϕ)(s) =
∫ +∞

−∞
(f− ∗+ ϕ)(t)e−stt

and
L±(f+ ∗+ ϕ)(s) =

∫ +∞

−∞
(f+ ∗+ ϕ(t))e−stt
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are holomorphic functions on Ω, where

f+(x) :=
{
f(x) if x > 0,
0 otherwise

f−(x) :=
{

0 if x > 0,
f(x) otherwise.

Of course, X = C(R) and X = C∞(R) both satisfy the previous conditions
with Ω = C since the respective dual spaces consist of compactly supported
measures and distributions.

Definition 2.8. — The Laplace-Carleman transform LC(f)(s) of a X-
mean-periodic function (distribution) f ∈ X is defined by

LC(f)(s) := L±(f+ ∗+ ϕ)(s)
L±(ϕ)(s) = −L±(f− ∗+ ϕ)(s)

L±(ϕ)(s) .

for a ϕ ∈ X∗ \ {0} satisfying f ∗+ ϕ = 0.

It is easy to see that LC(f)(s) does not depend on the particular choice
of ϕ ∈ X∗ \ {0} satisfying f ∗+ ϕ = 0. Its main analytic properties are
described in the following proposition (see essentially [28, Section 9.3]).

Proposition 2.9. — Let X be a locally convex separated topological
C-vector space consisting of functions or distributions on R satisfying the
conditions above.

• If f is aX-mean-periodic function, then its Laplace-Carleman trans-
form LC(f)(s) is a meromorphic function on Ω.

• If f is a X-mean-periodic function whose Laplace transform L(f)(s)
exists for some right-half plane <e(s) > σ0 contained in Ω then
LC(f)(s) = L(f)(s) in that region and the Laplace-Carleman trans-
form LC(f)(s) is the meromorphic continuation of L(f)(s) to Ω.

Proving some functional equations may sometimes be done thanks to the
following proposition.

Proposition 2.10. — Let X+ be C(R) or C∞(R) or C∞exp(R) or S(R)∗.
Let f1(t) and f2(t) be two X+-mean-periodic functions whose Laplace
transforms are defined on <e(s) > σ0 for some σ0. If

f1(−t) = εf2(t)

for some complex number ε of absolute value one, then the Laplace-
Carleman transforms LC(f1)(s) and LC(f2)(s) of f1(t) and f2(t) satisfy
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the functional equation

LC(f1)(−s) = −εLC(f2)(s).

Proof of Proposition 2.10. — Let ϕ1, ϕ2 6= 0 be two elements of X∗+
satisfying f1 ∗+ ϕ1 = 0 and f2 ∗+ ϕ2 = 0. If <e (s) > σ0 then

L±(f+
1 ∗+ ϕ1)(s) =

∫ +∞

−∞

(∫ +∞

−∞
f+

1 (t− x)e−stt
)
ϕ1(x),

=
∫ +∞

−∞

(∫ +∞

−∞
f+

1 (t)e−stt
)
e−sxϕ1(x),

= L(f1)(s) L±(ϕ1)(s)

and so LC(f1)(s) = L(f1)(s). On the other hand, if <e (s) < −σ0 then

−L±(f−2 ∗+ ϕ2)(s) = −
∫ +∞

−∞

(∫ +∞

−∞
f−2 (t− x)e−stt

)
ϕ2(x),

= −
∫ +∞

−∞

(∫ +∞

−∞
f−2 (t)e−stt

)
e−sxϕ2(x),

= −
∫ 0

−∞
f2(t)e−stt L±(ϕ2)(s)

= −ε−1L(f1)(−s) L±(ϕ2)(s)

the last line being a consequence of the functional equation satisfied by
f1 and f2. Thus, if <e (s) < −σ0 then LC(f2)(s) = −ε−1L(f1)(−s) or if
<e (s) > σ0 then LC(f2)(−s) = −ε−1L(f1)(s). We have just proved that

LC(f1)(s) = −εLC(f2)(−s)

if <e (s) > σ0. Such equality remains valid for all complex numbers s by
analytic continuation. �

Remark 2.11. — In the previous proof, the formal equality (3.7) is im-
plicitly used. For instance, if f1(t) = f2(t) and ε = +1 then the C(R)-mean-
periodicity of f1(t) can be formally written as

0 =
∫ +∞

−∞

∫ +∞

−∞
f1(t− x)e−stϕ1(t)

=
(∫ +∞

−∞
f1(t)e−stt

)
×
(∫ +∞

−∞
e−sxϕ1(x)

)
.

Such formal equality can be compared with the formal Euler equality∑
n∈Z z

n = 0 (z 6= 1), which Euler used to calculate values of ζ(s) at
negative integers. This equality was also used in the proof of rationality of
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zeta functions of curves over finite fields ([33]). For modern interpretations
of the Euler equality, see [5] and also [12, Section 8].

2.6. Mean-periodicity and analytic properties of Laplace
transforms II

The multiplicative setting is sometimes more convenient in analytic num-
ber theory than the additive one. In particular, it is used in the study of
boundary terms of two-dimensional zeta integrals in which case R×+ = |JS |
(see [14, Section 35]). This is the reason why we define the multiplica-
tive analogue of the Laplace-Carleman transform. Of course, all the argu-
ments provided below hold in the additive setting via the change of variable
t 7→ x = exp(−t). Let L1

loc,poly(R×+) be the space of locally integrable func-
tions on R×+ satisfying

h(x) =
{
O(xa) as x→ +∞,
O(x−a) as x→ 0+

for some real number a > 0. Each h ∈ L1
loc,poly(R×+) gives rise to a distri-

bution ϕh ∈ S(R×+)∗ defined by

∀f ∈ S(R×+), 〈f, ϕh〉 =
∫ +∞

0
f(x)h(x)x

x
.

If there is no confusion, we denote ϕh by h itself and use the notations
〈f, h〉 = 〈f, ϕh〉 and h(x) ∈ S(R×+)∗. Then

xλ logk (x) ∈ C∞poly(R×+) ⊂ L1
loc,poly(R×+) ⊂ S(R×+)∗

for all k ∈ Z+ and λ ∈ C. Moreover, if h ∈ L1
loc,poly(R×+) then the mul-

tiplicative convolution f ∗× ϕh coincides with the ordinary multiplicative
convolution on functions on R×+ namely

(f ∗× h)(x) = 〈τ×x f̌ , f〉 =
∫ +∞

0
f(x/y)h(y)y

y
=
∫ +∞

0
f(y)h(x/y)y

y
.

For a h ∈ L1
loc,poly(R×+) define h+ and h− by

h+(x) :=
{

0 if x > 1,
h(x) otherwise

h−(x) :=
{
h(x) if x > 1,
0 otherwise.

Clearly, h± ∈ L1
loc,poly(R×+) for all h ∈ L1

loc,poly(R×+).
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Lemma 2.12. — Let h ∈ L1
loc,poly(R×+). If f ∗×h = 0 for some non-trivial

f ∈ S(R×+) then the Mellin transforms

M(f ∗× h±)(s) =
∫ +∞

0
(f ∗× h±)(x)xsx

x

are entire functions on C.

Proof of Lemma 2.12. — On one hand, f ∗× h− is of rapid decay as
x→ 0+ and on the other hand, f ∗ h+ is of rapid decay as x→ +∞. Both
are of rapid decay as x→ 0+ and as x→ +∞ since f ∗× h− = −f ∗× h+.
Hence the Mellin transforms of f ∗ h± are defined on the whole complex
plane and entire. �

Definition 2.13. — Let h ∈ L1
loc,poly(R×+). If f ∗× h = 0 for some non-

trivial f ∈ S(R×+) then the Mellin-Carleman transform MC(h)(s) of h(x) is
defined by

MC(h)(s) := M(f ∗× h+)(s)
M(f)(s) = −M(f ∗× h−)(s)

M(f)(s) .

The change of variable x 7→ t = − log x entails that the Mellin-Carleman
transform coincides with the Laplace-Carleman transform namely

MC(h(x)) = LC(h(e−t)).

As a consequence, MC(h) does not depend on the particular choice of non-
trivial f satisfying f ∗× h = 0.

Proposition 2.14. — Let h be an element of L1
loc,poly(R×+)

• If h is S(R×+)∗-mean-periodic then the Mellin-Carleman transform
MC(h)(s) of h is a meromorphic function on C.

• If h ∈ C∞poly(R×+) is C∞poly(R×+)-mean-periodic and f ∗× h = 0 for
some non-trivial f ∈ S(R×+) ⊂ C∞poly(R×+)∗ then MC(h)(s) is a mero-
morphic function on C.

Proof of Proposition 2.14. — It follows immediately from the fact that
the Mellin transform M(f)(s) is an entire function since f ∈ S(R×+) and
from Lemma 2.12. �

Let us focus on the fact that the Mellin-Carleman transform MC(h)(s)
of h(x) is not a generalization of the Mellin transform of h but is a gener-
alization of the following integral, half Mellin transform,∫ 1

0
h(x)xsx

x
.

according to the following proposition.
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Proposition 2.15. — Let h ∈ L1
loc,poly(R×+). If f∗×h = 0 for some non-

trivial f ∈ S(R×+) and if the integral
∫ 1

0 h(x)xsx/x converges absolutely for
<e(s) > σ0 for some real number σ0 then

MC(h)(s) =
∫ 1

0
h(x)xsx

x

on <e (s) > σ0.

The following proposition is the analogue of Proposition 2.10 and its
proof is omitted.

Proposition 2.16. — Let X× be C(R×+) or C∞(R×+) or C∞poly(R×+) or
S(R×+)∗. Let f1(x) and f2(x) be two X×-mean-periodic functions whose
transforms ∫ 1

0
fi(x)xsx

x

are defined on <e(s) > σ0 for some σ0. If

f1
(
x−1) = εf2(x)

for some complex number ε of absolute value one then the Mellin-Carleman
transforms MC(f1)(s) and MC(f2)(s) of f1(x) and f2(x) satisfy the func-
tional equation

MC(f1)(−s) = −εMC(f2)(s).

Finally, let us mention the following result, which is the analogue of [21,
Theorem Page 23].

Proposition 2.17. — Let h ∈ L1
loc,poly(R×+) and let P (t) be a polyno-

mial of degree n with complex coefficients. Let us assume that h is S(R×+)∗-
mean-periodic. The exponential polynomial xλP (log x) belongs to T (h) if
and only if λ is a zero of order at least n of the Mellin transform M(f)(s)
of f , where f runs through all elements of S(R×+) satisfying f ∗× h = 0.
Moreover, xλP (log x) belongs to T (h) if and only if λ is a pole of order at
least n of the Mellin-Carleman transform MC(h)(s) of h.

3. Mean-periodicity and analytic properties of boundary
terms

3.1. The general issue

If f(x) is a real-valued function on R×+ satisfying
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(1) f(x) is of rapid decay as x → +∞ namely f(x) = O
(
x−A

)
for all

A > 0 as x→ +∞,
(2) f(x) is of polynomial order as x → 0+ namely f(x) = O

(
xA
)
for

some A > 0 as x→ 0+

then its Mellin transform

M(f)(s) :=
∫ +∞

0
f(x)xsx

x

is a holomorphic function on <e (s) � 0. We are interested in necessary
and sufficient conditions on f , which imply the meromorphic continuation
and functional equation of M(f)(s). We get immediately

M(f)(s) = ϕf,ε(s) + ωf,ε(s)

where
ϕf,ε(s) :=

∫ +∞

1
f(x)xsx

x
+ ε

∫ +∞

1
f(x)x1−sx

x

and

(3.1) ωf,ε(s) :=
∫ 1

0
hf,ε(x)xsx

x

with

(3.2) hf,ε(x) = f(x)− εx−1f
(
x−1)

where ε is ±1. Assumption (1) ensures that ϕf,ε(s) is an entire function
satisfying the functional equation

ϕf,ε(s) = εϕf,ε(1− s).

Thus, the meromorphic continuation of ωf,ε(s) is equivalent to the mero-
morphic continuation of M(f)(s), and the functional equation ωf,ε(s) =
εωf,ε(1−s) is equivalent to the functional equation M(f)(s) = εM(f)(1−s).
The change of variable x = e−t shows that ωf,ε(s) is the Laplace transform
of

(3.3) Hf,ε(t) = hf,ε
(
e−t
)

namely

(3.4) ωf,ε(s) = L (Hf,ε) (s) =
∫ +∞

0
Hf,ε(t)e−stt.

The functions hf,ε(x) and Hf,ε(t) are called boundary terms, having in
mind the motivation given in Section 1.1. The issue is then the follow-
ing one. What property of the boundary terms ensures that their Laplace
transforms admit a meromorphic continuation to C and satisfy a functional
equation? One possible answer, in which the keyword is mean-periodicity,
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is given in the two following parts. We shall see there that mean-periodicity
of hf,ε(x) or Hf,ε(t) is a sufficient condition.

