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ON THE IDEAL TRIANGULATION GRAPH OF A
PUNCTURED SURFACE

by Mustafa KORKMAZ & Athanase PAPADOPOULOS (*)

Abstract. — We study the ideal triangulation graph T (S) of an oriented punc-
tured surface S of finite type. We show that if S is not the sphere with at most
three punctures or the torus with one puncture, then the natural map from the ex-
tended mapping class group of S into the simplicial automorphism group of T (S) is
an isomorphism. We also show that the graph T (S) of such a surface S, equipped
with its natural simplicial metric is not Gromov hyperbolic. We also show that
if the triangulation graph of two oriented punctured surfaces of finite type are
homeomorphic, then the surfaces themselves are homeomorphic.
Résumé. — On étudie le graphe T (S) des triangulations idéales d’une surface

S orientée de type fini. On montre que si S n’est pas une sphère ayant au plus
quatre perforations ou un tore ayant une seule perforation, l’application naturelle
du groupe modulaire étendu de S dans le groupe d’automorphismes de T (S) est
un isomorphisme. On montre aussi que le graphe T (S) d’une telle surface n’est pas
hyperbolique au sens de Gromov. On montre enfin que si les graphe des triangula-
tions idéales de deux surfaces orientées de type fini sont homéomorphes, alors les
surfaces sont elles-mêmes homéomorphes.

1. Introduction

In this paper, S is a connected orientable surface of finite type, of genus
g > 0 without boundary and with n > 1 punctures. We shall assume that
the Euler characteristic χ(S) of S is negative. The mapping class group
of S, denoted by Mod(S), is the group of isotopy classes of orientation-
preserving homeomorphisms of S. The extended mapping class group of S,
Mod∗(S), is the group of isotopy classes of all homeomorphisms of S.

Keywords: mapping class group ; surface ; arc complex ; ideal triangulation ; ideal
triangulation graph ; curve complex ; Gromov hyperbolic.
Math. classification: 32G15, 20F38, 30F10.
(*) The authors’ collaboration is supported by CNRS (France) and TUBITAK (Turkey).
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We denote by S the surface obtained from S by filling in the punctures.
Thus, S is a closed surface of genus g. The punctures can also be con-
sidered as distinguished points in S, and we denote by B ⊂ S this set of
distinguished points. An arc in S (or in S) is the image in S of a closed
interval whose interior is homeomorphically embedded in S \B and whose
endpoints are in B. An arc in S (or in S) is said to be essential if it is not
homotopic (relative to its endpoints) to a point in S.

All homotopies of arcs considered in this paper are relative to their end-
points. An ideal triangulation (or, for short, a triangulation) of S is a max-
imal collection of disjoint essential arcs that are pairwise non-homotopic.
An essential arc that belongs to a triangulation will also be called an edge
of that triangulation. A triangulation will sometimes be identified with the
union of its edges, and it will therefore be considered as a subset of S. A
face of a triangulation ∆ is a connected component of the complement of
∆ in S (or the closure of such a component), and it will also be called a
triangle.
An elementary move is the operation of obtaining a new triangulation

from a given one by removing an edge and replacing it by a distinct edge. If
a is the edge that is removed, then we shall say that the elementary move
is performed on a.

An edge a in a triangulation ∆ is said to be exchangeable if one can
perform an elementary move on a, in which a is replaced by an edge dis-
tinct from a. Otherwise, the edge is said to be non-exchangeable. It follows
from the classification of surfaces that an edge a of a triangulation ∆ is
non-exchangeable if and only if the following holds: a joins two distinct
punctures and a is in the closure of a unique face of ∆. In this case, there
is a well-defined edge a∗ of ∆ associated to a, which we call the edge dual
to a, and which is the third edge of the unique triangle of ∆ to which a

belongs. This situation is depicted in Figure 1.1.

a

a*

Figure 1.1. The edge a is a non-exchangeable arc in a triangulation,
and a∗ is its dual edge.
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In this paper, we study the ideal triangulation graph of S. This is the
simplicial graph T (S) whose vertices are the isotopy classes of triangula-
tions of S and in which an edge connects two vertices whenever these two
vertices differ by an elementary move. We first prove the following rigidity
result:

Theorem 1.1. — For any integers g, h > 0 and m,n > 1, consider the
surfaces Sg,n and Sh,m and the associated triangulation graphs T (Sg,n) and
T (Sh,m). The graphs T (Sg,n) and T (Sh,m) are homeomorphic if and only
if the surfaces Sg,n and Sh,m are homeomorphic.

