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UNIQUENESS OF EQUIVARIANT SINGULAR
BOTT-CHERN CLASSES

by Shun TANG

Abstract. — In this paper, we shall discuss possible theories of defining equi-
variant singular Bott-Chern classes and corresponding uniqueness property. By
adding a natural axiomatic characterization to the usual ones of equivariant Bott-
Chern secondary characteristic classes, we will see that the construction of Bismut’s
equivariant Bott-Chern singular currents provides a unique way to define a the-
ory of equivariant singular Bott-Chern classes. This generalizes J. I. Burgos Gil
and R. Liţcanu’s discussion to the equivariant case. As a byproduct of this study,
we shall prove a concentration formula which can be used to prove an arithmetic
concentration theorem in Arakelov geometry.
Résumé. — Dans cet article, nous allons discuter quelques théories possibles

des classes de Bott-Chern équivariantes singulières et la propriété d’unicité cor-
respondante. En rajoutant une caractérisation axiomatique naturelle aux théories
usuelles des classes caractéristiques secondaires de Bott-Chern équivariantes, nous
verrons que la construction des courants de Bott-Chern équivariants singuliers de
Bismut offre un moyen unique de définir une théorie des classes de Bott-Chern équi-
variantes singulières. Ceci généralise la discussion de J. I. Burgos Gil et R. Liţcanu
dans le cas équivariant. Comme conséquence de cette étude, nous allons prouver
une formule de concentration qui peut être utilisée pour démontrer un théorème
de concentration arithmétique en géométrie d’Arakelov.

1. Introduction

The Bott-Chern secondary characteristic classes were introduced by
R. Bott and S. S. Chern. They can be used to solve the problem that
the Chern-Weil theory is not additive for short exact sequence of hermit-
ian vector bundles. More precisely, assume that we are given a short exact
sequence

ε : 0→ E
′ → E → E

′′ → 0

Keywords: uniqueness, equivariant, singular Bott-Chern classes.
Math. classification: 14G40, 32U40.



1438 Shun TANG

of hermitian vector bundles on a compact complex manifold X. Then the
alternating sum of Chern character forms ch(E′) − ch(E) + ch(E′′) is not
equal to 0 unless this sequence is orthogonally split. A Bott-Chern sec-
ondary characteristic class associated to ε is an element c̃h(ε) ∈ Ã(X) (cf.
Section 2) satisfying

(i) (Differential equation) ddcc̃h(ε) = ch(E′) − ch(E) + ch(E′′). Here
the symbol ddc is the differential operator ∂∂

2πi .
J.-M. Bismut, H. Gillet and C. Soulé’s construction of Bott-Chern

secondary classes (cf. [3]) forces it to satisfy other two properties.
(ii) (Functoriality) f∗c̃h(ε) = c̃h(f∗ε) if f : X ′ → X is a holomorphic

map of complex manifolds.
(iii) (Normalization) c̃h(ε) = 0 if ε is orthogonally split.
It has been shown that the three properties above are already enough to

characterize a theory of Bott-Chern secondary characteristic classes. The
same thing goes to the Chern-Weil theory in the equivariant case. We shall
recall these results in Section 2 for the convenience of the reader.

In [4], J.-M. Bismut, H. Gillet and C. Soulé defined the Bott-Chern sin-
gular currents in order to solve a similar differential equation as in (i) with
respect to the resolution of hermitian vector bundle associated to a closed
immersion of complex manifolds. Later in [2], J.-M. Bismut generalized this
topic to the equivariant case. Precisely speaking, let G be a compact Lie
group and let i : Y → X be a G-equivariant closed immersion of complex
manifolds with hermitian normal bundle N . Suppose that η is an equivari-
ant hermitian vector bundle on Y and that ξ. is a complex of equivariant
hermitian vector bundles providing a resolution of i∗η on X whose metrics
satisfy Bismut assumption (A). Then, fixing an element g ∈ G, J.-M. Bis-
mut constructed a singular current Tg(ξ.) ∈ D(Xg) which is a sum of
(p, p)-type currents satisfying

(i’) (Differential equation)

ddcTg(ξ.) = ig∗(chg(η)Td−1
g (N))−

∑
k

(−1)kchg(ξk).

As in the case of Bott-Chern secondary characteristic classes, it
can be shown that Tg(ξ.) also satisfies other two properties

(ii’) (Functoriality) f∗g Tg(ξ.) = Tg(f∗ξ.) if f : X ′ → X is aG-equivariant
holomorphic map of complex manifolds which is transversal to Y .

(iii’) (Normalization) Tg(ξ.) = −c̃hg(ξ.) if Y is the empty set.
Naturally, one hopes that such three properties are enough to character-

ize a theory of equivariant singular Bott-Chern classes. But unfortunately
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UNIQUENESS OF EQUIVARIANT SINGULAR BOTT-CHERN CLASSES 1439

this is not true, Tg(ξ.) is not the unique element which satisfies the prop-
erties (i’), (ii’) and (iii’) even in the current class space Ũ(Xg).
For the non-equivariant case i.e., when G is the trivial group, J. I. Bur-

gos Gil and R. Liţcanu have obtained a satisfactory axiomatic characteriza-
tion of singular Bott-Chern classes in their article [6]. They realized this by
adding a natural fourth axiom to the properties (i’), (ii’) and (iii’) (remov-
ing the subscript g) which is called the condition of homogeneity. In this
paper, we will do the equivariant version. Our strategy is basically the same
as the one used in J. I. Burgos Gil and R. Liţcanu’s article. By deforming
a resolution to a easily understandable one, we show that a theory of equi-
variant singular Bott-Chern classes is totally determined by its effects on
Koszul resolutions (cf. Theorem 6.1). This approach can be viewed as an
analogue of J.-M. Bismut, H. Gillet and C. Soulé’s axiomatic construction
of Bott-Chern secondary characteristic classes.
The original purpose of the author’s study of the uniqueness property of

equivariant singular Bott-Chern classes is that he wants to prove a purely
analytic statement which is called the concentration formula. Such a for-
mula plays a crucial role in the proof of an arithmetic concentration theorem
in Arakelov geometry. We shall formulate this result in the last section of
this paper.

Acknowledgements. The author wishes to thank Damian Roessler and
Xiaonan Ma who suggested him to pay attention to José I. Burgos Gil
and Rǎzvan Liţcanu’s work on the uniqueness problem of singular Bott-
Chern classes. The author is also grateful to José I. Burgos Gil for many
fruitful discussions between them, for his careful reading of a early version
of this paper, and for his suggestions which improve the results of a crucial
lemma. Finally, thanks to the referee, for his very quick work and valuable
comments.

2. Equivariant secondary characteristic classes

To every hermitian vector bundle on a compact complex manifold we
can associate a smooth differential form by using Chern-Weil theory. Notice
that Chern-Weil theory is not additive for short exact sequence of hermitian
vector bundles, the Bott-Chern secondary characteristic classes cover this
gap. In this section, we shall recall how to generalize all these things above
to the equivariant setting, namely for a compact complex manifoldX which
admits a holomorphic action of a compact Lie group G.
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1440 Shun TANG

Let g ∈ G be an automorphism of X, we denote by Xg = {x ∈ X | g ·x =
x} the fixed point submanifold. Xg is also a compact complex manifold.
Let E be an equivariant hermitian vector bundle on X, this means that
E admits a G-action which is compatible with the G-structure of X and
that the metric on E is invariant under the action of G. If there is no
additional description, a morphism between equivariant vector bundles will
be a morphism of vector bundles which is compatible with the equivariant
structures. It is well known that the restriction of an equivariant hermitian
vector bundle E to Xg splits as a direct sum

E |Xg=
⊕
ζ∈S1

Eζ

where the equivariant structure gE of E acts on Eζ as ζ. We often write Eg
for E1 and denote its orthogonal complement by E⊥. As usual, Ap,q(X)
stands for the space of (p, q)-forms Γ∞(X,ΛpT ∗(1,0)X ∧ ΛqT ∗(0,1)X), we
define

Ã(X) =
dimX⊕
p=0

(Ap,p(X)/(Im∂ + Im∂)).

We denote by ΩEζ the curvature matrix associated to Eζ . Let (φζ)ζ∈S1 be a
family of GL(C)-invariant formal power series such that φζ ∈ C[[glrkEζ (C)]]
where rkEζ stands for the rank of Eζ which is a locally constant function
on Xg. Moreover, let φ ∈ C[[

⊕
ζ∈S1 C]] be any formal power series. We

have the following definition.

Definition 2.1. — The way to associate a smooth form to an equivari-
ant hermitian vector bundle E by setting

φg(E) := φ
((
φζ

(
− ΩEζ

2πi

))
ζ∈S1

)
is called an equivariant Chern-Weil theory associated to (φζ)ζ∈S1 and φ.
The class of φg(E) in Ã(Xg) is independent of the metric.

The theory of equivariant secondary characteristic classes is described in
the following theorem.

Theorem 2.2. — To every short exact sequence ε : 0 → E
′ → E →

E
′′ → 0 of equivariant hermitian vector bundles on X, there is a unique

way to attach a class φ̃g(ε) ∈ Ã(Xg) which satisfies the following three
conditions:

(i) φ̃g(ε) satisfies the differential equation

ddcφ̃g(ε) = φg(E
′ ⊕ E′′)− φg(E);

ANNALES DE L’INSTITUT FOURIER



UNIQUENESS OF EQUIVARIANT SINGULAR BOTT-CHERN CLASSES 1441

(ii) for every equivariant holomorphic map f : X ′ → X, φ̃g(f∗ε) =
f∗g φ̃g(ε);

(iii) φ̃g(ε) = 0 if ε is equivariantly and orthogonally split.

Proof. — Firstly note that one can carry out the principle of [3, Sec-
tion f.] to construct a new exact sequence of equivariant hermitian vector
bundles

ε̃ : 0→ E′(1)→ Ẽ → E
′′ → 0

on X × P1 such that i∗0ε̃ is isometric to ε and i∗∞ε̃ is equivariantly and
orthogonally split. Here the projective line P1 carries the trivial G-action
and the section i0 (resp. i∞) is defined by setting i0(x) = (x, 0) (resp.
i∞(x) = (x,∞)). Then one can show that an equivariant secondary char-
acteristic class φ̃g(ε) which satisfies the three conditions in the statement
of this theorem must be of the form

φ̃g(ε) = −
∫
P1
φg(Ẽ, hẼ) · log | z |2 .

So the uniqueness has been proved. For the existence, one may take this
identity as the definition of the equivariant secondary class φ̃g, of course
one should verify that this definition is independent of the choice of the
metric hẼ and really satisfies the three conditions above. The verification
is totally the same as the non-equivariant case, one just add the subscript
g to every corresponding notation.
Another way to show the existence is to use the non-equivariant sec-

ondary classes on Xg directly. We first split ε on Xg into a family of short
exact sequences

εζ : 0→ E
′
ζ → Eζ → E

′′
ζ → 0

for all ζ ∈ S1. Using the non-equivariant secondary classes on Xg we define
for ζ, η ∈ S1

( ˜φζ + φη)(εζ , εη) := φ̃ζ(εζ) + φ̃η(εη)

and

(φ̃ζ · φη)(εζ , εη) := φ̃ζ(εζ) · φη(Eη) + φζ(E
′
ζ + E

′′
ζ ) · φ̃η(εη)

and similarly for other finite sums and products. With these notations
we define φ̃g(ε) := ˜φ((φζ)ζ∈S1)((εζ)ζ∈S1). The equivariant secondary class
φ̃g defined like this way satisfies the three conditions in the statement of
this theorem, this fact follows from the axiomatic characterization of non-
equivariant secondary classes. �

TOME 62 (2012), FASCICULE 4



1442 Shun TANG

Remark 2.3. — (i) The first way to construct equivariant secondary
characteristic classes is also valid for long exact sequences of hermitian
vector bundles ε : 0→ Em → Em−1 → · · · → E1 → E0 → 0. Here the sign
is chosen so that

ddcφ̃g(ε) = φg

( ⊕
j even

Ej

)
− φg

( ⊕
j odd

Ej

)
.

That means there exists an exact sequence ε̃ on X × P1 such that i∗0ε̃ is
isometric to ε and i∗∞ε̃ is equivariantly and orthogonally split. This new
exact sequence is called the first transgression exact sequence of ε and will
be denoted by tr1(ε).

(ii) The first part of this remark gives a uniqueness theorem for secondary
classes for long exact sequences. Then when φg is additive one can have
another way to construct the secondary classes, that is to split a long
exact sequence into a series of short exact sequences and use the secondary
classes in Theorem 2.2 to formulate an alternating sum. This alternating
sum provides a secondary class for original long exact sequence.

We now give some examples of equivariant character forms and their
corresponding secondary characteristic classes.

Example 2.4. — (i) The equivariant Chern character form chg(E) :=∑
ζ∈S1 ζch(Eζ).