In this section, X+ will be one of the following spaces

C(R) defined in Section 2.2,
C∞(R) defined in Section 2.2,
C∞exp(R) defined in (2.3),

S(R)∗ whose dual is defined in (2.8)

whereas X× will be one of the following spaces

C(R×+) defined in Section 2.2,

C∞(R×+) defined in Section 2.2,

C∞poly(R×+) defined in (2.4),

S(R×+)∗ whose dual is defined in (2.6).

For the definitions of X+-mean periodic functions and of X×-mean periodic
functions, we refer the reader to Section 2.

3.2. Mean-periodicity and meromorphic continuation of
boundary terms

The general theory of mean-periodic functions asserts that if hf,ε, defined
in (3.2), is X×-mean-periodic then ωf,ε, defined in (3.1), admits a mero-
morphic continuation to C. More precisely, the Mellin-Carleman transform
MC (hf,ε) of hf,ε (see Definition 2.13) is the meromorphic continuation of
ωf,ε (see Proposition 2.14 and Proposition 2.15). Similarly, if Hf,ε defined
in (3.3) is X+-mean-periodic then its Laplace transform ωf,ε(s) (see (3.4))
admits a meromorphic continuation to C. Indeed, the Laplace-Carleman
transform LC (Hf,ε) of Hf,ε (see Definition (2.8)) is the meromorphic con-
tinuation of ωf,ε (see Proposition 2.9).

3.3. Mean-periodicity and functional equation of boundary
terms

Let us focus on the eventual functional equation satisfied by ωf,ε(s). Note
that hf,ε(x) satisfies the functional equation

(3.5) hf,ε
(
x−1) = −εxhf,ε(x).
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according to (3.2). In other words, the function h̃f,ε :=
√
xhf,ε(x) satisfies

h̃f,ε
(
x−1) = −εh̃f,ε (x) .

In terms ofHf,ε(t), it exactly means that the function H̃f,ε(t) := e−t/2Hf,ε(t)
satisfies

H̃f,ε(−t) = −εH̃f,ε(t).

In general, (3.5) does not imply the functional equation ωf,ε(s) = εωf,ε(1−
s), even if ωf,ε(s) admits a meromorphic continuation to C. For example, if
f(x) = e−x and ε = 1 then hf (x) = e−x−x−1e−1/x and M(f)(s) = Γ(s) is a
meromorphic function on C, which does not satisfy M(f)(s) = M(f)(1−s).

Let us assume that ωf,ε(s) satisfies the functional equation ωf,ε(s) =
εωf,ε(1− s). It can be formally written as

(3.6)
∫ 1

0
hf,ε(x)xsx

x
= ε

∫ 1

0
hf,ε(x)x1−sx

x
.

The right-hand side is equal to

−ε2
∫ 1

0
hf,ε(x−1)x−sx

x
= −

∫ +∞

1
hf,ε(x)xsx

x

according to (3.5). Hence we get

(3.7)
∫ 1

0
hf,ε(x)xsx

x
+
∫ +∞

1
hf,ε(x)xsx

x
= 0.

Conversely, if we suppose (3.7) then we formally obtain (3.6) by using (3.5).
As a consequence, we guess that, under the meromorphic continuation of
ωf,ε(s), the functional equation of ωf,ε(s) is equivalent to (3.5) and (3.7),
and (3.7) corresponds to mean-periodicity.

Once again, the general theory of mean-periodic functions asserts that
if hf,ε(x), defined in (3.2), is X×-mean-periodic then the Mellin-Carleman
transform MC

(
h̃f,ε

)
(s) of h̃f,ε(x) satisfies the functional equation

MC
(
h̃f,ε

)
(s) = εMC

(
h̃f,ε

)
(−s)

according to Proposition 2.16. This is equivalent to the functional equation

ωf,ε(s) = εωf,ε(1− s)
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since MC
(
h̃f,ε

)
(s) = MC (hf,ε) (s+1/2). Similarly, ifHf,ε(t) defined in (3.3)

is X+-mean-periodic then the Laplace-Carleman transform LC
(
H̃f,ε

)
(s) of

H̃f,ε(t) satisfies the functional equation

LC
(
H̃f,ε

)
(s) = εLC

(
H̃f,ε

)
(−s)

according to Proposition 2.10. This is equivalent to the functional equation

ωf,ε(s) = εωf,ε(1− s)

since LC
(
H̃f,ε

)
(s) = LC (Hf,ε) (s+ 1/2).

Remark 3.1. — One can give various kinds of examples of smooth func-
tions on the real line of exponential growth, which on one hand are not
X+-mean-periodic for every functional space X+ of functions given at page
1843, and on the other hand whose Laplace transform extends to a sym-
metric meromorphic function on the complex plane. A series of examples
due to A. Borichev is supplied by the following general construction. First,
recall that if real bn > 1 are some of zeros of a function holomorphic and
bounded in the half-place <e (s) > 0 then

∑
1/bn <∞, see e.g. [32, Prob-

lem 298, sect.2 Ch.6 Part III]. Using the map z → exp(−iz) we deduce
that if ibn, bn > 0, are some of zeros of an entire function bounded in the
vertical strip |<e (s)| < π/2 then

∑
exp (−bn) <∞. Now choose a sequence

(an) of positive real numbers such that the set {ian} is not a subset of all
zeros of any entire function bounded in the vertical strip |<e (s)| < π/2.
For example, using what has been said previously in this remark, one can
take an = logn. Choose sufficiently fast decaying non-zero coefficients cn so
that H(t) =

∑
cn sin(ant) belongs to the space X+ of smooth functions of

exponential growth and its Laplace transform w(s) =
∑
cnan/(s2 +a2

n) is a
symmetric meromorphic function on the complex plane. Assume that H(t)
is X+-mean-periodic. Then H ∗+ τ = 0 for some non-zero τ ∈ X∗+. Convolv-
ing τ with a smooth function we can assume that τ is a smooth function
of over exponential decay. Mean-periodicity of H(t) implies that the mero-
morphic function w(s) coincides with the Laplace-Carleman transform of
H(t), and so the set of poles {±ian} of w(s) is a subset of zeros of the
two sided Laplace transform of τ . Note that the two sided Laplace trans-
form of a smooth function with over exponential decay is an entire function
v(s) such that for every positive integer m the function |v(s)| (1 + |s|)m is
bounded in the vertical strip |<e (s)| < m. The choice of the sequence (an)
gives a contradiction. Hence the function H(t) is not X+-mean-periodic
and its Laplace transform extends to a symmetric meromorphic function.
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3.4. Statement of the result

Let us encapsulate all the previous discussion of this section in the fol-
lowing theorem.

Theorem 3.2. — Let X× be C(R×+) or C∞(R×+) or C∞poly(R×+) or S(R×+)∗
and X+ be C(R) or C∞(R) or C∞exp(R) or S(R)∗. Let f(x) be a real-valued
function on R×+ of rapid decay as x → +∞ and of polynomial order as
x→ 0+. Let ε = ±1.

• If hf,ε(x) = f(x) − εx−1f
(
x−1) is a X×-mean-periodic function

then the Mellin transform M(f)(s) of f(x) admits a meromorphic
continuation to C and satisfies the functional equation

M(f)(s) = εM(f)(1− s).

More precisely,

M(f)(s) =
∫ +∞

1
f(x)xsx

x
+ ε

∫ +∞

1
f(x)x1−sx

x
+ ωf,ε(s)

where ωf,ε(s) coincides on <e (s)� 0 with
∫ 1

0 hf,ε(x)xsx/x , admits
a meromorphic continuation to C given by the Mellin-Carleman
transform MC (hf,ε) (s) of hf,ε(t) and satisfies the functional equa-
tion

ωf,ε(s) = εωf,ε(1− s).

• If Hf,ε(t) = hf,ε(e−t) is a X+-mean-periodic function then the
Mellin transform M(f)(s) of f(x) admits a meromorphic contin-
uation to C and satisfies the functional equation

M(f)(s) = εM(f)(1− s).

More precisely,

M(f)(s) =
∫ +∞

1
f(x)xsx

x
+ ε

∫ +∞

1
f(x)x1−sx

x
+ ωf,ε(s)

where ωf,ε(s) coincides on <e (s) � 0 with the Laplace transform
L (Hf,ε) (s) of Hf,ε(t), admits a meromorphic continuation to C
given by the Laplace-Carleman transform LC (Hf,ε) (s) of Hf,ε(t)
and satisfies the functional equation

ωf,ε(s) = εωf,ε(1− s).
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4. On a class of mean-periodic functions arising from
number theory

In this section, we show that for a certain class of functions, which natu-
rally come from arithmetic geometry (zeta functions of arithmetic schemes),
their meromorphic continuation and their functional equation are essen-
tially equivalent to mean-periodicity of some associated functions.

4.1. Functions which will supply mean-periodic functions

Firstly, we define some suitable set of functions, from which mean-
periodic functions will be built.

Definition 4.1. — F is defined by the set of complex-valued functions
Z(s) of the shape

Z(s) = γ(s)D(s)
where γ(s) and D(s) are some meromorphic functions on C with the fol-
lowing conditions

• all the poles of Z(s) belong to the vertical strip |<e (s)− 1/2| 6 w

for some w > 0,
• γ(s) satisfies the uniform bound

(4.1) ∀σ ∈ [a, b],∀ |t| > t0, |γ(σ + it)| �a,b,t0 |t|
−A

for all real numbers a 6 b and every real number A > 0,
• If σ > 1/2 + w then

(4.2) D(σ + it)� |t|A1

for some real number A1,
• there exists a real number A2 and a strictly increasing sequence of

positive real numbers {tm}m>1 satisfying

(4.3) |D(σ ± itm)| = O
(
tA2
m

)
uniformly for σ ∈ [1/2−w− δ, 1/2 +w+ δ] for some δ > 0 and for
all integer m > 1.

If λ is a pole of Z(s) in F of multiplicity mλ > 1 then the principal part
is written as

(4.4) Z(s) =
mλ∑
m=1

Cm(λ)
(s− λ)m +O(1)
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when s → λ. Note that we can associate to a element Z ∈ F its inverse
Mellin transform namely

(4.5) fZ(x) := 1
2iπ

∫
(c)
Z(s)x−ss

for c > 1/2 + w. By (4.1), (4.3) and the fact that the poles of Z(s) lie in
some vertical strip |<e (s)− 1/2| 6 w for some w > 0, we have

(4.6) fZ(x) = O
(
x−A

)
as x→ +∞

for all A > 0 and

(4.7) fZ(x) = O
(
x−1/2−w−ε

)
as x→ 0+.

As a consequence, fZ(x) is of rapid decay as x → +∞ and is at most of
polynomial growth as x → 0+. Let Zi(s) = γi(s)Di(s) for i = 1, 2 be two
elements of F linked by the functional equation

Z1(s) = εZ2(1− s)

where ε is a complex number of absolute value one. Let us define h12(x) by

(4.8) h12(x) := fZ1(x)− εx−1fZ2

(
x−1)

and h21(x) by

(4.9) h21(x) := fZ2(x)− ε−1x−1fZ1

(
x−1) .

The functions h12(x) and h21(x) are at most of polynomial growth as x→
0+ and x→ +∞ since fZ1 and fZ2 are of rapid decay as x→ +∞ and are
at most of polynomial growth as x→ 0+. The purpose of this section is to
establish mean-periodicity of these functions.

4.2. Mean-periodicity of these functions

Theorem 4.2. — Let Zi(s) = γi(s)Di(s) for i = 1, 2 be two elements
of F and ε be a complex number of absolute value one. The functions
h12(x) and h21(x) defined by (4.8) and (4.9) are continuous functions on
R×+ satisfying the functional equation

(4.10) h12
(
x−1) = −εxh21(x).

In addition, if Z1(s) and Z2(s) satisfy the functional equation

(4.11) Z1(s) = εZ2(1− s)

then
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(1) h12(x) and h21(x) are limits, in the sense of compact uniform con-
vergence, of sums of exponential polynomials(4) in C(R×+),

(2) h12(x) and h21(x) belong to C∞poly(R×+).

Remark 4.3. — An equivalent statement of the previous theorem is
(1) H12(t) = h12(e−t) and H21(t) = h21(e−t) are two elements of
C∞exp(R) satisfying the functional equation

H12 (−t) = −εe−tH21(t),

(2) H12(t) and H21(t) are limits, in the sense of compact uniform con-
vergence, of sums of exponential polynomials(5) in C(R).

Remark 4.4. — Di(s) (i = 1, 2) have infinitely many poles in practice.
Thus, applying this theorem will require some effort to check (4.3).

Remark 4.5. — Of course, the estimate (4.3) can be relaxed if we have
some stronger estimate for γ(s), for instance some exponential decay in ver-
tical strip. The main condition is that one can choose a sequence {tm}m>1
such that |Z(σ + itm)| = O(t−am ) uniformly in |<e (s)− 1/2| 6 w+δ, |t| > t0
and for some a > 1.