The proof we give is a direct consequence of the fact that there are
exchangeable and non-exchangeable edges in ideal triangulation graphs.

The extended mapping class group Mod∗(S) acts naturally on T (S) by
simplicial automorphisms. We prove the following.

Theorem 1.2. — Let S be a connected orientable surface with at least
one puncture. If S is not a sphere with at most three punctures or a
torus with one puncture, then the natural homomorphism Mod∗(S) →
Aut(T (S)) is an isomorphism.

Note that the hypothesis on S made in this theorem, combined with the
condition χ(S) 6 −1, is equivalent to χ(S) 6 −2.
The proof of Theorem 1.2 involves the consideration of the arc complex

of S. This is the abstract simplicial complex, denoted by A(S), whose k-
simplices, for each k > 0, are the collections of k+1 distinct isotopy classes
of essential arcs on S that can be represented by pairwise disjoint arcs on
this surface. The ideal triangulation graph is the dual one-skeleton of the
natural cell-decomposition of the decorated Teichmüller space of surfaces
that is constructed in [12]. This graph has also been considered in [2] and
[3]. The arc complex has been studied in [6], [8] and [5]. Results similar to
Theorem 1.2, for other complexes, have been obtained, see [4] and [11].
In the proof of Theorem 1.2, we shall use the following analogous theorem

for the arc complex, obtained by Irmak and McCarthy:

Theorem 1.3. — ([5]) Let S be a connected orientable surface with at
least one puncture. If the surface S is not a sphere with at most three
punctures or a torus with one puncture, then the natural homomorphism
Mod∗(S)→ Aut(A(S)) is an isomorphism.

We note that the graph T (S) is also the one-skeleton of the simplicial
complex dual to the arc complex A(S). Thus, any automorphism of A(S)
induces an automorphism of the graph T (S). Now since T (S) is a strict

TOME 62 (2012), FASCICULE 4
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subcomplex of the dual complex of A(S), its automorphism group could a
priori be larger than the automorphism group of A(S). Theorem 1.2 shows
that this is not the case.
There are two special cases of surfaces of negative characteristic that

admit ideal triangulations and that are excluded by the hypothesis of The-
orem 1.2: the sphere with three punctures and the torus with one puncture.
Let us briefly discuss these cases.

(1) If S is a sphere with three punctures, then any ideal triangulation of
S has three edges and two faces. In this case, the graph T (S) is finite, and
it is homeomorphic to a tripod. The center of the tripod corresponds to
the unique (up to isotopy) ideal triangulation of S in which every edge is
exchangeable. The three other vertices of T (S) correspond to the isotopy
classes of ideal triangulations in which exactly one edge is exchangeable.
The automorphism group Aut(T (S)) of T (S) is isomorphic to the permu-
tation group on three elements (permuting the three vertices of valency
one of the tripod). The mapping class group of S is also isomorphic to the
permutation group on three elements (the punctures of S), and the natu-
ral homomorphism Mod(S) → Aut(T (S)) is an isomorphism. Hence, the
natural homomorphism Mod∗(S)→ Aut(T (S)) is surjective and its kernel
is the center of Mod∗(S), which is a cyclic group of order two.
(2) If S is a torus with one puncture, then the ideal triangulation graph

