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MULTIPLE BERNOULLI SERIES, AN
EULER-MACLAURIN FORMULA, AND WALL
CROSSINGS

by Arzu BOYSAL & Michéle VERGNE (*)

ABSTRACT. We study multiple Bernoulli series associated to a sequence of
vectors generating a lattice in a vector space. The associated multiple Bernoulli
series is a periodic and locally polynomial function, and we give an explicit formula
(called wall crossing formula) comparing the polynomial densities in two adjacent
domains of polynomiality separated by a hyperplane. We also present a formula in
the spirit of Euler-MacLaurin formula. Finally, we give a decomposition formula for
the Bernoulli series describing it as a superposition of convolution products of lower
dimensional Bernoulli series and multisplines. The study of these series is motivated
by the work of E. Witten, computing the symplectic volume of the moduli space
of flat G-connections on a Riemann surface with one boundary component.

RESUME. — Nous étudions les séries de Bernoulli multiples associées & une suite
de vecteurs engendrant un réseau dans un espace vectoriel. Elles déterminent une
fonction localement polynomiale et périodique. Nous donnons une formule explicite
(saut & travers le mur) qui compare les densités polynomiales dans deux domaines
adjacents séparés par un hyperplan. Nous utilisons aussi ces polynémes de Bernoulli
périodiques pour donner une formule dans I’esprit de la formule d’Euler-MacLaurin.
Finalement nous donnons une formule pour la série de Bernoulli multiple comme
une superposition de produits de convolutions de mesures polynomiales supportées
sur des sous-espaces et de multisplines. L’étude de ces séries est motivée par la
formule de Witten calculant le volume symplectique de ’espace des modules des
fibrés plats sur une surface de Riemann avec un point marqué.

1. Introduction

Consider a sequence of vectors ® lying in a lattice A of a real vector space
V. We denote the dual lattice of A by I'. Let T'e(®) = {y € T'| (¢,7) #
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822 Arzu BOYSAL & Michéle VERGNE

0, for all ¢ € ®} be the set of regular elements in I'. Let Z be the funda-
mental domain in V for A and dv the Lebesgue measure giving measure 1
to Z. Here in introduction we freely identify distributions and generalized
functions via this choice of dwv.

In this paper we study the distribution B(®, A) on the torus V/A defined
via its Fourier coefficients as:
L if € Dy (D),
/ B(®, A)(v)eFm dy = [,ca 2imem) ! =(?)
Z 0 otherwise.
We have

e(2i7rv,’y)

V€l rog (P) H¢e¢’ 2imd, )

B(®,A)(v) =

This sum, if not absolutely convergent, has meaning as a distribution.
We call B(®,A) the multiple Bernoulli series associated to ® and A.
They are natural generalizations of Bernoulli series: for A = Zw and & =

[w,w,...,w], where w is repeated k times with k > 0, the distribution
e2i7‘rnt
B(®y, A)(tw) = —_—
( ks )( UJ) 7%% (2,”1_”)1@

is equal to — 5 B(k,t — [t]) where B(k,t) denotes the k"™ Bernoulli polyno-
mial in variable t.

Multiple Bernoulli series appeared in the work of E. Witten in the special
case where the sequence ® is comprised of positive coroots of a compact
connected Lie group G with multiplicity 2g—1 and A is the coroot lattice of
G. Witten shows that ([17], §3) for the above instance of ® and A and for a
regular element v € Z, the value of B(®, A)(v) is (upto a scalar depending
on G and g) the symplectic volume of the moduli space M (G, g,v) of flat G-
connections on Riemann surface of genus g with one boundary component,
around which the holonomy is determined by v.

For example, consider G = SU(3), denote its simple roots by {ai,as}
and associated coroots by {Hg,, Ha, }. Then on a Riemann surface of genus
g = 2, the symplectic volume of the moduli space of flat SU(3)-connections
with one boundary component marked by v = a1 H,, +a2H,, (lying in the
fundamental alcove) is given by the following sum

62i7r(n1a1+n2a2)

n1€;262 (27;7Tn1)3(2i7'('77,2)3(2i7r(n1 + n2))3
n1#0, n27#0, n1+n27#0

up to a scalar multiple.

ANNALES DE L’INSTITUT FOURIER



MULTIPLE BERNOULLI SERIES 823

These series have been extensively studied by A. Szenes ([12],[13]), who
gave multidimensional residue formulae for them.

If f is a function on the real line, smooth and sufficiently decreasing, also
with sufficiently decreasing derivatives, then the Euler-MacLaurin formula
gives

et L _ ) #IK]
nez /f i+ (= 1/@!/RB(k’t [t]) £ (t)dt

where fI* denotes the k™ derivative of f.

We give a natural generalization of this formula involving B(®,A) in
Theorem 6.1. The difference between the discrete sum >y, f(A) and the
integral of f over V' will only involve derivatives (J[,cy 0p)f over ‘long
subsets’ Y of @, that is, subsets Y such that their complement in ® do not
span the vector space V.

We start with giving some properties of the distribution B(®, A) that are
pertinent for what follows.

The distribution B(®, A) is periodic with respect to A. Moreover, it sat-
isfies a certain recurrence relation which we outline next.

We will call a set with multiplicities a list. Suppose ® contains ¢ with
multiplicity m, then we denote the list that contains ¢ with multiplicity
m — 1 by ® — {¢}; whereas we denote the list where all copies of ¢ are
removed by @ \ {¢}. More generally, for a subset B of V, by ® \ B we
mean the list of elements of ® not lying in B. By ® N B we mean the list
of elements of ® lying in B.

