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RIEFFEL’S PSEUDODIFFERENTIAL CALCULUS AND
SPECTRAL ANALYSIS OF QUANTUM

HAMILTONIANS

by Marius MĂNTOIU (*)

Abstract. — We use the functorial properties of Rieffel’s pseudodifferential
calculus to study families of operators associated to topological dynamical sys-
tems acted by a symplectic space. Information about the spectra and the essential
spectra are extracted from the quasi-orbit structure of the dynamical system. The
semi-classical behavior of the families of spectra is also studied.
Résumé. — On utilise les propriétés functorielles du calcul pseudodifferentiel de

Rieffel pour étudier des familles d’opérateurs associés à des systèmes dynamiques
topologiques sur lesquelles agit un espace symplectique. On obtient des informa-
tions sur le spectre et le spectre essentiel à partir de la structure des quasi-orbites
du système dynamique. Le comportement semi-classique des familles des spectres
est aussi étudié.

1. Introduction

In [27], Marc Rieffel significantly extended the core of the Weyl pseudo-
differential calculus. His main purpose was to provide a unified framework
for a large class of examples in deformation quantization (cf. also [26]).
The emerging formalism has very nice functorial properties, which makes
it virtually an efficient tool in other directions. In this article we intend to
apply it to certain problems in spectral analysis.

Keywords: Pseudodifferential operator, essential spectrum, random operator, semiclas-
sical limit, noncommutative dynamical system.
Math. classification: 35S05, 81Q10, 46L55, 47C15.
(*) The idea of writing this article originated in discussions with Vladimir Georgescu
and Eduardo Friedman. We are grateful to Rafael Tiedra de Aldecoa for his interest in
the project.
The author is partially supported by Núcleo Cientifico ICM P07-027-F “Mathematical
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A way to summarize (a restricted version of) [27] is to say that it gives
an exact contravariant functor from the category of locally compact dy-
namical systems with group Ξ := R2n to a category of (usually non-
commutative) C∗-algebras, also endowed with an action of Ξ. To achieve
this, the canonical symplectic form on R2n plays an important role; it
contributes to defining a composition law deforming the point-wise mul-
tiplication of functions acting on the space of the dynamical system. The
resulting non-commutative C∗-algebras are essentially composed of func-
tions that can be interpreted as observables of some quantum systems.
Under suitable circumstances, the real-valued ones can be represented as
bounded self-adjoint operators in Hilbert spaces and they might have phys-
ical meaning. The main theme of the present article is to show that many
spectral properties of these operators can be tracked back to properties of
the underlying topological dynamical system, just by using the way Rieffel
quantization has been constructed. In particular, the quasi-orbit structure
of the dynamical system as well as the nature of each quasi-orbit will play
central roles.
One of our starting points was a question asked by Vladimir Georgescu

in connection with the problem of determining the essential spectrum of
anisotropic differential and pseudodifferential operators. We are going to
outline it in a framework which is convenient subsequently. But other ap-
plications of Rieffel’s formalism to spectral analysis are contained, as ex-
plained later on.

We set X := Rn and Ξ := X ×X ∗ ∼= R2n, where X ∗ is the dual of
the space X , the duality being denoted simply by X ×X ∗ 3 (x, ξ) 7→
x · ξ. To suitable functions h defined on "the phase space" Ξ, one assigns
"quantization" operators acting on function u : X → C by

(1.1) [Op(h)u] (x) := (2π)−n
∫

X

∫
X ∗

dx dξ ei(x−y)·ξ h

(
x+ y

2 , ξ

)
u(y).

This is basically the Weyl quantization and, under convenient assumptions
on h, (1.1) makes sense and has nice properties in the Hilbert space H :=
L2(X ) or in the Schwartz space S(X ).
Let h : Ξ → R be an elliptic symbol of strictly positive order m. This

means that h is smooth and satisfies estimates of the form

(1.2)
∣∣∣(∂αx ∂βξ h) (x, ξ)

∣∣∣ 6 Cα,β(1 + |ξ|)m−|β|, ∀α, β ∈ Nn, ∀(x, ξ) ∈ Ξ

and

(1.3) |h(x, ξ)| > C(1 + |ξ|)m, ∀(x, ξ) ∈ Ξ, |ξ| large enough.
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It is well-known that under these assumptions Op(h) makes sense as an
unbounded self-adjoint operator in H, defined on the m’th order Sobolev
space. The problem is to evaluate the essential spectrum of this operator;
it comes out that the relevant information is contained in the behavior at
infinity of h in the x variable [9, 11, 12, 18].
This one is conveniently taken into account through an Abelian algebra

A composed of uniformly continuous functions un X , which is invariant
under translations (if ϕ ∈ A and y ∈ X then θy(ϕ) := ϕ(· + y) ∈ A).
Let us also assume (for simplicity) that A is unital and contains the ideal
C(X ) of all complex continuous functions on X which converge to zero at
infinity. We ask that the elliptic symbol h of strictly positive order m also
satisfy

(1.4)
(
∂αx ∂

β
ξ h
)

(·, ξ) ∈ A, ∀α, β ∈ Nn, ∀ ξ ∈X ∗.

Then the function h extends continuously on Ω × X ∗, where Ω is the
Gelfand spectrum of the C∗-algebra A; this space Ω is a compactification
of the locally compact space X . By translational invariance, it is a compact
dynamical system under an action of the group X . After removing the orbit
X , one gets a X -dynamical system Ω∞ := Ω\X ; its quasi-orbits (closure
of orbits) contain the relevant information about the essential spectrum
of the operator H := Op(h). For each quasi-orbit Q, one constructs a self
adjoint operator HQ. It is actually the Weyl quantization of the restriction
of h to Q × X ∗, suitably reinterpreted. Using the notations sp(T ) and
spess(T ), respectively, for the spectrum and the essential spectrum of an
operator T , one gets finally

(1.5) spess(H) =
⋃
Q

sp(HQ).

Many results of this kind exist in the literature, some of them for spe-
cial type of functions h, but with less regularity required, others including
anisotropic magnetic fields and others formulated in a more geometrical
framework. We only cite [1, 5, 8, 9, 10, 11, 12, 15, 16, 17, 14, 18, 21, 23, 24];
see also references therein. As V. Georgescu remarked ([9, 10] and private
communication), when the function h does not diverge for ξ →∞, the ap-
proach is more difficult and should also take into account the asymptotic
values taken by f in "directions contained in X ∗". One of our goals is to
achieve this in a sufficiently general framework.
A very efficient tool for obtaining some of the results cited above was

the crossed product, associated to C∗-dynamical systems. In the setting

TOME 62 (2012), FASCICULE 4



1554 Marius MĂNTOIU

presented before, one uses the action θ of X by translations on the C∗-
algebra A to construct a larger, non-commutative C∗-algebra A oθ X .
After a partial Fourier transform, this one can be seen to be generated
by pseudodifferential operators of strictly negative order, with coefficients
in A. So it will contain resolvent families of elliptic strictly positive order
Weyl operators satisfying (1.4) and the structure of the crossed product
will rather easily imply spectral results. A basic fact is that the crossed
product is a functor, also acting on equivariant morphisms, and that it
behaves nicely with respect to quotients and direct sums. One drawback is,
however, that ξ-anisotropy cannot be treated easily. The symbols of order
0 are not efficiently connected to the crossed products (treating them as
multiplier would not be enough for our purposes).
To overcome this, we are going to use the general pseudodifferential cal-

culus of [27]. It is a strong tool, containing as a particular case the crossed
product construction connected with strictly negative order Weyl oper-
ators. It has as basic data the action Θ of a vector space (as our "phase
space" Ξ) on a C∗-algebra B (even a non-commutative one), together with a
skew-symmetric linear operator J : Ξ→ Ξ that serves to twist the product
on B. This twisting is done first on the set of smooth elements of B under
the action. Then a C∗-norm is found on the resulting non-commutative
∗-algebra. The outcome will be a new C∗-algebra B (the quantization of
B, composed of pseudodifferential symbols) also endowed with an action
of the vector space Ξ. In [27] it is shown that one gets a strict deforma-
tion quantization of a natural Poisson structure defined on B by the couple
(Θ, J), but this will not concern us here. It will be more important to note
the functorial properties of the construction; they will be reviewed in Sec-
tion 2.1, in a particular setting suited to our purposes. In Section 2.2 this
mechanism is used to define ideals and quotients associated to quasi-orbits,
as a basis for the forthcoming proofs concerning spectral analysis.