(ii) The equivariant Todd form Tdg(E) := crkEg (Eg)
chg(
∑rkE

j=0
(−1)j∧jE∨)

. As in [11,

Thm. 10.1.1] one can show that

Tdg(E) = Td(Eg)
∏
ζ 6=1

det
(

1

1− ζ−1e
ΩEζ
2πi

)
.

(iii) Let ε : 0 → E
′ → E → E

′′ → 0 be a short exact sequence of
hermitian vector bundles. The secondary Bott-Chern characteristic class is
given by c̃hg(ε) =

∑
ζ∈S1 ζ c̃h(εζ).

(iv) If the equivariant structure gε has the eigenvalues ζ1, · · · , ζm, then
the secondary Todd class is given by

T̃dg(ε) =
m∑
i=1

i−1∏
j=1

Tdg(Eζj ) · T̃d(εζi) ·
m∏

j=i+1
Tdg(E

′
ζj + E

′′
ζj ).

Remark 2.5. — One can use Theorem 2.2 to give a proof of the state-
ments (iii) and (iv) in the examples above.
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UNIQUENESS OF EQUIVARIANT SINGULAR BOTT-CHERN CLASSES 1443

Lemma 2.6. — Let ε be an acyclic complex of equivariant hermitian
vector bundles. Then for any non-negative integer k we have

φ̃g(ε[−k]) = (−1)kφ̃g(ε).

Proof. — The exact sequence ε[−k] is obtained by shifting degree, so the
equality follows from the definition. �

A particular secondary class when we consider a fixed vector bundle with
two different hermitian metrics will be used frequently in our paper, so we
describe it separately in the following definition.

Definition 2.7. — Let E be an equivariant vector bundle on X. As-
sume that h0 and h1 are two invariant hermitian metrics on E. We denote
by φ̃g(E, h0, h1) the equivariant secondary characteristic class associated
to the short exact sequence

0→ 0→ (E, h1)→ (E, h0)→ 0

so that we have the differential equation ddcφ̃g(E, h0, h1) = φg(E, h0) −
φg(E, h1).

The following proposition describes the additivity of equivariant sec-
ondary characteristic classes.

Proposition 2.8. — Let

0

��

0

��

0

��
0 // E

′
1

//

��

E1
//

��

E
′′
1

//

��

0

0 // E
′
2

//

��

E2
//

��

E
′′
2

//

��

0

0 // E
′
3

//

��

E3
//

��

E
′′
3

//

��

0

0 0 0
be a double complex of equivariant hermitian vector bundles on X where
all rows εi and all columns δj are exact. Then we have

φ̃g(ε1 ⊕ ε3)− φ̃g(ε2) = φ̃g(δ1 ⊕ δ3)− φ̃g(δ2).

TOME 62 (2012), FASCICULE 4



1444 Shun TANG

Proof. — We may have the corresponding diagram of hermitian vector
bundles on X × P1 by the first construction in the proof of Theorem 2.2.
Then

φ̃g(ε2)− φ̃g(ε1 ⊕ ε3)

= −
∫
P1

[φg(Ẽ2, h
Ẽ2)− φg(Ẽ1 ⊕ Ẽ3, h

Ẽ1 ⊕ hẼ3)] · log | z |2

=
∫
P1

ddcφ̃g(δ̃2) · log | z |2=
∫
P1
φ̃g(δ̃2) · ddc log | z |2

= i∗0φ̃g(δ̃2)− i∗∞φ̃g(δ̃2) = φ̃g(δ2)− φ̃g(δ1 ⊕ δ3).

�

Remark 2.9. — This proposition can be generalized without any diffi-
culty to the case of a bounded exact sequence of bounded exact sequences
of equivariant hermitian vector bundles. Let A∗,∗ be such a double acyclic
complex, we have

φ̃g

( ⊕
k even

Ak,∗

)
− φ̃g

( ⊕
k odd

Ak,∗

)
= φ̃g

( ⊕
k even

A∗,k

)
− φ̃g

( ⊕
k odd

A∗,k

)
.

Corollary 2.10. — Let A∗,∗ be a bounded double complex of equi-
variant hermitian vector bundles with exact rows and exact columns, then
we have

φ̃g(TotA∗,∗) = φ̃g

(⊕
k

Ak,∗[−k]
)
.

Proof. — For any non-negative integer n we write Totn = Tot((Ak,∗)k>n)
for the total complex of the exact complex formed by the rows with index
bigger than n − 1. Then Tot0 = Tot(A∗,∗). By an argument of induction,
for each k > 0 we have an exact sequence of complexes

0→ Totk+1 → Totk ⊕
⊕
l<k

Al,∗[−l]→
⊕
l6k

Al,∗[−l]→ 0

which is orthogonally split in each degree. Therefore by Proposition 2.8
and Remark 2.9 we get

φ̃g

(
Totk ⊕

⊕
l<k

Al,∗[−l]
)

= φ̃g

(
Totk+1 ⊕

⊕
l6k

Al,∗[−l]
)
.

By induction, when k is chosen to be big enough we prove the statement.
�
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3. Cohomology of currents with fixed wave front sets

This section is devoted to recall the results of [6, Section 4] and to derive
some standard consequences. To be more precise, we recall that there is a
classic theorem concerning the complex of currents on a compact complex
manifold which says that its cohomology groups are isomorphic to the
cohomology groups of the complex of smooth forms. In this section, we
shall prove a similar theorem for the currents with any fixed wave front
set. This theorem implies a certain ∂∂-lemma.

Let X be a compact complex manifold of dimension d. Then the space
An(X) of C∞ complex valued n-forms on X is a topological vector space
with Schwartz topology (cf. [16, Chapter IX]). We denote by Dn(X) the
continuous dual of An(X) which is called the space of currents of dimen-
sion n on X. Note that X is a complex manifold, we have the following
decomposition

An(X) =
⊕
p+q=n

Ap,q(X)

and the Dolbeault operators

∂ : Ap,q(X)→ Ap+1,q(X), ∂ : Ap,q(X)→ Ap,q+1(X)

with d = ∂ + ∂ from An(X) to An+1(X) the usual differentials.
All things above induce corresponding notations for Dn(X) as follows

Dn(X) =
⊕
p+q=n

Dp,q(X)

and the Dolbeault operators

∂′ : Dp+1,q(X)→ Dp,q(X), ∂′ : Dp,q+1(X)→ Dp,q(X)

with d′ = ∂′ + ∂
′ from Dn+1(X) to Dn(X). Here the differential d′ should

be understood as for any T ∈ Dn+1(X), α ∈ An(X), d′T (α) = T (dα). We
now give two basic examples of currents which will be used frequently.

Example 3.1. — If i : Y ↪→ X is a k−dimensional analytic subspace
of X, we may define a 2k−dimensional current δY which is introduced by
Lelong [15] by

δY (α) =
∫
Y ns

i∗α, α ∈ A2k(X)

where Y ns is the subset of non-singular points in Y . Note that δY actually
belongs to Dk,k(X) since if αp,q ∈ Ap,q(X) with p + q = 2k, then i∗α = 0
unless p = q = k.

TOME 62 (2012), FASCICULE 4



1446 Shun TANG

Example 3.2. — We may have the following products

Dn(X)⊗Am(X)→ Dn−m(X)

which decompose into

Dp,q(X)⊗Ar,s(X)→ Dp−r,q−s(X).

Actually for T ∈ Dn(X), α ∈ Am(X), we denote their product by T ∧ α,
and if β ∈ An−m(X), the product is defined by

(T ∧ α)(β) = T (α ∧ β).

In particular, we have a map from Ap,q(X) to Dd−p,d−q(X) which maps α
to δX ∧α. We often write δX ∧α as [α] for simplicity. From [16, Chapter X]
we know that the spaces Dp,q have a natural topology, for which the maps
Ap,q(X)→ Dd−p,d−q(X) are continuous with dense images. So if we write
Dp,q(X) = Dd−p,d−q(X), we may have the following embedding

Ap,q(X) ↪→ Dp,q(X).

We would like to indicate that, more generally, if α is a L1-form i.e., α has
coefficients which are locally integrable then [α] is a well-defined current.

Remark 3.3. — The map α 7→ [α] doesn’t send d to d′. In fact, for
α ∈ An(X) and β ∈ Ad−n−1(X), by Stokes theorem we have

[dα](β) =
∫
X

dα ∧ β =
∫
X

d(α ∧ β)−
∫
X

(−1)nα ∧ dβ

= (−1)n+1
∫
X

α ∧ dβ = (−1)n+1(d′[α])(β).

So if we write d = (−1)n+1d′ the differential fromDn(X) toDn+1(X), then
the inclusion An(X) ↪→ Dn(X) commutes with d. The same conclusions
can be obtained for ∂ and ∂. And one should notice that this commutativity
induces a family of morphisms at the level of cohomology with respect to
∂, ∂ and d. These morphisms are actually isomorphisms.

The wave front set WF(η) of a current η is a closed conical subset of
T ∗RX0 := T ∗RX\{0}, the real cotangent bundle removed the complete zero
section. This conical subset measures the singularities of η, actually the
projection of WF(η) in X is equal to the singular locus of the support of
η. It also allows us to define certain products and pull-backs of currents.
Let S be a conical subset of T ∗RX0 and let D∗(X,S) stand for the spaces
consisting of all currents whose wave front sets are contained in S. Now
suppose that P is a differential operator with smooth coefficients, then we

ANNALES DE L’INSTITUT FOURIER



UNIQUENESS OF EQUIVARIANT SINGULAR BOTT-CHERN CLASSES 1447

have WF(P ◦ η) ⊆ WF(η) by [12, (8.1.11)]. This means D∗(X,S) form a
∂-, ∂- or d-complex.

Let f : Y → X be a morphism of compact complex manifolds. The set
of normal directions of f is

Nf = {(f(y), v) ∈ T ∗RX | df tv = 0}.

This set measures the singularities of the morphism f . Actually, if f is
smooth then Nf = 0 and if f is a closed immersion then Nf is the conormal
bundle N∨X/Y,R. Let S ⊂ T ∗RX0 be a closed conical subset, the morphism f

is transversal to S if Nf ∩ S = ∅.

Theorem 3.4. — Let f : Y → X be a morphism of compact complex
manifolds which is transversal to S. Then there is a unique way to extend
the pull-back f∗ : A∗(X)→ A∗(Y ) to a continuous morphism of complexes

f∗ : D∗(X,S)→ D∗(Y, f∗S).

Proof. — This follows from [12, Theorem 8.2.4]. Here the topology on
current space D∗ is given by [12, Definition 8.2.2] which is finer than the
usual dual topology. �

Theorem 3.5 (∂-Poincaré lemma). — For any integer p > 0, denote by
Dp,∗X,S the sheaf of currents of type (p, ∗) whose wave front sets are contained
in S. Then for each q > 0, any ∂-closed section of Dp,qX,S is locally ∂-exact.

Proof. — Let Ap,∗X be the sheaf of smooth forms of type (p, ∗) on X, we
claim that the natural inclusions

ι : Ap,qX → D
p,q
X,S

induce a quasi-isomorphism between complexes. Actually, this claim is the
content of [6, Theorem 4.5]. With this observation we may reduce our
problem to the case of smooth forms which is classical, one can find in [10,
Page 25] a proof of this statement. �

Corollary 3.6. — Let notations and assumptions be as in Theorem 3.5
and its proof, then the natural morphisms

Hp,∗(Ap,∗X (X), ∂) −→ Hp,∗(Dp,∗X,S(X), ∂)

are isomorphisms.

Proof. — We denote by Ωp the sheaf of holomorphic p-forms on X. The
Dolbeault theorem says thatH∗(X,Ωp) are isomorphic toHp,∗(Ap,∗X (X), ∂).

TOME 62 (2012), FASCICULE 4



1448 Shun TANG

The proof of the Dolbeault theorem relies on two deep results, one is that
the following complex of sheaves

0 // Ωp // Ap,0X
∂ // Ap,1X

∂ // · · · ∂ // Ap,dX // 0

is exact, the other one is that the sheaves Ap,∗X admit partitions of unity
so that Hk(X,Ap,∗X ) = 0 for k > 0. Note that the sheaves Dp,∗X,S may
be multiplied by C∞ functions, hence they also admit partitions of unity.
Therefore one can carry out the principle of the sheaf-theoretic proof of
Dolbeault theorem to prove that H∗(X,Ωp) ∼= Hp,∗(Dp,∗X,S(X), ∂) if the
following complex of sheaves

0 // Ωp // Dp,0X,S
∂ // Dp,1X,S

∂ // · · · ∂ // Dp,dX,S // 0

is exact. Such a Dolbeault theorem for currents implies our statements in
this corollary. Indeed, the complex of sheaves above is really exact, the
exactness at 0-degree is just the regularity theorem for the ∂-operator (cf.
[10, Page 380]) and the exactness at higher degrees is implied by the ∂-
Poincaré lemma, Theorem 3.5. �

Remark 3.7. — One can prove the similar results for ∂−cohomology and
de Rham cohomology, namely the natural morphismsH∗,p(A∗,pX (X), ∂) −→
H∗,p(D∗,pX,S(X), ∂) and H∗DR(X) −→ H∗(D∗X,S(X),d) are all isomorphisms.