For an element ¢ in ®, we associate two lists of vectors as follows: First,
we consider the list & — {¢} in V, and respectively the distribution B(® —
{¢},A) on V. Let Vp := V/R¢ and let Ay denote the image of the lattice
A in Vj. Secondly, we consider the list ®( of elements of V; consisting of
the images of the elements in ® — {¢}. Then we may consider B(®g, Ag)
as a distribution on V ‘constant in the direction of ¢’ Observe that if ®
contains more than one copy of ¢ then ®( contains the zero vector and
consequently B(®g, Ag) is identically zero.

It is clear that the distribution B(®, A) satisfies the following recurrence
relation

(1.1) 0sB(2,A) = B(® — {o},A) — B(Dog, Ap).

Assuming that ® = [¢1, @9, ..., ¢n] spans a pointed cone, we may define
the tempered distribution 7'(®) defined on test functions f by:

(1.2) ®)|f) = / / Zt@dtl

TOME 62 (2012), FASCICULE 2



824 Arzu BOYSAL & Michéle VERGNE

In other words, T'([¢]) is the Heaviside distribution (H(¢), f) = [ f(t¢)dt
and T(®) is the convolution product

H(p1) * H(pa) % -+ H(pn)

of the Heaviside distributions H(¢y).
If @ generates V, T(®) is a positive measure on V given by integration
against a piecewise polynomial function called a multispline. For any ¢ € ®,

(1.3) OpT(®) =T (P —{¢}).

We remark the similarity between the recurrence relations (1.1) and (1.3).
In fact we will express B(®,A) in terms of superposition of multispline
functions in Theorem 9.3.

If ® generates V, then the periodic function B(®, A) is piecewise polyno-
mial; this we reprove in Section 5.

In the rest of the introduction, for simplicity, we assume that ® generates
V. We call a connected component of the complement of affine walls (that is,
hyperplanes that are generated by some elements of ® and their translates
with respect to the lattice A) in V' a tope. For example, Figure 1.1 depicts
topes associated to the system ® = [e1, ea,e1 + €3] and A = Zey @ Zes.

T2

Figure 1.1. T ([e1, e2,e1 + €3], Ze1 ® Zes)

Given a tope 7 associated to the system (®, A), we denote by Ber(®, A, 1)
the polynomial function on V such that the restriction of B(®,A) to 7
coincides with the restriction of Ber(®, A, 7)(v) to 7.

Let W be an hyperplane in V' spanned by some elements of ®, and let
E € T be an equation of this hyperplane. We reverse the directions of
‘half of’ the ¢; in ® \ W in order that they all lie in the strict half space
determined by E, and define

T(@®\W,E):= [[ -H(=¢)* ][] H(#.

(¢i,E)<0 (¢;,E)>0

ANNALES DE L’INSTITUT FOURIER



MULTIPLE BERNOULLI SERIES 825

T(®\ W, E) is a distribution supported on E > 0. We similarly define
T(®\W,—FE).

Now we compare the polynomials Ber(®, A, 7) associated to two adjacent
topes separated by an hyperplane W (cf. Section 7). The jump can be
expressed in terms of a lower dimensional multiple Bernoulli series and a
multispline function. More explicitly, we have the following wall crossing
formula:

THEOREM 1.1. — Let 7y and 75 be two adjacent topes separated by the
hyperplane W defined by E with (v, E) > 0 for any v € 1. Denote by 719
the tope with respect to the system (P NW, ANW) containing 71 N73 in its
closure. Let Ber™? := Ber(® N W, AN W, 112)dh be the polynomial density
on W determined by T15. Then,

(Ber(®,A, 1) — Ber(®, A, 72))dv
= Ber™ «T(® \ W, E) — Ber™ «T(® \ W, —E).

The left hand side of the above equation is a polynomial density; it is
easily proven that the right hand side is also a polynomial density.

The wall crossing formula given in the above theorem is analogous to the
formula in Boysal-Vergne [1]. This formula is also similar to wall cross-
ing formulae in Hamiltonian geometry for the push-forward of the Li-
ouville measure; indeed, when crossing a wall, this piecewise polynomial
measure changes according to the same scheme [9], [7]. Our wall crossing
formula in Theorem 1.1 is thus in accordance with the fact that for spe-
cial cases B(®,A) computes the volume of the moduli spaces M(G, g, v).
These spaces can be described as symplectic reduction at v of the Jeffrey-
Kirwan extended moduli space M(G, g), so that their volume at v is given
by the push-forward of the Liouville measure on M (G, g), a piecewise poly-
nomial function periodic with respect to a lattice A. Recall that Jeffrey-
Kirwan ([8]) proved wall crossing formulae for integrals on moduli spaces
M(G, g,v), and used them in a fundamental way to compute intersection
pairings on M(G, g,v) when G = SU(n). However, in the general situation
that we are considering here, we do not have such a geometric interpretation
of the multiple Bernoulli series.

In Section 8 we generalize the above results to the case of affine arrange-
ments.

In Section 9, we give a decomposition formula for B(®, A), describing it
as a superposition of ‘basic pieces’ made of convolution products of lower
dimensional Bernoulli series and multisplines. More precisely, we say that
5 is an admissible subspace of V' if s is spanned by some elements of ®, and

TOME 62 (2012), FASCICULE 2



826 Arzu BOYSAL & Michéle VERGNE

we say that a is affine admissible, if a is a translate by A of an admissible
subspace. Given a tope 7, we express the difference between the piecewise
polynomial density B(®,A) and the polynomial density Ber(®, A, 7) as
a sum of distributions A(®, A, a, §) associated to proper affine admissible
subspaces a and the choice of an element 5 € 7. The supports of these dis-
tributions do not intersect 7 and are convolution products of polynomial
distributions supported on a with multisplines distributions directed to-
wards the exterior of 7. Our construction is inspired by the stratification of
a Hamiltonian manifold M using the square of the moment map as Morse
function, and we will use a scalar product on V. Our decomposition for-
mula is very similar to Paradan’s decomposition of the equivariant index of
a twisted Dirac operator on M [10]. In [14], Paradan’s decomposition was
proved by combinatorial methods, and used to give a proof that quantiza-
tion commutes with reduction for compact Hamiltonian manifolds. We fol-
low here very closely the line of approach of [14]. However our superposition
is an infinite (but locally finite) superposition. This is in accordance with
the fact that for some special cases, our distributions are related to Liou-
ville measures of noncompact Hamiltonian manifolds such as M (G, g) with
infinite number of critical components for the square of the moment map.