T (S) is a regular infinite tree in which every vertex has valency three.
The automorphism group of such a tree is uncountable. To see this, we
consider the set of one-sided infinite sequences of letters on the alphabet
{f, n} (where the letter f stands for “flip" and the letter n stands for “no
flip"). This set of sequences is uncountable, and it can be injected in the
simplicial automorphism group of the tree, by first choosing a base point
of the tree, and then interpreting each one-sided infinite sequence as an
infinite composition of flips and no flips performed on edges encountered
successively, starting at the given basepoint. Thus, in the case considered,
the natural homomorphism Mod∗(S)→ Aut(T (S)) is highly non-surjective
since the extended mapping class group Mod∗(S) is countable.
By declaring that the length of each edge in T (S) is one and taking the

associated length metric, we may consider this graph as a metric space.
With this metric, the length of a simplicial path between two vertices is
the number of edges in that path. It is natural to ask whether T (S) is
Gromov-hyperbolic.
Theorem 1.2 implies the following:

ANNALES DE L’INSTITUT FOURIER
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Theorem 1.4. — Let S be a connected orientable surface with at least
one puncture. If S is not a sphere with at most four punctures or a torus
with one puncture, then the ideal triangulation graph of S is not Gromov-
hyperbolic.

Proof. — A homeomorphism of S that fixes the homotopy class of an
ideal triangulation may permute the homotopy classes of the edges of this
triangulation. The cardinality of the set of edges is 6g + 3n− 6, where g is
the genus of S and n is the number of punctures of S. A homeomorphism
of S fixing the homotopy class of each edge of a given ideal triangulation
is homotopic to the identity. Thus, the action of the extended mapping
class group Mod∗(S) on the vertices of T (S) has finite stabilizers, with
uniformly bounded cardinality. Furthermore, the action of Mod∗(S) on
T (S) is co-compact, since up to homeomorphisms, there are only finitely
many homotopy classes of ideal triangulations on any surface of finite type.
To see this, we consider the surface S equipped with an arbitrary ideal
triangulation as being obtained by gluing some finite set (of cardinality
4g − 4 + 2n) of triangles along their edges. There are only finitely many
ways to glue such a finite set of triangles to get a triangulated surface. Thus,
if T (S) were Gromov-hyperbolic, then Mod∗(S) would be word-hyperbolic
(see [1]). Under the hypotheses of the theorem, the extended mapping class
group Mod∗(S) is not word-hyperbolic, since it contains free abelian groups
of rank at least two. �

We note that in the cases excluded in the hypothesis of Theorem 1.4, the
situation is as follows:
• If S is a sphere with one puncture, then the triangulation graph T (S)
is empty.

• If S is a sphere with two punctures, then T (S) consists of only one
vertex, hence it is hyperbolic.

• If S is a sphere with three punctures, then its triangulation graph is
compact, and therefore hyperbolic.

• If S is a sphere with four punctures, then its extended mapping class
group is virtually free, therefore hyperbolic. The proof of Theorem 1.4
implies then that the triangulation graph is also hyperbolic.

• If S is a torus with one puncture, then its triangulation graph is hy-
perbolic since, as we recalled above, it is a tree.

Theorem 1.4 implies that the large-scale geometry of the triangulation
graph of S is quite different from that of the curve complex, since, by a
result of Masur and Minsky, the curve complex is hyperbolic.

TOME 62 (2012), FASCICULE 4
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2. Proof of Theorem 1.1

The proof of Theorem 1.1 uses a lemma on valency in the ideal triangu-
lation graph.

We call the valency of a vertex in T (Sg,n) the number of edges abutting
(locally) at that point.

Lemma 2.1. — For any g and n, the maximum valency of a vertex of
T (Sg,n) is 6g + 3n − 6, and the minimal valency of a vertex of T (Sg,n) is
6g+2n−5. Moreover, for each integer k with 6g+2n−5 6 k 6 6g+3n−6,
there exists a vertex in T (S) whose valency is k.