Proof of Theorem 4.2. — Equation (4.10) is essentially trivial. From def-
inition (4.5), fZ1(x) and fZ2(x) are continuous functions on R×+, which en-
tails that h12(x) and h21(x) are also continuous functions on R×+ by (4.8).
The functional equation (4.10) is an immediate consequence of (4.8) and
(4.9). The second assertion is implied by the first one and the fact that

h12(x), h21(x) =
{
O
(
x−1/2+w+δ) as x→ +∞,

O
(
x−1/2−w−δ) as x→ 0+.

since fZi(x) = O(x−1/2−w−δ) (i = 1, 2) for some δ > 0. Let us focus on the
first assertion for h12 only. We consider the clockwise oriented rectangle
R = [1/2− w − δ, 1/2 + w + δ]× [−T, T ]. We get

1
2iπ

∫
R
Z1(s)x−ss =

∑
λ pole of Z1

of multiplicity mλ
|=m (λ)|<T

mλ∑
m=1

Cm(λ) (−1)m−1

(m− 1)! logm−1 (x)x−λ

where Cm(λ) 6= 0 (1 6 m 6 mλ) are defined in (4.4). We cut the rectangle
symmetrically at the points 1/2 ± iT . By the functional equation (4.11),
the integral on the left part of this rectangle equals −ε1ε2x

−1 times the

(4)Remember that exponentials polynomials in C(R×+) are given by x−λP (log x).
(5)Remember that exponentials polynomials in C(R) are given by P (t)eλt.
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same integral on the right part of this rectangle in which Z1 is replaced by
Z2 and x is replaced by x−1. Thus,

(4.12) h12(x) =
∑

λ pole of Z1
of multiplicity mλ
|=m (λ)|<T

mλ∑
m=1

Cm(λ) (−1)m−1

(m− 1)! logm−1 (x)x−λ

+R1(Z1, x, T )+R2(Z1, x, T )−ε1ε2x
−1(R1(Z2, x

−1, T )−R2(Z2, x
−1, T ))

where R1(Z1, x, T ) (and similarly R1(Z1, x
−1, T )) is given by

(4.13) R1(Z1, x, T ) = − 1
2iπ

∫ 1/2+w+δ

1/2
Z1(σ + iT )x−(σ+iT )σ

+ 1
2iπ

∫ 1/2+w+δ

1/2
Z1(σ − iT )x−(σ−iT )σ

and R2(Z1, x, T ) (and similarly R2(Z2, x
−1, T )) by

R2(Z1, x, T ) = 1
2π

∫ ∞
T

Z1(1/2 + w + δ + it)x−1/2−w−δ−itt

+ 1
2π

∫ −T
−∞

Z1(1/2 + w + δ + it)x−1/2−w−δ−itt.

Equation (4.2) implies that for i = 1, 2,

R2(Zi, x, T ) = O
(
T−A

)
uniformly on every compact set of R×+ and for every large A > 0. By (4.1)
and (4.3), we can take an increasing sequence (tm)m>1 so that for i = 1, 2

(4.14) R1(Zi, x, tm) = O(t−Am )

uniformly on every compact set of R×+ and for every large A > 0. As a
consequence,

(4.15) h12(x) =
∑

λ pole of Z1
of multiplicity mλ

mλ∑
m=1

Cm(λ) (−1)m−1

(m− 1)! logm−1 (x)x−λ

in the sense of the compact uniform convergence. �

A closer inspection of the proof of the previous theorem reveals that, in
some particular case, we also establish a kind of summation formula for
the poles of the functions belonging to F . This formula is described in the
following corollary.
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Corollary 4.6. — Let Z(s) = γ(s)D(s) be an element of F , ε = ±1
and φ be a real-valued smooth compactly supported function on R×+. If
Z(s) satisfies the functional equation

Z(s) = εZ(1− s)

and
D(s) =

∑
m>1

dm
ms

for <e (s) > σ0 then

∑
λ pole of Z

of multiplicity mλ

mλ∑
m=1

Cm(λ)
(m− 1)!M(φ)(m−1)(λ)

=
∑
m>1

dm [(φ ∗× κ)(m)− ε(φ∨ ∗× κ)(m))

where φ∨(x) = x−1φ(x−1), κ(x) is the inverse Mellin transform of γ(s)
namely

κ(x) := 1
2iπ

∫
(c)
γ(s)x−ss

for c > σ0.

Remark 4.7. — The referee of this paper indicated to the authors that
this summation formula could be seen as a higher dimensional analogue
of the following identity found by S. Ramanujan ([44, Chapter IX Sec-
tion 9.8]). Let a be a positive integer. If all the non-trivial zeros of the
Riemann zeta function are simple then

− 1
2
√
b

∑
ζ(ρ)=0,

0<<e (ρ)<1

bρ
Γ((1− ρ)/2)

ζ ′(ρ)

=
√
a
∑
n>1

µ(n)
n

e−(a/n)2
−
√
b
∑
n>1

µ(n)
n

e−(b/n)2

where b = π/a and µ stands for Möbius function. However, the following
comments should be made. On the one hand, the convergence (in the usual
sense) of the series occurring on the right hand side of the previous identity
is not proved yet as clearly indicated in [44, Page 220]. On the other hand,
such identity is formally a particular case of the previous corollary with the
following choices

Z(s) = γ(s)D(s), γ(s) = 1
ΓR(s) , D(s) = 1

ζ(s) , φ(x) =
√

πa

a2 + πx2 .
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Note that the function Z(s) does not belong to F since γ(s) does not sat-
isfy the required growth condition and that φ is not compactly supported.
Nevertheless, the poles of Z(s) are the non-trivial zeros of ζ(s), provided
they are simple, and

Z(s) = 1
π−ρ/2 Γ(ρ/2)

1
ζ ′(ρ)

1
s− ρ

+O(1)

when s is close to the simple zero ρ. In addition,

M(φ)(s) = 1
2 ΓR(s)as−1/2 Γ((1− s)/2)

according to [44, Chapter VII Section 7.8].

Proof of Corollary 4.6. — If Z1(s) = Z2(s) = Z(s) then we notice that

fZ(x) =
∑
m>1

dm
1

2iπ

∫
(c)
γ(s)(mx)−ss =

∑
m>1

dmκ(mx),

which implies

h12(x) =
∑
m>1

dm
[
κ(mx)− εx−1κ(mx−1)

]
.

Equation (4.15) implies that∑
λ pole of Z

of multiplicity mλ

mλ∑
m=1

Cm(λ) (−1)m−1

(m− 1)! logm−1 (x)x−λ

=
∑
m>1

dm
[
κ(mx)− εx−1κ(mx−1)

]
.

The corollary follows from multiplying by φ(x−1) and integrating over R×+
with respect to the measure x/x �

Theorem 4.8. — Let Z1(s) = γ1(s)D1(s) and Z2(s) = γ2(s)D2(s) be
two elements of F satisfying the functional equation

Z1(s) = εZ2(1− s)

for some complex number ε of absolute value one. Let us suppose that
Z1(s) and Z2(s) can be written as

(4.16) Zi(s) = Ui(s)
Vi(s)

for i = 1, 2 where Ui(s) and Vi(s) (i = 1, 2) are some entire functions
satisfying the functional equations

U1(s) = εUU2(1− s),(4.17)
V1(s) = εV V2(1− s)(4.18)
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for some complex numbers εU , εV of absolute value one, and satisfying the
bounds

(4.19) |Ui(σ + it)| , |Vi(σ + it)| = Oa,b

(
|t|−(1+δ)

)
(i = 1, 2)

for some δ > 0 in every vertical strip of finite width a 6 σ 6 b and every
|t| > 1. Under the previous assumptions, the functions h12(x) and h21(x),
which are defined in (4.8), satisfy

v1 ∗× h12 = 0, v2 ∗× h21 = 0.

where vi ∈ S(R×+) is the inverse Mellin transform of Vi for i = 1, 2. In other
words, the functions h12(x) and h21(x) are C∞poly(R×+)-mean-periodic and
S(R×+)∗-mean-periodic.

Remark 4.9. — An equivalent statement of the previous theorem is that
the functions H12(t) = h12(e−t) and H21(t) = h21(e−t) are S(R)∗-mean-
periodic and C∞exp(R)-mean-periodic.

Remark 4.10. — In general, C∞poly(R×+)-mean-periodicity (or S(R×+)∗-
mean-periodicity) of h12(x) and h21(x) do not imply that Zi(s) (i = 1, 2)
are meromorphic functions of order one. For example, let ζΓ(s) be the Sel-
berg zeta function associated to a discrete co-compact torsion free subgroup
Γ of SL2(R). Then ζΓ(s) is an entire function of order two which has the
simple zero at s = 1, order 2g − 1 zero at s = 0 and has the functional
equation

(Γ2(s)Γ2(s+ 1))2g−2ζΓ(s) = (Γ2(1− s)Γ2(2− s))2g−2ζΓ(1− s),

where g > 1 is the genus of Γ\SL2(R)/SO(2) and Γ2(s) is the double
gamma function ([36] [18], [23]). Put γ(s) = (Γ2(s)Γ2(s+ 1))2g−2, D(s) =
(s(s− 1))−2ζΓ(s) and ZΓ(s) = γ(s)D(s). Then we find that ZΓ(s) belongs
to F and its poles are simple poles s = 0, 1 only. The function hΓ(x)
attached to ZΓ is equal to c0 + c1x

−1 for some real numbers c0, c1, where
hΓ(x) = fZΓ(x) − x−1fZΓ(x−1) with the inverse Mellin transform fZΓ of
ZΓ. Hence hΓ is C∞poly(R×+)-mean-periodic. Moreover hΓ is C(R×+)-mean-
periodic. The Mellin-Carleman transform of hΓ is the rational function
c1(s − 1)−1 − c0s−1. However, as mentioned above, ZΓ is a meromorphic
function of order two.

Proof of Theorem 4.8. — We only prove the result for h12. Let ui be the
inverse Mellin transform of Ui namely

ui(x) = 1
2iπ

∫
(c)
Ui(s)x−ss
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and vi be the inverse Mellin transform of Vi namely

vi(x) = 1
2iπ

∫
(c)
Vi(s)x−ss

for i = 1, 2. These integrals converge for every real number c according
to (4.19). In addition, these functions belong to S(R×+) by shifting the
contours to the right or to the left. Let us define f̃(x) := x−1f(x−1). We
remark that

(4.20) u1 = v1 ∗× fZ1 = εU ṽ2 ∗× f̃Z2

since U1(s) = V1(s)Z1(s) and U1(s) = εUU2(1− s) = εUV2(1− s)Z2(1− s)
according to the functional equation (4.17). In addition, v1 = εV ṽ2 by the
functional equation (4.18). As a consequence,

(4.21) εU ṽ2 = εv1

since ε = εUεV
−1. Equations (4.20) and (4.21) altogether imply

v1 ∗× (fZ1 − εf̃Z2) = 0

which is the desired result since S(R×+) ≺ C∞poly(R×+)∗. �

4.3. On single sign property for these mean-periodic functions

Proposition 4.11. — Suppose that a function h(x) satisfies the fol-
lowing conditions

• h(x) is a C∞poly(R×+)-mean-periodic real-valued function or a S(R×+)∗-
mean-periodic real-valued function on R×+ satisfying h(x−1) =
−εxh(x),

• there exists t0 > 0 such that h(e−t) is of constant sign on (t0,+∞),
• the Mellin-Carleman transform MC (h) (s) of h(x) has no poles in

(1/2 + δ,+∞) for some 0 6 δ < w where w is the positive real
number in Definition 4.1.

Then all the poles of MC (h) (s) belong to the strip |<e(s)− 1/2| 6 δ.
In particular, if MC (h) (s) does not have any poles on (1/2,+∞) namely
δ = 0 then all the poles of MC(h)(s) are on the line <e (s) = 1/2.

Proposition 4.11 is a consequence of the following lemma ([45, Chapter II,
Section 5]) since

MC(h)(s) =
∫ 1

0
h(x)xsx

x
=
∫ +∞

0
h(e−t)e−stt
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on <e (s) > 1/2 + w, and MC(h)(s) = εMC(h)(s) by the first assumption
and Proposition 2.16.
Applications of Proposition 4.11 can be seen in Remark 5.11, the proof

of Proposition 6.1 and the proof of Proposition 6.9.

Lemma 4.12. — Let f(x) be a real-valued function on R×+. If there exists
x0 > 0 such that f(x) is of constant sign on (x0,+∞) and if the abscissa
σc of convergence (not of absolute convergence) of the Laplace transform
L(f)(s) of f(x) is finite then L(f)(s) has a singularity at s = σc.

5. Zeta functions of arithmetic schemes and
mean-periodicity

The main references for the arithmetic and analytic objects briefly intro-
duced in this section are [37] and [38].