For example, the periodic polynomial —B(2,t — [t])/2 in Figure 1.2(a)
is decomposed in Figure 1.2(b) as a superposition of a polynomial density
with an infinite number of spline functions.

JTANWAWAWAWAWAN

7\7\/\/VV\

(a)

Figure 1.2. The decomposition of B(®2, A)(tw).

ANNALES DE L’INSTITUT FOURIER
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List of Notations

=

r-dimensional vector space over Q.

the r-dimensional real vector space Vo @q R; v € V.
the dual of V; z € U.

the pairing between U and V.

a lattice in U; v € T.

dual lattice in V; (I, A) C Z, A € A.

a sequence of vectors in Vp; ¢ € ®.

~

MmO <
i
I

(®,A) multiple Bernoulli series associated to ® and A (equation 2.3).
(k,t) k' Bernoulli polynomial.
T(®,A) the set of topes associated to the system (®,A); 7 a tope.
T(X) multivariate spline distribution defined for a set

of vectors X in V.

R set of ®-admissible subspaces of V.

w ®-admissible hyperplane.

H, hyperplane in U comprising of vectors u satisfying (u, ¢) = 0.
H = H(®P) hyperplane arrangement associated to ®.

Ru ring of rational functions on U with poles along H.

On a subspace of Ry defined in 5.3.

2. Multiple Bernoulli series and hyperplane arrangements

Let Vg be an r-dimensional vector space over Q, and let V' be the real
vector space Vg ®Q R. Let U denote the dual vector space to V. Let A be
a lattice in V' contained in Vg and I' C U be the dual lattice to A so that
(T',A) C Z. For a subset S of V, we denote by < S > the subspace of V
generated by S.

Let Z denote the fundamental domain in V for A. Let dayv be the
Lebesgue measure on V' giving measure 1 to Z. Our main object of study
is certain piecewise polynomial densities on V. For our purposes it will be
convenient to use the language of distributions. If f is a locally L! function
on V', or more generally a generalized function, then f(v)dav is a distri-
bution on V. We use the notation f(v)dav, although the value of f at the
point v € V has usually no meaning.

For vy € V, the translation t(vg) acts on distributions on V. If D =
f()dav, then t(vg)D = f(v + vg)dav. We identify a distribution D on
V' periodic with respect to A (that is t(A\)D = D for any A € A) to a
distribution D on the torus V/A.

TOME 62 (2012), FASCICULE 2



828 Arzu BOYSAL & Michéle VERGNE

We will say that a locally L' function f is piecewise polynomial, if there
exists a decomposition of V' in a union of polyhedral pieces C; such that
the restriction of f to C; is given by a polynomial formula. We then say
that the distribution f(v)dav is piecewise polynomial.

If v € V, we denote by J, the § distribution at v: (d,, f) = f(v). The
Poisson formula reads as the following equality of distributions

(2.1) Z Oy = Z 2™ gy,
AEA ~yel

We now introduce the main object of study of this article.
Let ® be a sequence of vectors in V. Let

Ureg(®) = {u € U (¢, u) # 0, for all ¢ € ®}.

We will denote I' N Uyeg(P) by I'yeg(P). Consider the distribution B(®, A)
on V/A defined via its Fourier coefficients:

T ify € Dyeg(®
(2.2) /B((@’A)(U)e*@iﬂ'v,w) _ Hd@) (2indA) 7y (),
7 0 otherwise.
We then have
6<2i7rv,~y)

2.3 B0, A) = oo
- . A ET reg(®) [Tseq (2i7e, )

dAU.

The above sum, if not absolutely convergent, is defined as a distribution.
We call B(®, A) the multiple Bernoulli series associated to ® and A. Clearly,
it does not depend on the order of the elements ¢ in the sequence ® (it
only depends on ¢ as a multiset).

Remark 2.1. — The formula (2.2) for the Fourier coefficients of B(®, A)
is very similar to the formula for the Fourier transform of the multispline
distribution T'(®) (defined in (1.2)) on V: if ® spans a pointed cone, then
the Fourier transform of T(®) is a generalized function on U satisfying

v e—(2i7rv,z> — 1
/v T(®)) H¢>e<b (2imd, )

on the open set of U given by H¢E¢ (¢, x) # 0.

We now list some properties of the distribution B(®, A):
o If @ is the empty set, then

B(®,A) =) ¥ dyp =" 6y

yel AEA

ANNALES DE L’INSTITUT FOURIER



MULTIPLE BERNOULLI SERIES 829

is the J-distribution of the lattice A.
o If ® contains the zero vector, then B(®, A) is identically equal to zero.
e B(®, A) is periodic with respect to A.
e Let Ay C Ay. Then B(®,As) is obtained from B(®, A;) by averaging
over Ay/Ag:

(2.4) B(®,A2) = > t(A)B(®,Ay).
A2€Az /Ay

The above relation follows from the fact that, if v € I'; \ I'y, then

Z e2i7r(’y,)\2) —0.
A2€A2 /Ay

e The distribution B(®, A) is supported on < ® > +A.

Indeed, it is immediate to verify that (1 — e *))B(®, A) = 0 for all
veln< @ >+,

o If & generates V', then B(®, A) is piecewise polynomial. We will give a
proof of this property in Section 5.