Proof. — An easy Euler characteristic argument shows that the number
of edges of an ideal triangulation ∆ on Sg,n is 6g+ 3n− 6. On an arbitrary
punctured surface Sg,n, we can find an ideal triangulation having all of
its edges on the boundary of two distinct faces, and which is therefore
exchangeable. Thus, for each g and n, the maximum valency at a vertex of
T (Sg,n) is 6g + 3n− 6.
Now we consider the minimal valency at a vertex of T (Sg,n). This is

obtained by computing the maximal number of non-exchangeable edges.
If n = 1, then there are no non-exchangeable edges. If n > 2, then there
is a configuration on the surface that gives the maximal number of non-
exchangeable edges. This is represented in Figure 2.1. In this configuration,
there are n − 1 non-exchangeable edges. Thus, on any surface Sg,n with
n > 1, we can take a set of edges in the configuration of Figure 2.1 and
complete it into an ideal triangulation. Notice that the statement that

Figure 2.1. On a surface Sg,n with n > 2, an ideal triangulation con-
taining such a configuration represents a vertex of T (Sg,n) that has
minimal valency. (In this picture, n = 5.)

ANNALES DE L’INSTITUT FOURIER
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on a surface Sg,n there are at most n − 1 non-exchangeable edges, and
that this bound is attained for any surface, also holds in the case where
n = 1. Thus, in all cases, the minimal valency at a vertex of T (Sg,n) is
6g + 3n− 6− (n− 1) = 6g + 2n− 5.
The second assertion of the lemma follows from similar considerations.

�

Now we can prove Theorem 1.1.
From Lemma 2.1, if the two graphs T (Sg,n) and T (Sh,m) are homeomor-

phic, then 6g + 3n − 6 = 6h + 3m − 6 and 6g + 2n − 5 = 6h + 2m − 5.
These two equations imply that g = h and n = m; that is, the surfaces are
homeomorphic. The converse is clear.

3. Squares and pentagons in T (S)

To simplify notation, we shall often identify an arc or a triangulation on
S with its isotopy class.

In the proof of Theorem 1.2, we shall use two special classes of simplicial
closed paths in T (S). We now describe them.
A square in T (S) is a simple (that is, injective) closed path in this graph

consisting of four edges, as represented in Figure 3.1. In this figure, ele-
mentary moves are performed on two exchangeable edges a and c, whose
images under the moves are denoted, respectively, by a′ and c′. Note that
the existence of such an elementary move implies that the interiors of the
faces containing a and c on the surface S are disjoint. The move is also

aa

a′a′
c

c

c′

c′

Figure 3.1. A square in the triangulation graph.

TOME 62 (2012), FASCICULE 4
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represented diagrammatically as follows:

〈a, c〉 ↔ 〈a, c′〉 ↔ 〈a′, c′〉 ↔ 〈a′, c〉 ↔ 〈a, c〉.

In this notation, a symbol such as 〈a, c〉 represents a vertex of T (S) ( a
triangulation of S) containing the arcs a and c. The symbol 〈a, c〉 ↔ 〈a, c′〉
represents an elementary move between the given two triangulations, so
that the arc c is changed to c′ after the elementary move. The arcs not
shown in the symbol remain unchanged.
A pentagon in T (S) is a simple closed path in T (S) of length five, rep-

resented diagrammatically in Figure 3.2. This pentagon is also represented
diagrammatically as follows:

〈a, b〉 ↔ 〈a, e〉 ↔ 〈e, d〉 ↔ 〈d, c〉 ↔ 〈c, b〉 ↔ 〈b, a〉.

a, b

a, e

e, dd, c

c, b

Figure 3.2. A pentagon in the triangulation graph.

Lemma 3.1. — There are no simple closed paths of length three in T (S).

Proof. — Assume there exists a simple closed path of length three. Let
us represent it by a diagram

〈a, b〉 ↔ 〈b, c〉 ↔ 〈c, a〉 ↔ 〈a, b〉

in which a, b and c are distinct arcs, and where the double arrows represent,
as before, elementary moves. That is, the arc a is transformed into the arc c
by the first move, and so on. Now the existence of the moves 〈a, b〉 ↔ 〈b, c〉
and 〈a, b〉 ↔ 〈c, a〉 imply that a = b, a contradiction. This proves the
lemma. �

Lemma 3.2. — Every simple closed path of length four in T (S) is a
square; that is, it is of the form described in Figure 3.1.