Corollary 3.8. — Let Dp,∗X be the sheaf of currents of type (p, ∗) on
X, then the natural morphisms Hp,∗(Dp,∗X,S(X), ∂) −→ Hp,∗(Dp,∗X (X), ∂)
are isomorphisms.

Proof. — This follows from Corollary 3.6. �

This Corollary implies the following ∂∂-lemma.

Theorem 3.9. — Let X be a compact complex manifold and let S be
a closed conical subset of T ∗RX0 . Then:

(i) If γ is a current on X such that ∂∂γ ∈ D∗(X,S), then there exist
currents α and β such that γ = ω + ∂α+ ∂β with ω ∈ D∗(X,S).

(ii) If ω is an element in D∗(X,S) such that ω = ∂u+ ∂v for currents
u and v, then there exist currents α, β ∈ D∗(X,S) such that ω =
∂α+ ∂β.

Proof. — (i) The hypothesis ∂∂γ = η with η ∈ D∗(X,S) implies that
η = ∂(∂γ) and hence η = ∂α for some α ∈ D∗(X,S). So ∂(∂γ−α) = 0 and
∂γ−α = β+∂γ1 with β ∈ D∗(X,S). So we know that ∂∂γ1 = η1 = ∂(α+β)
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is contained in D∗(X,S). By repeating this argument we get a sequence of
currents γn such that ∂γn = un + ∂γn+1 with un ∈ D∗(X,S).
Note that if we assume that γn ∈ Dp,q(X), then γn+1 should be in

Dp−1,q+1(X) by construction. So when n is big enough we have γn+1 = 0.
Therefore ∂γn = un is contained in D∗(X,S), hence γn = ωn + ∂βn with
ωn ∈ D∗(X,S). So ∂(γn−1 + ∂βn) = un−1 + ∂ωn is contained in D∗(X,S),
and therefore γn−1 = ωn−1 + ∂αn−1 + ∂βn−1 with ωn−1 ∈ D∗(X,S). By
repeating this argument we are done.
(ii) If ω = ∂u+∂v, then ∂ω = ∂∂v which implies that v = α+∂x+∂y with

α ∈ D∗(X,S) by (i). So we have ∂v = ∂α+ ∂∂x. Similarly ∂u = ∂β + ∂∂z

with β ∈ D∗(X,S). Therefore ω = ∂α + ∂β + ∂∂(z − x). Again by (i),
z − x = γ + ∂s+ ∂t with γ ∈ D∗(X,S). So ∂∂(z − x) = ∂∂γ which implies
that ω = ∂(α+ ∂γ) + ∂β. �

4. Deformation to the normal cone

By a projective manifold we shall understand a compact complex mani-
fold which is projective algebraic, that means a projective manifold is the
complex analytic space X(C) associated to a smooth projective variety X
over C. Denote by µn the diagonalisable group variety over C associated
to Z/nZ, we say X is equivariant if it admits a µn-projective action (cf.
[14, Section 2]). Write Xµn for the fixed point subscheme, by GAGA prin-
ciple, Xµn(C) is equal to X(C)g where g is the automorphism on X(C)
corresponding to a fixed primitive n-th root of unity. From now on, if no
confusion arises, we shall not distinguish between X and X(C) as well as
Xµn and Xg.

In this section, we shall describe the algebro-geometric preliminaries for
the discussion of the uniqueness of equivariant singular Bott-Chern classes.
Our main tool is an elegant method called the deformation to the normal
cone which allows us to deform a resolution of hermitian vector bundle
associated to a closed immersion of projective manifolds to a simpler one.
This will help us to formulate the analytic data (e.g., the secondary charac-
teristic class) of the original resolution by using the corresponding analytic
data of the new one. This process is just like the first construction we
mentioned in the proof of Theorem 2.2.
The first part of this section is devoted to recall the deformation to the

normal cone technique which can be found in several standard literatures,
for example in [5, Section 4]. The second part is devoted to the equivariant
analogue.
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Let i : Y ↪→ X be a closed immersion of projective manifolds. We will
denote by NX/Y the normal bundle of this immersion. For a vector bundle
E on X or Y , the notation P(E) will stand for the projective space bundle
Proj(Sym(E∨)).

Definition 4.1. — The deformation to the normal cone W (i) of the
immersion i is the blowing up of X × P1 along Y × {∞}. We shall just
write W for W (i) if there is no confusion about the immersion.

We denote by pX (resp. pY ) the projection X×P1 → X (resp. Y ×P1 →
Y ) and by π the blow-down map W → X × P1. We also denote by qX
(resp. qY ) the projection X ×P1 → P1 (resp. Y ×P1 → P1) and by qW the
composition qX ◦π. It is well known that the map qW is flat and for t ∈ P1,
we have

q−1
W (t) ∼=

{
X × {t}, if t 6=∞,
P ∪ X̃, if t =∞,

where X̃ is isomorphic to the blowing up of X along Y and P is isomor-
phic to the projective completion of NX/Y i.e., the projective space bundle
P(NX/Y ⊕OY ). Denote the canonical projection from P(NX/Y ⊕OY ) to Y
by πP , then the morphism OY → NX/Y ⊕OY induces a canonical section
i∞ : Y ↪→ P(NX/Y ⊕OY ) which is called the zero section embedding. More-
over, let j : Y × P1 → W be the canonical closed immersion induced by
i× Id, then the component X̃ doesn’t meet j(Y × P1) and the intersection
of j(Y × P1) and P is exactly the image of Y under the section i∞.

On P = P(NX/Y ⊕OY ), there exists a tautological exact sequence

0→ O(−1)→ π∗P (NX/Y ⊕OY )→ Q→ 0

where Q is the tautological quotient bundle. This exact sequence and the
inclusion OP → π∗P (NX/Y ⊕ OY ) induce a section σ : OP → Q which
vanishes along the zero section i∞(Y ). By duality we get a morphism Q∨ →
OP , and this morphism induces the following exact sequence

0→ ∧nQ∨ → · · · → ∧2Q∨ → Q∨ → OP → i∞∗OY → 0

where n is the rank of Q. Note that i∞ is a section of πP i.e., πP ◦ i∞ = Id,
the projection formula implies the following definition.

Definition 4.2. — For any vector bundle F on Y , the following com-
plex of vector bundles

0→ ∧nQ∨ ⊗ π∗PF → · · · → ∧2Q∨ ⊗ π∗PF → Q∨ ⊗ π∗PF → π∗PF → 0

provides a resolution of i∞∗F on P . This complex is called the Koszul
resolution of i∞∗F and will be denoted by K(F,NX/Y ). If the normal
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bundle NX/Y admits some hermitian metric, then the tautological exact
sequence induces a hermitian metric on Q. If, moreover, the bundle F
also admits a hermitian metric, then the Koszul resolution is a complex of
hermitian vector bundles and will be denoted by K(F ,NX/Y ).

We now summarize the most important result about the application of
the deformation to the normal cone.

Theorem 4.3. — Let i : Y ↪→ X be a closed immersion of projective
manifolds, and let W = W (i) be the deformation to the normal cone of i.
Assume that η is a hermitian vector bundle on Y and ξ. is a complex of
hermitian vector bundles which provides a resolution of i∗η on X. Then
there exists a complex of hermitian vector bundles tr1(ξ.) on W such that

(i) tr1(ξ.) provides a resolution of j∗p∗Y (η) on W ;
(ii) tr1(ξ.) |X×{0} is isometric to the original complex ξ.;
(iii) the restriction of tr1(ξ.) to X̃ is orthogonally split;
(iv) the restriction of tr1(ξ.) to P fits an exact sequence of resolutions

on P

0 // A. //

��

tr1(ξ.) |P //

��

K(η,NX/Y ) //

��

0

0 // i∞∗η
= // i∞∗(η)

where A. is orthogonally split and K(η,NX/Y ) is the hermitian
Koszul resolution;

(v) when Y = ∅, tr1(ξ.) is the first transgression exact sequence intro-
duced in Remark 2.3;

(vi) let f : X ′ → X be a morphism of projective manifolds which is
smooth or transversal to Y . Consider the following Cartesian square

Y ′
i′ //

��

X ′

��
Y

i // X

and denote by fW the induced morphism from W ′ = W (i′) to W ,
then we have

f∗W (tr1(ξ.)) = tr1(f∗ξ.).

Proof. — If E is a vector bundle onX, we shall denote by E(i) the vector
bundle on X × P1 given by E(i) = p∗XE ⊗ q∗XOP1(i). Now let C̃. be the
complex of vector bundles on X ×P1 given by C̃i = ξi(i)⊕ ξi−1(i− 1) with
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differential d(a, b) = (b, 0). Let y be a section of OP1(1) vanishing only at
infinity, then on X × (P1\{∞}) we may construct a family of inclusions of
vector bundles γi : ξi ↪→ C̃i given by s 7→ (s⊗ yi, (−1)ids⊗ yi−1).
On the other hand, define a complex of vector bundles D̃. on X × P1 by

D̃i = ξi−1(i)⊕ ξi−2(i− 1). The morphism of complexes ϕ : C̃.→ D̃. given
by ϕ(s, t) = (ds+ (−1)it⊗ y,dt) induces a morphism of complexes on W

φ : π∗C̃. −→ π∗D̃.

where π is the blow-down map. Then tr1(ξ.) is defined as the kernel of φ.
Over π−1(X×(P1\{∞})) we shall endow tr1(ξ.)i with the metric induced

by the identification with ξi. And over π−1(X × (P1\{0})) we shall endow
tr1(ξ.)i with the metric induced by C̃i. Finally we glue together these two
metrics by a partition of unity so that we get a hermitian metric on tr1(ξ.).
We refer to [5, Section 4] for the proof of the statement that the complex
of hermitian vector bundles tr1(ξ.) constructed in the way above really
satisfies those conditions in our theorem. �

Remark 4.4. — (i) Assume that X is a µn-equivariant projective man-
ifold and E is an equivariant locally free sheaf on X. Then according to
[13, (1.4) and (1.5)], P(E) admits a canonical µn-equivariant structure such
that the projection map P(E)→ X is equivariant and the canonical bundle
O(1) admits an equivariant structure. Moreover, let Y → X be an equi-
variant closed immersion of projective manifolds, according to [13, (1.6)]
the action of µn on X can be extended to the blowing up BlYX such that
the blow-down map is equivariant and the canonical bundle O(1) admits
an equivariant structure. So the constructions of blowing up and the de-
formation to the normal cone are both compatible with the equivariant
setting.
(ii) Furthermore, by endowing P1 with the trivial action, we would like

to reformulate all results in this section especially Theorem 4.3 in the equi-
variant setting. We first claim that the constructions of all vector bundles
and bundle morphisms in Theorem 4.3 also fit the equivariant setting. This
follows from the fact that they are all constructed canonically. For more
details, see [1, Exp. VII, Lemme 2.4, Proposition 2.5 and Lemme 3.2] as
well as [5, Lemma 4.1, Remark (ii) p. 314 and (4.7) p. 315]. But unfortu-
nately, the local uniqueness of resolutions (cf. [7, Theorem 8]) may not be
valid for the equivariant case so that the local method used in the proof
of the statement that the restriction of tr1(ξ.) to X̃ is orthogonally split is
not compatible with the equivariant setting. We have to formulate relative
results and proofs in a different way.
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Lemma 4.5. — Let X be a µn-equivariant projective manifold, then the
category of coherent µn-modules on X is an abelian category. A complex of
µn-equivariant coherent sheaves on X is exact if and only if the underlying
complex of OX -modules is exact.

Proof. — This follows from [13, Lemma 1.3]. �

Lemma 4.6. — Let X be a µn-equivariant projective manifold. In other
words, X is a projective manifold which admits an automorphism g of order
n. Assume that

ε : 0→ L→ E → F → 0

is a short exact sequence of equivariant hermitian vector bundles on X. If
the underlying sequence of hermitian vector bundles is orthogonally split,
then ε is equivariantly and orthogonally split on X.

Proof. — Denote by f the bundle morphism E → F , by assumption f
is equivariant. Since the underlying sequence of hermitian vector bundles
is orthogonally split, there exists a bundle morphism h from F to E such
that f ◦ h = IdF and F is isometric to its image under this morphism h.
We recall that the g-structure on E (resp. F ) is an isometry σE : g∗E → E

(resp. σF : g∗F → F ) which satisfies certain associativity properties. We
define a g-action on the morphisms of equivariant bundles as follows. Let
u : M → N be a morphism of equivariant bundles, then

g • u := σN ◦ g∗u ◦ σ−1
M

which is still a morphism from M to N . By definition, u is equivariant if
and only if g • u = u. One can easily check that g • (g • u) = g2 • u. Now
since the morphisms f and IdF are both equivariant, we compute

IdF = g • IdF = g • (f ◦ h)

= σF ◦ g∗(f ◦ h) ◦ σ−1
F = σF ◦ g∗f ◦ g∗h ◦ σ−1

F

= σF ◦ g∗f ◦ σ−1
E ◦ σE ◦ g

∗h ◦ σ−1
F = f ◦ (g • h).