When the lattice A is fixed, we often use the measure dav to identify
distributions and generalized functions.

Example 2.2. — Let A = Zw, and let ¢} = [w,w,...,w| where w is
repeated k times. If k& = 0, then B(®y, A)(tw) = >, o7 €* ™ dt is the 6-
distribution of the lattice A by Poisson formula. If k£ > 0, then

eQm’nt

B A) (1) = 3 o = —%B(kﬂf — [)dt,
n# '

‘ 2iTn)

where B(k,t) denotes the k" Bernoulli polynomial in variable ¢ and [t] is
the integer part of t. (Our normalization for the Bernoulli polynomial is that
of Maple). In particular, for k = 1, we have B(®1, A)(tw)dt = (5 —t+ [t])dt
(see Figure 2.1).

NN NN
TN WYY

Figure 2.1. Graph of the function B(®1,A)(tw) = (5 —t + [t])

TOME 62 (2012), FASCICULE 2



830 Arzu BOYSAL & Michéle VERGNE

If £ > 1, the above series is absolutely convergent and B(®y, A)(tw) is
given by integration against a continuous function on R.

Example 2.3. — Let V = Re; & Rey with lattice A = Ze, @ Zes. Let
D = [e1,eq,e1 + e3]. We write v € V as v = v1e1 + vgea.
We compute the series B(®, A) = B(v1, v2)dvidvy where

e2iﬂ'(n1v1 +novsa)

B(vi,v2) = ) (2imnq)(2imn2) (2im(n1 + n2))’

n1€L,n2€ZL
n1#£0, n2#0, n1+n2#£0

The distribution B(®, A) is piecewise polynomial and periodic with re-
spect to A = Zey +Zes. Tt is thus sufficient to write the formulae of B(vy,v2)
for 0 < vy <1and 0 <wy <1 (see Figure 2.2).

el T1
T2

Figure 2.2. T ([e1,e2,e1 + €3], Ze; & Zes)

—%(1 + v — 2’02)(1/1 -1 —|—Ug)(2’01 — 1}2), if v1 < vy

B(v1,v2) = { 6

—6(’01 — 2112)(1)1 -1+ UQ)(Q’Ul -1 1}2), if v1 > vo.

We remark that 3B(vy,vs) is the symplectic volume of the moduli space
of flat SU(3)-connections on a topological torus with one marked point
v = v Hy, + v2H,, where H,, and H,, denote coroots associated to
simple roots {1, as} of SU(3).

Example 2.4. — Let V = Rey & Rey with lattice A = Zey @ Zes. Let
D = [e1, eq,e1+e9, 61 —e]. We write v € V as v = vie; +vaeq. We compute
the series B(®,A) = B(vy,v2)dvidve where

B(Ula UQ)
2i7r(n1v1+'n2v2)

€
N me;ﬂ (2imny)(2imns)(2im(ng +n2))(2im(ng —ns))’
n17#0, n2#0, n1+n27#0, n1 —na#0

ANNALES DE L’INSTITUT FOURIER
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In the region v; — v < 1,v2 < 0,v1 + v2 > 0, we get
B(vy,v3) = évg(21)1 —1)(vy — 1 — vg)(v1 + v2).
In the region vq > v9,v9 > 0,v1 + v9 < 1, we get
B(vy,v3) = évg(%l —1)(v1 — 1+ v2)(vy — v2).
Similar computation in the region vo > vy, v2 > 0,v1 + v2 < 1 gives
B(vy,v3) = év1(2v2 —1)(v1 — 1+ v2)(vy — v2).

The corresponding regious are depicted in Figure 7.1 (b).

3. Recurrence relations

For an element ¢ in ®, we associate two lists of vectors as follows:

e We consider the list ® — {¢} in V and the corresponding distribution
B(® —{¢},A)on V.

e Consider the vector space Vy := V/ < ¢ >, let p denote the projection
V' — V. We denote the image under p of the lattice A in V; by Ag. The dual
space Uy of the vector space Vj is the hyperplane Hy. The dual lattice to
Ag is the lattice T'g = {y € T'| (v, ¢) = 0}. Consider the list ®( of elements
of Vp consisting of the images of the elements in ® — {¢}. Observe that if
® contains ¢ with multiplicity greater than 1, then ®( contains the zero
vector and consequently B(®q, Ag) is identically zero.

If D is a distribution on Vj, we denote by p*D the distribution on V'
“constant in the direction ¢": if D = b(vg)da,vo, then we define p*D =
b(p(v))dav. Thus p*B(Pg, Ag) is a distribution on V. We remark that, for
any ¢ € ¢, we have the following equality of sets

(3.1) Preg(® = {0}) = (Treg(® — {¢}) N {d = 0}) UT'eg(®P)

where the union is disjoint.

The main remark of this section is the following recurrence relation for
the distribution B(®, A).

ProprosITION 3.1. — Let ¢ € ®. Then we have

(3-2) 9pB(®,A) = B(® — {9}, A) — p*B(®o, o).

TOME 62 (2012), FASCICULE 2



832 Arzu BOYSAL & Michéle VERGNE

Proof. —

We fix the measures dav and d,v and we identify B(®, A) and B(Pg, Ao)
to generalized functions. Differentiating B(®P, A) in the sense of generalized
functions, we get

6<2i7TU7'Y>

O B(P, A = -
(ol ( )(v) : H¢’€<I>7{¢} <227T(]5',’7>

VE  reg (@
e<2i7rv,'y)

) H¢/e¢>_{¢} (2im’, )

Y€ reg (P2 —{0}
e<2i7rv77>

- Z H¢/eq>7{¢} (2imd’, )

’Yerreg(‘b_{‘i’})»<’)’v¢>:0

The last term is constant on the line v + R¢ and identifies with
p*B(®o, Ao). 0

4. Hyperplane arrangements and generalized series

We generalize the setting of Bernoulli series.