In order to get a C∗-norm on the set of smooth vectors with the new,
non-commutative product, Rieffel uses Hilbert module techniques. He de-
liberately neglects exploring Schrödinger-type representations. In the most
general setting they might not be available, and when they are they could
be unfaithful, which is a serious drawback for his aims. For us, Schrödinger
representations are essential: they make the necessary connection to the
operators we would like to study, and they also offer tools of investiga-
tion. So we dedicate a section to their definition under the assumption
that the initial C∗-algebra is Abelian, so it defines canonically a locally
compact topological space Σ (the Gelfand spectrum). We make use of the

ANNALES DE L’INSTITUT FOURIER
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quasi-orbit structure of the dynamical system (Σ,Θ,Ξ) to arrive in more
familiar spaces, directly connected to Ξ, where the traditional pseudodif-
ferential theory works. For a fixed classical observable f , the outcome is
a family of operators {Hσ}σ∈Σ acting in the Hilbert space H := L2(Rn),
indexed by the points of the space Σ and grouped together in classes of
unitary equivalence along the orbits under the action Θ. Each individual
operator might be more complicated than a usual pseudodifferential oper-
ator in Rn; this is connected to the fact that the action Θ is a general one.
From this point of view, the set up is interesting even if the orbit structure
of (Σ,Θ,Ξ) is poor, as in the case of topologically transitive systems for
which one of the orbits is dense.

In Section 3.1 we start our spectral analysis for the operators Hσ, using
the formalism presented before. We get first a spectral inclusion results con-
nected to the hyerarquisation of representations by the quasi-orbit struc-
ture. It follows that two operators Hσ1 and Hσ2 will be equi-spectral if the
points σ1 and σ2 generates the same quasi-orbit. This is weaker in general
that the property of belonging to the same orbit, which would imply that
Hσ1 andHσ2 are even unitarily equivalent. We also include a decomposition
formula, used subsequently in the analysis of essential spectra.

In Section 3.2 we present our results on the essential spectrum of pseu-
dodifferential operators with (x, ξ) (phase-space) anisotropy and defined
by general actions of phase-space. The proofs exploit rather straightfor-
wardly the properties of Rieffel’s quantization, a simple strategy to convert
structural information about C∗-algebras into spectral results on operators
naturally connected to them and some lemmas about dynamical systems
proved in Section 2.2. It is shown that the operators associated to a certain
type of points, called of the second kind, have no discrete spectrum. This
happens in particular for those belonging to a minimal quasi-orbit. In the
opposite case (points σ of the first kind), the situation is more interesting.
The essential spectrum ofHσ is the closed union of spectra of operatorsHσ′

associated to the non-generic points σ′ (those belonging to the quasi-orbit
generated by σ, but generating themselves strictly smaller quasi-orbits).
A section is dedicated to some examples, illustrating mainly Theorem

3.7.
Then we turn to a random setting, defined by an invariant ergodic prob-

ability on Σ. In Section 3.4 information about the a.e. constancy of the
spectrum is once again deduced from the formal properties of Rieffel’s cal-
culus and from arguments in ergodic theory. It is also shown that with
probability one the operators Hσ have void discrete spectrum. Such results

TOME 62 (2012), FASCICULE 4
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(and many others) are quite standard in the theory of random Hamilto-
nians. We included this short section because we can give rather precise
statements and the proofs uses nicely the previous framework.
Rieffel’s calculus also contains a deformation parameter ~, which in some

situations can be assimilated to Planck’s constant. In the limit ~→ 0 one
recovers the initial classical data (codified in the form of a Poisson algebra)
from the deformed structures. In the present article, almost everywhere,
the value ~ = 1 is fixed. In Section 3.5, reintroducing ~ in the formalism,
one gets among others families

(
H~)

~∈[0,1] of Hamiltonians defined by a
symbol f . Then we show that the family

{
sp
(
H~)}

~∈(0,1] of spectra of the
quantum observables converges for ~→ 0 to the spectrum sp

(
H0) = f(Σ)

of the classical observable.
We stress that most of our spectral results do not use the functional

calculus, so they stand for general elements of the relevant C∗-algebra and
not only for self-adjoint ones.
Up to our knowledge, most of the results contained in this paper are new,

at least in this form and for this class of Hamiltonians. But any expert in
spectral analysis for quantum Hamiltonians would like to see the analog of
these results for unbounded symbols and, maybe, for a version including
magnetic fields. To achieve this, the technique of affiliation of unbounded
observables to C∗-algebras ([1, 9, 10]) can be used. But in order to give
affiliation a wide applicability and a deep theoretical foundation, Rieffel’s
calculus should also be extended in two directions: First, it should include
unbounded elements, connected to but not contained in C∗ algebras. Sec-
ond, it should incorporate group 2-cocycles much more complicated than
the one defined by the canonical symplectic form on Ξ (thus generalizing
the magnetic pseudo-differential calculus developed and applied to spectral
problems in [20, 21, 13, 17]). This is work for the future.

2. Pseudodifferential operators à la Rieffel

2.1. Rieffel’s pseudodifferential calculus

We shall recall briefly some constructions and results from [27]. Whenever
our aims allow it, we’ll choose to simplify; most noteworthy, the initial (un-
quantized) algebra will be Abelian and the vector space will be endowed
with a non-degenerate bilinear anti-symmetric form. Some convention will
also be different. For the moment we fix Planck’s constant setting ~ = 1,
but we shall come back to this point in Section 3.5.

ANNALES DE L’INSTITUT FOURIER
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The initial object, containing the classical data, is by definition a quadru-
plet (Σ,Θ,Ξ, [[·, ·, ]]). (Ξ, [[·, ·]]) is a d-dimensional symplectic vector space.
The number d is pair and there is no loose of generality to imagine that a La-
grangean decomposition Ξ = X ×X ∗ was given, with X ∗ the dual of the
n-dimensional vector space X , and that for X := (x, ξ), Y := (y, η) ∈ Ξ,
the symplectic form reads

(2.1) [[X,Y ]] := x · η − y · ξ.

A continuous action Θ of Ξ by homeomorphisms of the locally compact
space Σ is also given. For (σ,X) ∈ Σ × Ξ we are going to use all the
notations

Θ(σ,X) = ΘX(σ) = Θσ(X) ∈ Σ
for the X-transformed of the point σ. The function Θ is continuous and the
homeomorphisms ΘX ,ΘY satisfy ΘX ◦ΘY = ΘX+Y for every X,Y ∈ Ξ.
We denote by C(Σ) the Abelian C∗-algebra of all complex continuous

functions f on Σ such that for any ε > 0 there is a compact subset K of
Σ such that |f(σ)| 6 ε if σ /∈ K. When Σ is compact, C(Σ) is unital. The
action Θ of Ξ on Σ induces an action of Ξ on C(Σ) (also denoted by Θ)
given by

(2.2) ΘX(f) := f ◦ΘX .

This action is strongly continuous, i.e. for any f ∈ C(Σ) the mapping

(2.3) Ξ 3 X 7→ ΘX(f) ∈ C(Σ)

is continuous. We denote by C∞(Σ) the set of elements f ∈ C(Σ) such that
the mapping (2.3) is C∞; it is a dense ∗-algebra of C(Σ). It is also a Fréchet
algebra for the family of semi-norms

|f |k :=
∑
|α|6k

∥∥∂αX(ΘX(f)
)∣∣
X=0

∥∥
C(Σ) , k ∈ N.

To quantize the above structure, one introduces on C∞(Σ) the product

(2.4) f # g := π−2n
∫

Ξ

∫
Ξ
dY dZ e2i[[Y,Z]] ΘY (f) ΘZ(g),

suitably defined by oscillatory integral techniques and set simply f∗(σ) :=
f(σ), ∀σ ∈ Σ. One gets a ∗-algebra

(
C∞(Σ),#,∗

)
, which admits a C∗-

completion C(Σ) in a C∗-norm ‖ · ‖C(Σ).
The action Θ leaves C∞(Σ) invariant and extends to a strongly continu-

ous action on the non-commutative C∗-algebra C(Σ); the space C∞(Σ) of
C∞-vectors in C(Σ) coincides with C∞(Σ).

TOME 62 (2012), FASCICULE 4
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Actually the quantization transfers to Ξ-morphisms, and this will be
crucial in the sequel. Let (Σj ,Θj ,Ξ, [[·, ·]]), j = 1, 2, be two classical data
with Abelian C∗-algebras C(Σj) and let R : C(Σ1)→ C(Σ2) a Ξ-morphism,
i.e. a (C∗-)morphism intertwining the two actions Θ1,Θ2. Then R acts
coherently on C∞-vectors and extends to a morphism R : C(Σ1)→ C(Σ2)
that also intertwines the corresponding actions. In this way, one obtains
a covariant functor between two categories of C∗-algebras endowed with
Ξ-actions, the algebras being Abelian in the first category.
The functor is exact: it preserves short exact sequences of Ξ-morphisms.