Proof. — Consider a simple closed path of length four in T (S), and rep-
resent it as

〈a, b〉 ↔ 〈a, c〉 ↔ 〈c, d〉 ↔ 〈d, e〉 ↔ 〈a, b〉.
The existence of the last move implies that either d = a, or d = b, or e = a,
or e = b. We analyze each case separately.

ANNALES DE L’INSTITUT FOURIER
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• The case d = a is excluded, because of the existence of the move
〈a, c〉 ↔ 〈c, d〉.

• If d = b then we get two moves 〈b, e〉 ↔ 〈a, b〉 and 〈c, b〉 ↔ 〈b, e〉 which
give a = c, which is excluded since we have a vertex labeled 〈a, c〉 in
the path.

• If e = a then we get two moves 〈a, b〉 ↔ 〈a, c〉 and 〈a, d〉 ↔ 〈a, b〉 which
gives d = c, which is excluded since we have a vertex labeled 〈c, d〉 in
the path.

• If e = b, then the path takes the form

〈a, b〉 ↔ 〈a, c〉 ↔ 〈c, d〉 ↔ 〈d, b〉 ↔ 〈a, b〉,

which is of the form represented in Figure 3.1. �

Lemma 3.3. — Every simple closed path of length five in T (S) is a
pentagon; that is, it is of the form described in Figure 3.2.

Proof. — The proof is by inspection, like the proof of Lemma 3.2 (and
it uses Lemma 3.1). �

In the next two lemmas, and later in the paper, if ∆ and ∆′ are two
triangulations of S connected by an edge in T (S), then the notation ∆−∆′
will be used to denote the edge in ∆ that is not in ∆′.

Lemma 3.4. — Consider a square in T (S), represented as ∆1 ↔ ∆2 ↔
∆3 ↔ ∆4 ↔ ∆1. We have ∆1 −∆4 = ∆2 −∆3.

Proof. — The proof follows from Lemma 3.2. �

Lemma 3.5. — Consider a pentagon in T (S), represented as ∆1 ↔
∆2 ↔ ∆3 ↔ ∆4 ↔ ∆5 ↔ ∆1. We have ∆1 −∆5 = ∆2 −∆3.

Proof. — The proof follows from Lemma 3.3. �

Let us note that squares and pentagons of the ideal triangulation complex
are the dual two-cells of the cell decomposition of the decorated Teichmüller
space of the surface constructed in [12].

4. Proof of Theorem 1.2

Let f : T (S) → T (S) be a simplicial automorphism. We associate to f
a simplicial automorphism f̃ : A(S) → A(S), defined as follows using an
idea in [4] and [11].
Let a be an essential arc on S. We choose a triangulation ∆ in which

a is an exchangeable edge. Note that such a triangulation always exists.

TOME 62 (2012), FASCICULE 4
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Since a is exchangeable in ∆, we can perform an elementary move on a,
replacing it by an arc a′. Let ∆a be the triangulation obtained from ∆ by
this elementary move. Since f is simplicial, the triangulations f(∆) and
f(∆a) (like ∆ and ∆a) are joined by an edge in T (S). In other words, the
two triangulations f(∆) and f(∆a) differ by an elementary move. We then
define f̃(a) to be the edge that is in f(∆) but not in f(∆a). In short, we have

f̃(a) = f(∆)− f(∆a).

We now prove the following:

Proposition 4.1. — The arc f̃(a) is independent of the choice of the
triangulation ∆ in which a is exchangeable.