Here we assume that the list ® in Vg does not contain the zero vector.
Then each ¢ in ® determines an hyperplane Hy, = {u € U : (u, ¢) = 0} in
U. Let

H(®) ={Hy, ¢ € D}
be the set of hyperplanes determined by ®. We denote the closed subset
UgecaHgy of U by the same notation H(®). When @ is fixed, we denote
H(®P) simply by H, and its complement in U by Uy.

We denote by S(V) the symmetric algebra of V' and identify it with the
ring of polynomial functions on U. We denote by Ry the ring of rational
functions on U regular on Uy, that is, the ring generated by the ring S(V')
of polynomial functions on U together with inverses of linear forms ¢ € ®.

The set I'teg(P) depends only on #, thus, we shall also denote it by
Iieg(H). A function g € Ry is well defined at v € T'yeg(H).

DEFINITION 4.1. — If g € Ry, we define the distribution B(H, A, g) on
V' by
B Ag) = D g™ dyo.
V€T veg(H)
It is easy to see that the above series converges in the space of distribu-

tions on V. The Bernoulli series B(A, ®) is the special case of B(H, A, g)
: _ 1
with g = L.+

PpED
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Example 4.2. — Let A = Zw, let H = {0}, and g = 1. Then
B, A g) =) €™ = —1+4y
n#0

Observe that if A; C Ag, then B(H, A, g) is obtained from B(H, A1, g)
by averaging over As/Aj:

(4.1) B(H, Asyg) = Y t(A)B(H, A1, g).

A2€A2 /Ay

Let ¢ € @, then we can associate to ¢ the following two arrangements:
o H' =M\ Hy.
e Ho={HNHy, H € H'}, the trace of the arrangement H' on H,.

Clearly a function g in Ry restricts to the hyperplane Hy in a rational
function go lying in Ry,. Thus B(Ho, Ao, go) is a distribution on Hj =
V/Ro.

We have the following recurrence relation for the distribution B(#H, A, g)
associated to an element g € Ryy.

PROPOSITION 4.3. — If g € Ry, then
B(H7A7g) = B(H/7Avg) 7p*B(H07A0790)'

Proof. —
From the equality (3.1), we see that the elements of I'yeq(H') that are
not in I'yeg(#H) can be identified with the elements of T'yeg(Ho). O

5. Piecewise polynomial behavior

For completeness we reprove here that the distribution B(®, A) is piece-
wise polynomial when ® generates V. In fact, we prove the piecewise poly-
nomial behavior of the series B(H, A, g) when g belongs to a particular
subset G¢ of Ry which we will shortly describe.

Suppose ® generates V. A subspace of V' generated by a subset of el-
ements of @ is called ®-admissible. A ®-admissible hyperplane will also
be called a wall. Let H.a(P) be the set of ®-admissible hyperplanes in V
together with their translates with respect to A. An element W € H.g(P)
will also be called a (affine) wall. An element v € V is said to be regular
if v is not on any affine wall. We denote by Viegas the open subset of V
consisting of regular elements. We denote by 7 (®, A) the set of connected
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components of Vieg a. An element 7 of 7(®,A) is called a tope. By def-
inition, topes only depend on A and the arrangement H(®), and not on
O itself; thus we will denote the set of topes indifferently by 7(®,A) or
T(H,A).

Suppose A; C Ag. Then, topes corresponding to the system (@, Ay) are
obtained by translating topes corresponding to (®, A1) by elements of A
and taking their nonempty intersections.

Example5.1. — Let V =Re1®Req, @ = [e1,e0] and A = Zeﬁ}Z@.
Let & = [e1,ez]. Then, the topes in T (P, Ze; ® Zey) gives a paving of V
by squares (complement of bold black lines in Figure 5.1), and the topes
in T7(®, A) are obtained by subdividing the squares into 4 equal squares.

€1

Figure 5.1. T(®,Zey ® Zes) versus T (P, Ze; & Z(elgie"’))

DEFINITION 5.2. — A function f on Viegasr is called piecewise polyno-
mial with respect to Hag(P) and A if f coincide with a polynomial function
f7 on each tope T in T (P, A).

A distribution D is called piecewise polynomial with respect to H(®) and
A (in short (H,A), or equivalently (®,A)) if it is given by integration on
Vieg,aft by & piecewise polynomial function. The space of piecewise polyno-
mial distributions with respect to (#, A) is invariant under translation by
A. More generally, if Ay C A, and D is piecewise polynomial with respect
to (H, A1), then t(A\2)D is piecewise polynomial with respect to (H, As) for
any Ao € As.

The condition for a distribution b to be piecewise polynomial is stronger
than the condition that the restriction of b to any tope is a polynomial
density. For example the § function of the lattice A restricts to 0 on any
tope 7, but is not a piecewise polynomial distribution.
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Let ¢ € ®, and consider the two arrangements H’ and H associated to ¢
as in the previous section. If f is piecewise polynomial for (H’, A), then f is
piecewise polynomial for (H,A). If fj is piecewise polynomial for (Hg, Ag),
then p* f is piecewise polynomial for (H, A).

We now prove that B(H, A, g) is piecewise polynomial with respect to
(H,A) when ® generates V and g is in some subspace of Ry that we
describe now.

We may assume that all equations ¢ = 0 of the hyperplanes H, in H lie
in A, we can always achieve this by taking an appropriate multiple of ¢.
Thus, for what follows, we may assume that elements of ® are in fact in A.

We denote by B(®) the set of subsets of r linearly independent elements
of ®. In other words, an element of B(®P) is a basis of V extracted from ®.