Namely, if J is a (closed, self-adjoint, two-sided) ideal in C(Σ) that is in-
variant under Θ, then its quantization J can be identified with an invariant
ideal in C(Σ) and the quotient C(Σ)/J is canonically isomorphic to the
quantization of the quotient C(Σ)/J under the natural quotient action.
Composing Rieffel’s functor with the Gelfand functor, we get a contravari-
ant functor from the category of locally compact Ξ-dynamical systems to
a category of non-commutative C∗-dynamical systems with group Ξ.
An important example is given by Ξ-algebras, i.e. C∗-algebras B com-

posed of bounded, uniformly continuous function on Ξ, under the additional
assumption that the action T of Ξ on itself by translations, raised to func-
tions, leaves B invariant. Consequently, by Gelfand theory, there exists a
continuous function : Ξ 7→ Σ with dense image, which is equivariant with
respect to the actions T on Ξ, respectively Θ on Σ. The function is injective
if and only if C(Ξ) ⊂ B.

The largest such C∗-algebra B is BCu(Ξ), consisting of all the bounded
uniformly continuous functions : Ξ 7→ C. It coincides with the family of
functions g ∈ BC(Ξ) (just bounded and continuous) such that

Ξ 3 X 7→ g ◦ TX = g(·+X) ∈ BC(Ξ)

is continuous. Then the Fréchet ∗-algebra of C∞-vectors is

BCu(Ξ)∞ ≡ BC∞(Ξ) := {f ∈ C∞(Ξ) | | (∂αf) (X)| 6 Cα, ∀α,X}.

It might be illuminating to note that it coincides with S0
0,0(Ξ), one of

Hörmander’s symbol classes.
Another important particular case is B = C(Ξ) (just put Σ = Ξ in

the general construction). It is shown in [27] that at the quantized level
one gets the usual Weyl calculus and the emerging non-commutative C∗-
algebra C(Ξ) is isomorphic to the ideal of all compact operators on an
infinite-dimensional separable Hilbert space.

ANNALES DE L’INSTITUT FOURIER
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2.2. C∗-algebras associated to quasi-orbits

It is convenient to have a closer look at the quasi-orbit structure of the
dynamical system (Σ,Θ,Ξ) in connection with C∗-algebras and represen-
tations.
For each σ ∈ Σ, we write Eσ := Θσ(Ξ) for the quasi-orbit generated by

σ and set
Pσ : C(Σ)→ BCu(Ξ), Pσ(f) := f ◦Θσ .

The range of the Ξ-morphism Pσ is called Bσ and it is a Ξ-algebra. Defin-
ing analogously P ′σ : C(Eσ) → BCu(Ξ) one gets a Ξ-monomorphism with
the same range Bσ, which shows that the Gelfand spectrum of Bσ can be
identified with the quasi-orbit Eσ.

For each quasi-orbit E, one has the natural restriction map

RE : C(Σ)→ C(E), RE(f) := f |E ,

which is a Ξ-epimorphism. Actually one has Pσ = P ′σ ◦ REσ .
Being respectively invariant under the actions Θ and T , the C∗-algebras

C(E) and Bσ are also subject to Rieffel deformation. By quantization, one
gets C∗-algebras and morphisms

RE : C(Σ)→ C(E), Pσ : C(Σ)→ Bσ, P′σ : C(Eσ)→ Bσ,

satisfying Pσ = P′σ ◦REσ . While RE and Pσ are epimorphisms, P′σ is an
isomorphism.
We denote by Q(Σ) ≡ Q(Σ,Θ,Ξ) the family of all the quasi-orbits. For

every E ∈ Q(Σ), the restriction of the action (also denoted by Θ) defines
a dynamical subsystem (E,Θ,Ξ). If E is a quasi-orbit in (Σ,Θ,Ξ) we set

Q(E) := {F ∈ Q(Σ) | F ⊂ E} and Q0(E) := Q(E) \ {E}.

For any E ∈ Q(Σ) let us denote by CE(Σ) the C∗-subalgebra of C(Σ)
composed of elements that vanish on the closed invariant set E. Obviously,
it is an invariant ideal coinciding with the kernel of the morphism RE , and
the quotient C(Σ)/CE(Σ) can be identified with C(E). By applying Rieffel’s
functor one gets

C(Σ)/CE(Σ) ≡ C(Σ)/ ker(RE) ∼= C(E).

More generally, for any two closed subsets Σ1 ⊂ Σ2 of Σ, we denote by
CΣ1(Σ2) the closed ideal of C(Σ2) composed of functions which are zero on
Σ1.

TOME 62 (2012), FASCICULE 4
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Some points of a quasi-orbit generate the quasi-orbit, others do not.
We write σ ∝ E if E = Eσ (this may be stronger than σ ∈ E). Every
quasi-orbit E decomposes as an invariant disjoint union Eg t En, where
Eg := {σ ∝ E} is the dense set of generic points and the complement
En =

⋃
F∈Q0(E) F is composed of non-generic points.

When En = ∅, i.e. when all the orbits contained in E are dense, one
says that E is minimal; the points generating a minimal compact quasi-
orbit are called almost-periodic. Clearly E is minimal iff it does not contain
non-trivial invariant closed subsets and also iff C(E) is Ξ-simple, i.e. it does
not contain non-trivial invariant ideals.

An important role in our subsequent spectral analysis will be played by
the following notions:

Definition 2.1. — (1) A C∗-subalgebra B of BC(Ξ) is of the first
kind if C(Ξ) ⊂ B and it is of the second kind if B ∩ C(Ξ) = {0}.

(2) This can be applied to Ξ-algebras B and, in particular, to those of
the form Bσ = Pσ[C(Σ)] for some σ ∈ Σ. Accordingly, σ ∈ Σ (and
also the quasi-orbit Eσ) is of the first (resp. second) kind if Bσ is
of the first (resp. second) kind.

In general B might fail to be of one of the two kinds, but this is not
possible for Ξ-algebras. We are grateful to Serge Richard for this remark.

Lemma 2.2. — Any Ξ-algebra B is either of the first or of the second
kind.

Proof. — We know from [6, Thm. 5.1] that C(Ξ) does not have non-
trivial translational-invariant C∗-subalgebras (this is based essentially on
the Stone-Weierstrass Theorem). Thus B∩C(Ξ) = {0} or B∩C(Ξ) = C(Ξ),
which implies the claim. �

Consequently, we get the invariant decomposition Σ = ΣI t ΣII , where
the points in ΣI are of the first kind and those of ΣII of the second kind.
We will also use later the next result:

Lemma 2.3. — Let B be a Ξ-algebra with Gelfand spectrum E. If E is
minimal then either B = C(Ξ) or B is of the second kind.

Proof. — Obviously E = Ξ is minimal, so we can exclude this case.
If B is not of the second kind, then it is of the first kind by Lemma 2.2.

But then C(Ξ) is a non-trivial invariant ideal of B, which contradicts the
minimality of E. �
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Lemma 2.4. — If there exists an open orbit O in the quasi-orbit E, then
this one is dense, it is the single dense orbit and it coincides with the set
of all generic elements of E.

Proof. — To see this, let O′ be another orbit. Then O′ ∩ O = ∅, so O′
cannot be dense. Since a dense orbit exists, this one must be O. Thus all
the elements of O are generic, and those not belonging to O are not, since
they belong to some O′ 6= O. �

The next result will be useful subsequently in the study of essential
spectra:

Proposition 2.5. — For σ ∈ Σ of the first kind, let us set O ≡ Oσ =
Θσ(Ξ), E ≡ Eσ := O and B := Bσ and consider the isomorphism P ′σ :
C(E)→ B ⊂ BCu(Ξ). Then O is open and coincides with Eg and

(2.5) (P ′σ)−1 [C(Ξ)] = CE
n
(E).

Proof. — If B is unital we leave things as they are, if not we embed B
into its minimal unitization B̂ and identify the Gelfand spectrum B̂ of B̂
with the Alexandrov compactification Bt{∞} of the Gelfand spectrum B

of B. We are going to treat the non-unital case; the unital one needs less
arguments.
Since the Gelfand spectrum of BC(Ξ) is the Stone-Čech compactification

βΞ of Ξ, the monomorphism B̂ 7→ C(βΞ) induces a continuous surjection
βs : βΞ → B̂ which restricts to a continuous map s : Ξ → B̂ with dense
range. It is easy to see that s is injective, since we assumed that B̂ contains
C(Ξ); thus B̂ is a compactification of Ξ.
Clearly βs (βΞ \ Ξ) is a closed subset of B̂, containing the point ∞.

It follows that Ξ can be identified to a dense open subset of the locally
compact space B; the functions in B are characterized by the fact that
they extend continuously from Ξ to B.

We use now the fact that B is a Ξ-algebra. The action T of Ξ on it-
self by translations extends to a topologically transitive dynamical system
(B, T ,Ξ) and the mapping Θσ : Ξ → O ⊂ E extends to an isomorphism
Θ̃σ between the dynamical systems (B, T ,Ξ) and (E,Θ,Ξ), which defines
by pull-back the C∗-isomorphism P ′σ. With this picture in mind, it is clear
that O is open; thus, by Lemma 2.4, it coincides with Eg.