Replacing g by gk from k = 2 to k = n, we get a meaningful average of h
and it satisfies the following identity

f ◦

(∑n−1
k=0 g

k • h
n

)
= IdF .

Therefore 1
n

∑n−1
k=0 g

k • h is an equivariant section of f which still makes F
isometric to its image, so we are done. �
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Remark 4.7. — In general, if the action on X is not of finite order or
the base field of X has characteristic dividing n then the proof given for
Lemma 4.6 fails. Nevertheless, we can show that ε is always equivariantly
and orthogonally split on Xg.
Actually, the problem that ε may not be equivariantly and orthogonally

split on the whole manifold X arises because h may not be equivariant.
Note that on the fixed point submanifold Xg, the morphism h |(F |Xg ) is
equivariant if and only if it maps Fζ into Eζ for any ζ ∈ S1. But this is
rather clear because f is equivariant and the restriction of f ◦ h on F |Xg
is exactly the identity map on F |Xg . So we are done.

Together with Lemma 4.5, Lemma 4.6 and Remark 4.4, we have the
following theorem which is an analogue of Theorem 4.3 in the equivariant
setting.

Theorem 4.8. — Let i : Y ↪→ X be an equivariant closed immersion
of equivariant projective manifolds, and let W = W (i) be the deformation
to the normal cone of i. Assume that η is an equivariant hermitian vector
bundle on Y and ξ. is a complex of equivariant hermitian vector bundles
which provides a resolution of i∗η on X. Then there exists a complex of
equivariant hermitian vector bundles tr1(ξ.) on W such that

(i) tr1(ξ.) provides an equivariant resolution of j∗p∗Y (η) on W ;
(ii) tr1(ξ.) |X×{0} is isometric to the original complex ξ.;
(iii) the restriction of tr1(ξ.) to X̃ is equivariantly and orthogonally split;
(iv) the restriction of tr1(ξ.) to P fits an equivariant exact sequence of

equivariant resolutions on P

0 // A. //

��

tr1(ξ.) |P //

��

K(η,NX/Y ) //

��

0

0 // i∞∗η
= // i∞∗(η)

where A. is an equivariantly and orthogonally split complex, K(η,
NX/Y ) is the hermitian Koszul resolution;

(v) when Y = ∅, tr1(ξ.) is the first transgression exact sequence intro-
duced in Remark 2.3;

(vi) let f : X ′ → X be an equivariant morphism of equivariant projec-
tive manifolds which is smooth or transversal to Y . Consider the
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following Cartesian square

Y ′
i′ //

��

X ′

��
Y

i // X

and denote by fW the induced morphism from W ′ = W (i′) to W ,
then we have

f∗W (tr1(ξ.)) = tr1(f∗ξ.).

To end this section, we recall some basic facts concerning the relation
between equivariant setting and non-equivariant setting. Their proofs can
be found in [14, Section 2 and 6.2].

Proposition 4.9. — Let i : Y ↪→ X be an equivariant closed immer-
sion of projective manifolds, and let ig : Yg ↪→ Xg be the induced closed
immersion between fixed point submanifolds. Then we have

(i) the natural morphism NXg/Yg → (NX/Y )g is an isomorphism;
(ii) the natural morphism from W (ig) to the fixed point submani-

fold W (i)g is a closed immersion, this closed immersion induces
the closed immersions P(NXg/Yg ⊕ OYg ) → P(NX/Y ⊕ OY )g and
(̃Xg)→ (X̃)g;

(iii) the fixed point submanifold of P(NX/Y ⊕OY ) is the disjoint union
of P(NXg/Yg ⊕OYg ) and

∐
ζ 6=1 P((NX/Y )ζ);

(iv) the closed immersion i∞,g factors through P(NXg/Yg ⊕ OYg ) and
the other components P((NX/Y )ζ) don’t meet Y . The complex
K(OY , NX/Y )g, obtained by taking the 0-degree part of the Koszul
resolution, provides a resolution of OYg on P(NX/Y ⊕OY )g.

5. Equivariant singular Bott-Chern classes

Assume that X is a µn-equivariant projective manifold and S is a closed
conical subset of T ∗RX0, we fix the following notations:

Ũ(X) =
⊕
p>0

(Dp,p(X)/(Im∂ + Im∂))

Ũ(X,S) =
⊕
p>0

(Dp,p(X,S)/(Im∂ + Im∂)).
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Definition 5.1. — Let i : Y ↪→ X be an equivariant closed immersion
of projective manifolds. Let N be the normal bundle of this immersion and
let hN be an invariant hermitian metric onN , we shall denoteN = (N,hN ).
Moreover, let η = (η, hη) be an equivariant hermitian vector bundle on Y
and let ξ. be a complex of equivariant hermitian vector bundles on X which
provides a resolution of i∗η. The four-tuple

Ξ = (i,N, η, ξ.)

is called an equivariant hermitian embedded vector bundle. Notice that an
exact sequence of equivariant hermitian vector bundles on X is a particular
case of equivariant hermitian embedded vector bundle.

Definition 5.2. — An equivariant singular Bott-Chern class for an
equivariant hermitian embedded vector bundle Ξ = (i,N, η, ξ.) is a class
H̃ ∈ Ũ(Xg) such that

ddcH̃ =
∑
j

(−1)j [chg(ξj)]− ig∗([chg(η)Td−1
g (N)]).

Note that the current∑
j

(−1)jchg(ξj)− ig∗(chg(η)Td−1
g (N))

=
∑
j

(−1)jchg(ξj)− chg(η)Td−1
g (N)δYg

is an element in D∗(Xg, N
∨
g,0), we would like to control the singularities of

the Bott-Chern classes so that they are contained in the same wave front set
and we may do the pull-backs of currents in certain situations. Theorem 3.9
allows us to do this.

Proposition 5.3. — Let Ξ = (i,N, η, ξ.) be an equivariant hermitian
embedded vector bundle, then any equivariant singular Bott-Chern class
for Ξ belongs to Ũ(Xg, N

∨
g,0).

Proof. — Firstly, note that Theorem 3.8 (ii) implies that the natural
map from Ũ(Xg, N

∨
g,0) to Ũ(Xg) is injective. Then the statement in this

proposition does make sense and it follows from Theorem 3.8 (i). �

Now assume that f : X ′ → X is an equivariant morphism of projective
manifolds which is transversal to Y . We write down the following Cartesian
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square

Y ′
i′ //

h

��

X ′

f

��
Y

i // X.

Since h∗N is isomorphic to the normal bundle of the immersion i′ (which
implies that their restrictions to the fixed point submanifolds are also iso-
morphic to each other) and f∗ξ. provides a resolution of i′∗h∗η on X ′, we
know that the notation f∗Ξ = (i′, h∗N,h∗η, f∗ξ.) does make sense. More-
over, we conclude that h∗gNg is isomorphic to the normal bundle of i′g.
Then by Proposition 5.3 and Theorem 3.4, for any equivariant singular
Bott-Chern class H̃ for Ξ, the pull-back f∗g H̃ is well-defined.
To every equivariant hermitian embedded vector bundle Ξ = (i : Y →

X,N, η, ξ.), we may associate two new equivariant hermitian embedded
vector bundles. One is tr1(Ξ) := (j : P1

Y → W (i), NW (i)/P1
Y
, p∗Y η, tr1(ξ.))

concerning the construction of the deformation to the normal cone, the
other one is ΞKos := (i∞ : Y → P(N ⊕OY ), N, η,K(η,N)) concerning the
construction of the Koszul resolution.
Moreover, the direct sum of an equivariant hermitian embedded vector

bundle Ξ = (i : Y → X,N, η, ξ.) with an exact sequence ε of equivariant
hermitian vector bundles on X is defined as Ξ⊕ ε = (i,N, η, ξ.⊕ ε).

Definition 5.4. — Let Σ be a set of equivariant hermitian embedded
vector bundles. We say that Σ satisfies the condition (Hui) if

(i) any exact sequence of equivariant hermitian vector bundles on an
equivariant projective manifold belongs to Σ and Σ is closed un-
der the operation of taking direct sum with an exact sequence of
equivariant hermitian vector bundles;

(ii) for any element Ξ = (i : Y → X,N, η, ξ.) ∈ Σ and for every equi-
variant morphism f : X ′ → X of projective manifolds which is
transversal to Y , we have f∗Ξ ∈ Σ.

(iii) for any element Ξ = (i : Y → X,N, η, ξ.) ∈ Σ, the associated
equivariant hermitian embedded vector bundles tr1(Ξ) and ΞKos
both belong to Σ.

Definition 5.5. — Let Σ be a set of equivariant hermitian embedded
vector bundles which satisfies the condition (Hui). A theory of equivariant
singular Bott-Chern classes for Σ is an assignment which, to each Ξ = (i :
Y → X,N, η, ξ.) ∈ Σ, assigns a class of currents

T (Ξ) ∈ Ũ(Xg)
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satisfying the following properties.
(i) (Differential equation) The following equality holds

ddcT (Ξ) =
∑
j

(−1)j [chg(ξj)]− ig∗([chg(η)Td−1
g (N)]).

(ii) (Functoriality) For every equivariant morphism f : X ′ → X of
projective manifolds which is transversal to Y , we have

f∗g T (Ξ) = T (f∗Ξ).

(iii) (Normalization) Let A. be an equivariantly and orthogonally split
exact sequence of equivariant hermitian vector bundles. Then T (Ξ)
= T (Ξ ⊕ A.). Moreover, if X = Spec(C) is one point, Y = ∅ and
ξ. = 0, then T (Ξ) = 0.

Remark 5.6. — (i) When Y = ∅ and ξ. is an exact sequence of equivari-
ant hermitian vector bundles on X, the three properties in the definition
above imply that

T (Ξ) = c̃hg(ξ.)
where c̃hg is the equivariant Bott-Chern secondary characteristic class as-
sociated to chg.

(ii) According to Definition 5.4, the properties (ii) and (iii) described in
the definition above are reasonable.

Throughout the rest of this section we shall assume that Σ is a suit-
able set (big enough) of equivariant hermitian embedded vector bundles
and we shall also assume the existence of a theory of equivariant singular
Bott-Chern classes for Σ. We first show the compatibility of equivariant sin-
gular Bott-Chern classes with exact sequences and equivariant Bott-Chern
secondary characteristic classes.
We fix an equivariant closed immersion i : Y ↪→ X of projective mani-

folds. Let
χ : 0→ ηn → · · · → η1 → η0 → 0

be an exact sequence of equivariant hermitian vector bundles on Y , and
assume that we are given a family of equivariant hermitian embedded vec-
tor bundles {Ξj = (i,N, ηj , ξj,·)}nj=0 which fit the following commutative
diagram

0 // ξn,· //

��

· · · // ξ1,·
//

��

ξ0,·
//

��

0

0 // i∗ηn // · · · // i∗η1 // i∗η0 // 0
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with exact rows. For each k, we write εk for the exact sequence

0→ ξn,k → · · · → ξ1,k → ξ0,k → 0.

Proposition 5.7. — Let notations and assumptions be as above, then
we have the following equality in Ũ(Xg)

T

( ⊕
j even

Ξj

)
−T

(⊕
j odd

Ξj

)
=
∑
k

(−1)k[c̃hg(εk)]− ig∗([Td−1
g (N)c̃hg(χ)]).

Proof. — According to Theorem 4.8 (v), we have the first transgression
exact sequences tr1(χ) on P1

Y and tr1(εk) on P1
X for each k. Denote by

l : P1
Y → P1

X the induced morphism, then there exists an exact sequence of
exact sequences

· · · → tr1(ε1)→ tr1(ε0)→ l∗tr1(χ)→ 0.

We fix the following notations

tr1(χ)+ =
⊕
j even

tr1(χ)j , tr1(χ)− =
⊕
j odd

tr1(χ)j ,

tr1(εk)+ =
⊕
j even

tr1(εk)j , tr1(εk)− =
⊕
j odd

tr1(εk)j ,

then

tr1(Ξ)+ := (l : P1
Y → P1

X , p
∗
YN, tr1(χ)+, tr1(ε.)+),

tr1(Ξ)− := (l : P1
Y → P1

X , p
∗
YN, tr1(χ)−, tr1(ε.)−)

are two equivariant hermitian embedded vector bundles.
By the functoriality of the first transgression exact sequences, we obtain

that

tr1(Ξ)+ |X×{0}=
⊕
j even

tr1(Ξj), tr1(Ξ)− |X×{0}=
⊕
j odd

tr1(Ξj).

Note that for any exact sequence of equivariant hermitian vector bundles,
its first transgression exact sequence is equivariantly and orthogonally split
at infinity. So we have an isometry

tr1(Ξ)+ |X×{∞}∼= tr1(Ξ)− |X×{∞} .