Suppose L is a sequence of elements of ® (possibly with multiplicities)

generating V. Define
1

0(L)(x) = Mo @)

a function in Ry.
Since 6(L) will change by a scalar multiple when elements of L are scaled,
we may define the following space which depends only on H.

DEFINITION 5.3. — Let Gy be the subspace of Ry generated by all
rational functions of the form 6(L).

We recall the following description of G.

LEMMA 5.4. — Any 0(L) may be written as a linear combination of

- _ 1 — - Aaia
elements 6(o,n) = T where o = [y, ...,q;,] € B(D) is a basis
extracted from ® and n = [ny,na, ..., n,] is a sequence of positive integers.

Proof. — By induction on the number of elements of L, we need to prove
that the assertion holds for rational fractions of the form (o, n)-k with

o =lo,...,a,]isabasis of V. We write &« = Y _, ¢;c;. Using the relation,
o 1 1 1
O(o,n)— = = E ¢
n Ty i = - y
aN all ceeQp aN"l‘l i 20 a?l ...a;”* 1...a,’,r,L aN+1

we decrease the number |n| = n; + -+ 4+ n,.. When one of the n; in the
sum becomes 0, the corresponding term is of the required form associated
to the basis 0; = o U {a} \ {as}. O

PROPOSITION 5.5. — If g € Gy, the distribution

BH,Ag)(v) = > g(y)e*
VET reg (H)
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is a piecewise polynomial distribution (with respect to the system (H,A)).

Proof. — We prove the proposition by induction on the number of ele-
ments in H. Using Lemma 5.4, it suffices to prove the proposition for g of
the form g = 6(o,n) for o € B(P) and n a sequence of positive integers.

We first assume that ® consists of independent elements aq, s, ...,
possibly with multiplicities. Consider an element g = (L) of G for

L=lag,...,00,00,...,00,...,00, ... 0]

where a; appears with multiplicity k; in ®.
Let A = Zay ®Zas® - - - @& Zaw; clearly A’ is a sublattice of A. We choose
coordinates t = ), t;or;. Then B(H,A’, g) = B(t) with

(5.1) B() = (-1 [ Bkt ~ [8).

The function B(t) is a polynomial function on each parallelogram translated
from the parallelogram Y ;_,[0,1]a;. By equation (7.3), the distribution
B(H, A, g) is obtained by averaging B(H, A’, g) over A/A’. Thus B(H, A, g)
is piecewise polynomial with respect to (H, A).

We now consider the general case, where the cardinality of H is greater
than 7. In this case there exists ¢ € ® with the property that, for the
hyperplane arrangements H' and H associated to ¢, we have g € G/ and
go (the restriction of g to ¢ = 0) is in Gy,. Then, using Proposition 4.3,
which states

B(Hv A7g) = B(Hlv Av g) - p*B(H07 A0790)7
we conclude by induction that B(H, A, g) is piecewise polynomial with re-
spect to (H,A). O

The Bernoulli series B(®, A) is equal to B(H, A, g) with g = ﬁ; it
is an element of G for we assumed that ® spans V. Thus, by Proi)goq;ition
5.5, we immediately obtain that B(®, A) is a piecewise polynomial density.

COROLLARY 5.6. — For any f € Ry, the distribution B(H, A, f)(v)
restricts to a tope T as a polynomial density.

Proof. —

Let f € Ry. We can write f as Pg where P is a polynomial and g € Gy .
Then the distribution B(H, A, f)(v) is obtained by applying the differential
operator P(0,) to the distribution B(H, A, g)(v).

This differentiation is in the distribution sense so that it may produce
distributions supported on admissible hyperplanes, but on an open tope T,
we obtain a polynomial density. (|
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DEFINITION 5.7. — Given a tope T in T (®,A), we denote by Ber(®, A, 7)
the polynomial function on V such that the restriction of B(®,A) to T
coincides with the restriction of Ber(®, A, 7)(v)dav on 7.

By the above proof, we see that the polynomial Ber(®, A, 7) is of degree
equal to the number of elements in ®.

The fact that B(®, A)(v) is a periodic distribution on V implies immedi-
ately the following periodicity formula. For any A € A and v € V,

(5.2) Ber(®,A, 7+ A)(v+ A) = Ber(®, A, 7)(v).

If v is a connected subset of V' contained in the open set of regular
elements, we denote by Ber(®, A, v) the polynomial Ber(®, A, 7(v)) where
7(v) is the unique tope containing v.

Let 7 € T(®,A) and ¢ € ®. If vy € Vy = V/ < ¢ > is the projection of
v € T, then vy is not on any affine wall in Vj. Indeed the reciproc image of
an affine wall in 1}, is an affine wall in V. We denote by 79 the unique tope
in Vy containing the projection of 7.

Equation (3.2) implies the following relations.

If ® — {4} generates V, then

(5.3) 04 Ber(®, A, 7) = Ber(® — {¢}, A, 7) — Ber(®g, Ao, 70)-
If ® generates V, but ® — {¢} does not generate V, then
(54) (9¢ Ber(@,A,T) = —BeI‘(CI)o,A(),To).

Remark 5.8. — By using reduction to independent variables and the
explicit formula (5.1), we obtain also a way to compute Ber(®, A, 7). This
can be applied not too painfully when the number of elements in @ is small.
However, the residue formula due to A. Szenes [12] to compute Ber(®, A, 7)
is very efficient when ® is large, provided the dimension of V' is relatively
small. We will give examples of computations of volumes of moduli spaces
using Szenes formula in a next article.

6. An Euler-MacLaurin formula

This section is independent of the rest of the article.