Let g ∈ C(B) ≡ B. Then g ∈ C(Ξ) iff g vanishes on B \Ξ, which happens
iff (P ′σ)−1 (g) = g ◦ Θ̃−1

σ vanishes on Θ̃σ(B \ Ξ) = E \ Eg = En. �
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2.3. Representations and families of Hamiltonians

We now construct representations of C(Σ) using the points σ of its
Gelfand spectrum. On BC∞(Ξ) one can apply the usual Schrödinger rep-
resentation in H := L2(X )

(2.6) Op : BC∞(Ξ)→ B(H)

given by (1.1), rigorously defined as an oscillatory integral. By the Calderón-
Vaillancourt Theorem [7], (2.6) is a well-defined continuous function; it is
also a ∗-morphism with respect to complex conjugation and symbol com-
position.

For the sake of formalism, let us denote by C(νΞ) the Ξ-algebra BCu(Ξ)
(this is an awkward way to give a notation to its Gelfand spectrum - some-
times called the uniform compactification of Ξ = R2n) and by C(νΞ) its
Rieffel quantization. The common set of smooth vectors is BC∞(Ξ), on
which Op is a ∗-morphism with respect to the structure of C(νΞ).

Proposition 2.6. — The mapping Op extends to a faithful represen-
tation of C(νΞ) in H.

Proof. — We are going to prove that Op : BC∞(Ξ)→ B(H) is isometric
when on BC∞(Ξ) we consider the norm induced from the C∗-algebra C(νΞ)
without using the explicit definition of the C∗-norm on C(νΞ).
For B = C(Ξ) it is known that the quantization C(Ξ) is isomorphic (essen-

tially by a partial Fourier transform) to the crossed product C(X ) oτ X ,
with τ the action of X on C(X ) by translations (we recall that Ξ =
X ×X ∗). One can infer this from [27], Example 10.5. Then it follows that
Op realizes an isomorphism from C(Ξ) to the ideal K(H) of all compact
operators in H.
Let us recall that an ideal (always supposed closed and bi-sided) K in a

C∗-algebra A is called essential if, for any a ∈ A, from aK = {0} we deduce
that a = 0. Another equivalent condition is to have

‖ b ‖A= sup{‖ kb ‖A | k ∈ K, ‖ k ‖A≡‖ k ‖K= 1}, ∀ b ∈ A.

Proposition 5.9 in [27] asserts that quantifying essential ideals one gets
essential ideals. Now C(Ξ) is an essential ideal in C(νΞ), so C(Ξ) will be an
essential ideal in C(νΞ). On the other hand, it is well-known and easy to
prove that K(H) is an essential ideal in B(H). Thus, for h ∈ BC∞(Ξ), we
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can write
‖ Op(h) ‖B(H) = sup

{
‖ KOp(h) ‖B(H) | K ∈ K(H), ‖ K ‖B(H)= 1

}
= sup

{
‖ Op(k)Op(h) ‖B(H) | k ∈ C(Ξ), ‖ Op(k) ‖B(H)= 1

}
= sup

{
‖ k#h ‖C(Ξ) | k ∈ C(Ξ), ‖ k ‖C(Ξ)= 1

}
=‖ h ‖C(νΞ) .

This is enough to prove the statement. �

For each Ξ-algebra B, we restrict Op from BC∞(Ξ) to B∞ = B∞ (the
dense ∗-algebra of smooth vectors of B ) and then we extend it to a faithful
representation in H of the C∗-algebra B. We can apply the construction to
the C∗-algebras Bσ. By composing, we get a family

{
Opσ := Op◦Pσ

}
σ∈Σ

of representations of C(Σ) in H, indexed by the points of Σ. For f ∈ C∞(Σ)
one has Pσ(f) ∈ B∞σ = B∞σ , and the action on H is given by

(2.7)
[
Opσ(f)u

]
(x) = (2π)−n

∫
X

dy
∫

X ∗
dξ ei(x−y)·ξf

[
Θ( x+y

2 ,ξ)(σ)
]
u(y)

in the sense of oscillatory integrals. If the function f is real, all the operators
Opσ(f) will be self-adjoint.

Remark 2.7. — The point σ was called of the first kind when C(Ξ) ⊂ Bσ.
In such a case K(H) ⊂ Op(Bσ), thus Opσ is irreducible. Notice that Opσ
is faithful exactly when Pσ is injective, i.e. when Pσ is injective, which is
obviously equivalent to Eσ = Σ. Consequently, if the dynamical system is
not topologically transitive, none of the Schrödinger-type representations
Opσ will be faithful. On the other hand we have the easy to prove identity

‖ f ‖C(Σ)= sup
σ∈Σ
‖ Opσ(f) ‖B(H), f ∈ C(Σ).

Remark 2.8. — Let us denote by S(X ) the Schwartz space on X = Rn
and by S(Ξ) the Schwartz space on Ξ = R2n. The corresponding duals
are, respectively, the spaces of tempered distributions S∗(X ) and S∗(Ξ).
But B(H) is contained in B[S(X ),S∗(X )] (the space of all linear and
continuous operators : S(X )→ S∗(X )), and [7] the later is isomorphic to
S∗(Ξ), by an extension of the representationOp. Therefore, for every σ ∈ Σ,
the abstract C∗-completion Bσ of B∞ = B∞ = {f ◦Θσ | f ∈ C∞(Σ)} can
be realized as a C∗-algebra of temperate distributions on Ξ. This gives a
more concrete flavor to the spectral results of the next Section.

To conclude part of the discussion above, a single element f ∈ C(Σ) leads
to a family

{
Hσ := Opσ(f)

}
σ∈Σ of bounded operators in H (in Quantum

Mechanics we are mainly interested in the self-adjoint case). Such families
usually appear in disguise, as we are going to explain now.
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Let F : Σ × Ξ → C be a function satisfying F ( · , X) ∈ C(Σ) for each
X ∈ Ξ, and such that X 7→ F ( · , X) ∈ C(Σ) is smooth. In addition, assume
that F satisfies the equivariance condition

F
(
ΘY (σ), X

)
= F (σ,X + Y ) for all σ ∈ Σ and X,Y ∈ Ξ,

which is very often imposed on physical reasons. Put Fσ(X) := F (σ,X);
then one interprets

{
Fσ
}
σ∈Σ as an equivariant family of classical observ-

ables defined on the phase-space Ξ, that can be transformed into quantum
observables H̃σ := Op(Fσ) by the usual Weyl calculus. So, apparently, every
operator H̃σ has its own symbol Fσ. Define f : Σ→ C by f(σ) := F (σ, 0).
Then f belongs to C∞(Σ) ⊂ C(Σ). Moreover, one has

[Pσ(f)](X) = (f ◦Θσ)(X) = F
(
ΘX(σ), 0

)
= F (σ,X) = Fσ(X).

Thus
Hσ ≡ Opσ(f) = Op(Fσ) ≡ H̃σ,

and we are in the framework presented above.
In other situations, a single operator H is given as the Weyl quantization

of a real function f defined in phase space. The behavior of f requires the
introduction of a Ξ-algebra B with Gelfand spectrum Σ; then H = Op(f)
is a represented version of f seen as an element of the deformed algebra
B. In favorable circumstances Σ is a compactification of the phase-space
Ξ on which Ξ acts by homeomorphisms, and one has H = Opσ(f) with
σ = 0 ∈ Ξ ⊂ Σ. Other operators HX := OpX(f) defined by the points X of
the orbit Ξ are all unitarily equivalent with H (see Theorem 3.1 for a more
general statement). But the remaining family

{
Hσ := Opσ(f)

}
σ∈Σ\Ξ is also

useful in the spectral analysis of H. For instance, they give decompositions
of the essential spectrum of the operator H; this is a particular case of
Theorem 3.7.
These remarks justify studying spectra of the family of operators

{Hσ}σ∈Σ by using Rieffel’s quantization.

3. Spectral analysis for pseudodifferential operators

3.1. Spectra

For any element g of a unital C∗-algebra C, we usually denote by sp(g)
the spectrum of g (if C does not have a unit we adjoin one and compute
the spectrum in the canonically extended C∗-algebra). When precision is
needed we also specify the C∗-algebra by writing sp(g |C). For instance, if
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Σ′ is an invariant subset of Σ and g is a function in C∞(Σ′) = C∞(Σ′),
one has two compact subsets of C: sp

(
g |C(Σ′)

)
(difficult to compute) and

sp
(
g | C(Σ′)

)
= g(Σ′). For operators H in the Hilbert space H, we stick to

the usual notation sp(H).
We recall a basic fact: the image of g ∈ C by a unital C∗-morphism

π : C→ B satisfy the spectral inclusion sp
(
π(g) |B

)
⊂ sp

(
g |C

)
, and the

spectrum is preserved if π is injective (which is for instance the case if C
is a C∗-subalgebra of B and π is the canonical inclusion). When C,B are
not unital, we can apply this remark to their minimal unitalizations.