5.1. Background on zeta functions of schemes

Let S be a scheme of dimension n. Its (Hasse) zeta function is the Euler
product

ζS(s) =
∏
x∈S0

(1− |k(x)|−s)−1

whose Euler factors correspond to all closed points x of S, say x ∈ S0,
with residue field of cardinality |k(x)|. It is known to converge absolutely
in <e(s) > n. If S is a B-scheme then the zeta function ζS(s) is the product
of the zeta functions ζSb(s) where Sb runs through all fibres of S over B.

Let K be a number field. Let E be an elliptic curve over K. Define the
(Hasse-Weil) zeta function ζE(s) of E as the product of factors for each
valuation of K, the factors are the Hasse zeta function of a minimal Weier-
strass equation of E with respect to the valuation. If E has a global minimal
Weierstrass equation (for example, this is so if the class number of K is 1),
then the Hasse-Weil zeta function ζE(s) equals the zeta function ζE0 of the
model E0 corresponding to a global minimal Weierstrass equation for E.
All this easily follows from the description of the special fibre of a minimal
Weierstrass equation, see e.g. [26, 10.2.1]. The Hasse-Weil zeta function
ζE(s) depends on E only.

TOME 62 (2012), FASCICULE 5



1856 Ivan FESENKO, Guillaume RICOTTA & Masatoshi SUZUKI

The factor of the zeta function for each valuation of K is the zeta func-
tion of an appropriate curve (almost always elliptic curve) over the residue
field of the valuation. It can naturally be written as the quotient whose
numerator is the zeta function of the projective line over the residue field.
Following Hasse, take the product over all v to get

(5.1) ζE(s) = ζK(s)ζK(s− 1)
L(E, s)

on <e (s) > 2 where ζK(s) is the Dedekind zeta function of K, and which
defines L(E, s), the L-function of E.

Let E be a regular model of E, proper over the ring of integers of K.
The description of geometry of models in [26, Thms 3.7, 4.35 in Ch. 9 and
Section 10.2.1 in Ch. 10] immediately implies that

(5.2) ζE(s) = nE(s)ζE(s)

where nE(s) is the product of zeta functions of affine lines over finite ex-
tension k(bj) of the residue fields k(b):

(5.3) nE(s) =
∏

16j6J

(
1− q1−s

j

)−1

and qj = |k(bj)| (1 6 j 6 J), J is the number of singular fibres of E .
See [13, Section 7.3] and also [4, Section 1]. Note that nE(s)±1 are holo-
morphic functions on <e (s) > 1.

In the next sections we look at the L-functions of elliptic curves, Hasse-
Weil zeta functions of elliptic curves and zeta functions of regular models
of elliptic curves, and then at the zeta functions of arithmetic schemes.

5.2. Conjectural analytic properties of L-functions of elliptic
curves

Let K be a number field. Let E be an elliptic curve over K, denote
its conductor by qE . The L-function L(E, s) has an absolutely convergent
Euler product and Dirichlet series on <e (s) > 3/2, say

(5.4) L(E, s) :=
∑
n>1

an
ns
.
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The completed “L-function” Λ(E, s) of E is defined by

Λ(E, s) :=
(
NK|Q(qE) |dK|2

)s/2
L∞(E, s)L(E, s)

where dK is the discriminant of K and

L∞(E, s) := ΓC(s)r1 ΓC(s)2r2 .

Here, r1 is the number of real archimedean places of K, r2 is the num-
ber of conjugate pairs of complex archimedean places of K, and ΓC(s) :=
(2π)−s Γ(s) as usual (see [38, Section 3.3]). The expected analytic proper-
ties of Λ(E, s) are encapsulated in the following hypothesis.

Hypothesis Nice−Ell(K) (respectively Nice[−Ell(K)). — If E is an el-
liptic curve over the number fieldK then the function Λ(E, s) is a completed
L-function (respectively almost completed L-function) in the sense that it
satisfies the following nice analytic properties:

• it can be extended to a holomorphic function (respectively mero-
morphic function with finitely many poles) of order 1 on C,

• it satisfies a functional equation of the shape

Λ(E, s) = ωEΛ(E, 2− s)

for some sign ωE = ±1.

Remark 5.1. — If E is an elliptic curve over a general number field
K with complex multiplication then its completed L-function is nice by
the work of Deuring. If K = Q then Hypothesis Nice−Ell(Q) is implied
by the theorem of Wiles and others that an elliptic curve over the field
of rational numbers is modular. More generally, extensions of the modu-
larity lifting property is expected to give meromorphic continuation and
functional equation for L-functions of elliptic curves over totally real fields.
However, this method cannot handle elliptic curves over arbitrary number
fields.

Remark 5.2. — Assuming Hypothesis Nice−Ell(K), the L-function
L(E, s) of every elliptic curve E over K satisfies the convexity bounds

(5.5) L(E, s)�E,ε

[
|=m (s)|r1+2r2

]µE(<e (s))+ε

for every ε > 0 where

µE(σ) =


0 if σ > 3/2,
−σ + 3/2 if 1/2 6 σ 6 3/2,
2(1− σ) otherwise.
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(see [20, Equation (5.21)]). Note that even if Hypothesis Nice−Ell(K) is re-
laxed to Hypothesis Nice[−Ell(K) then L(E, s) is still polynomially
bounded (see Section 5.5).

One of the purposes of this section is to establish a strong link between
Hypothesis Nice−Ell(K) and mean-periodicity. This will be achieved by
investigating analytic properties of (Hasse) zeta functions of elliptic curves,
in agreement with the philosophy of [14].

5.3. Hasse-Weil zeta functions of elliptic curves

Let K be a number field. Remember that the completed Dedekind zeta
function of K is given by

ΛK(s) := |dK|s/2 ζK,∞(s)ζK(s)

where

(5.6) ζK,∞(s) := ΓR(s)r1 ΓC(s)r2

with ΓR(s) = π−s/2 Γ(s/2) as usual and ΓC(s) has already been defined in
the previous section. ΛK(s) is a meromorphic function of order 1 on C with
simple poles at s = 0, 1, which satisfies the functional equation

ΛK(s) = ΛK(1− s).

Moreover, ζK(s) satisfies the convexity bounds

(5.7) ζK(s)�K,ε

[
|=m (s)|r1+2r2

]µK(<e (s))+ε

for all ε > 0 where

µK(σ) =


0 if σ > 1,
(−σ + 1)/2 if 0 6 σ 6 1,
1/2− σ otherwise.

(see [20, Equation (5.21)]). Let E be an elliptic curve over K. The Hasse-
Weil zeta function of E may be written in terms of the completed zeta-
functions and L-function as follows

(5.8) ζE(s) = |dK|1/2 NK|Q(qE)s/2 L∞(E, s)
ζK,∞(s)ζK,∞(s− 1)

ΛK(s)ΛK(s− 1)
Λ(E, s) .
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The functional equation Γ(s + 1) = sΓ(s) and the equality 2 ΓC(s) =
ΓR(s) ΓR(s + 1), which is implied by Legendre’s duplication formula, lead
to

(5.9) ζE(s) = |dK|1/2 NK|Q(qE)s/2
(
s− 1
4π

)r1 (s− 1
2π

)r2 ΛK(s)ΛK(s− 1)
Λ(E, s) .

As a consequence, Hypothesis Nice−Ell(K) implies the following hypothe-
sis.

Hypothesis Nice−HW(K). — For every elliptic curve E over the num-
ber field K, the Hasse-Weil zeta function ζE(s) satisfies the following nice
analytic properties:

• it can be extended to a meromorphic function on C,
• it satisfies a functional equation of the shape(

NK|Q(qE)−1)s/2 ζE(s) =
(
NK|Q(qE)−1)(2−s)/2 (−1)r1+r2ωEζE(2− s)

for some sign ωE = ±1.

Remark 5.3. — Note that the constants in the conjectural functional
equations of the Hasse-Weil zeta functions of elliptic curves are much sim-
pler than in the conjectural functional equations of L-functions of elliptic
curves. In particular, they do not depend on the discriminant of the field.
Also note the absence of gamma-factors in the functional equations of the
Hasse-Weil zeta functions of elliptic curves. Even the total conjectural sign
in the functional equations does not depend on archimedean data associ-
ated to K. The Hasse-Weil zeta functions of elliptic curves are, from several
points of view, more basic objects than the L-functions of elliptic curves.

Remark 5.4. — Hypothesis Nice−HW(K) implies the meromorphic con-
tinuation of Λ(E, s) and the conjectural functional equation of Λ(E, s) for
every elliptic curve E over the number field K. In particular, Hypothesis
Nice−HW(K) recover the gamma-factor L∞(E, s) and the norm of the con-
ductor NK|Q(qE) |dK|2 of L(E, s) by (5.9) and the one-dimensional study
of ζK(s).

Remark 5.5. — The automorphic property of the L-function does not
transfer to any automorphic property of the whole ratio, the Hasse-Weil
zeta function of elliptic curve. It is then natural to wonder which replace-
ment of the automorphic property should correspond to the Hasse-Weil
zeta functions of elliptic curves. This work shows mean-periodicity is one
of such replacements.

Here we state the following hypothesis on mean-periodicity.
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Hypothesis Mp−HW(K). — For every elliptic curve E over K, if

ZE(s) = ΛK(s)
(
NK|Q(qE)−1)2s/2 ζE(2s)

then the function

hE(x) := fZE (x)− (−1)r1+r2ωEx
−1fZE

(
x−1)

is C∞poly(R×+)-mean-periodic (respectively S(R×+)∗-mean-periodic), or the
function HE(t) := hE(e−t) is C∞exp(R)-mean-periodic (respectively S(R)∗-
mean-periodic), where fZE is the inverse Mellin transform of ZE defined
in (4.5).

Clearly, mean-periodicity for hE(x) and mean-periodicity for HE(t) are
equivalent. One link with mean-periodicity is described in the following
theorem.

Theorem 5.6. — Let K be a number field. Then
• Hypothesis Nice[−Ell(K) implies Hypothesis Mp−HW(K).
• Hypothesis Mp−HW(K) implies Hypothesis Nice−HW(K).

Remark 5.7. — We have already mentioned that Hypothesis Nice−Ell(Q)
holds. As a consequence, the two other hypothesis are also true. Let us give
some more information on the mean-periodic functions, which occur in this
particular case (see Corollary 4.6). If E is an elliptic curve over Q and

(5.10) ζE(2s) :=
∑
m>1

cm
ms

then the mean-periodic function hE satisfies

HE(t) = hE(e−t) =
∑

λ pole of ZE(s)
of multiplicity mλ

mλ∑
m=1

Cm(λ) 1
(m− 1)! t

m−1eλt

= 2
∑
n>1

(∑
d|n

cd

)[
exp

(
−πn2e−2t)+ ωE exp

(
t− πn2e2t)]

where the coefficients Cm(λ) (1 6 m 6 mλ) are defined in (4.4).

Proof of Theorem 5.6. — The second assertion is a consequence of The-
orem 3.2. Let us show the first assertion applying Theorem 4.2 and Theo-
rem 4.8. Adopting the same notation as in Theorem 4.2, we choose

Z1(s) = Z2(s) = γ(s)D(s) = ZE(s) with γ(s) = ΛK(s)

and
D(s) =

(
NK|Q(qE)−1)2s/2 ζE(2s).
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The functional equation satisfied by ZE(s) is

ZE(s) = (−1)r1+r2ωEZE(1− s).

In addition, ZE(s) belongs to F since ΛK(s) has two poles and the poles of
γ(s) and D(s) are in the vertical strip |<e (s)− 1/2| 6 1/2 := w and

• the estimate (4.1) follows from Stirling’s formula and classical con-
vexity bounds for Dedekind zeta functions given in (5.7),

• the estimate (4.2) follows from the Dirichlet series expansion of
ζE(s) for <e(s) > 2,

• the crucial condition (4.3) is an application of Proposition A.2 and
the convexity bounds for the Dedekind zeta function given in (5.7).

From Hypothesis Nice[−Ell(K), the function P (s)L(E, s) is an entire func-
tion for some polynomial P (s) satisfying P (s) = P (1 − s). Adopting the
same notation as in Theorem 4.8, we choose U1(s) = U2(s) = U(s) and
V1(s) = V2(s) = V (s) where

U(s) := (4π)−r1(2π)−r2 |dK|1/2 (2s− 1)r1+r2+1s2(s− 1)2ΛK(s)
· ΛK(2s)ΛK(2s− 1)P (2s),

V (s) := (2s− 1)s2(s− 1)2Λ(E, 2s)P (2s).

U(s) and V (s) are entire functions satisfying the functional equations

U(s) = (−1)r1+r2+1U(1− s),
V (s) = −ωEV (1− s).