Proof. — Let ∆ = {a, c1, . . . , ck} and ∆′ = {a, c′1, . . . , c′k} be two trian-
gulations in which a is exchangeable. We show that if ∆a (resp. ∆′a) is the
triangulation obtained from ∆ (resp. ∆′) by the elementary move on a,
then f(∆)− f(∆a) = f(∆′)− f(∆′a). This will prove the proposition.
Let R be the surface obtained by cutting S along a. There are two cases

for the surface R:
(i) R has two boundary components coming from the curve a, and in

this case there is one distinguished point on each of these boundary
components, coming from the puncture at the endpoints of a. This
occurs when the arc a joins one puncture of S to itself.

(ii) R has one boundary component, with two distinguished points on
that boundary. This occurs when a joins two distinct punctures
on S.

The triangulations ∆ and ∆′ of S naturally induce two triangulations
{a1, a2, c1, . . . , ck} and {a1, a2, c

′
1, . . . , c

′
k} on R, where the edge a has been

replaced by two edges a1 and a2. In Case (i), each of the edges a1 and a2
appears on a boundary component of R, and in Case (ii), the union of the
edges a1 and a2 forms the boundary component of R, and there are two
distinguished points on that boundary component.
In each case, we can join the two triangulations induced on R by ∆

and ∆′ by a finite sequence of elementary moves on R, in such a way that
the edges a1 and a2 on R are left fixed by these elementary moves. This
follows from Harer’s result on the connectedness of the triangulation graph
of a surface with boundary and with distinguished points on boundary
components. (See [2]; the result is also cited in [3].)
Now gluing a1 back to a2 gives a simplicial path in T (S) joining ∆ to ∆′

such that each triangulation in this path contains a as an edge. We denote

ANNALES DE L’INSTITUT FOURIER
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the sequence of triangulations in this path by

(4.1) ∆ = ∆0,∆1, . . . ,∆l = ∆′.

We may assume that this path is simple.
We shall use the following:

Lemma 4.2. — We can assume that we can choose the path (4.1) in such
a way that the edge a is exchangeable in each triangulation representing a
vertex of this path.

Proof. — Assume there exists a vertex in the path (4.1) that represents
a triangulation in which a is not exchangeable, and let ∆i be the triangu-
lation represented by the first such vertex, after the vertex ∆. Then, ∆i+1
(respectively ∆i−1) is the triangulation represented by the vertex after (re-
spectively before) ∆i. Note that since a is exchangeable in ∆ and in ∆′,
we have 1 6 i < l. There are two possibilities for the vertex joining ∆i and
∆i+1, and they are represented respectively in Figure 4.1 (a) and (b).
The first possibility (top of Figure 4.1 (a)) is when the elementary move

that takes ∆i to ∆i+1 involves an edge that is on the boundary of a triangle
having the edge a∗ (the dual of a) as an edge. (Note that we exclude the
case where the elementary move is performed on the edge a∗, since in that
case we recover the triangulation ∆i−1 as a result, but we assumed the path
(4.1) is simple.) In this case, we replace the subpath ∆i−1 ↔ ∆i ↔ ∆i+1
by the path ∆i−1 ↔ ∆′i ↔ ∆′i+1 ↔ ∆i+1 represented in the bottom of
Figure 4.1 (a).
The second possibility (top of Figure 4.1 (b)) is when the elementary

move that takes ∆i to ∆i+1 involves an edge that is not on the boundary
of a triangle whose boundary contains a∗. In Figure 4.1 (b), we have symbol-
ically represented that elementary move on a quadrilateral that is disjoint
from a and a∗. In that case, we replace the subpath ∆i−1 ↔ ∆i ↔ ∆i+1
by the path ∆i−1 ↔ ∆′i ↔ ∆i+1 represented in Figure 4.1 (b).

In each case, each vertex of the new simplicial path joining ∆ and ∆′
contains a as an edge, and the number of occurrences of vertices in this path
in which a is non-exchangeable has been reduced by one. This allows us,
by induction, to obtain a path joining ∆ and ∆′ in T (S), such that every
vertex is represented by a triangulation that contains a as an exchangeable
edge.
This proves Lemma 4.2 �

We now continue with the proof of Proposition 4.1.
Note that the closed paths in T (S) represented in Figure 4.1 (a) and (b)

are a pentagon and a square.