Theorem 3.1. — Let f ∈ C(Σ), pick σ1, σ2 ∈ Σ and set Hσ1 :=
Opσ1(f), Hσ2 := Opσ2(f). Then

(i) If σ1, σ2 belong to the same orbit, then the operators Hσ1 , Hσ2 are
unitarily equivalent, and thus have the same spectrum (multiplicity
included).

(ii) If Eσ1 ⊂ Eσ2 , then sp(Hσ1) ⊂ sp(Hσ2) ⊂ sp(f |C(Σ)). So, if σ1 and
σ2 generate the same quasi-orbit ( i.e. Eσ1 = Eσ2) , then sp(Hσ1) =
sp(Hσ2).

Proof. — (i) Assume first that f ∈ C∞(Σ). One has σ2 = ΘZ(σ1) for
some Z ∈ Ξ, which implies that

f ◦Θσ2 = f ◦ΘΘZ(σ1) = f ◦Θσ1 ◦ TZ .

Therefore it is sufficient to show that Op(ϕ) and Op(ϕ ◦ TZ) are unitarily
equivalent if ϕ belongs to the subspace BC∞(Ξ). But this is a well-known
fact [7, Prop. 2.13]: translation by Z of functions on the “phase space" Ξ
leads to unitarily equivalent Weyl quantized operators. The unitary opera-
tor UZ realizing the equivalence is the Weyl quantization UZ = Op(eZ) of
the exponential

eZ(X) := e−i[[X,Z]], ∀X ∈ Ξ.

Then, if we have Opσ2(f) = U∗Z Opσ1(f)UZ for all f ∈ C∞(Σ), we also get
it for all f ∈ C(Σ) by continuity.

(ii) It is clear that sp(Hσj ) ⊂ sp(f |C(Σ)), because Hσj is obtained from
f ∈ C(Σ) by applying the morphism Opσj . Actually, to have equality, it
is enough that Opσj be faithful, which happens if and only if the orbit
generated by σ is dense.

One can writeOpσj = Op◦P′σj◦REσj
, with Eσj the quasi-orbit generated

by σj , j = 1, 2. Since Op and P′σj are monomorphisms, they preserve
spectra; thus we only need to compare the spectrum of REσ1

(f) in C (Eσ1)
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with the spectrum of REσ2
(f) in C (Eσ2). For simplicity, write Ej instead

of Eσj .
Since E1 ⊂ E2, we define the obvious restriction mapping R21 : C(E2)→

C(E1); it is an epimorphism satisfying RE1 = R21 ◦ RE2 . By Rieffel quan-
tization, one gets an epimorphism R21 : C(E2) → C(E1) satisfying RE1 =
R21 ◦ RE2 . Thus RE1(f) is the image of RE2(f) through the morphism
R21 and clearly this finishes the proof. �

The second part of the Theorem tells us that the natural index set for
the spectra of the family {Hσ}σ∈Σ is not Σ, not even the orbit space Σ/Θ,
but the smaller quotient Σ/∼ , where σ ∼ σ′ means that σ and σ′ generate
the same quasi-orbit.
The next result is mainly a preparation for Theorem 3.7.

Proposition 3.2. — Let {F ∈ Q} be a covering with quasi-orbits of
Σ. For any f ∈ C(Σ) one has

(3.1) sp(f |C(Σ)) =
⋃
F∈Q

sp (RF (f) |C(F )) .

Proof. — Let us consider the morphism

R : C(Σ)→
⊕
F∈Q

CF (Σ), R(f) := {RF (f)}F∈Q

(in the definition of the direct sum we require an uniform norm-bound
supF ‖ fF ‖CF (Σ)< ∞ on the family of elements (fF )F , in order to have
an obvious C∗-structure). If we show that this morphism is injective the
proof will be finished, because the spectrum of an element of a direct sum
C∗-algebra is the closure of the union of spectra of all the components.

To show injectivity, we need to prove that

(3.2)
⋂
F∈Q

kerRF =
⋂
F∈Q

CF (Σ) = {0}.

But since Σ =
⋃
F∈Q F we have

(3.3)
⋂
F∈Q

kerRF =
⋂
F∈Q
CF (Σ) = {0},

and (3.2) follows from (3.3), considering the dense common subset of
smooth vectors. �

Of course, one can replace in Proposition 3.2 the space Σ by any of its
closed invariant subsets Γ. When Γ = E is a quasi-orbit, one gets easily an
operator version:
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Corollary 3.3. — Let {F ∈ Q} be a covering with quasi-orbits of a
quasi-orbit E ∈ Q(Σ). Choose σ ∝ E and σ(F ) ∝ F for every F ∈ Q and
set Hσ := Opσ(f) and Hσ(F ) := Opσ(F )(f). Then

(3.4) sp(Hσ) =
⋃
F∈Q

sp(Hσ(F )) .

3.2. Essential spectra

We recall the disjoint decomposition sp(H) = spd(H) t spess(H) of
the spectrum of a (bounded) operator H into its discrete and essential
parts. The points λ ∈ spd(H) of the discrete spectrum are, by defini-
tion, finitely degenerated eigenvalues, isolated from the rest of sp(H). It
will often be used in the sequel that the essential spectrum spess(H) of
H ∈ B(H) coincides with the spectrum of the image of H in the Calkin al-
gebra B(H)/K(H), where K(H) is the (two-sided, closed) ideal of compact
operators.

Proposition 3.4. — Let f ∈ C(Σ), choose σ ∈ Σ of the second kind,
and set Hσ := Opσ(f). Then spd(Hσ) = ∅.

Proof. — The operator Hσ belongs to Op (Bσ); it is enough to show that
Op (Bσ) contains no compact operator except 0 [1, pag. 372].
We have Bσ ∩C(Ξ) = {0} by hypothesis. Considering the smooth vectors

under the action T , we get

{0} =
[
Bσ ∩ C(Ξ)

]∞ = B∞σ ∩ C(Ξ)∞ = B∞σ ∩ C(Ξ)∞ =
[
Bσ ∩ C(Ξ)

]∞
,

which implies that {0} = Bσ ∩ C(Ξ) by density. This, together with the
injectivity of Op, gives Op(Bσ) ∩K(H) = {0}, which concludes the proof.

�

A simple picture emerges on minimal orbits:

Corollary 3.5. — If the quasi-orbit E is minimal, all the operators
{Hσ}σ∈E have the same spectrum, which coincides with sp

(
RE(f) | C(E)

)
.

If E = Ξ, then Hσ is a compact operator in H and 0 is the only point which
can belong to its essential spectrum. In the opposite case the spectrum of
Hσ is purely essential.

Proof. — All the points of a minimal orbit generate it, so by Theorem
3.1, (ii) the operators {Hσ}σ∈Σ are equi-spectral.
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If E = Ξ, then Hσ ∈ Op[C(Ξ)] = K(H). For a compact operator it is
well-known [25, Thm. VI.16] that the spectrum is composed of finitely-
degenerated eigenvalues which have 0 as the single possible accumulation
point.
If E is minimal but different from Ξ, it is of the second kind by Lemma

2.3; then we apply Proposition3.4. �

Remark 3.6. — When Σ is compact, by a simple application of Zorn’s
Lemma, there always exists at least one compact minimal quasi-orbit. So
there will always be points σ (almost periodic) for which the operator Hσ

is purely essential. An extreme case is when Σ is only composed of almost
periodic points. This happens exactly when Σ is a disjoint union of minimal
quasi-orbits and it is equivalent to the fact that all the elements f ∈ C(Σ)
are almost periodic functions (the Ξ-orbit of f in C(Σ) is relatively compact
in the uniform topology). In such a situation all the operators Hσ have void
discrete spectrum.

We turn to a more interesting situation, subject of the main result of the
paper. In spirit it is quite similar to previous results as those contained in
[9, 11, 12, 18, 21] for instance. But, as explained in the introduction, the full
phase-space anisotropy allowed in the present statement is not available by
other methods.

From now on, we are going to denote by fΣ′ = RΣ′(f) ∈ C∞(Σ′) the
restriction of the function f ∈ C∞(Σ) to the invariant subset Σ′ ⊂ Σ.

Theorem 3.7. — Let f ∈ C∞(Σ) and let σ ∈ Σ be of the first kind.
Denote by E be the quasi-orbit generated by σ in the dynamical system
(Σ,Θ,Ξ). For each F ∈ Q0(E), choose σ(F ) ∝ F . Then

(3.5)

spess [Hσ] = sp [ fEn | C(En)] =
⋃

F∈Q0(E)

sp [fF | C(F )]

=
⋃

F∈Q0(E)

sp
[
Hσ(F )

]
.