The estimate (4.19) is a consequence of Stirling’s formula and convexity
bounds for P (s)L(E, s) and the Dedekind zeta function given in (5.5) and
in (5.7). �

We get, arguing along the same lines, the following proposition.

Proposition 5.8. — Let K be a number field and E be an elliptic curve
over K.

• If Hypothesis Nice[−Ell(K) holds then the function

h
(2)
E (x) := fZ2

E
(x)− x−1fZ2

E

(
x−1)

with ZE(s) := ΛK(s)
(
NK|Q(qE)−1)2s/2 ζE(2s) is C∞poly(R×+)-mean-

periodic (respectively S(R×+)∗-mean-periodic), and the function
H

(2)
E (t) := h

(2)
E (e−t) is C∞exp(R)-mean-periodic (respectively S(R)∗-

mean-periodic), where fZ2
E

is the inverse Mellin transform of Z2
E

defined in (4.5).
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• If h(2)
E (x) is C∞poly(R×+)-mean-periodic or S(R×+)∗-mean-periodic, or

H
(2)
E (t) is C∞exp(R)-mean-periodic or S(R)∗-mean-periodic, then

ζ2
E(s) extends to a meromorphic function on C, which satisfies the
functional equation(

NK|Q(qE)−2)s/2 ζ2
E(s) =

(
NK|Q(qE)−2)(2−s)/2 ζ2

E(2− s).

Remark 5.9. — If E is an elliptic curve over Q of conductor qE , which
only satisfies Hypothesis Nice−Ell(Q), then the mean-periodic function h(2)

E

satisfies

(5.11) h
(2)
E (e−t) =

∑
λ pole of Z2

E(s)
of multiplicity mλ

mλ∑
m=1

Cm(λ) 1
(m− 1)! t

m−1eλt

= 4
∑
n>1

∑
d|n

cdσ0(n/d)

[K0(2πne−t)− etK0(2πnet)
]

since
1

2iπ

∫
(c)

ΛK(s)2x−ss = 4
∞∑
n=1

σ0(n)K0 (2πnx)

where K0 is the modified Bessel function, the coefficients Cm(λ) (1 6 m 6
mλ) are defined in (4.4), the coefficients (cm)m>1 are defined in (5.10) and
σ0(n) =

∑
d|n 1 for integer n > 1 as usual. In addition, the function

(5.12)

v(x) := 1
2iπ

∫
(c)

(2s− 1)2s4(s− 1)4Λ(E, 2s)2x−ss =
∑
n>1

anW

(
n2x

q2
E

)

belongs to S(R×+) and satisfies v ∗× h(2)
E = 0 where the coefficients (an)n>1

are defined in (5.4) and

W (x) := 1
2iπ

∫
(c)

(2s− 1)2s4(s− 1)4 Γ(2s)2x−ss.

Remark 5.10. — Using the series representation in the right-hand side
of (5.11) and the right-hand side of (5.12) one can directly check that
h

(2)
E (x) ∈ C∞poly(R×+), v(x) ∈ C∞(R×+) and v(x) is of rapid decay as x→ +∞.

If one can prove that v∗×h(2)
E = 0 and that v(x) is of rapid decay as x→ 0+

then it implies the meromorphic continuation of ζ2
E(s) and its functional

equation, without using the modularity property of E.
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Remark 5.11. — Let E be an elliptic curve over Q and let h(2)
E (x) be

C∞poly(R×+)-mean-periodic. According to (5.11), we can split h(2)
E (x) into

h
(2)
E (x) := h

(2)
E,0,0(x) + h

(2)
E,0,1(x) + h

(2)
E,1(x)

where

h
(2)
E,0,0(x) :=

4∑
m=1

Cm(0)(−1)m−1

(m− 1)! logm−1 (x),

h
(2)
E,0,1(x) :=

4∑
m=1

Cm(1)(−1)m−1

(m− 1)! logm−1 (x)x−1

and

(5.13) h
(2)
E,1(x) :=

∑
λ pole of Z2

E(s)
of multiplicity mλ

λ 6=0,1

mλ∑
m=1

Cm(λ) (−1)m−1

(m− 1)! logm−1 (x)x−λ.

All these three functions are C∞poly(R×+)-mean-periodic by the assumption.
As a consequence,
(5.14)

MC
(
h

(2)
E

)
(s) = MC

(
h

(2)
E,0,0

)
(s) + MC

(
h

(2)
E,0,1

)
(s) + MC

(
h

(2)
E,1

)
(s),

where MC
(
h

(2)
E,0,0

)
(s) has only one pole of order four at s = 0, MC

(
h

(2)
E,0,1

)
(s)

has only one pole of order four at s = 1 and the poles of MC
(
h

(2)
E,1

)
(s)

are given by the non-trivial zeros of L(E, 2s) according to the conjectural
linear independence of zeros of L-functions (see [34, Page 176] and [22]).
Proposition 4.11 entails that if h(2)

E,1(e−t) is of constant sign(6) on (t0,+∞)
for some real number t0 and if MC

(
h

(2)
E,1

)
(s) does not have poles on the

real axis except at s = 1/2 then all the poles of MC
(
h

(2)
E,1

)
(s) are on the

line <e(s) = 1/2. In other words, L(E, s) satisfies the Generalized Riemann
Hypothesis.
We would like to provide some evidence(7) for the single sign property

of h(2)
E,1(e−t) to hold. Set HE(t) := −e−th(2)

E (e−t), then the function HE(t)
coincides with the function H(t) defined in [13, Section 8.1]. Then the
single sign property of H ′′′′E (t) implies the single sign property of h(2)

E,1(e−t).
On the other hand, the single sign of H ′′′′E (t) holds under the Generalized

(6)This function is said to satisfy the single sign property.
(7)For numerical computations, see http://www.maths.nott.ac.uk/personal/ibf/
comp.html
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Riemann Hypothesis for L(E, s) if all the non trivial zeros, except s = 1, of
L(E, s) are simple and E is not of analytic rank 0 (see [42, Proposition 4]).

Remark 5.12. — Finally, let us explain why the functions hE(e−t) and
h

(2)
E (e−t) cannot be C(R)-mean-periodic neither C∞(R)-mean-periodic. For

instance, let us assume that HE(t) = hE(e−t) is C(R)-mean-periodic and
that Λ(E, s) is nice. We can choose a non-trivial compactly supported mea-
sure µ on R satisfying HE ∗µ = 0. According to the explicit formula (5.11),
the poles of the Laplace-Carleman transform LC(HE)(s) are exactly the
poles of ZE(s) with multiplicities. Thus, if λ ∈ C \ {0, 1/2, 1} is a pole of
LC(HE)(s) then λ is a non-trivial zero of L(E, 2s) of multiplicity Mλ > 1
and a non-trivial zero of ζK(s) of multiplicity nλ < Mλ. Let ΛE be the
multiset (with multiplicities) of poles of LC(HE)(s) (except 0,1/2 and 1 as
previously) and let ZE be the multiset (with multiplicities) of non-trivial
zeros of L(E, 2s). We have just seen that ΛE ⊂ ZE . On one hand, there
exists a constant CE 6= 0 such that

N(R;ZE) := |{λ ∈ ZE , |λ| 6 R}| = CER logR+O(R)

according to [20, Theorem 5.8]. On the other hand, the set ΛE is a subset
of the multiset (with multiplicities) of the zeros of L±(µ)(s) by definition
of the Laplace-Carleman transform. According to [25, Page 97], the func-
tion L±(µ)(s) belongs to the Cartwright class C, which is the set of entire
functions ψ of exponential type satisfying

(5.15)
∫ +∞

−∞

log+ |ψ(t)|
1 + t2

t <∞.

Here, the fact that µ is compactly supported is crucial. It implies that ([25,
Equation (5) Page 127]),

N (R; L±(µ)) := |{λ ∈ C, L±(µ) = 0, |λ| 6 R}| = C ′ER+ o(R)

for some C ′E 6= 0. As a consequence,

N(R; ΛE) := |{λ ∈ ΛE , |λ| 6 R}| = OE(R)

and
N(R;ZE \ ΛE) 'R→+∞ N(R;ZE).

Statistically speaking, this means that if 2λ is a zero of L(E, s) of multiplic-
ity Mλ then λ is a zero of ζK(s) of multiplicity greater than Mλ. Of course,
such result would not agree with the general admitted expectation that
zeros of essentially different L-functions are linearly independent (see [8,
Page 13]).
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5.4. Zeta functions of models of elliptic curves

Let E be an elliptic curve over K of conductor qE and E be a regular
model of E over K. In the two-dimensional adelic analysis the Hasse zeta
function of E is studied via its lift to a zeta integral on a certain two-
dimensional adelic space, see [13]. We assume that E satisfies all the condi-
tions given in [13, Sections 5.3 and 5.5], i.e. the reduced part of every fibre
is semistable and E has good or multiplicative reduction in residue charac-
teristic 2 and 3. If f0 is a well-chosen test function in the Schwartz-Bruhat
space on some two-dimensional adelic space then the two-dimensional zeta
integral ζE(f0, s) defined in [13, Section 5] equals

(5.16) ζE(f0, s) =
∏

16i6I
ΛKi(s/2)2c1−sE ζE(s)2

where i runs through finitely many indices and Ki are finite extensions of
K which include K itself,

(5.17) cE :=
∏

y singular
ky.

Let us say a few words on the constant cE . We know that

NK|Q(qE) =
∏

y = Eb singular
|k(b)|fb

according to [38, Section 4.1] and that

ky :=
{
|k(b)|fb+mb−1 if y = Eb is singular,
1 otherwise

where mb is the number of irreducible geometric components of the fibre
([13, Section 7.3]). As a consequence, the constant cE satisfies

(5.18) cE = NK|Q(qE)
∏

16j6J
qj

since ∏
16j6J

qj =
∏
b∈B0

|k(b)|mb−1

according to [13, Section 7.3].

In [13] it is conjectured that the two-dimensional zeta integral satisfies
the functional equation

ζE(f0, s) = ζE(f0, 2− s)
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namely

(5.19)
(
c−2
E
)s/2

ζE(s)2 =
(
c−2
E
)(2−s)/2

ζE(2− s)2

(note that the completed rescaled zeta functions of Ki will cancel each
out in the functional equation). It is easy to check the compatibility with
the previously seen functional equations. If ζE(s) satisfies the functional
equation(

NK|Q(qE)−1)s/2 ζE(s) = (−1)r1+r2ωE
(
NK|Q(qE)−1)(2−s)/2 ζE(2− s)

then

ζE(s) = nE(s)ζE(s)

= (−1)r1+r2ωENK|Q(qE)s−1 nE(s)
nE(2− s)

ζE(2− s)

= (−1)r1+r2+JωE

NK|Q(qE)
∏

16j6J
qj

s−1

ζE(2− s)

= (−1)r1+r2+Jcs−1
E ωEζE(2− s)

according to (5.18). Thus, Hypothesis Nice−HW(K) is equivalent to the
following hypothesis.

Hypothesis Nice−H(K). — For every elliptic curve E over the num-
ber field K and regular model E of E the zeta function ζE(s) satisfies the
following nice analytic properties:

• it can be extended to a meromorphic function on C,
• it satisfies a functional equation of the shape(

c−1
E
)s/2

ζE(s) = (−1)r1+r2+JωE
(
c−1
E
)(2−s)/2

ζE(2− s)

for some sign ωE = ±1.

Hypothesis Mp−H(K). — For every elliptic curve E over K, if

ZE(s) =
( ∏

16i6I
ΛKi(s)

)(
c−1
E
)2s/2

ζE(2s)

then the function

hE(x) := fZE (x)− (−1)r1+r2+JωEx
−1fZE

(
x−1)

is C∞poly(R×+)-mean-periodic (respectively S(R×+)∗-mean-periodic), or the
function HE(t) := hE(e−t) is C∞exp(R)-mean-periodic (respectively S(R)∗-
mean-periodic), where fZE is the inverse Mellin transform of ZE defined
in (4.5).
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Another link with mean-periodicity is described in the following theorem.

Theorem 5.13. — Let K be a number field.

• Hypothesis Nice[−Ell(K) implies Hypothesis Mp−H(K).
• If Hypothesis Mp−H(K) or Hypothesis Mp−HW(K) holds then Hy-
pothesis Nice−HW(K) and Hypothesis Nice−H(K) hold.

Remark 5.14. — We do not describe the explicit formula for hE(e−t)
here but let us say that such formula should contain the contribution of
the poles of nE(2s).

Proof of Theorem 5.13. — We have already seen that Hypothesis
Nice−HW(K) and Hypothesis Nice−H(K) are equivalent. Hence the sec-
ond assertion is a consequence of Theorem 3.2. Let us show the first asser-
tion applying Theorem 4.2 and Theorem 4.8. Adopting the same notations
as in Theorem 4.2, we choose Z1(s) = Z2(s) = γ(s)D(s) = ZE(s) with
γ(s) =

∏
16i6I ΛKi(s) and D(s) =

(
c−1
E
)2s/2

ζE(2s). The functional equa-
tion satisfied by ZE(s) is

ZE(s) = (−1)r1+r2+JωEZE(1− s).