TOME 62 (2012), FASCICULE 4
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′′

′

Δi−1

Δi−1

Δi

Δi

Δi+1

Δi+1

Δi

Δi Δi+1

(a)

(b)

Figure 4.1. Replacing a path in which each vertex contains a by a path
where at each vertex a is an exchangeable edge.

To prove that the arc f̃(a) is well-defined, by Lemma 4.2, it suffices to
consider the case where ∆ and ∆′ are joined by an edge in T (S).
Recall the notation ∆ = {a, c1, . . . , ck} and ∆′ = {a, c′1, . . . , c′k} at the

beginning of the proof of the proposition. Since a is contained as an edge
in both ∆ and ∆′, there is an edge distinct from a that is exchanged by
the elementary move that takes ∆ to ∆′. By relabeling the edges of ∆,
we can assume that c1 is the vertex that is transformed by the elementary
move that takes ∆ to ∆′. We use as before the notation ∆ ↔ ∆′, with
∆ = 〈a, c1〉 and ∆′ = 〈a, c′1〉, to denote this elementary move, in which c′1
is the image of c1. Edges other than c1 are unchanged. We distinguish two
cases:

ANNALES DE L’INSTITUT FOURIER
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Case 1.— In the triangulation ∆, a and c1 are two edges of a common
triangle (see Figure 4.2 (a)). Since S is not a torus with one puncture or a
sphere with three punctures, the edge joining ∆ and ∆′ in T (S) belongs to
a pentagon in this graph. This follows from the fact that both a and c1 are
exchangeable, and it can be seen diagrammatically in Figure 4.2 (b), where
the sequence of elementary moves representing the pentagon relation is:

〈a, c1〉 ↔ 〈a, c′1〉,↔ 〈c′1, d〉,↔ 〈d, a′〉,↔ 〈a′, c1〉,↔ 〈c1, a〉.

Let P denote this pentagon. Since f : T (S) → T (S) is simplicial, the
image f(P) of P by f is again a pentagon (Lemma 3.3). In the pentagon
P, the triangulation 〈a, c1〉 is labeled ∆, the triangulation 〈a′, c1〉 is labeled
∆a, the triangulation 〈a, c′1〉 is labeled ∆′ and the triangulation 〈d, c′1〉 is
labeled ∆′a. We then have, by Lemma 3.5 applied to the pentagon f(P),

f(∆)− f(∆a) = f(∆′)− f(∆′a).

This completes the proof of the fact the f̃(a) is well-defined in Case 1.
Case 2.— In the triangulation ∆, a and c1 are not edges of the same
triangle. In this case, we can perform elementary moves on a and c1 inde-
pendently from each other, and we obtain the following square in T (S):

〈a, c1〉 ↔ 〈a, c′1〉,↔ 〈a′, c′1〉,↔ 〈a′, c1〉,↔ 〈a, c〉.

Similarly to the preceding case, the triangulation 〈a, c1〉 is labeled ∆, the
triangulation 〈a′, c1〉 is labeled ∆a, the triangulation 〈a, c′1〉 is labeled ∆′
and the triangulation 〈a′, c′1〉 is labeled ∆′a, and we get again, this time by
Lemma 3.4,

f(∆)− f(∆a) = f(∆′)− f(∆′a).
This shows that f̃(a) is well-defined in each case.
This completes the proof of Proposition 4.1. �

′

′

)b()a(

a c1

a

d

c1

Figure 4.2. The star in the right hand side figure corresponds to a pentagon
relation.
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The following naturality formula will be useful.

Proposition 4.3. — For any ideal triangulation ∆ = {c0, c1, . . . , ck},
we have

f(∆) = {f̃(c0), f̃(c1), . . . , f̃(ck)}.