Assume that ® generates V. Using the Lebesgue measure associated to
the lattice A, we identify B(®, A)(v) to a piecewise polynomial function on
V.
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Let us denote by R the set of ®-admissible subspaces of V. Then s =V
and s = {0} are the maximum and minimum elements of the partially
ordered set R. If 5 is a $-admissible subspace of V', we denote by @ \ s the
sequence of elements in ® not lying in the space s.

The projection of the list ® \ s on V/s will be denoted by ®/s. The
image of the lattice A in V/s is a lattice in V/s. If ® generates V, ®/s
generates V/s. Using the projection V' — V/s, we identify the piecewise
polynomial function B(®/s, A/s) on V/s to a piecewise polynomial function
on V constant along the affine spaces v + s. Then,

Dreg(®/5) 1= T N Useg(®/5)

is the set of elements v € T" satisfying (v,s) =0 for all s € s and (v, ¢) # 0
for all ¢ € @\ s.

We lift functions on V/s to functions on V' by the canonical projection.
Thus B(®/s,A/s) is the function on V given by the series (convergent in
the sense of generalized functions)

eQiTK‘(’U,"/)
H¢>eq>\5 2im (¢, )

YET reg (P/5)

This function is periodic with respect to the lattice A, piecewise polynomial
on V (relative to (®,A)) and constant along v +s. We denote it simply by
B(®/s) leaving its dependence on the lattice A implicit. If s = V, the
function B(®/s) is identically equal to 1; if s = {0}, then we obtain the
multiple Bernoulli series B(®, A).

THEOREM 6.1. — Let f be a smooth function on V', rapidly decreasing
with rapidly decreasing derivatives. Then,

ST => (- |¢\”/B<I>/5 (T 201

AEA SER PEP\s
Remark 6.2. — The term corresponding to s = V in the above sum
gives the term fv v)dv. Thus we may also write the formula as
/ f(v)dv = 1)l®\sl / B@/s)(w)( [] 9s)f
,\eA 575V ¢>e<1>\4

All the sets @ \ s entering in this formula are ‘long’, that is, their com-
plement in ® do not generate V. In particular they contain a ‘cocircuit’.
This formula has been used in [16] to obtain a formula for the semi-discrete
convolution with the Box Spline.
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Proof. — Let

By Poisson formula

S =>"Ffw

A€A yel
We group together the terms in I' belonging to st for s € R. More
precisely, the lattice I' is a disjoint union over the s € R of the sets

Treg(®/5) = {y €5 NT|(p,7) #O0for all p € ®\ 5}

Now in the generalized sense

/ egi’r(””)f(v)dv
~el

VGFreg(q’/ﬁ) reg (2/5)
- / Do B(D/5)(v) £ (v)
v
and we obtain the statement in the theorem. O

7. Wall crossing

In this section we again assume that ® generates V. Under this assump-
tion, we compare the polynomials Ber(®, A, 7) associated to two adjacent
topes of T(®,A) separated by an hyperplane W. We remark that due to
the periodicity property of B(®,A) it suffices to consider jumps over an
hyperplane W passing through the origin.

If D1 and D5 are two distributions on V' with supports S and Sy with
the property that for any v € V' the intersection of v — 57 and S5 lies in a
compact set, then the convolution D; * Dy is well defined.

We recall the definition of multispline. Let X = [v1,v9,...,0,,] be a
sequence of non-zero vectors in V. We will first consider the case where
X spans a pointed cone. The multivariate spline T(X) is the tempered
distribution defined on test functions f by:

(7.1) (T(X)|f) = / T / T vt

If X spans V, we may interpret 7'(X) as a function on V supported in
the cone C'(X) generated by X. This function is piecewise polynomial. If
v € X, then 9,T(X) = T(X — {v}). When X is the empty set, T'(X) = do.

We now consider the case where the elements of X do not necessarily lie
in a half-space. We introduce a polarization of X given by a vector u in U.
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Let w € U be a vector that is nonzero on all elements of X. We will then
say that the vector u is polarizing for X. Divide the list X into two lists
A and B, the lists of positive and negative vectors on u respectively. We
then define

T(X,u) = (=1)"PIT([A, -B]).
Example 7.1. — With the notation of Example 2.2,

(,g% if t >0,
0 ift<0

0 if t >0,
and T(®y, —w*) = gl

T((I)ka“'}*) = {

We return to our set up. Let ® be a sequence of nonzero vectors in
V', spanning V. Let W be a ®-admissible hyperplane. Let E € T be an
equation of this hyperplane, where E is a primitive vector in I'; this fixes
FE up to sign. The lattice A is fixed, and we write simply dv instead of
dav. Similarly we denote by dh the density determined by ANW. As E
does not vanish on any element of ® \ W, we may define T'(® \ W, E) as
above; it is a distribution supported on E > 0. Let p be a polynomial
density on W. Then, the convolution p « T'(® \ W, E) is well defined and it
is supported on E > 0. Similarly, p*x T(® \ W, —E) is supported on E < 0.
It is easily proven (see [1]) that pxT(®P\ W, E) —pxT(®\ W, —F) is given
by integration against a polynomial density. We thus define the polynomial
Pol(p, ® \ W, E) by the equation

Pol(p, ® \ W, E)(v)dv = p* T(® \ W, E) — p+ T(® \ W, ~E).

The following properties of Pol(p, ®\ W, E) follow directly from the above
equation.

LEMMA 7.2. — Let U =&\ .
(a)Let ¢ € U. Then,

OyPol(p, ¥, E) = Pol(p, ¥ — {¢}, E).
(b) If ¥ = [¢)], then for h € W and t € R,

Pol(p, {1}, E)(h + ty)) =

(¢, E)

if p(h) = f(h)dh.
(c) If |¥| > 1, then the restriction of Pol(p, U, E) to W vanishes of order
|W| — 1.
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The following one dimensional residue formula for Pol(p, ®\W, E) is given
in [1]. It is useful in computing the convolutions. We write p(h) = f(h)dh
where f is a polynomial function on the hyperplane W.