TOME 62 (2012), FASCICULE 4



1460 Shun TANG

Since the wave front sets of the currents [log | z |2] and T (tr1(Ξ±)) do
not intersect (cf. [5, p. 266]), by [12, Thm. 8.2.10], their products are well-
defined currents. Then in Ũ(P1

Xg
), we have

0 = ∂

2πi{∂ log | z |2 ·(T (tr1(Ξ)+)− T (tr1(Ξ)−))}

+ ∂

2πi{log | z |2 ·∂(T (tr1(Ξ)+)− T (tr1(Ξ)−))}

= ( ∂∂2πi log | z |2) · (T (tr1(Ξ)+)− T (tr1(Ξ)−))

− log | z |2 · ∂∂2πi (T (tr1(Ξ)+)− T (tr1(Ξ)−))

= (δ0 − δ∞) · (T (tr1(Ξ)+)− T (tr1(Ξ)−))

− log | z |2 ·
∑
k

(−1)k(chg(tr1(εk)+)− chg(tr1(εk)−))

+ log | z |2 ·lg∗{chg(tr1(χ)+)Td−1
g (p∗YN)− chg(tr1(χ)−)Td−1

g (p∗YN)}.

Finally, integrating both two sides of the equality above over P1 and using
the first construction of equivariant Bott-Chern secondary classes, we get
the equality in this proposition. �

A totally similar argument gives a proof of the following proposition.

Proposition 5.8. — Let Ξ0 = (i,N0, η, ξ.) be an equivariant hermitian
embedded vector bundle with N0 = (N,h0). Assume that h1 is another
invariant metric on N , we write N1 = (N,h1) and Ξ1 = (i,N1, η, ξ.), then
we have

T (Ξ0)− T (Ξ1) = −ig∗
[
chg(η)T̃d−1

g (N,h0, h1)
]
.

We now turn to a special case of closed immersion of equivariant projec-
tive manifolds, namely the zero section embedding discussed before Defi-
nition 4.2. Precisely speaking, let Y be an equivariant projective manifold
and let η,N be two equivariant hermitian vector bundles on Y , we denote
P = P(N ⊕ OY ). Let πP : P → Y be the canonical projection and let
i∞ : Y → P be the zero section embedding. As in Definition 4.2, we shall
write K(η,N) for the hermitian Koszul resolution. We have already know
that ΞKos(η,N) = (i∞, N, η,K(η,N)) is an equivariant hermitian embed-
ded vector bundle associated to Ξ. Sometimes we just write it as K(η,N)
for simplicity.

Theorem 5.9. — Let Σ be a set of equivariant hermitian embedded
vector bundles which satisfies the condition (Hui). Assume that T is a
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theory of equivariant singular Bott-Chern classes for Σ. Then the current
(πP g)∗T (K(η,N)) is ddc-closed. Moreover, the cohomology class that it
represents does not depend on the metrics on η and N so that it determines
a characteristic class CT (η,N) ∈

⊕
p>0 H

p,p(Yg).

Proof. — First note that the push-forwards for currents commute with
differentials by definition. Then we have

ddc((πP g)∗T (K(η,N))) = (πP g)∗(ddcT (K(η,N)))

= (πP g)∗(
∑
k

(−1)k[chg(∧kQ
∨)(πP g)∗chg(η)]− i∞,g∗[chg(η)Td−1

g (N)])

= ((πP g)∗[crkQg (Qg)Td−1
g (Q)]− [Td−1

g (N)]) · [chg(η)].

We claim that (πP g)∗[crkQg (Qg)Td−1
g (Q)] = [Td−1

g (N)] so that the current
(πP g)∗T (K(η,N)) is ddc-closed. Actually, one first need to notice that we
have the following tautological exact sequence on P

0→ O(−1)→ π∗P (N ⊕OY )→ Q→ 0.

Then, by restricting to the submanifold P0 = P(Ng ⊕ OYg ), we get a new
exact sequence

0→ O(−1) |P0→ πP
∗
g(N |Yg ⊕OYg ) |P0→ Q |P0→ 0.

The 0-degree part of the exact sequence above is the tautological exact
sequence on P0. Taking the non-zero degree part of this exact sequence we
get an isometry Q⊥ |P0

∼= (πP0)∗(N⊥). Notice that the hermitian complex
∧•Q∨ is equivariantly and orthogonally split over P(N), so the support of
crkQg (Qg)Td−1

g (Q) is contained in P0. Moreover, by [6, Cor. 3.8] we know
that

(πP0)∗(crkQg (Qg |P0)Td−1(Qg |P0)) = Td−1(Ng).

Then we may compute

(πP g)∗(crkQg (Qg)Td−1
g (Q)) = (πP0)∗(crkQg (Qg)Td−1

g (Q))

= (πP0)∗(crkQg (Qg |P0)Td−1(Qg |P0)Td−1
g (Q⊥ |P0))

= (πP0)∗(crkQg (Qg |P0)Td−1(Qg |P0)Td−1
g ((πP0)∗(N⊥))

= Td−1(Ng)Td−1
g (N⊥) = Td−1

g (N)

which completes the proof of the claim.
Now let h0 and h1 (resp. g0 and g1) be two invariant hermitian metrics

on N (resp. η). We write N i = (N,hi) and ηi = (η, gi). We denote also by
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h0 and h1 the metrics induced on Q∨. Then by Proposition 5.7, we have

(πP g)∗(T (K(η0, N0))− T (K(η1, N0)))

= (πP g)∗
[∑
k

(−1)kchg(∧kQ
∨
0 )πP ∗g c̃hg(η, g0, g1)

]
−[Td−1

g (N0)c̃hg(η, g0, g1)].

So using the projection formula and our claim before, we get

(πP g)∗(T (K(η0, N0)) = (πP g)∗(T (K(η1, N0)).

On the other hand, applying Proposition 5.7 and Proposition 5.8, we
have

(πP g)∗(T (K(η1, N0))− T (K(η1, N1)))

= (πP g)∗
[∑

k

(−1)k c̃hg(∧kQ∨,h0,h1)πP ∗gchg(η1)
]
−[chg(η1)T̃d−1

g (N,h0,h1)]

=
{

(πP g)∗
∑
k

(−1)k[c̃hg(∧kQ∨, h0, h1)]− [T̃d−1
g (N,h0, h1)]

}
· [chg(η1)].

We construct the first transgression exact sequence of 0→ 0→ (N,h1)→
(N,h0) → 0 on P1

Y so that we may have an equivariant hermitian vector
bundle (Ñ , hÑ ) on P1

Y such that

(Ñ , hÑ ) |Y×{0}= (N,h1), (Ñ , hÑ ) |Y×{∞}= (N,h0).

Now we apply the Koszul construction to the bundles p∗Y η1 and (Ñ , hÑ )
and denote by πW the canonical projection from W := P(Ñ ⊕OP1

Y
) to P1

Y .
By the universal properties of projective space bundle and fibre product,
P(Ñ⊕OP1

Y
) = P(p∗YN⊕p∗YOY ) which is isomorphic to P(N⊕OY )×P1 and

the tautological quotient bundle on W is isomorphic to Q̃ whose definition
is similar to that of Ñ . Thus we have

(πP g)∗
∑
k

(−1)k[c̃hg(∧kQ∨, h0, h1)]

= (πP g)∗
∑
k

(−1)k(pP g)∗
(
[− log | z |2] · [chg(∧k(Q̃, hQ̃))]

)
= (pY g)∗(πWg)∗

∑
k

(−1)k
(
[− log | z |2] · [chg(∧k(Q̃, hQ̃))]

)
= (pY g)∗

(
[− log | z |2] · [Td−1

g (Ñ , hÑ )]
)

= [T̃d−1
g (N,h0, h1)].

So we have proved that (πP g)∗T (K(η,N)) dose not depend on the choices
of the metrics. Thus we have a well-defined class CT (η,N). The fact that
this characteristic class CT (η,N) belongs to

⊕
p>0 H

p,p(Yg) follows from
[8, Theroem 1.2.2 (iii)]. �
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6. Classification of theories of equivariant singular
Bott-Chern classes

The aim of this section is to give some results concerning the classification
of all possible theories of equivariant singular Bott-Chern classes. We shall
prove that a theory of equivariant singular Bott-Chern classes T is totally
determined by the characteristic class CT introduced in last section. Our
main theorem is the following.

Theorem 6.1. — Let Σ be a set of equivariant hermitian embedded
vector bundles which satisfies the condition (Hui). Assume that T and T ′
are two theories of equivariant singular Bott-Chern classes for Σ. Then
T = T ′ if and only if for any (i,N, η, ξ.) ∈ Σ, CT (η,N) = CT ′(η,N).

Proof. — One direction is clear. For the other one, we assume that CT =
CT ′ . Let Ξ = (i : Y → X,N, η, ξ.) be an element in Σ. As before, we
denote by W the deformation to the normal cone and denote by pW the
composition of pX and the blow-down map π. Moreover, we write p

X̃
: X̃ →

X and pP : P → X for the morphisms induced by pW . The morphism pP
can be factored as i ◦ πP .

The normal bundle of the immersion j : Y × P1 → W is isomorphic to
p∗YN ⊗ q∗YO(−1). We endow it with the hermitian metric induced by the
metric on N and the Fubini-Study metric on O(−1), the corresponding
hermitian vector bundle will be denoted by N ′.
By Theorem 4.8, the restriction of tr1(ξ.) to X × {0} is isometric to ξ.

and the restriction of tr1(ξ.) to X̃ is equivariantly and orthogonally split.
Moreover, the restriction of tr1(ξ.) to P fits an exact sequence

0→ A.→ tr1(ξ.) |P→ K(η,N)→ 0

where A. is an equivariantly and orthogonally split exact sequence. We de-
note by εk the exact sequence of the following exact sequence of equivariant
hermitian vector bundles

0→ Ak → tr1(ξ.)k |P→ K(η,N)k → 0.

Next, we write U for the current [− log | z |2] on P1 associated to a locally
integrable differential form. Its pull-back to Wg is also locally integrable
hence defines a current on Wg which will be also denoted by U . Note that
qW (ig) = qWg

◦iW (ig) where iW (ig) is the natural open and closed immersion
from W (ig) to Wg and the wave front set of T (tr1(Ξ)) is contained in the
conormal bundle N ′∨g . Hence the wave front sets of U and T (tr1(Ξ)) are
disjoint so that their product U ·T (tr1(Ξ)) is a well-defined current on Wg.
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Then, using the properties of equivariant singular Bott-Chern classes in
Definition 5.5, the equality

0 = ddc(pWg)∗(U · T (tr1(Ξ)))

= (p
X̃g

)∗(T (tr1(Ξ)) |
X̃g

) + (pP g)∗(T (tr1(Ξ)) |Pg )− T (Ξ)

− (pWg)∗(U ·
(∑

k

(−1)kchg(tr1(ξ.)k)− jg∗(chg(p
∗
Y η)Td−1

g (N ′)))
)

holds in Ũ(Xg). Notice that

T (tr1(Ξ)) |
X̃g

= T (tr1(Ξ) |
X̃

) = c̃hg(tr1(ξ.) |
X̃

) = 0

and by Proposition 5.7, we have

T (tr1(Ξ)) |Pg= T (tr1(Ξ) |P ) = T (K(η,N))−
∑
k

(−1)k[c̃hg(εk)].

Moreover, using the factorization of pP , we have

(pP g)∗T (K(η,N)) = ig∗(πP g)∗T (K(η,N)) = ig∗CT (η,N).

By the properties of the Fubini-Study metric, chg(p∗Y η)Td−1
g (N ′) is invari-

ant under the involution on P1 which sends z to 1/z. Thus we obtain

(pWg)∗(U · (jg∗(chg(p
∗
Y η)Td−1

g (N ′))))

= ig∗(pY g)∗(U · (chg(p
∗
Y η)Td−1

g (N ′))) = 0

since the current U really changes its sign under the involution z → 1/z.
Gathering all computations above we finally get the following current equa-
tion

T (Ξ) = − (pWg)∗(U ·
∑
k

(−1)kchg(tr1(ξ.)k))

−
∑
k

(−1)k(pP g)∗[c̃hg(εk)] + ig∗CT (η,N).

A similar current equation for T ′ can be obtained in the same way. By our
assumption we have CT (η,N) = CT ′(η,N), so that T (Ξ) = T ′(Ξ). This
completes the proof. �

From the proof of Theorem 6.1, it is natural to guess that if we are given
an explicit definition of the equivariant characteristic class C, we then get a
theory of equivariant singular Bott-Chern classes T such that CT is exactly
C. We prove this conjecture in the following theorem.
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Theorem 6.2. — Let Σ be a set of equivariant hermitian embedded
vector bundles which satisfies the condition (Hui). Assume that C is an
equivariant characteristic class for pairs of vector bundles (η,N) which
appear in the elements (i,N, η, ξ.) ∈ Σ. Then there exists a theory of
equivariant singular Bott-Chern classes for Σ such that CT = C.