In addition, ZE(s) belongs to F since each ΛKi(s) has two poles at s = 0, 1
and the poles of γ(s) and D(s) are in the vertical strip |<e (s)− 1/2| 6
1/2 := w and

• the estimate (4.1) follows from Stirling’s formula and convexity
bounds for Dedekind zeta functions given in (5.7),

• the estimate (4.2) follows from the Dirichlet series expansion of
ζE(s) for <e(s) > 2 and from the fact that nE(2s) is uniformly
bounded on <e (s) > 1/2 + w, w > 0,

• the crucial condition (4.3) is an application of Proposition A.2 and
the convexity bounds for the Dedekind zeta function given in (5.7).
Note that nE(2s) is a finite Euler product, which may have infinitely
many poles only on the critical line <e (s) = 1/2 but its set of poles
is a well-spaced set namely

q16j6J
2π

log qj
Z.

From Hypothesis Nice[−Ell(K), P (s)L(E, s) is an entire function for some
polynomial P (s) satisfying P (s) = P (1−s). Adopting the same notations as
in Theorem 4.8, we choose U1(s) = U2(s) = U(s) and V1(s) = V2(s) = V (s)
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where

U(s) := (4π)−r1(2π)−r2 |dK|1/2 (2s− 1)r1+r2+1s1+I(s− 1)1+I

·

( ∏
16i6I

ΛKi(s)
)

ΛK(2s)ΛK(2s− 1)P (2s),

V (s) := (2s− 1)s1+I(s− 1)1+I (c−1
E
)−2s/2 (NK|Q(qE)−1)2s/2

· nE(2s)−1Λ(E, 2s)P (2s).

U(s) and V (s) are some entire functions satisfying the functional equations

U(s) = (−1)r1+r2+1U(1− s),

V (s) = (−1)1+JωEV (1− s).

Note that the sign (−1)J , which occurs in the second functional equation,
is implied by (5.18). The estimate (4.19) is an easy consequence of Stirling’s
formula and convexity bounds for L(E, s) and the Dedekind zeta function
given in (5.5) and in (5.7). �

We get, arguing along the same lines, the following theorem.

Theorem 5.15. — Let K be a number field and E be an elliptic curve
over K.

• If Hypothesis Nice[−Ell(K) holds then the function

h
(2)
E (x) := fZ2

E
(x)− x−1fZ2

E

(
x−1) ,

where ZE(s) :=
(∏

16i6I ΛKi(s)
) (
c−1
E
)2s/2

ζE(2s), is C∞poly(R×+)-
mean-periodic (respectively S(R×+)∗-mean-periodic), and the func-
tion H

(2)
E (t) := h

(2)
E (e−t) is C∞exp(R)-mean-periodic (respectively

S(R)∗-mean-periodic), where fZ2
E
is the inverse Mellin transform

of Z2
E defined in (4.5).

• If h(2)
E (x) is C∞poly(R×+)-mean-periodic or S(R×+)∗-mean-periodic, or

H
(2)
E (t) is C∞exp(R)-mean-periodic or S(R)∗-mean-periodic, then

ζE(s)2 extends to a meromorphic function on C, which satisfies the
functional equation(

c−2
E
)s/2

ζ2
E(s) =

(
c−2
E
)(2−s)/2

ζ2
E(2− s).

Remark 5.16. — The first part of the previous theorem justifies the
hypothesis on mean-periodicity of H(2)

E (t) suggested in [14, Section 47]
and [13, Section 7.3]
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Remark 5.17. — See the recent work [41] for a description of the con-
volutor of the h(2)

E (x) which uses the Soulé extension [39] of the theory of
Connes [7]. Assuming modularity of E, this work demonstrates some dual-
ity between the two dimensional commutative adelic analysis on E and the
theory of cuspidal automorphic adelic GL(2)-representations.

5.5. Zeta functions of schemes and mean-periodicity

Theorem 5.18. — Let Z(s) be a complex valued function defined in
<e (s) > σ1.

(I) Assume that there exists a decomposition Z(s) = L1(s)L2(s)−1 such
that

• Li(s) (i = 1, 2) are some absolutely convergent Dirichlet series in
the half plane <e(s) > σ1,

• Li(s) (i = 1, 2) have a meromorphic continuation to C,
• there exist some qi > 0, ri > 1, λi,j > 0, Re(µi,j) > −σ1λi,j

(1 6 j 6 ri) and |εi| = 1 such that the function

L̂i(s) := γi(s)Li(s) := q
s/2
i

ri∏
j=1

Γ(λi,js+ µi,j)Li(s),

satisfies the functional equation L̂i(s) = εiL̂i(d+ 1− s̄) for some
integer d > 0,

• there exists a polynomial P (s) such that P (s)L̂i(s) (i = 1, 2) are
entire functions on the complex plane of order one,

• the logarithmic derivative of L2(s) is an absolutely convergent
Dirichlet series in the right-half plane <e(s) > σ2 > σ1.

Under the above assumptions, we define

ΛZ(s) := L̂1(s)
L̂2(s)

= γ1(s)
γ2(s) Z(s) = γ(s)Z(s),

ΛZ̃(s) := ΛZ(s)

and the inverse Mellin transforms

fZ,m(s) := 1
2πi

∫
(c)

ΛQ(s)mΛZ((d+ 1)s)x−sds,

fZ̃,m(s) := 1
2πi

∫
(c)

ΛQ(s)mΛZ̃((d+ 1)s)x−sds
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where c > 1/2 + w. Then there exists an integer mZ ∈ Z such that the
function

(5.20) hZ,m(x) := fZ,m(x)− εx−1fZ̃,m(x−1), (ε = ε1ε
−1
2 )

is C∞poly(R×+)-mean-periodic and S(R×+)∗-mean-periodic, and the function
HZ,m(t) := hZ,m(e−t) is C∞exp(R)-mean-periodic and S(R)∗-mean-periodic
for every integer m > mZ .

(II) Conversely, suppose that there exists a meromorphic function γ(s) on
C and an integer m such that

ΛQ(s)mγ((d+ 1)s)�a,b,t0 |t|
−1−δ (s = σ + it, a 6 σ 6 b, |t| > t0)

for some δ > 0 for all a 6 b, and that the function hZ,m(x) defined
in (5.20) is C∞poly(R×+)-mean-periodic or S(R×+)∗-mean-periodic, or the func-
tion HZ,m(t) := hZ,m(e−t) is C∞exp(R)-mean-periodic or S(R)∗-mean-
periodic. Then the function Z(s) extends meromorphically to C and satis-
fies the functional equation

(5.21) γ(s)Z(s) = εγ(d+ 1− s̄)Z(d+ 1− s̄).

Remark 5.19. — If Z(s) is real-valued on the real line, namely the
Dirichlet coefficients of Li(s) (i = 1, 2) are real, then Z(s̄) = Z(s) for
any complex number s and Z(s) is self-dual with ε = ±1. This is the case
when studying the zeta functions of arithmetic schemes.

Remark 5.20. — Theorem 5.18 can be applied to the study of the zeta
functions of arithmetic schemes. Let S be a scheme of dimension d + 1
proper flat over SpecZ with smooth generic fibre. Denote by ZS(s) the
rescaled zeta function ζS(s) defined in Section 5.1 such that its functional
equation is with respect to s→ 1−s. The function ZS(s) can be canonically
written as the quotient of two meromorphic functions with finitely many
poles L1(s)L2(s)−1, and the numerator and denominator are factorized
into the product of certain L-factors. In particular, all the assumptions of
the theorem above follow from the much stronger standard conjectures on
the L-factors of the zeta functions, see e.g. Serre ([38]). The last condition
about the absolute convergence of the logarithmic derivative of the denomi-
nator follows from the fact that the denominator of the Hasse zeta function
is the product of Euler factors (1−α1(p)p−s)−1 . . . (1−αd+1(p)p−s)−1, such
that |αi(p)| < pa for some a > 0, for almost all p and finitely many factors
(1− gp(p−s))−1 with polynomials gp of degree not exceeding d+ 1.
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Thus, we have a correspondence between zeta functions of S which admit
meromorphic continuation and functional equation of the type expected in
number theory and mean-periodic functions in certain functional spaces:
for each such ZS(s) and every m > mZS we get the function hZS ,m.

More generally, the previous theorem can be applied to the class of func-
tions closed with respect to product and quotient and generated by the
rescaled zeta functions (and L-functions) of arithmetic schemes.

Remark 5.21. — Note that the function hZS ,m preserves the informa-
tion about poles of the zeta function and essentially about zeros of the
denominator L2(s), but not the information about zeros of the zeta func-
tion. We can also apply the previous theorem to the function ZS(s)−1 then
the corresponding hZ−1

S
,m(x) will preserve information about zeros of ζS(s).

In dimension two the numerator of the zeta function of a regular model of a
curve over a number field is the product of one-dimensional zeta functions,
whose meromorphic continuation and functional equation is the one dimen-
sional theory. The two-dimensional object is actually the denominator of
the zeta function and conjectural mean-periodicity of the associated func-
tion h implies the conjectural meromorphic continuation and functional
equation of the denominator of the zeta function. One can imagine a more
general recursive procedure, applied to zeta functions of arithmetic schemes
of dimension d + 1 assuming the knowledge of meromorphic continuation
and functional equation in smaller dimensions.

Proof of Theorem 5.18. — We show only (I), since (II) is a consequence
of the general theory of mean-periodicity as above.
We prove that there exists mZ ∈ Z such that for every m > mZ the
function ΛQ(s)mΛZ((d + 1)s) and ΛQ(s)mΛZ̃((d + 1)s) are in the class F
(see Definition 4.1) and then we obtain (I) by applying Theorem 4.2 and
Theorem 4.8 to ΛQ(s)mΛZ((d+ 1)s) and ΛQ(s)mΛZ̃((d+ 1)s) with entire
functions

U1(s) = ΛQ(s)mP (s)L̂1(s),

U2(s) = ΛQ(s)mP (s)L̂1(s),

V1(s) = P (s)L̂2(s),

V2(s) = P (s)L̂2(s).
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By the assumption of the theorem the function L̂1(s) has finitely many
poles. Using the Dirichlet series representation of L2(s) we get L2(σ+ it) =
an1n

−σ
1 (1 + o(1))) as <e(s) = σ → ∞, for some integer n1 with a non-

zero Dirichlet coefficient an1 . Therefore L2(s) 6= 0 in some right-half plane
<e(s) > c2 > σ1. Since γ2(s) does not vanish for <e(s) > σ1, the function
L̂2(s) has no zeros in the right-half plane <e(s) > c2 > σ1. By the functional
equation, L̂2(s) 6= 0 in the left-half plane <e(s) < d+1−c2. Hence all zeros
of L̂2(s) are in the vertical strip d+ 1− c2 6 <e(s) 6 c2. Thus all poles of
ΛQ(s)mΛZ((d+ 1)s) are in some vertical strip, say |s− 1/2| 6 w.
We choose

γ(s) = ΛQ(s)mγ1(s)γ2(s)−1,

D(s) = L1(s)L2(s)−1

as a decomposition of ΛQ(s)mΛZ((d+ 1)s) in definition 4.1.
Using Stirling’s formula we have (4.1) if m is sufficiently large. Using the
Dirichlet series of Li(s) (i = 1, 2) we have (4.2), if necessary, by replacing
the above w by a larger real number.
For (4.3), we first prove that

• L1(s) is polynomially bounded in vertical strips a 6 <e(s) 6 b for
all a 6 b,

• there exists a real number A and a strictly increasing sequence of
positive real numbers {tm} satisfying L2(σ±itm)−1 � tAm uniformly
for |(d+ 1)(σ − 1/2)| 6 1/2 + w + δ.

The first assertion is obtained by a standard convexity argument. The
function L1(s) is bounded in the half-plane <e(s) > σ1 + ε by the absolute
convergence of the Dirichlet series.
Hence we have a polynomial bound for L1(s) in the half-plane <e(s) <
d+ 1− σ1 − ε by the functional equation and Stirling’s formula. Then the
polynomial bound in the remaining strip follows by the Phragmen-Lindöf
principle. From the assumptions for L2(s) we have

• the number of zeros ρ = β + iγ of L2(s) such that |γ − T | 6 1, say
m(T ), satisfies m(T ) � log T with an implied constant depends
only on γ2(s),

• there exists c′2 > c2 such that

L′2(s)
L2(s) =

∑
|t−γ|<1

1
s− ρ

+O(log |t|)
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for all s = σ + it with d+ 1− c′2 6 σ 6 c′2, |t| > t0, where the sum
runs over all zeros ρ = β + iγ such that d + 1 − c2 6 β 6 c2 and
|γ − t| < 1

as an application of Proposition A.1. The above two claims allow us to
prove the above assertion for L2(s)−1 as an application of Proposition A.2,
if necessary, by replacing w by a larger real number. Combining the poly-
nomial bounds for L1(s) and L2(s)−1 we obtain (4.3).
Hence we find that ΛQ(s)mΛZ((d+ 1)s) is in F if m is sufficiently large.