Proof. — It suffices to prove that f(∆) ⊂ {f̃(c0), f̃(c1), . . . , f̃(ck)}. Let
a be any edge in ∆. If a is exchangeable, then it follows from the definition
that f̃(a) is in the simplex f(∆). If a is not exchangeable, then its dual
edge a∗ is exchangeable in ∆. Let ∆′ = ∆a∗ be the ideal triangulation
obtained from ∆ by exchanging the edge a∗. Finally, let ∆′a be the ideal
triangulation obtained from ∆′ by exchanging the edge a. Since there is
an edge in T (S) joining ∆ to ∆′, and an edge in T (S) joining ∆′ to ∆′a,
and since f is simplicial, there is an edge in T (S) joining f(∆) to f(∆′),
and an edge in T (S) joining f(∆′) to f(∆′a). Since, by definition, f̃(a)
belongs to the triangulation f(∆′), the edge f̃(a) is transformed by the
move f(∆′)↔ f(∆′a). Therefore, f̃(a) is not an edge of f(∆′a). Now since
f̃(a) is not transformed by the move f(∆)↔ f(∆′), we conclude that f̃(a)
is an edge of f(∆). �

Corollary 4.4. — The map f̃ : A(S)→ A(S) is simplicial.

�

Proposition 4.5. — If f and h are two automorphisms of T (S), then
f̃h = f̃ h̃.

Proof. — Let a be (the isotopy class of) an arc on S. We show that
f̃h(a) = f̃(h̃(a)).
If ∆ = {a, c1, c2, . . . , ck} be a triangulation in which a is exchangeable

and if ∆′ = {a′, c1, c2, . . . , ck} is the triangulation obtained from ∆ by an
elementary move on a, then h̃(a) = h(∆) − h(∆′), and f̃h(a) = fh(∆) −
fh(∆′).

Since the map h : T (S)→ T (S) is simplicial and since the triangulation
∆ is related to ∆′ in T (S) by an edge, the triangulation h(∆) is also related
to the triangulation h(∆′) by an edge. Since h(∆) contains the arc h̃(a) as
an exchangeable arc, we can use h(∆) and h(∆′) to define f̃(h̃(a)), and we
obtain:

f̃(h̃(a)) = f (h(∆))− f (h(∆′))
= (fh)(∆)− (fh)(∆′)

= f̃h(a).

This completes the proof. �
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Proposition 4.6. — For any automorphism f ∈ Aut(T (S)), the asso-
ciated map f̃ : A(S)→ A(S) is an automorphism.

Proof. — Let h = f−1 ∈ Aut(T (S)) be the inverse of f . By Proposition
4.5, we have f̃ h̃ = Ĩ = h̃f̃ , where I is the identity map of T (S). Now from
the definitions, the map Ĩ : A(S) → A(S) associated to I is the identity
map of A(S). Thus, f̃ has an inverse, which shows that f̃ : A(S) → A(S)
is a bijection.
Since f̃ is also simplicial by Corollary 4.4, it is an automorphism of

A(S). �

Finally, we prove the following theorem which, together with Theo-
rem 1.3, implies Theorem 1.2.

Theorem 4.7. — If the surface S is not a sphere with at most three
punctures or a torus with one puncture, then the map φ : Aut(T (S)) →
Aut(A(S)) defined by f 7→ f̃ is an isomorphism.

Proof. — Let Θ : Mod∗(S)→Aut(A(S)) and Φ : Mod∗(S)→Aut(T (S))
denote the natural maps. Let Ψ : Aut(T (S))→ Aut(A(S)) be defined as
Ψ(f) = f̃ . Proposition 4.5 implies that Ψ is a homomorphism. It is clear
that ΨΦ = Θ. Since Θ is an isomorphism by Theorem 1.3, the homomor-
phism Ψ is onto.

Mod∗(S)

Aut(T (S))

Aut(A(S))
?

PPPPPq

��
���1

Φ
Ψ

Θ

We now show that Ψ is one-to-one. Let f be an element of Aut(T (S)) such
that Ψ(f) = f̃ is the identity automorphism of A(S). By Proposition 4.3,
the automorphism f acts trivially on T (S). Hence, Ψ is one-to-one.

This completes the proof of the theorem. �
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