Proof. — For any element Ξ = (i : Y → X,N, η, ξ.) ∈ Σ, we define

T (Ξ) = −(pWg)∗(U ·
∑
k

(−1)kchg(tr1(ξ.)k))

−
∑
k

(−1)k(pP g)∗[c̃hg(εk)] + ig∗C(η,N).

Our first aim is to prove that such T does not depend on the choice of the
metric on tr1(ξ.) or on A. and that such T satisfies all properties in the
definition of a theory of equivariant singular Bott-Chern classes.
We denote by hk and h′k (resp. gk and g′k) two invariant hermitian metrics

on tr1(ξ.)k (resp. Ak) such that the resulting hermitian vector bundles all
satisfy the requirements in Theorem 4.8. Then, in Ũ(Xg), we have

∑
k

(−1)k(pP g)∗[c̃hg(εk)]−
∑
k

(−1)k(pP g)∗[c̃hg(ε′k)]

=
∑
k

(−1)k(pP g)∗[c̃hg(Ak, gk, g′k)]

−
∑
k

(−1)k(pP g)∗[c̃hg(tr1(ξ.)k |P , hk, h′k)].

The first term of the right-hand side vanishes due to Proposition 5.7 and
the assumption that the complex A. is orthogonally split for both metrics.
On the other hand, we have by definition

(pWg)∗
(
U ·
∑
k

(−1)kchg(tr1(ξ.)k, hk)
)

− (pWg)∗
(
U ·
∑
k

(−1)kchg(tr1(ξ.)k, h′k)
)

= (pWg)∗
(
U ·
∑
k

(−1)kddcc̃hg(tr1(ξ.)k, hk, h′k)
)
.
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But, in Ũ(Xg), we have

(pWg)∗
(
U ·
∑
k

(−1)kddcc̃hg(tr1(ξ.)k, hk, h′k)
)

=
∑
k

(−1)k(p
X̃g

)∗[c̃hg(tr1(ξ.)k, hk, h′k)] |
X̃g

+
∑
k

(−1)k(pP g)∗[c̃hg(tr1(ξ.)k, hk, h′k)] |Pg

−
∑
k

(−1)k[c̃hg(tr1(ξ.)k, hk, h′k)] |X×{0} .

The last term of the right-hand side vanishes because the metrics hk and
h′k agree each other on X × {0}. The first term vanishes due to the as-
sumption that tr1(ξ.) |

X̃
is orthogonally split with both metrics. Therefore,

combining the two computations above, we know that the definition of T
is independent of the metrics on A. and tr1(ξ.).

We next prove that the definition of T satisfies the three properties in
the definition of a theory of equivariant singular Bott-Chern classes. For
the differential equation, we compute

ddcT (Ξ) =−
∑
k

(−1)k(p
X̃g

)∗chg(tr1(ξ.)k |X̃)−
∑
k

(−1)k(pP g)∗chg(tr1(ξ.)k |P)

+
∑
k

(−1)kchg(tr1(ξ.)k |X×{0})

−
∑
k

(−1)k(pP g)∗(chg(Ak) + chg(K(η,N)k)−chg(tr1(ξ.)k |P )).

Using the fact that A. and tr1(ξ.) |
X̃

are equivariantly and orthogonally
split we obtain

ddcT (Ξ) =
∑
k

(−1)kchg(ξk)−
∑
k

(−1)k(pP g)∗chg(K(η,N)k)

=
∑
k

(−1)k[chg(ξk)]− (pP g)∗[crkQg (Qg)Td−1
g (Q)chg(π∗P η)]

=
∑
k

(−1)k[chg(ξk)]− ig∗[chg(η)Td−1
g (N)].

Secondly, the functoriality property for our definition of T follows from
the functoriality property for chg, c̃hg and C.
We now prove the normalization property. We first assume that Y = ∅

and ξ. is an equivariantly and orthogonally split exact sequence. This means
that if we writeKi = Ker(di : ξi → ξi−1), then ξi is isometric toKi⊕Ki−1.
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Hence by the construction of tr1(ξ.), we know that

tr1(ξ.)i = p∗XKi ⊗ q∗XO(i)⊕ p∗XKi−1 ⊗ q∗XO(i− 1).

This formula implies that
∑
k(−1)kchg(tr1(ξ.)k) is invariant under the in-

volution on P1 which sends z to 1/z. So the first term in the definition for
T vanishes. It is clear that the other two terms also vanish in this special
case. Hence we obtain T (ξ.) = 0. Now let Ξ = (i : Y → X,N, η, ξ.) and let
B. be an equivariantly and orthogonally split exact sequence of equivariant
hermitian vector bundles on X. By [9, Section 1.1], we have

tr1(ξ.⊕B.) = tr1(ξ.)⊕ π∗tr1(B.).

In order to compute T (Ξ⊕B.), we consider the following exact sequences

ε′k : 0→ Ak ⊕ π∗tr1(B.)k |P→ tr1(ξ.)k ⊕ π∗tr1(B.)k |P→ K(η,N)k → 0.

By the additivity of equivariant Bott-Chern secondary characteristic clas-
ses, we have c̃hg(εk) = c̃hg(ε′k). Again using the additivity of equivariant
Chern classes, we finally get

T (Ξ⊕B.)− T (B.) = 0.

At last, we should prove that the equivariant characteristic class CT is ex-
actly equal to C. Note that the arguments above show that T is really a the-
ory of equivariant singular Bott-Chern classes, then as what we have seen
in the proof of Theorem 6.1, for any element Ξ = (i : Y → X,N, η, ξ.) ∈ Σ
we always have

T (Ξ) = − (pWg)∗(U ·
∑
k

(−1)kchg(tr1(ξ.)k))

−
∑
k

(−1)k(pP g)∗[c̃hg(εk)] + ig∗CT (η,N).

In particular, for the Koszul construction (i : Y → P(N ⊕ OY ), N, η,
K(η,N)), we have

T (K(η,N)) = −(pWg)∗
(
U ·
∑
k

(−1)kchg(tr1(K(η,N)k)
)

−
∑
k

(−1)k(pP g)∗[c̃hg(εk)] + ig∗CT (η,N).

Comparing with the definition of T via the characteristic class C, we get
ig∗CT (η,N) = ig∗C(η,N) and hence CT (η,N) = C(η,N) after composing
(πP g)∗. This completes the proof. �
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To end this section, we shall give an example of the set of equivariant
hermitian embedded vector bundles which satisfies the condition (Hui) and
we shall also give a general way to construct the characteristic class C.

Definition 6.3. — Let Ξ = (i : Y → X,N, η, ξ.) be an equivariant her-
mitian embedded vector bundle. The equivariant rank of Ξ is the sequence
of locally constant functions (rkηζ)ζ∈S1 . The equivariant codimension of Ξ
is the sequence of locally constant functions (rkNζ)ζ∈S1 . When Y = ∅, we
shall say that an exact sequence of equivariant hermitian vector bundles on
X has arbitrary equivariant rank and arbitrary equivariant codimension.

Proposition 6.4. — Let (tζ)ζ∈S1 and (sζ)ζ∈S1 be two sequences of
natural numbers. Let Σ be a set consisting of all equivariant hermitian
embedded vector bundles of equivariant rank less than or equal to (tζ)ζ∈S1

and of equivariant codimension less than or equal to (sζ)ζ∈S1 . Then Σ
satisfies the condition (Hui).

Proof. — The first requirement in the condition (Hui) is naturally ful-
filled by definition. For the second requirement, let (i : Y → X,N, η, ξ.) be
an element in Σ and let f : X ′ → X be an equivariant morphism which is
transversal to Y . Then f−1(Y ) either is empty set or has the same codi-
mension as Y . In the first case, we are done. In the second case, we write
down the following Cartesian square

Y ′
i′ //

h

��

X ′

f

��
Y

i // X,

then h∗N ∼= N ′. Note that (h∗η) |Y ′
g
= h∗g(η |Yg ) and (h∗N) |Y ′

g
= h∗g(N |Yg ),

we have the inequalities (rk(h∗η)ζ)ζ∈S1 6 (tζ)ζ∈S1 and (rkN ′ζ)ζ∈S1 6
(sζ)ζ∈S1 . This means that the equivariant hermitian embedded vector bun-
dle (i′ : Y ′ → X ′, N ′, h∗η, f∗ξ.) is also in Σ. For the last requirement in
the condition (Hui), we again let Ξ = (i : Y → X,N, η, ξ.) be an ele-
ment in Σ. Then the associated Koszul construction ΞKos clearly has the
same equivariant rank and equivariant codimension as Ξ. Concerning the
construction of the deformation to the normal cone, tr1(Ξ) clearly has the
same equivariant rank as Ξ. Moreover, the normal bundle of Y ×P1 inW (i)
is N ′ = p∗YN ⊗ q∗YO(−1). Note that we assume that P1 admits the trivial
g-action, then (rkNζ)ζ∈S1 = (rkN ′ζ)ζ∈S1 so that tr1(Ξ) also has the same
equivariant codimension as Ξ. Therefore, we have that tr1(Ξ) and ΞKos are
both elements in Σ. �
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We finally give a general construction of the characteristic class C for
the set Σ in last proposition.

Definition 6.5. — Let (ϕζ)ζ∈S1 be a family of GL(C)-invariant formal
power series such that ϕζ ∈ C[[glrkηζ (C)]]. And let (ψζ)ζ∈S1 be a family of
GL(C)-invariant formal power series such that ψζ ∈ C[[glrkNζ (C)]]. More-
over, let φ ∈ C[[

⊕
ζ∈S1 C⊕

⊕
ζ∈S1 C]] be any formal power series. We define

the equivariant character form φg(η,N) as

φg(η,N) = φ
((
ϕζ

(
− Ωηζ

2πi

))
ζ∈S1

,
(
ψζ

(
− ΩNζ

2πi

))
ζ∈S1

)
.

The cohomology class that φg(η,N) represents is independent of the choices
of the metrics, hence it define a characteristic class. We denote it by
C(η,N).

Then the following corollary follows immediately from Theorem 6.1 and
Theorem 6.2.

Corollary 6.6. — Let Σ be the set of equivariant hermitian embedded
vector bundles defined in Proposition 6.4. Let C be an equivariant charac-
teristic class for pairs of equivariant hermitian vector bundles given in the
way as in Definition 6.5. Then there exists a unique theory of equivariant
singular Bott-Chern classes T for Σ such that CT is equal to C.

7. Compatibility with the projection formula

As usual, let Σ be a set of equivariant hermitian embedded vector bun-
dles which satisfies the condition (Hui). In this section, we shall give the
sufficient and necessary condition for a theory of equivariant singular Bott-
Chern classes to be compatible with the projection formula. This can be
regarded as an example of how the properties of the characteristic class CT
are reflected in the corresponding theory of equivariant singular Bott-Chern
classes.
Now, let Ξ = (i : Y → X,N, η, ξ.) be an equivariant hermitian embedded

vector bundle in Σ. For any equivariant hermitian vector bundle κ on X,
we define

Ξ⊗ κ = (i : Y → X,N, η ⊗ i∗κ, ξ.⊗ κ).
Note that Ξ ⊗ κ is also an equivariant hermitian embedded vector bundle
according to the projection formula. We assume that Σ is big enough so
that Ξ⊗κ and all equivariant hermitian embedded vector bundle appearing
below belong to it.
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Definition 7.1. — Let notations and assumptions be as above. A the-
ory of equivariant singular Bott-Chern classes T for Σ is said to be com-
patible with the projection formula if

T (Ξ⊗ κ) = T (Ξ) · chg(κ).

Proposition 7.2. — Let notations and assumptions be as above. Then

T (Ξ⊗ κ)− T (Ξ) · chg(κ) = ig∗(CT (η ⊗ i∗κ,N))− ig∗(CT (η,N)) · chg(κ).

Proof. — As before, denote by pW the composition of the blow-down
map π and the projection pX : X × P1 → X. Then by the construction of
tr1(·), we have tr1(ξ.⊗ κ) = tr1(ξ.)⊗ p∗Wκ. Then, on one hand, we have

(pWg)∗
(
U ·
∑
k

(−1)kchg(tr1(ξ.⊗ κ)k)
)

= (pWg)∗
(
U ·
∑
k

(−1)kchg(tr1(ξ.)k)pW ∗gchg(κ)
)

= (pWg)∗
(
U ·
∑
k

(−1)kchg(tr1(ξ.)k))chg(κ
)
.

On the other hand, the Koszul resolution of i∗(η ⊗ i∗κ) is given by

K(η ⊗ i∗κ,N) = K(η,N)⊗ p∗Pκ.

Then for each k, if we write εk ⊗ p∗Pκ for the exact sequence

0→ Ak ⊗ p∗Pκ→ tr1(ξ.⊗ κ)k |P→ K(η,N)k ⊗ p∗Pκ→ 0,

we will get

(pP g)∗[c̃hg(εk ⊗ p∗Pκ)]

= (pP g)∗[c̃hg(εk)(pP g)∗chg(κ)] = (ppg)∗[c̃hg(εk)] · [chg(κ)].