Finally, we show (4.19) for U1(s) and V1(s) for instance, having in mind that
the same argument gives (4.19) for U2(s) and V2(s). Because ζ(s), P (s) and
L1(s) are polynomially bounded in every vertical strip, the decomposition
U1(s) = ΓmR (s)γ1(s) · ζmP (s)L1(s) and Stirling’s formula give (4.19) for
U1(s). Similarly, L2(s) is polynomially bounded in every vertical strip. By
Stirling’s formula and V1(s) = γ2(s)P (s)L2(s), we have (4.19) for V2(s). �

6. Other examples of mean-periodic functions

6.1. Dedekind zeta functions and mean-periodicity

In this part we apply the general results in Section 4 to the Dedekind
zeta functions. Let K be a number field and

ZK(s) = ΛK(2s)ΛK(2s− 1)
ΛK(s) ,

which satisfies the functional equation ZK(s) = ZK(1− s).
Proposition 6.1. — Let K be a number field. The function

hK(x) := fZK(x)− x−1fZK(x−1)

is C∞poly(R×+)-mean-periodic and S(R×+)∗-mean-periodic, where fZK is the
inverse Mellin transform of ZK defined in (4.5). Moreover, the single sign
property for hK and the non-vanishing of ΛK on the real line imply that all
the poles of ZK(s) lie on the critical line <e (s) = 1/2.

Remark 6.2. — Equivalently, the function HK(t) := hK(e−t) is C∞exp(R)-
mean-periodic and S(R)∗-mean-periodic.

Proof of Proposition 6.1. — We can decompose ZK(s) in ZK(s)=γ(s)D(s)
where

γ(s) := |dK|
3s−1

2
ζK,∞(2s)ζK,∞(2s− 1)

ζK,∞(s) ,

D(s) := ζK(2s)ζK(2s− 1)
ζK(s) .
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The function ZK(s) belongs to F since all its poles are in the critical strip
|<e (s)− 1/2| 6 1/2 (w = 1/2) and

• the estimate (4.1) follows from Stirling’s formula namely

∀σ∈[a, b],∀ |t| > t0, γ(σ+it)�a,b,t0

(
|t|

3
2σ−1

e−
3π
4 |t|
)r1 (

|t|3σ−
3
2 e−

3π
2 |t|
)r2

for all real numbers a 6 b,
• the estimate (4.2) follows from classical convexity bounds for
Dedekind zeta functions given in (5.7),

• the crucial condition (4.3) is an application of Proposition A.4 and
the convexity bounds for the Dedekind zeta function given in (5.7).

Adopting the same notations as in Theorem 4.8, we choose U1(s) = U2(s) =
U(s) and V1(s) = V2(s) = V (s) where

U(s) := s(s− 1)(2s− 1)2ΛK(2s)ΛK(2s− 1),

V (s) := s(s− 1)(2s− 1)2ΛK(s).

U(s) and V (s) are some entire functions satisfying the functional equations

U(s) = U(1− s),
V (s) = V (1− s).

The estimate (4.19) is a consequence of Stirling’s formula and convexity
bounds for Dedekind zeta functions given in (5.7). Mean-periodicity of
hK follows from Theorem 4.2 and Theorem 4.8. The final assertion of the
proposition is a consequence of Proposition 4.11, since ZK(s) is holomorphic
at s = 0, 1. �

Proposition 6.3. — Assume that all the zeros of ΛK(s) lie on the line
<e(s) = 1/2 and that all the non-real zeros are simple. If

(6.1)
∑

ΛK(1/2+iγ)=0
0<γ<T

|ζK(1/2 + iγ)|−1 �A e
AT

for any positive real numbers A > 0 then the function hK(x) defined in
Proposition 6.1 has a single sign on (0, x0) for some x0 > 0.

Remark 6.4. — In the case of the Riemann zeta function, it is conjec-
tured that ∑

0<γ<T
|ζ(1/2 + iγ)|−2k �k T (log T )(k−1)2

for any real k ∈ R by Gonek [17] and Hejhal [19], under the Riemann
hypothesis and assuming that all zeros of ζ(s) are simple. Assumption (6.1)
is quite weaker than this conjectural estimate.
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Proof of Proposition 6.3. — Suppose that ΛK(1/2) 6= 0 for simplicity.
The case ΛK(1/2) = 0 is proved by a similar argument. ZK(s) has a double
pole at s = 1/2, and all the other poles are simple. Applying Theorem 4.2
to ZK(s) we have

x1/2hK(x) = c1 log x+ c0 + lim
T→∞

∑
0<|γ|6T

cγx
−iγ ,

by (4.15), where {γ} is the set of all imaginary parts of zeros of ΛK(s).
Here c0 and c1 are given by

c1 log x+ c0 = C2
K

4ΛK(1/2)2 (ΛK(1/2) log x+ Λ′K(1/2)) ,

where

ΛK(s) = CK

s− 1 +AK +O(s− 1) = −CK

s
+AK +O(s).

Hence, in particular, c1 is a non-zero real number. As for cγ , we have

cγ = ΛK(2iγ)ΛK(1 + 2iγ)
ζK,∞(1/2 + iγ)ζ ′K(1/2 + iγ)

= ζK,∞(2iγ)ζK,∞(1 + 2iγ)
ζK,∞(1/2 + iγ)

ζK(2iγ)ζK(1 + 2iγ)
ζ ′K(1/2 + iγ) .

Using Stirling’s formula, assumption (6.1) and the convex bound (5.7) of
ζK(s), we have ∑

|γ|>T

|cγ | �N T−N

for any positive real number N > 0. Hence we have∣∣∣∣∣ lim
T→∞

∑
0<|γ|6T

cγx
−iγ

∣∣∣∣∣ 6 lim
T→∞

∑
0<|γ|6T

|cγ | = O(1)

uniformly for every x ∈ (0,∞). Thus

x1/2hK(x) = c1 log x+O(1)

with c1 6= 0 and for all x ∈ (0,∞). This implies hK(x) has a single sign
near x = 0. �
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6.2. Cuspidal automorphic forms and mean-periodicity

The following proposition provides some evidence for the fact that mean-
periodic functions also appear in the context of automorphic cuspidal rep-
resentations. The analytic background is available in [29]. Let us say that if
π is an automorphic cuspidal irreducible representation of GLm(AQ) with
unitary central character then its completed L-function Λ(π, s) satisfies the
functional equation

Λ(π, s) = επΛ(π̃, s)
where επ is the sign of the functional equation and π̃ is the contragredient
representation of π.

Proposition 6.5. — Let$1, . . . , $n in {±1} and π1, . . . , πn some auto-
morphic cuspidal irreducible representations of GLm1(AQ), . . . , GLmn(AQ)
with unitary central characters. There exists an integer m0 > 0 such that
for every integer m > m0, the function

hm(x) := fZm(x)−
(

n∏
i=1

ε$iπi

)
x−1f

Z̃m

(
x−1)

is C∞poly(R×+)-mean-periodic and S(R×+)∗-mean-periodic, where

Zm(s) := ΛQ(s)m
n∏
i=1

Λ(πi, s)$i ,

Z̃m(s) := ΛQ(s)m
n∏
i=1

Λ(π̃i, s)$i ,

and fZm (respectively f
Z̃m

) is the inverse Mellin transform of Zm (respec-
tively Z̃m) defined in (4.5).

Remark 6.6. — Equivalently, the function Hm(t) = hm(e−t) is S(R)∗-
mean-periodic and C∞exp(R)-mean-periodic.

Remark 6.7. — We would like to focus on the fact that, unlike for zeta-
functions of schemes, the objects are not necessarily self-dual but the gen-
eral results on mean-periodicity proved in Section 4 are still applicable in
this context.

Remark 6.8. — The proof of the previous proposition is omitted since it
is an immediate application of Theorems 4.2 and 4.8. Proving that Zm(s)
belongs to F requires the convexity bounds for general L-functions of GLn
given in [29, Section 1.3] and, of course, the use of Proposition A.4.
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6.3. Eisenstein series and mean-periodicity

In this section, we construct several continuous families of mean-periodic
functions, the main tool being Eisenstein series. For simplicity, let us
restrict ourselves to K = Q. Let h be the upper-half plane. The non-
holomorphic Eisenstein series attached to the full modular group Γ =
PSL(2,Z) is defined by

Ê(τ, s) = ΛQ(2s)E(τ, s) = ΛQ(2s)
∑

( ∗ ∗c d )∈Γ∞\Γ

ys

|cτ + d|2s

for τ = x + iy ∈ h and <e (s) > 1, where Γ∞ = {( ∗ ∗0 ∗ )} ∩ Γ. For a fixed
τ ∈ h, Ê(τ, s) has a meromorphic continuation to C with simple poles at
s = 0, 1 and satisfies the functional equation Ê(τ, s) = Ê(τ, 1 − s). Fix a
τ ∈ h, then

ZQ(τ, s) := Ê(τ, s)
ΛQ(s) ,

Z∨Q(τ, s) := ΛQ(2s)ΛQ(2s− 1)
Ê(τ, s)

satisfy the functional equations ZQ(τ, s) = ZQ(τ, 1 − s) and Z∨Q(τ, s) =
Z∨Q(τ, 1− s).

Proposition 6.9. — The functions

hQ(τ, x) := fZQ(τ,.)(x)− x−1fZQ(τ,.)
(
x−1) ,

h∨Q(τ, x) := fZ∨Q (τ,.)(x)− x−1fZ∨Q (τ,.)
(
x−1)

are C∞poly(R×+)-mean-periodic and S(R×+)∗-mean-periodic, where fZQ(τ,.) (re-
spectively fZ∨Q (τ,.)) is the inverse Mellin transform of ZQ(τ, s) (respectively
Z∨Q(τ, s)) defined in (4.5). Moreover, if x 7→ hQ(τ, x) does not identically
vanish then the single sign property for hQ(τ, x) implies that all the poles
of ZQ(τ, s) lie on the critical line <e (s) = 1/2.

Proof of Proposition 6.9. — Let us only prove that both ZQ(τ, s) and
Z∨Q(τ, s) belong to F since the results are an application of Theorem 4.2,
Theorem 4.8 and Proposition 4.11. Note that ZQ(τ, s) is regular at s =
0, 1 and ΛQ(s) 6= 0 on the real line. Let us focus on Z∨Q(τ, s) since the
case of ZQ(τ, s) is very similar to the case of ZQ(s). We can decompose in
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Z∨Q(τ, s) = γ(τ, s)D(τ, s) where

γ(τ, s) := ΓR(2s− 1),

D(τ, s) := ζQ(2s− 1)
E(τ, s) .

By Stirling’s formula, we have

γ∨Q(τ, s)�a,b,t0 |t|
σ−1

e−
π
2 |t|

for all real numbers a 6 b, all σ in [a, b] and all |t| > t0. For a fixed τ ∈ h,
Z + Zτ is a lattice in C. Thus, the image of (m,n) 7→ |mτ + n|2 is discrete
in R×+ ∪ {0}. We arrange the distinct values of its image as

0 = cτ (0) < cτ (1) < cτ (2) < · · · → ∞,

and define Nτ (k) =
∣∣∣{(m,n) ∈ Z× Z, |mτ + n|2 = cτ (k)

}∣∣∣. Then,
E(τ, s) = ys

∑
k>1

Nτ (k)
cτ (k)s = Nτ (1)(y cτ (1)−2)s(1 + o(1))

as <e (s) → ∞ since Nτ (k) �τ cτ (k) uniformly for all fixed τ ∈ h, and∑
cτ (k)6T cτ (k) �τ T

2. Thus, E(τ, s) 6= 0 for <e(s) �τ 0, and E(τ, s)−1

is uniformly bounded in every vertical strip contained in some right-half
plane. In other words, there exists στ > 1 such that

D∨Q(τ, σ + it)� |t|A1

uniformly in every vertical strip contained in the right-half plane <e(s) > στ
for some real number A1. In addition, we have

E′(τ, s)
E(τ, s) = ysE(τ, s)−1

∑
k>1

Nτ (k) (log y − log cτ (k))
cτ (k)s

for <e(s) �τ 0, where E′(τ, s) = d
dsE(τ, s). Hence E′(τ, s)/E(τ, s) is

bounded in every vertical strip contained in the right-half plane <e(s) >
σ′τ > στ . Now we obtain

E′(τ, s)
E(τ, s) =

∑
E(τ,ρ)=E(τ,β+iγ)=0

1−στ<β<στ
|t−γ|<1

1
s− ρ

+Oτ (log t)

uniformly for −σ′τ 6 σ 6 1 + σ′τ and t > 2, and∑
E(τ,ρ)=E(τ,β+iγ)=0

1−στ<β<στ
|t−γ|<1

1 = Oτ (log t)
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with an implied constant depending only on τ following the same lines
as used in the proof of Proposition A.2, since s(s − 1)Ê(τ, s) is an entire
function of order one (8) . These two facts entail the existence of a sequence
of positive real numbers{tm}m>1 and of some real number A such that
E(τ, σ + itm)−1 = Oτ (tAm) uniformly for −σ′τ 6 σ 6 1 + σ′τ . Hence there
exists a sequence of positive real numbers {tm}m>1 and a real number A2
such that ∣∣D∨Q(τ, σ + itm)

∣∣�τ t
A2
m

uniformly for σ ∈ [−σ′τ , 1 + σ′τ ] and for every integer m > 1. The above
estimates imply Z∨Q(τ, s) is an element of F . �

Remark 6.10. — If τ ∈ h is a generic point then MC(hQ(τ, x)) is ex-
pected to have infinitely many poles whereas if τ ∈ h is a special point
then MC(hQ(τ, x)) does not have poles since

E(τ, s) = absζQ(s)L
(
s,

(
D

·

))
for some positive real numbers a, b at certain CM-point τ (see [47]). Thus,
hQ(τ, x) identically vanishes in the second case according to (4.15).