Proof. — The last equality follows from the fact that

C(F ) 3 fF 7→ Hσ(F ) = Op [P′σ(fF )] ∈ B(H)

is a monomorphism of C∗-algebras. The second equality is a consequence
of Proposition 3.2. Just replace Σ with En and take Q = Q0(E) = Q(En).
We are going to justify the first equality, using the Ξ-morphisms in-

troduced above. It is known [1, pag. 372] that spess [Hσ] equals the usual
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spectrum of the image of Hσ into

Op [Bσ] /K(H) ∼= Bσ/C(Ξ) ∼= C(E)/(P′σ)−1[C(Ξ)].

By functoriality, this last quotient is the quantization of C(E)/(P ′σ)−1[C(Ξ)].
By Proposition 2.5, one has (P ′σ)−1[C(Ξ)] = CEn(E), so it follows that

C(E)/(P ′σ)−1[C(Ξ)] ∼= C(En),

implying (once again by functoriality) that

C(E)/(P′σ)−1[C(Ξ)] ∼= C (En) .

It will follow that C (En) is isomorphic to Op [Bσ] /K(H). By inspection,
it is easy to see that fEn is send by this isomorphism into the image of Hσ

in this quotient and so the first equality in (3.5) is proven. �

Remark 3.8. — The proof of the Theorem shows that if Q1(E) ⊂ Q0(E)
such that En =

⋃
F∈Q1(E) F , then we also have

spess [Hσ] =
⋃

F∈Q1(E)

sp [fF | C(F )] =
⋃

F∈Q1(E)

sp
[
Hσ(F )

]
.

The operators Hσ(F ) could be called asymptotic Hamiltonians for Hσ. If
one of these asymptotic Hamiltonians is null (equivalent to fF = 0 for some
F ∈ Q0(E)), then the point 0 belongs to the essential spectrum of Hσ.

Remark 3.9. — We stated Theorem 3.7 only for f ∈ C∞(Σ) in order
to have simpler notations. It clearly extends (with the same proof) to all
f ∈ C(Σ); just replace the restrictions fF and fEn by RF (f) and REn(f),
respectively.

3.3. Some examples

The results of the previous sections are general; they apply to any Ξ =
R2n-dynamical system. To get concrete examples, it would be nice to under-
stand at least partially the quasi-orbit structure of Σ. This can be achieved
in many cases and it seems to be pointless to draw a large list; the reader
can try his own particular cases. In [1, 5, 9, 10, 11, 12, 14, 18, 21] one
encounters many examples of configuration space anisotropy (connected to
the behavior of the symbol f in the variable x ∈X ) which can be adapted
to full phase-space anisotropy; of course the results will be different. We are
going to indicate briefly only a couple of interesting instances, stressing the
advantages inherent to the present setting. The examples will be centered
around Theorem 3.7 and will involve only smooth functions, for simplicity.
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Most of them are adaptations to the present context of previously studied
situations; see the references cited above and [19, 24, 27].
Although very particular, the following situation covers zero order pseu-

dodifferential operators with phase-space anisotropic symbols: We assume
that Σ is a compactification of Ξ, i.e. it is a compact space containing Ξ as
a dense open subset (maybe after an identification). The action Θ of Ξ on Σ
is a continuous extension of the action T of Ξ on itself by translations. The
dense orbit Ξ is the set of generic points of Σ, while the closed complement
Σ∞ := Σ \ Ξ consists of non-generic points. We are going to regard the
Abelian C∗-algebra A = C(Σ) directly as the Ξ-algebra of all continuous
functions f on Ξ which can be extended continuously on Σ (the behavior
of f at infinity in Ξ is codified in the non-trivial restriction f |Σ∞). Then,
plainly, the elements f of C∞(Σ) are those which are smooth on Ξ and for
which all the derivatives have this extension property. One is interested in
H := Hσ=0 = Op(f) (all the other HX , for X ∈ Ξ ⊂ Σ, are unitarily
equivalent to this one). The operators Hσ with σ ∈ Σ∞ are only used to
express the essential spectrum of H. As a consequence of Theorem 3.7 one
can write

spess [H] =
⋃
F

sp
[
Hσ(F )

]
,

where for each quasi-orbit F ⊂ Σ∞ a generating point σ(F ) was chosen.

Example 3.10. — A simple non-trivial particular case is formed of van-
ishing oscillation functions f ∈ VO(Ξ). These are complex continuous func-
tions on Ξ such that for any compact subset K of Ξ one has

[oscK(f)] (X) := sup
Y ∈K
|f(X + Y )− f(X)| −→

X→∞
0.

It is shown easily that it is a Ξ-algebra and that its spectrum Σ can be
identified to a compactification of Ξ such that all the elements of Σ1 := Σ\Ξ
are fixed points under the extension Θ of the action by translations T . This
is the largest example for which "the quasi-orbits at infinity" are reduced to
points. Then it follows easily that the "asymptotic Hamiltonians" {Hσ}σ∈Σ1

are just the constant operators Op(c) = c idL2(X ) constructed with all the
values c taken by the function f at infinity. Consequently the essential
spectrum of H coincides with the asymptotic range of f :

spess [H] = Rasy(f) :=
⋂

K∈κ(Ξ)

f(Ξ \K),

where κ(Ξ) is the family of all the compact neighborhoods of the origin in
Ξ.
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Example 3.11. — It is known that the C∗-algebra AP(Ξ) of all contin-
uous almost periodic functions on Ξ is Ξ-simple. Equivalently, its Gelfand
spectrum bΞ (the Bohr group associated to Ξ) is a minimal dynamical sys-
tem. This would lead immediately to the absence of discrete spectrum
for large classes of almost periodic pseudodifferential operators. We con-
sider more interesting to mix this class with VO(Ξ). Let us denote by
〈VO(Ξ) ·AP(Ξ)〉 the smallest C∗-algebra containing both VO(Ξ) and
AP(Ξ). It is a Ξ-algebra with spectrum Σ = Ξ t (Σ1 × bΞ). The non-
generic quasi-orbits have all the form {σ1} × bΞ for some σ1 ∈ Σ1. For a
smooth element f of 〈VO(Ξ) ·AP(Ξ)〉, the essential spectrum of the op-
erator H can be written in terms of purely almost periodic operators. A
simple very explicit case is f = gh, with g ∈ VO(Ξ)∞ and h ∈ AP(Ξ)∞.
One has

spess[Op(gh)] =
⋃

σ1∈Σ1

sp [Op(g(σ1)h)] =

=
⋃

σ1∈Σ1

g(σ1) sp[Op(h)] = Rasy(g) sp[Op(h)].

In the same way one shows that, under the same assumptions on g and h,
we get

spess[Op(g + h)] = Rasy(g) + sp[Op(h)].
Extensions of this result to many classes of minimal functions, generalizing
AP (Ξ), are available by the approach of [19].

Other type of compactifications, which are quite different from Examples
3.10 and 3.11, are suggested by the decomposition Ξ = X ×X ∗. If Ω is a
compactification of X and Ω∗ a compactification of X ∗, then Σ := Ω×Ω∗
will be a compactification of Ξ and C(Σ) ∼= C(Ω) ⊗ C(Ω∗). It is natural to
consider actions Θ = θ ⊗ θ∗, where θ is an action of X on Ω extending
the translations in X and θ∗ is an action of X ∗ on Ω∗ extending the
translations in X ∗. We are in a position to apply the results above. We
leave to the reader the task to write down quasi-orbits for this situation and
to make statements about essential spectra. We are only going to outline
a situation contrasting to Example 3.10.

Example 3.12. — We consider the Ξ-algebra A = VO(X )⊗ VO(X ∗),
where VO(X ) and VO(X ∗) are defined in an obvious way. Its Gelfand
spectrum can be written as Σ = (X tΩ1)× (X ∗ tΩ∗1), where the points
of Ω1 are fixed by the action θ extending the translations on X and anal-
ogously for Ω∗1. Aside the big quasi-orbit Σ = Ω × Ω∗, one still has other
types of quasi-orbits defined by points ω ∈ Ω1 and ω∗ ∈ Ω∗1:
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(1) {ω} × Ω∗ generated by (ω, ξ) for any ξ ∈X ∗,
(2) Ω× {ω∗} generated by (x, ω) for any x ∈X ,
(3) {(ω, ω∗)}.

The first two types will suffice, because of Remark 3.8. For any smooth
element f in VO(X )⊗VO(X ∗), setting H := Opσ=0(f), we get

spess(H) =⋃
ω∈Ω1

sp
(
f |{ω}×Ω∗ | C({ω} × Ω∗)

) ⋃ ⋃
ω∗∈Ω∗1

sp
(
f |Ω×{ω∗} | C(Ω× {ω∗})

)
.