Combing the two computations above and the unique expression of T via
CT , we get the equality in the statement of this proposition. �

Definition 7.3. — An equivariant characteristic class C for pairs of
equivariant hermitian vector bundles is said to be compatible with the
projection formula if it satisfies

C(η,N) = C(OY , N) · chg(η).

The following is the main theorem in this section.

Theorem 7.4. — A theory of equivariant singular Bott-Chern classes T
for Σ is compatible with the projection formula if and only if the associated
characteristic class CT is so.
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Proof. — We first assume that CT is compatible with the projection
formula, then we compute

ig∗CT (η ⊗ i∗κ,N) = ig∗(CT (OY , N) · chg(η ⊗ i∗κ))
= ig∗(CT (OY , N) · chg(η) · ig∗chg(κ))
= ig∗(CT (OY , N) · chg(η)) · chg(κ)
= ig∗(CT (η,N)) · chg(κ).

Therefore, by Proposition 7.2, T is compatible with the projection formula.
For the other direction, assume that T is compatible with the projection

formula. Using the definition of CT , we compute

CT (η,N) = (πP g)∗(T (K(η,N))) = (πP g)∗(T (K(OY , N)⊗ π∗pη))

= (πP g)∗(T (K(OY , N)) · πP ∗gchg(η))

= (πP g)∗(T (K(OY , N))) · chg(η)
= CT (OY , N) · chg(η).

This implies that CT is compatible with the projection formula. �

8. Uniqueness of equivariant singular Bott-Chern classes

Let Σ be any set of equivariant hermitian embedded vector bundles which
satisfies the condition (Hui) and whose elements have bounded equivariant
ranks and bounded equivariant codimensions. By Corollary 6.6, it is pos-
sible to attach Σ a theory of equivariant singular Bott-Chern classes. But
unfortunately, such a theory is not unique. Our aim in this section is to
show that if we add another axiom to Definition 5.5, we will get a unique
theory of equivariant singular Bott-Chern classes for Σ without the limi-
tation of the bounds of equivariant rank and codimension. Such a theory
will be called a theory of equivariant homogeneous singular Bott-Chern
classes. We shall also compare it with the theory of equivariant singular
Bott-Chern currents defined by J.-M. Bismut in [2].
Our starting point is again the Koszul construction. Let Y be an equivari-

ant projective manifold. Assume that we are given two equivariant hermit-
ian vector bundles η and N on Y . Let P = P(N ⊕OY ), P0 = P(Ng ⊕OYg )
and let i∞ be the zero section embedding. Suppose that T is a theory of
equivariant singular Bott-Chern classes for Σ. Then by definition, we have

ddcT (K(η,N))=crkQg (Qg |P0)Td−1
g (Q)chg(π∗P η)−(i∞,g)∗(chg(η)Td−1

g (N)).
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Therefore, the class

ẽT (η,N) := T (K(η,N)) · Tdg(Q) · ch−1
g (πP ∗η)

satisfies the following differential equation

ddcẽT (η,N) = crkQg (Qg |P0)− δYg .

Note that by our descriptions in Proposition 4.9 (iii) and (iv), the current
crkQg (Qg |P0)−δYg belongs to Im(DrkQg,rkQg (P0) ↪→ DrkQg,rkQg (Pg)). Then
it is natural to introduce the following definition.

Definition 8.1. — Let T be a theory of equivariant singular Bott-
Chern classes for some Σ. The class ẽT (η,N) is called the Euler-Green
class associated to T . We say that T is homogeneous if

ẽT (η,N) ∈ Ũ rkQg−1,rkQg−1(P0) := DrkQg−1,rkQg−1(P0)/(Im∂ + Im∂)

for any element (i : Y → X,N, η, ξ.) ∈ Σ.

Remark 8.2. — If T is compatible with the projection formula, then the
Euler-Green class ẽT (η,N) has nothing to do with the first variable.

Theorem 8.3. — Let Σ be any set of equivariant hermitian embed-
ded vector bundles which satisfies the condition (Hui). Then there exists
a unique theory of equivariant homogeneous singular Bott-Chern classes
for Σ.

Proof. — We shall use a uniqueness theorem of the Euler-Green class in
non-equivariant case. That’s the following.

Lemma 8.4. — Let i∞ : Y → P = P(N ⊕OY ) be a zero section embed-
ding in non-equivariant setting. Denote D∞ = P(N). Then there exists a
unique class ẽ(P,Q, i∞) ∈ Ũ rkQ−1,rkQ−1(P ) such that

(i) ddcẽ(P,Q, i∞) = crkQ(Q)− δY ;
(ii) ẽ(P,Q, i∞) |D∞= 0.

We refer to [6, Lemma 9.4] for a proof of this lemma. One just need
to pay attention to two points. Firstly, the restriction isomorphism on
analytic Deligne cohomology should be changed to HrkQ−1,rkQ−1(P ) ∼=
HrkQ−1,rkQ−1(D∞) on Dolbeault cohomology which can be deduced from
the classical projective bundle theorem for deRham cohomology and Hodge
decomposition. Secondly, the existence of a preimage of crkQ(Q)−δY under
ddc is a consequence of [8, Theorem 1.2.1]. What we want to indicate is
that this lemma naturally leads to a similar result in the equivariant set-
ting by using Proposition 4.9 (iii) and (iv). The result reads: there exists a
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unique class ẽ(P,Q, i∞) ∈ Im(Ũ rkQg−1,rkQg−1(P0) ↪→ Ũ rkQg−1,rkQg−1(Pg))
such that ddcẽ(P,Q, i∞) = crkQg (Qg |P0) − δYg and ẽ(P,Q, i∞) |D∞,g

= 0.
Moreover, by convention, we shall identify D−1,−1(Pg) with the zero space.
Now assume that T is a theory of equivariant homogeneous singular

Bott-Chern classes. Since the restriction of the Koszul resolution K(η,N)
to D∞,g is equivariantly and orthogonally split, then we have the equal-
ity T (K(η,N)) |D∞,g

= 0. Thus the restriction of the Euler-Green class
ẽT (η,N) to D∞,g is equal to 0 by definition. Therefore, by uniqueness, we
get ẽT (η,N) = ẽ(P,Q, i∞) and hence

T (K(η,N)) = ẽ(P,Q, i∞) · Td−1
g (Q) · chg(π∗P η).

This equation implies that the characteristic class

CT (η,N) = (πP g)∗T (K(η,N))

is independent of the theory T . So the uniqueness of T follows from Theo-
rem 6.1.
For the existence, we define

C(η,N) = (πP g)∗(ẽ(P,Q, i∞) · Td−1
g (Q) · chg(π∗P η)).

By the differential equation that ẽ(P,Q, i∞) satisfies, one can easily prove
that C(η,N) is ddc-closed. This is the only important point for us to use
the same principle as in the proof of Theorem 6.2 to define a theory of
equivariant homogeneous singular Bott-Chern classes T such that CT = C.
The last equality says that C(η,N) is actually independent of the choices
of the metrics since CT is so. Thus we can just write

C(η,N) = (πP g)∗(ẽ(P,Q, i∞) · Td−1
g (Q) · chg(π∗P η)).

And this is compatible with Theorem 6.2. �

Since the class ẽ(P,Q, i∞) has nothing to do with the vector bundle η,
the following remark looks more natural.

Remark 8.5. — If T is compatible with the projection formula, then T
is homogeneous if and only if ẽT (OY , N) = ẽ(P,Q, i∞).

We reformulate Theorem 8.3 in an axiomatical way.

Theorem 8.6. — There exists a unique way to associate to each equi-
variant hermitian embedded vector bundle Ξ = (i : Y → X,N, η, ξ.) a class
of currents

Th(Ξ) ∈ Ũ(Xg, N
∨
g,0)

which we call equivariant homogeneous singular Bott-Chern class, satisfy-
ing the following properties
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(i) (Differential equation) The following equality holds

ddcTh(Ξ) =
∑
j

(−1)j [chg(ξj)]− ig∗([chg(η)Td−1
g (N)]).

(ii) (Functoriality) For every equivariant morphism f : X ′ → X of
projective manifolds which is transversal to Y , we have

f∗g T
h(Ξ) = Th(f∗Ξ).

(iii) (Normalization) Let A. be an equivariantly and orthogonally split
exact sequence of equivariant hermitian vector bundles. Write Ξ⊕
A. = (i,N, η, ξ. ⊕ A.). Then Th(Ξ) = Th(Ξ ⊕ A.). Moreover, if
X = Spec(C) is one point, Y = ∅ and ξ. = 0, then Th(Ξ) = 0.

(iv) (Homogeneity) For any Koszul construction, the current

Th(K(η,N)) · Tdg(Q) · chg(π∗P η)

is in Im(Ũ rkQg−1,rkQg−1(P0) ↪→ Ũ rkQg−1,rkQg−1(Pg)).

Proposition 8.7. — The theory of equivariant homogeneous singular
Bott-Chern classes is compatible with the projection formula.

Proof. — By definition, we compute

CTh(η,N) = (πP g)∗Th(K(η,N))

= (πP g)∗(ẽ(P,Q, i∞) · Td−1
g (Q) · chg(π∗P η))

= (πP g)∗(ẽ(P,Q, i∞) · Td−1
g (Q)) · chg(η)

= CTh(OY , N) · chg(η).

Then this proposition follows from Theorem 7.4 �

The equivariant and non-equivariant homogeneous singular Bott-Chern
classes are related by the following proposition.

Proposition 8.8. — Let Sh be the non-equivariant homogeneous sin-
gular Bott-Chern classes defined in [6]. Assume that η is an equivariant
hermitian vector bundle whose restriction to the fixed point submanifold
has no non-zero degree part. Then we have

Th(K(η,N)) · Tdg(Q) = Sh(K(ηg, Ng)) · Td(Qg).

Proof. — We first suppose that η is the trivial bundle OY equipped with
the canonical g-structure. By equation [6, (9.8)], we have

Sh(K(OYg , Ng)) = ẽ(P0, Qg, i∞,0) · Td−1(Qg)

where i∞,0 is the zero section embedding from Yg to P0 = P(Ng⊕OYg ). Note
that by the definition of homogeneity in our paper, the class ẽ(P,Q, i∞) is
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equal to ẽ(P0, Qg, i∞,0) in Im(Ũ rkQg−1,rkQg−1(P0) ↪→ Ũ rkQg−1,rkQg−1(Pg)).
This implies that

Th(K(OY , N)) · Tdg(Q) = Sh(K(OYg , Ng)) · Td(Qg).

In general case, since the restriction of η to Yg is supposed to have no
non-zero degree part, we have chg(π∗P η) = πP

∗
gch(ηg). Moreover, the class

Sh(K(OYg , Ng)) ·Td(Qg) belongs to DrkQg−1,rkQg−1(P0)/(Im∂+ Im∂), we
then can compute

Th(K(OY , N)) ·Tdg(Q) · chg(π∗P η) = Sh(K(OYg , Ng)) ·Td(Qg) ·π∗P0
ch(ηg).

This equality implies that Th(K(η,N)) ·Tdg(Q) = Sh(K(ηg, Ng)) ·Td(Qg)
because Th and Sh are both compatible with the projection formula. �

In general, let X be a complex manifold and let E be a hermitian
holomorphic vector bundle of rank r on X. Assume that s is a holo-
morphic section of E which is transversal to the zero section. Denote by
Y the zero locus of s. In [6, Proposition 9.13], the authors have shown
that there is a unique way to attach to each (X,E, s) a class of currents
ẽ(X,E, s) ∈ Ũr−1,r−1(X,N∨Y,0) which satisfies some axiomatic properties.
Such class was also constructed by J.-M. Bismut, H. Gillet and C. Soulé in
[5]. We shall use this fact to generalize Proposition 8.8 in the following way.
Assume that all notations above are g-equivariant, then there is a global
equivariant Koszul resolution

K(E) : 0→ ∧rE∨ → · · · → E
∨ → OX → i∗OY → 0.

So we get an embedded vector bundle (i,NX/Y ,OY ,K(E)) such thatNX/Y

is isometric to i∗E. One can carry out the proof of [6, Prop. 9.18] word by
word (adding subscript g) to prove the following equality

Th(i,NX/Y ,OY ,K(E)) = ẽ(Xg, Eg, sg) · Td−1
g (E).

This equality and [6, Prop. 9.18] imply the following result.

Proposition 8.9. — Let notations and assumptions be as above, then
we have

Th(i,NX/Y ,OY ,K(E)) · Tdg(E) = Sh(ig, NXg/Yg ,OYg ,K(Eg)) · Td(Eg).