Remark 6.11. — It is known that Ê(τ, s) has infinitely many zeros out-
side the critical line (see [6], [9], [10] and [40]). Hence it is expected that
the behaviour of the families {hQ(τ, x)}τ∈h and {h∨Q(τ, x)}τ∈h are quite
different. The comparison of these two families is an interesting problem,
from a number theoretical point of view. In particular, we would like to
have information on the single sign property for both families.

Appendix A. A useful analytic estimate for L-functions

Proposition A.2 below is used several times in this paper. Proposition A.2
is deduced from Proposition A.1 which holds for the “L-functions” defined
in [20, Section 5.1] and is a slight extension of [20, Proposition 5.7]. In
particular, Proposition A.2 holds for the L-functions in [20, Section 5.1]. To
prove Proposition A.1 and Proposition A.2 we use the Hadamard product
of order one entire functions, Stirling’s formula and the boundedness of
the logarithmic derivative of a function in a vertical strip contained in a
right-half plane.

(8) Ê(τ, s) is not a L-function in the sense of [20], but the proof of [20, Proposition 5.7]
only requires that (s(s − 1))rL(f, s) is an entire function of order one and L′/L(s) is
bounded with respect to the conductor in every vertical strip contained in some right-half
plane.
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Proposition A.1. — Let L(s) be a complex valued function defined in
the right half plane Re(s) > σ1. Assume that

• L(s) is expressed as an absolutely convergent Dirichlet series in the
right-half plane Re(s) > σ1,

• L(s) has a meromorphic continuation to C,
• there exist some q > 0, r > 1, λj > 0, Re(µj) > −σ1λj (1 6 j 6 r)
and |ε| = 1 such that the function

L̂(s) := γ(s)L(s) := qs/2
r∏
j=1

Γ(λjs+ µj)L(s),

satisfies the functional equation L̂(s) = εL̂(d+ 1− s̄) for some in-
teger d > 0 (the condition Re(µj) > −σ1λj tells us that γ(s) has
no zeros in C and no poles for <e(s) > σ1).

• there exists a polynomial P (s) such that P (s)L̂(s) is an entire func-
tion on the complex plane of order one,

• the logarithmic derivative of L(s) is expressed as an absolutely con-
vergent Dirichlet series

−L
′(s)
L(s) =

∞∑
n=1

ΛL(n)
ns

in the right-half plane <e(s) > σ2 > σ1.
Then

(1) the number of zero ρ = β + iγ such that |γ − T | 6 1, say m(T ),
satisfies

m(T ) = O(log |T |)
with an implied constant depending on L(s) only,

(2) there exists c > max{σ1, (d + 1)/2} such that all zeros of L̂(s) are
in the strip d+ 1− c 6 <e(s) 6 c,

(3) there exists t0 > 0 such that for any s = σ + it in the strip d+ 1−
c− 1 6 σ 6 c+ 1, |t| > t0 we have

L′(s)
L(s) =

∑
|s−ρ|<1

1
s− ρ

+O(log |t|)

where the sum runs over all zeros ρ = β + iγ of L(s) such that
d+ 1− c 6 β 6 c and |s− ρ| < 1.

Proof of Proposition A.1. — We argue similarly to the proof of Propo-
sition 5.7 in [20] which is essentially the proof in [44, Section 9.6]. First
we prove (2). Using the Dirichlet series of L(s) we obtain L(σ + it) =
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an1n
−σ
1 (1 + o(1)) as <e(s) = σ → +∞ for some integer n1 with a non-

zero Dirichlet coefficient an1 . Therefore there exists c > max{σ1, (d+1)/2}
such that L(s) 6= 0 in the right-half plane <e(s) > c. Since γ(s) does not
vanish for <e(s) > σ1, the function L̂(s) has no zeros in the right-half
plane <e(s) > c > σ1. By the functional equation, L̂(s) 6= 0 in the left-half
plane <e(s) < d + 1 − c. Hence all zeros of L̂(s) are in the vertical strip
d+ 1− c 6 <e(s) 6 c.

By the assumptions there exist constants a, b and a nonnegative integer
m such that

P (s)L̂(s) = (s(s− d− 1))mea+bs
∏

ρ 6=0,d+1

(
1− s

ρ

)
es/ρ,

where ρ ranges over all zeros of P (s)L̂(s) different from 0, d+ 1. This is a
consequence of the Hadamard factorization theorem for entire functions of
order one. Taking the logarithmic derivative,
(A.1)

− L
′(s)
L(s) = 1

2 log q+ γ′(s)
γ(s) −b+ P ′(s)

P (s) −
m

s
− m

s− d− 1 −
∑
ρ

(
1

s− ρ
+ 1
ρ

)
.

We take c′ > max{σ2, c} such that the polynomial P (s) has no zero in the
right-half plane <e(s) > c′. Let T > 2 and s0 = c′ + 2 + iT . Then

(A.2)
∣∣∣∣L′(s0)
L(s0)

∣∣∣∣ 6 ∞∑
n=1

|ΛL(n)|
nc′+2 = O(1).

By Stirling’s formula we have

1
2 log q + γ′(s0)

γ(s0) = O(log |T |).

For every zero ρ = β + iγ we have

2
(2c− d+ 1)2 + (T − γ)2 6 <e

(
1

s0 − ρ

)
6

2c− d+ 1
4 + (T − γ)2 .

Hence we can take the real part in (A.1) for s0 = c′+ 2 + iT and rearrange
the resulting absolutely convergent series to derive that

(A.3)
∑
ρ

1
1 + (T − γ)2 = O(log |T |).

This implies (1). Here we used the fact that
∑
ρ6=0,d+1( 1

ρ + 1
ρ ) converges

absolutely, which is a consequence of the order one condition and d+1−c 6
<e(ρ) 6 c.
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To prove (3), we write s = σ+it. We suppose that d+1−c−1 6 <e(s) 6
c′+ 1 and take t0 such that γ(s) and P (s) has no pole for |t| > t0. We have

(A.4) − L
′(s)
L(s) = −L

′(s)
L(s) + L

′(c′ + 2 + it)
L(c′ + 2 + it) +O(log |t|).

By (A.1), (A.2) and Stirling’s formula, we obtain

(A.5) − L
′(s)
L(s) = γ′(s)

γ(s) + P ′(s)
P (s) −

m

s
− m

s− d− 1

−
∑
ρ

(
1

s− ρ
− 1
c′ + 2 + it− ρ

)
+O(log |t|).

In the series, keep the zeros with |s − ρ| < 1 and estimate the remainder
by O(log |t|) using∣∣∣∣ 1

s− ρ
− 1
c′ + 2 + it− ρ

∣∣∣∣ 6 2c− d+ 1
1 + (t− γ)2

and (A.3). Moreover we have
γ′(s)
γ(s) = O(log |t|)

uniformly for d+1−c−1 6 <e(s) 6 c′+1 and |t| > t0 by Stirling’s formula.
Thus (3) follows. �

Using Proposition A.1 we have the following proposition which is used
several times in this paper.

Proposition A.2. — Let L(s) be a function satisfying the conditions
in Proposition A.1. Let H > 1 and T > max{2, t0} be some real numbers,
and let a < b be real numbers such that a 6 d + 1 − c − 1 and b > c + 1,
where t0 and c are real numbers appeared in Proposition A.1. Then there
exists a real number A and a subset ET of (T, T + 1) such that

∀t ∈ ET ,∀σ ∈ (a, b), L(f, σ ± it)−1 = O
(
tA
)

and
µ [(T, T + 1) \ ET ] 6 1

H
where µ stands for the Lebesgue measure on R.

Remark A.3. — In the case of ζ(s), this proposition is nothing else
than [44, Theorem 9.7].

Proof of Proposition A.2. — The following arguments are essentially as
in [44, Section 9.7]. We use the notation s = σ+it, t > 0. It suffices to prove

ANNALES DE L’INSTITUT FOURIER



MEAN-PERIODICITY AND ZETA FUNCTIONS 1883

for a = d+1−c−1 and b = c+1, since L′(s)/L(s) has absolutely convergent
Dirichlet series for <e(s) > c > σ2 and has a functional equation. We have

(A.6) L′(s)
L(s) =

∑
L(ρ)=L(β+iγ)=0
d+1−c<β<c
|t−γ|<1

1
s− ρ

+O(log t)

uniformly for d + 1 − c − 1 6 σ 6 c + 1 and t > t0 by Proposition A.1 .
The difference between the sum in (A.6) and the sum in Proposition A.1
(3) does not exceed O(log t) according to Proposition A.1 (1). Assuming
that L(s) does not vanish on =m (s) = t and integrating (A.6) from s to
c+ 1 + it, we get

(A.7) logL(s) =
∑

L(ρ)=L(β+iγ)=0
d+1−c<β<c
|t−γ|<1

log (s− ρ) +O(log t),

uniformly for d+ 1− c− 1 6 σ 6 c+ 1, t > t0, where logL(s) has its usual
meaning (−π < =m (logL(s)) 6 π). The fact that the number of ρ = β+iγ
satisfying |t− γ| < 1 is O(log t) (Proposition A.1 (1)) is used here. Taking
real parts in (A.7), we have

log |L(s)| =
∑

L(ρ)=L(β+iγ)=0
d+1−c<β<c
|t−γ|<1

log |s− ρ|+O(log t)

>
∑

L(ρ)=L(β+iγ)=0
d+1−c<β<c
|t−γ|<1

log |t− γ|+O(log t).

One would like to integrate with respect to t from T > t0 to T + 1 taking
care of the fact that there may be zeros of L(s) of height between (T, T +1)
where the previous inequality does not hold. Let y1 < · · · < yM be a finite
sequence of real numbers satisfying

∀j ∈ {1, . . . ,M},∃σ ∈ [−1, 2], L(σ + iyj) = 0.

Setting y0 := T and YM+1 := T+1 and assuming that L(s) does not vanish
on =m (s) = T and on =m (s) = T + 1, we have
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M∑
j=0

∫ yj+1

yj

∑
L(ρ)=L(β+iγ)=0
d+1−c<β<c
|t−γ|<1

log |t− γ|t

=
M∑
j=0

∑
L(ρ)=L(β+iγ)=0
d+1−c<β<c

yj−1<γ<yj+1+1

∫ min (γ+1,yj+1)

max (γ−1,yj)
log |t− γ|t

>
M∑
j=0

∑
L(ρ)=L(β+iγ)=0
d+1−c<β<c

yj−1<γ<yj+1+1

∫ γ+1

γ−1
log |t− γ|t

=
M∑
j=0

∑
L(ρ)=L(β+iγ)=0
d+1−c<β<c

yj−1<γ<yj+1+1

(−2)

> −A log T

The last inequality is a consequence of an analogue of [20, Theorem 5.8].
Thus, ∑

L(ρ)=L(β+iγ)=0
d+1−c<β<c
|t−γ|<1

log |t− γ| > −AH log T

for all t in (T, T + 1), except for a set of Lebesgue measure 1/H. �

If L(f, s) is a L-function defined in [20, Section 5.1], Proposition A.2 can
be stated in the following form.

Proposition A.4. — Let H > 1 and T > 2 be some real numbers. If
L(f, s) is a L-function in the sense of [20] then there exists a real number
A and a subset ET of (T, T + 1) such that

∀t ∈ ET ,∀σ ∈
(
−1

2 ,
5
2

)
, L(f, σ ± it)−1 = O

(
tA
)

and

µ [(T, T + 1) \ ET ] 6 1
H

where µ stands for the Lebesgue measure on R.
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