It is easy to see that C (Ω× {ω∗}) is isomorphic to the Abelian C∗-algebra
C(Ω) while C ({ω} × Ω∗) is isomorphic to the Abelian C∗-algebra C(Ω∗).
This leads straightforwardly to

spess(H) = f(Ω1 × Ω∗) ∪ f(Ω× Ω∗1).

We note that the quantum quadrant, contained in Chapter 11 of [27], is
a C∗-subalgebra of the quantization of A = VO(R) ⊗ VO(R∗), thus it is
covered by our treatment.
One might also want to work out the case A = 〈VO(X ) ·AP(X )〉 ⊗

〈VO(X ∗) ·AP(X ∗)〉. On the other hand, decompositions of Ξ in direct
sums different from X ×X ∗ can also lead to interesting situations.

Remark 3.13. — The attentive reader might have observed that the
previous Example is built on the short exact sequence

0→ C(X )⊗ C(X ∗)→ VO(X )⊗VO(X ∗)→

→ [C(Ω1)⊗VO(X ∗)]⊕ [VO(X )⊗ C(Ω∗1)]→ 0.
To help, we notice that C(Ξ) ∼= C(X )⊗C(X ∗) and that VO(X )/C(X ) ∼=
C(Ω1) and VO(X ∗)/C(X ∗) ∼= C(Ω∗1). Such short exact sequences can be
written for all the possible tensor products, but the extra fact that the
dynamics in Ω1,Ω∗1 are trivial helped to get explicit quasi-orbits and thus
explicit contributions to the essential spectrum. However, the cornerstone
was the possibility to turn the exact sequence of Abelian C∗-algebras into
an exact sequence of non-commutative C∗-algebras, these ones being those
concerned by the spectral analysis of the pseudodifferential operators. Both
Rieffel’s functor and the crossed product are exact functors, but the crossed
product cannot cover most of the phase-space types of anisotropy of the
symbol f .

Example 3.14. — We come back to example 3.10 and remark that
VO(Ξ) contains the C∗-algebra Crad(Ξ) of all the continuous functions ad-
mitting radial limits at infinity, i.e those which can be extended to the
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radial compactification Σrad := Ξ t S2n−1 (obvious topology; the points
at infinity will be fixed points). Thus our results apply easily. In [27] the
C∗-algebra C(R2 t S1) is called the quantum euclidean closed disk.
Following Chapter 12 in [27] (see also references therein), one can inflate

this example by gluing together several discs R2 t S1 along the circle S1

into a dynamical system which is no longer topologically transitive. The
circle S1 will be composed of fixed points and the interior of each disc
will be an orbit. Theorem 3.7 applies easily and with an explicit output
to all the Hamiltonians given by the points of the dynamical system. The
quantum sphere is obtained with a pair of discs. To get a quantum version
of the group SU(2) one uses a family of discs parametrised by the one-
dimensional torus.

Example 3.15. — A simple example which is not topologically transitive
and for which the action Θ is not the extension of some translations is the
following: We let Ξ = X ×X ∗ = R × R act on itself by Θ(x,ξ)(y, η) :=(
exy, eξη

)
; the abelian C∗-algebra is A := C(Ξ). Since the action is not

given by translations, the quantized version A will no longer be elementary
(i.e. isomorphic to the ideal of all the compact operators in an infinite-
dimensional, separable Hilbert space).
There are obviously nine quasi-orbits: four closed quarter-planes, four

coordinate semi-axes (all containing the origin) and the origin, which is
a fixed point. The points of the open quarter-planes are of the first kind
and all the others are of the second kind. The generic and the non-generic
points in each orbit are evident. Denoting as usual Hσ := Op(f ◦ Θσ) for
some smooth element f of A and for all the points σ = (y, η) ∈ Σ = Ξ, one
gets by Theorem 3.7

spess
[
H(1,1)

]
= sp

[
H(1,0)

]
∪ sp

[
H(0,1)

]
,

spess
[
H(1,−1)

]
= sp

[
H(1,0)

]
∪ sp

[
H(0,−1)

]
,

spess
[
H(−1,1)

]
= sp

[
H(−1,0)

]
∪ sp

[
H(0,1)

]
,

spess
[
H(−1,−1)

]
= sp

[
H(−1,0)

]
∪ sp

[
H(0,−1)

]
.

On the other hand, since the points belonging to the semi-axes are of
the second type, the operators H(±1,0) and H(0,±1) are purely essential.
It is a simple exercise to work out the structure of C(R+ × {0}) (it is
abelian), to show that

[
H(1,0)u

]
(y) = f(ey, 0)u(y) for all u ∈ L2(R), so

sp
[
H(1,0)

]
= f(R+ × {0}). We have analogous results for the other semi-

axes, so the essential spectra of all the possible operators Hσ are known
explicitly. Clearly H(0,0) = f(0, 0) idL2(R).
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This Example goes under the name the algebraists’ real quantum plane
in [27], Chapter 12. Obvious higher-dimensional instances are available.

3.4. Random operators

The framework studied above appears rather often in the context of
random families of operators, where some extra structure is present. The
essence of the theory of random operators is to study families {Hσ}σ∈Σ of
self-adjoint operators indexed by a set Σ on which a probability measure
µ is given, being mainly interested in properties that hold with probability
one. In most cases the probability measure is invariant under the ergodic
action of a group and the family of operators has an equivariance property.
We place this general idea in the framework introduced so far. Let us

assume that the dynamical system (Σ,Θ,Ξ) is compact and metrisable,
and that Σ is endowed with a Θ-invariant and ergodic probability measure
µ defined on a σ-algebra including all the open sets. Recall that ergodicity
means that the Θ-invariant subsets of Σ must have measure zero or one.
The metrisability condition on Σ implies that C(Σ) is separable. The notion
of hull of a physical system leads to such a setting ([3]).

Proposition 3.16. — As before, let f ∈ C(Σ) and set Hσ = Opσ(f)
for any σ ∈ Σ.

(1) There exists a closed set S ⊂ R such that sp(Hσ) = S for µ-almost
every σ ∈ Σ.

(2) One has spd(Hσ) = ∅ for µ-almost every σ ∈ Σ.

Proof. — 1. We recall that the topological support supp(µ) of the proba-
bility measure µ is the smallest closed setM ⊂ Σ such that µ(M) = 1. Now
we know from Lemma 3.1 of [3] (based on Birkhoff’s Ergodic Theorem) that
supp(µ) is a quasi-orbit and the set

Σ0 := {σ ∈ Σ | Eσ = supp(µ)}

is measurable and µ(Σ0) = 1. So the claim follows by Theorem 3.1 (ii).

2. Due to Proposition 3.4, it is sufficient to show that there exists a
measurable set Σ1 ⊂ Σ, with µ(Σ1) = 1, such that Bσ is of the second kind
for each σ ∈ Σ1.
Let us denote by E the closed set supp(µ), which is the quasi-orbit gener-

ated by the points σ ∈ Σ0, with µ(Σ0) = 1. Then (E,Θ, µ,Ξ) is once again
a compact, metrisable, ergodic dynamical system. By Birkhoff’s Ergodic
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Theorem, there exists a measurable set Σ1 ⊂ Σ0 ⊂ E, with µ(Σ1) = 1,
such that for each σ ∈ Σ1∫

E

dµ(σ′) g(σ′) = lim
R→∞

1
|BR|

∫
BR

dX g
[
ΘX(σ)

]
.

Here BR := {X ∈ Ξ | |X| 6 R} and g is any positive element of C(E). If
g ◦Θσ ∈ C(Ξ), we obtain immediately

lim
R→∞

1
|BR|

∫
BR

dX g
[
ΘX(σ)

]
= lim
R→∞

1
|BR|

∫
BR

g ◦Θσ = 0.

Thus ∫
E

dµ(σ′) g(σ′) = 0,

which implies g = 0. Doing this for the positive and negative parts of
(respectively) the real and the imaginary part of an arbitrary element f ∈
C(E), it will follow that f = 0 as soon as f ◦Θσ ∈ Bσ∩C(Ξ). So Bσ∩C(Ξ) =
{0}, and thus Bσ is of the second kind for each σ ∈ Σ1. �

Such results any many others (almost sure constancy of the spectral
types of the family {Hσ}σ∈Σ) are classical in the theory of ergodic random
families of operators. They rely on the equivariance condition expressed in
Theorem 3.1, (i) and can be proven in a more abstract framework, using
only measurability assumptions [4, 22]. We included Proposition 3.16 here
because the proof fits nicely in our setting and because the statement can
be made somewhat more precise as usually: The proof supplies an explicit
example (not unique, of course) of a set of full measure for which the
corresponding family of spectra is constant: Σ0 = supp(µ)g is the set of
generic points of the quasi-orbit supp(µ). On the other hand, using the
decomposition Σ = ΣI t ΣII in subsets of points of the first, respectively
second kind, the preceding proof shows that ΣI is µ-negligible. This and
Proposition 3.4 are the reasons for having purely essential operators with
probability one.