We now recall the construction of the equivariant Bott-Chern singu-
lar currents given by J.-M. Bismut in [2]. This construction was realized
via some current valued zeta function which involves the supertraces of
Quillen’s superconnections. We would like to indicate that Bismut’s singu-
lar current defines a class which agrees with our definition of equivariant
singular Bott-Chern class only in some certain situation. Nevertheless, it
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is easy to use Bismut’s results to define a theory of equivariant singular
Bott-Chern classes in the sense of Definition 5.5. We shall prove that such
a theory is homogeneous.
Let i : Y → X be a closed immersion of equivariant projective manifolds,

and let Ξ = (i,N, η, ξ.) be an equivariant hermitian embedded vector bun-
dle. We denote the differential of the complex ξ. by v. Note that ξ. is acyclic
outside Y and the homology sheaves of its restriction to Y are locally free.
We write Hn = Hn(ξ. |Y ) and define a Z-graded bundle H =

⊕
nHn. For

y ∈ Y and u ∈ TXy, we denote by ∂uv(y) the derivative of v at y in the
direction u in any given holomorphic trivialization of ξ. near y. Then the
map ∂uv(y) acts on Hy as a chain map, and this action only depends on
the image z of u in Ny. So we get a chain complex of holomorphic vector
bundles (H, ∂zv).
Let π be the projection from the normal bundle N to Y , then we have a

canonical identification of Z-graded chain complexes

(π∗H, ∂zv) ∼= (π∗(∧•N∨ ⊗ η),
√
−1iz).

Moreover, such an identification is an identification of g-bundles. By finite
dimensional Hodge theory, for each y ∈ Y , there is a canonical isomorphism

Hy
∼= {f ∈ ξ.y | vf = 0, v∗f = 0}

where v∗ is the dual of v with respect to the metrics on ξ.. This means that
H can be regarded as a smooth Z-graded g-equivariant subbundle of ξ so
that it carries an induced g-invariant metric. On the other hand, we endow
∧•N∨ ⊗ η with the metric induced from N and η.

Definition 8.10. — We say that the metrics on the complex of equi-
variant hermitian vector bundles ξ. satisfy Bismut assumption (A) if the
identification (π∗H, ∂zv) ∼= (π∗(∧•N∨⊗ η),

√
−1iz) also identifies the met-

rics.

Proposition 8.11. — There always exist g-invariant metrics on ξ.

which satisfy Bismut assumption (A) with respect to N and η.

Proof. — This is [2, Proposition 3.5]. �

Let ∇ξ be the canonical hermitian holomorphic connection on ξ., then
for u > 0, we may define a g-invariant superconnection

Cu := ∇ξ +
√
u(v + v∗)
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on the Z2-graded vector bundle ξ. Let Φ be the map α ∈ ∧(T ∗RXg) →
(2πi)−degα/2α ∈ ∧(T ∗RXg) and denote

(Td−1
g )′(N) := ∂

∂b
|b=0

(
Tdg

(
b · Id− ΩN

2πi

)−1)
.

Lemma 8.12. — Let NH be the number operator on the complex ξ. i.e.,
it acts on ξj as multiplication by j, then for s ∈ C and 0 < Re(s) < 1

2 , the
current valued zeta function

Zg(ξ.)(s) := 1
Γ(s)

∫ ∞
0
us−1[ΦTrs(NHgexp(−C2

u))+(Td−1
g )′(N)chg(η)δYg ]du

is well-defined onXg and it has a meromorphic continuation to the complex
plane which is holomorphic at s = 0.

Definition 8.13. — The equivariant Bott-Chern singular current on
Xg associated to the resolution ξ. is defined as

Tg(ξ.) := ∂

∂s
|s=0 Zg(ξ.)(s).

Theorem 8.14. — The current Tg(ξ.) is a sum of (p, p)-currents and it
satisfies the differential equation

ddcTg(ξ.) = ig∗chg(η)Td−1
g (N)−

∑
k

(−1)kchg(ξk).

Moreover, the wave front set of Tg(ξ.) is contained in N∨g,0.

For equivariant hermitian embedded vector bundle Ξ0 =(i,N, η, (ξ., hξ0)),
we may construct a new embedded bundle Ξ1 = (i,N, η, (ξ., hξ1)) such that
the metrics hξ1 satisfies Bismut assumption (A). Then we may attach to Ξ0
an element in Ũ(Xg) defined as

TB(Ξ0) = −Tg(ξ., hξ1) +
∑
k

(−1)k c̃hg(ξk, hξk0 , h
ξk
1 ).

Theorem 8.15. — The assignment that, to each equivariant hermitian
embedded vector bundle Ξ0, associates the current TB(Ξ0), is a theory of
equivariant homogeneous singular Bott-Chern classes.

Proof. — We first show that TB(Ξ0) is well-defined. Actually, let Ξ2 =
(i,N, η, (ξ., hξ2)) be another embedded bundle such that the metrics hξ2
satisfy Bismut assumption (A), then by [14, Theorem 3.14] we have

Tg(ξ1)− Tg(ξ2) = −
∑
k

(−1)k c̃hg(ξk, hξk1 , h
ξk
2 ).
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Note that we have the equality

c̃hg(ξk, hξk0 , h
ξk
1 ) + c̃hg(ξk, hξk1 , h

ξk
2 ) + c̃hg(ξk, hξk2 , h

ξk
0 ) = 0.

So we obtain that TB(Ξ0) does not depend on the choice of the metrics
which satisfy Bismut assumption (A) and hence it is well-defined.
Secondly, the fact that the equivariant singular current TB(Ξ0) satisfies

the differential equation in Definition 5.5 follows from Theorem 8.14 and
the definition of c̃hg.
The functoriality property for TB(Ξ0) follows from the same property

for Tg and for c̃hg.
For the normalization property, let A. be an equivariantly and orthog-

onally split exact sequence of equivariant hermitian vector bundles, then
using [14, Theorem 3.14] again we have

Tg(ξ.⊕A.) = Tg(ξ.) + Tg(A.).

By [14, Corollary 3.10], if A. is equivariantly and orthogonally split, then
Tg(A.) is equal to zero. So by definition we finally get TB(Ξ⊕A.) = TB(Ξ).

At last, by [14, Lemma 3.15], with the hypothesis before Proposition 8.9
we have the following equality

TB(i,NX/Y ,OY ,K(E)) = ẽ(Xg, Eg, sg) · Td−1
g (E)

= Th(i,NX/Y ,OY ,K(E)).

Since TB and Th are both compatible with the projection formula, this
equality implies that CTB = CTh and hence TB = Th by Theorem 6.1. So
TB is homogeneous which completes the proof. �

9. Concentration formula

In the last section, we shall prove a concentration formula for equivariant
homogeneous singular Bott-Chern class. We call it concentration formula
because it can be used to prove a statement which generalizes the concen-
tration theorem in algebraic K-theory (cf. [17]) to the context of Arakelov
geometry. We deal with this in another paper. Before describing the con-
centration formula, we introduce some basic concepts.

Definition 9.1. — Let X be a complex manifold and let ξ. be a boun-
ded complex of hermitian vector bundles on X. We say ξ. is standard if
the homology sheaves of ξ. are all locally free and they are endowed with
some hermitian metrics. We shall write a standard complex as (ξ., hH) to
emphasize the choice of the metrics on homology sheaves.
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Now let X be a µn-equivariant projective manifold, we consider a special
closed immersion i : Xg ↪→ X. For an equivariant hermitian embedded
vector bundle Ξ = (i,N, η, ξ.), we always assume that the metrics on ξ.

satisfy Bismut assumption (A). In this case, the restriction of ξ. to Xg is
a standard complex according to our discussion in last section, the metrics
on homology bundles are induced by the metrics on ξ. |Xg . Note that we
can split ξ. |Xg into a series of short exact sequences

0→ Im→ Ker→ ∧•N∨ ⊗ η → 0

and
0→ Ker→ ξ. |Xg→ Im→ 0.

Denote the alternating sum of the equivariant secondary characteristic
classes of the short exact sequences above by c̃hg(ξ., hH) such that it sat-
isfies the following differential equation

ddcc̃hg(ξ., hH) = chg(η)Td−1
g (N)−

∑
j

(−1)jchg(ξj).

With this observation, we can introduce the following proposition.

Proposition 9.2. — Let χ : 0 → ηn → · · · → η1 → η0 → 0 be
an exact sequence of equivariant hermitian vector bundles on Xg, and let
ε : 0→ ξn,· → · · · → ξ1,· → ξ0,· → 0 be an exact sequence of resolutions of
i∗χ on X. As usual we write εk for the exact sequence

0→ ξn,k → · · · → ξ1,k → ξ0,k → 0.

Then we have the following equality in Ã(Xg)
n∑
j=0

(−1)j c̃hg(ξj,·, hH) = c̃hg(χ)Td−1
g (N)−

∑
k

(−1)k c̃hg(εk).

Proof. — Note that the fixed point submanifold of X × P1 is exactly
Xg × P1, we know that the construction of the first transgression exact
sequence is compatible with restriction to the fixed point submanifold. This
means tr1(ε.)j |Xg×P1 is equal to tr1(ε. |Xg )j . Therefore, one can use the
same approach as in the proof of Proposition 5.7 to verify the equality in
the statement of this proposition. �

Theorem 9.3 (Concentration formula). — Let notations and assump-
tions be as above. Assume that Ξ = (i : Xg → X,N, η, ξ.) is an equivariant
hermitian embedded vector bundle such that the metrics on ξ. satisfy Bis-
mut assumption (A). Then in Ã(Xg), we have the equality

Th(Ξ) = −c̃hg(ξ., hH).
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Before proving this theorem, we first investigate this problem in a simple
case where the hypothesis is the same as before Proposition 8.9. That means
there exists an equivariant hermitian vector bundle E on X which admits
a g−invariant regular section s such that Xg is the zero locus of s and i∗E
is isometric to NX/Xg . From this we know that Eg is the zero bundle, so
Sh(ig, NXg/Xg ,OXg ,K(Eg)) = 0 and hence Th(i,NX/Xg ,OXg ,K(E)) = 0
by Proposition 8.9. On the other hand, c̃hg(∧•E, hH) is definitely equal to
0 since the metrics hH are supposed to be induced from E and these met-
rics satisfy Bismut assumption (A). Therefore the concentration formula is
trivially true in this case.

Proof of Theorem 9.3. — We use the same notations as in the proof of
Theorem 6.1, then we have the following expression

Th(Ξ) =−(pWg)∗
(
U ·
(∑

k

(−1)kchg(tr1(ξ.)k)−jg∗(chg(p
∗
Xgη)Td−1

g (N ′))
))

−
∑
k

(−1)k(pP g)∗[c̃hg(εk)] + CTh(η,N).

Since ig is the identity map, we know that the deformation to the normal
cone W (ig) is equal to Xg×P1. Moreover W (ig) is a disjoint union of some
connected components of Wg and the map jg factors through W (ig). We
shall write W0 for W (ig) for simplicity and we shall denote by W⊥ the
other components of Wg. Now we restrict the sum

L :=
∑
k

(−1)kchg(tr1(ξ.)k)− jg∗(chg(p
∗
Xgη)Td−1

g (N ′))

to W⊥ and W0. Over W⊥ we get L |W⊥=
∑
k(−1)kchg(tr1(ξ.)k |W⊥) which

can be rewritten as ddcc̃hg(tr1(ξ.) |W⊥). Similarly, over W0 we get

L |W0=
∑
k

(−1)kchg(tr1(ξ.)k |W0)− (chg(p∗Xgη)Td−1
g (N ′))

which can be rewritten as −ddcc̃hg(tr1(ξ.) |W0 , h
H) since in this case the

pull-back tr1(ξ.) |W0 is clearly a standard complex in the sense of Defi-
nition 9.1. Moreover, the observation given before this proof implies that
Th(K(η,N)) is equal to 0 so that CTh(η,N) is equal to 0. Furthermore,
the exact sequence K(η,N) |W⊥∩P is equivariantly and orthogonally split.
Therefore, by Remark 2.9, we get

−c̃hg(tr1(ξ.) |W⊥∩P ) =
∑
k

(−1)k c̃hg(εk) |W⊥ .
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This means

U · L |W⊥ = U · ddcc̃hg(tr1(ξ.) |W⊥) = ddcU · c̃hg(tr1(ξ.) |W⊥)

= c̃hg(tr1(ξ.) |W⊥∩P ) = −
∑
k

(−1)k c̃hg(εk) |W⊥ .

Combing these computations above, we may rewrite Th(Ξ) as

Th(Ξ) = −(pW0)∗(U · L |W0)−
∑
k

(−1)k(pP0)∗[c̃hg(εk) |P0 ].

Similar to tr1(ξ.) |W0 , K(η,N) |P0 is also a standard complex. Since the
metrics on the Koszul resolution are supposed to satisfy Bismut assumption
(A), we know that c̃hg(K(η,N) |P0 , h

H) is equal to 0. Then by Proposi-
tion 9.2, we have that

c̃hg(tr1(ξ.) |W0∩P , h
H) =

∑
k

(−1)k c̃hg(εk |P0) =
∑
k

(−1)k c̃hg(εk) |P0 .

Together with the fact that tr1(ξ.) |Xg×{0} is isometric to ξ. |Xg , we finally
get

Th(Ξ) = −c̃hg(tr1(ξ.) |W0 , h
H) |Xg×{0}= −c̃hg(ξ., hH)

which completes the proof. �
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