3.5. The semiclassical limit of spectra

In Quantum Mechanics one also encounters the Planck constant ~ which
has been conventionally taken equal to 1 until now. We let it vary in the
interval (0, 1] and study the continuity of spectra of the emerging operators.

TOME 62 (2012), FASCICULE 4



1576 Marius MĂNTOIU

When ~ is taken into account, in the formula for the usual Weyl quanti-
zation one has to replace (1.1) by
(3.6)[

Op~(h)u
]

(x) := (2π~)−n
∫

X

∫
X ∗

dx dξ e
i
~ (x−y)·ξ h

(
x+ y

2 , ξ

)
u(y),

which also requires replacing the composition law (2.4) on C∞(Σ) by

(3.7) f #~ g := (π~)−2n
∫

Ξ

∫
Ξ
dY dZ e

2i
~ [[Y,Z]] ΘY (f) ΘZ(g) =

= π−2n
∫

Ξ

∫
Ξ
dY dZ e2i[[Y,Z]] Θ√~Y (f) Θ√hZ(g).

The entire formalism works exactly as for the case ~ = 1 (cf. [27], where
somewhat different notations and conventions are used) and for each ~ one
gets a quantized C∗-algebra C~(Σ) (with composition law #~ and norm
‖ · ‖C~(Σ)) having the same properties and allowing the same constructions
as C(Σ) ≡ C~=1(Σ). Even the spectral results above have their obvious
~-counterparts; this will be used below.

In addition, in [27] it is shown that the family
{
C~(Σ)

}
~∈[0,1] can be orga-

nized in a continuous field of C∗-algebras; it actually provides a strict defor-
mation quantization of a natural Poisson algebra constructed on C∞(Σ). It
is obvious from (3.7) that the C∗-algebra C~(Σ) is obtained by applying the
general procedure to the classical data

(
Σ,Θ~,Ξ, [[·, ·]]

)
, where Θ~

X := Θ√~X
for any (~, X). The C∗-algebra C~=0(Σ) is simply taken to be C(Σ). We re-
mark that C∞(Σ) is a dense ∗-subalgebra of any C~(Σ).
Exactly as before and using (3.6), for every ~ ∈ (0, 1] and every σ ∈ Σ,

we can construct the representations

Op~σ : C~(Σ)→ B(H), Op~σ := Op~ ◦P~
σ,

which can be used to supply families of ~-quantum Hamiltonians.
Sending to [27] for details, we outline now only the facts that will be used

in the proof of Theorem 3.19. The classical data ([0, 1]× Σ,Θ′,Ξ, [[·, ·]]) can
also be considered, where Θ′X(~, σ) :=

(
~,Θ~

X(σ)
)
for every X, ~, σ. This

gives rise by quantization to the C∗-algebra C([0, 1]×Σ). Now we take into
account the Ξ-epimorphisms

N ~ : C([0, 1]× Σ)→ C(Σ),
[
N ~(f)

]
(σ) := f(~, σ).

Since they intertwines the actions Θ′ and Θ~, they are send by the Rieffel
functor into epimorphisms

N~ : C([0, 1]× Σ)→ C~(Σ), N~|C∞([0,1]×Σ) = N ~|C∞([0,1]×Σ).

ANNALES DE L’INSTITUT FOURIER



RIEFFEL’S PSEUDODIFFERENTIAL CALCULUS 1577

Remark 3.17. — A basic fact, contained in the definition of a continuous
field and proven in [27], is that the mapping

[0, 1] 3 ~ 7→‖ N~(g) ‖C~(Σ)

is continuous for any g ∈ C([0, 1] × Σ). Clearly, Σ can be replaced by any
closed invariant subset Γ in all the considerations above. In the proof of
Theorem 3.19 we are going to take Γ = E ∈ Q(Σ).

After all these preparations, let us introduced the concept of continuity
for families of sets that will be useful in Theorem 3.19.

Definition 3.18. — Let I be a compact interval and suppose given a
family

{
S~}

~∈I of closed subsets of R.

(1) The family
{
S~}

~∈I is called outer continuous if for any ~0 ∈ I and
any compact subset K of R such that K ∩ S~0 = ∅, there exists a
neighborhood V of ~0 with K ∩ S~ = ∅, ∀~ ∈ V .

(2) The family
{
S~}

~∈I is called inner continuous if for any ~0 ∈ I

and any open subset A of R such that A ∩ S~0 6= ∅, there exists a
neighborhood W ⊂ I of ~0 with A ∩ S~ 6= ∅, ∀~ ∈W .

(3) If the family is both inner and outer continuous, we say simply that
it is continuous.

(4) Sometimes, to express continuity at a point ~0 ∈ I, we write sug-
gestively S~ → S~0 for ~→ ~0.

In the proof of the next result we are going to use the functional calculus
for self-adjoint operators, so we shall ask the function f to be real. For
simplicity and since this is the most interesting case, we also assume it
to be smooth. For a given point σ ∈ Σ with quasi-orbit Eσ one considers
the restriction fEσ and the associated function on Ξ given by f(σ)(X) :=
f [ΘX(σ)] (i.e. f(σ) := f ◦ Θσ). This gives rise to the bounded self-adjoint
operator H0

σ of multiplication by f(σ) in the Hilbert space H0 := L2(Ξ);
the spectrum of this operator is obviously S0

σ := f(σ)(Ξ) = f(Eσ) and it
depends on σ only through the quasi-orbit Eσ it generates.

Theorem 3.19. — For any f ∈ C∞(Σ)R, σ ∈ Σ and ~ ∈ (0, 1] we also
consider the bounded self-adjoint operator H~

σ := Op~σ(f) in H~ ≡ H :=
L2(X ) and set S~

σ := sp
(
H~
σ

)
. For ~ = 0 we set as above S0

σ := f(Eσ).
Then the family of compact sets

{
S~
σ

}
~∈[0,1] is inner and outer continuous.

In particular one has

sp
(
H~
σ

)
→ f (Eσ) when ~→ 0.
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Proof. — (i) First we recall that the conclusion of the Theorem follows
if it is proven that the mapping

(3.8) [0, 1] 3 ~ 7→
∥∥∥(H~

σ − ζ
)−1
∥∥∥

B(H~)

is continuous for any ζ /∈ R. This is essentially Proposition 2.5 in [2] (see
also the references therein). The proof is straightforward, it also works for
unbounded self-adjoint operators and we shall not repeat it here.

(ii) Let us denote by g(−1)~ the inverse of g with respect to the composi-
tion law #~; for ~ = 0 this is just point-wise inversion. Then (3.8) follows
if we show that

[0, 1] 3 ~ 7→
∥∥∥(R~

Eσ (f)− ζ
)(−1)~

∥∥∥
C~(Eσ)

is continuous for any ζ /∈ R, since the standard Weyl representation Op~ is
faithful and this is also true for the representation of C~=0(Eσ) = C(Eσ) in
L2(Ξ) by multiplication operators. Since f has been chosen to be a smooth
vector, one has R~

σ(f) = fEσ . In addition, there is no loss of generality to
assume that Eσ = Σ. Thus we are reduced to show for any f ∈ C∞(Σ) that

[0, 1] 3 ~ 7→
∥∥∥(f − ζ)(−1)~

∥∥∥
C~(Σ)

is continuous for any ζ /∈ R.

(iii) We define

f(~, σ) := f(σ), ∀ (~, σ) ∈ [0, 1]× Σ.

Obviously f belongs to C∞([0, 1]×Σ) ⊂ C([0, 1]×Σ) and it is a self-adjoint
element. Let us introduce rζ := (f − ζ)[−1], where [−1] indicates inversion
in C([0, 1]× Σ); notice that we have N~(rζ) = (f − ζ)(−1)~ .

Using Remark 3.17, by the continuous field property, the mapping

[0, 1] 3 ~ 7→
∥∥N~(rζ)

∥∥
C~(Σ) =

∥∥∥(f − ζ)(−1)~
∥∥∥
C~(Σ)

is continuous and this finishes the proof. �

Combining previous results one also gets the semiclassical limits of es-
sential spectra, in the setting of Theorem 3.19.

Corollary 3.20. — (1) If σ is of the first kind, then spess
(
H~
σ

)
→

f(En
σ) when ~→ 0.

(2) If σ is of the second kind, then spess
(
H~
σ

)
→ f(Eσ) when ~→ 0.
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Proof. — Assertion 2 follows from Theorem 3.19 and the obvious exten-
sion of Proposition 3.4 to arbitrary ~ ∈ (0, 1], saying that spd

(
H~
σ

)
= ∅ if

σ is of the second kind.
The point 1 is a consequence of Theorem 3.19 and a simple adaptation

of Theorem 3.7. �
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