LEMMA 7.3. — Let P be a polynomial function on V extending f. Then,
forveV,

e(v,w-i—zE)
Pol(p, ® \ W, E)(v) = Res.—o ((P(&c) Toconw(@a + zE>> ) '
€ ’ =0

THEOREM 7.4. — Let 7y and 72 be two adjacent topes in T(®,A) sep-
arated by the hyperplane W defined by E with (v, E) > 0 for any v € 1.
Denote by 712 the tope in T(®NW, ANW) containing 71 N7z in its closure.
Let Ber™? := Ber(® N W, A N W, 715)dh be the polynomial density on W
determined by T2. Then,

(7.2) (Ber(®,A, 1) — Ber(®, A, 12))dv
=Ber™? «T(® \ W, E) — Ber™ «T'(® \ W, —E).

Remark 7.5. — Formula (7.2) is very similar to jump formulae for vol-
ume of reduced spaces in Hamiltonian geometry. Indeed if p : M — t* is
a proper moment map associated to an Hamiltonian action of a torus T,
then the set of regular values of p is the complement of a certain number
of affine hyperplanes. On each connected component, volumes of reduced
spaces M,.q(v) := p~1(v)/T are given by polynomial functions of v. When
crossing a wall, the variation of these polynomials follow the same jump
scheme as in equation (7.2): they are determined by a polynomial volume
function associated to a smaller Hamiltonian manifold M, and weights of
the normal bundle of My in M ([9]). In particular, when the sequence
® is comprised of positive coroots of a compact connected Lie group G
with multiplicity 2g — 1 and A is the coroot lattice of G, the polynomials
Ber(®, A, 7) describe (up to some normalization) the symplectic volume of
the moduli space of flat G-connections on Riemann surface of genus g with
one boundary component, around which the holonomy is determined by v.
These moduli spaces are reduced spaces M,..q(v) of an Hamiltonian action.

Proof. — We will first verify the claim for the case where there is only
one vector ¢ in ® that is not contained in W.
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Let Ag = ANW. We consider the lattice A, = Ay ®Z¢. By formula (2.4),

(7.3) B@,A)(v)= > B(®,A)(v+ ).

X EA/A,

For t in a small neighborhood of zero, let 71 (respectively 7) denote the
tope containing the open set of v = h + t¢ for h € W lying in a relatively
compact open subset of 715 and t > 0 (respectively ¢ < 0).

We may express a representative of a non-zero \; € A/Ay as \j = hj+t;¢
for hj € Ag and t; ¢ Z. As the lattice Ay is product of lattices, we have

B(®, A4) (4 16) = B(® OW, Ao) (h) (—t + [1] + 1)t
Observe that the jump in the function B(®, Ay)(v+A;) = B(®, Ay)(h+h;+
(t+1t;)¢) as t changes sign in a small neighborhood of zero is precisely zero
for the nontrivial representative A; since ¢; is not integral. Thus the only
contribution to the jump comes from the trivial A; in the sum of equation
(7.3). We get

Ber(®, A, 71)(v) — Ber(®, A, 72)(v) =

Ber(® N W, A)(h)((—t + % _(—t— Ly,

1
(E, )

The convolution product in this case is just the product in coordinates
so that

BeI‘((I) N I/V,A(),Tlg) * T({¢},E) - BeI'((I) N W Ao, 7—12)(}") * T({(b}v _E)

is equal at the point (h,t) to Ber(® N W, Ag, 712)(h) and hence we obtain
the claimed formula.

Now consider the case where there are several elements of ® that do not
lie in W. Let ¢ be a vector in ® \ W. Let ® = & — {¢}; &’ still generates
Vand @ NW = & NW. Equation (3.2) implies that in this case B(®, A)
is continuous on W: indeed the derivative in the direction ¢ is a piecewise
polynomial function.

Let 7{ and 74 be the topes of ® containing 7; and 75 respectively. They
are adjacent with respect to W and Ber™? = BerTiz. Using equation (5.3),
we have

0y Ber(®, A, 71) — 9y Ber(®, A, 75) = Ber(®', A, 1) — Ber(®', A, 73).

Indeed the topes 71 and 7 give the same tope 7y under projection onto
Vo=V/<¢>.
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By Lemma 7.2 part (a),
dsPol(Ber™, & \ W, E) = Pol(Ber™2, &' \ W, E).

Denote by Leq(®) the left hand side, and by Req(®) the right hand side of
equation (7.2). By induction, we have d4(Leq(®) —Req(®)) = 0. Thus, the
polynomial function is constant in the direction of R¢. The left hand side
vanishes on W by the continuity of B(®, A) on W. Hence the claim. O

We now demonstrate the theorem with various examples.

Example 7.6. — Recall the data of Example 2.2. Let 7y and 75 be two
adjacent topes defined by inequalities 0 < t < 1 and —1 < t < 0 respec-
tively. By Theorem 7.4 and Example 7.1,

tk—l
Ber(®, A, 71)(tw) — Ber(®, A, 1) (tw) = ——,
(k—1)!
which is indeed equal to — 2 B(k,t) + 7 B(k,t + 1) as it can be seen from
the explicit expression of B(®y, A)(tw) in Example 2.2.

Example 7.7. — Recall the data of Example 2.3. Let 7, and 75 be the
two adjacent topes separated by the hyperplane W = R(e; +e2) (see figure
7.1(a)). Then E = —e! + €2.

T3
T2 T

€1

(a) (b)
Figure 7.1. T ([e1,ea,e1 + €], A) versus T ([e1,ea,e1 + ea,e1 — €3], A)
with A = Ze, @ Zeq

We express v = vieg + vaes € V as v = vi(e1 + e2) + (v2 — v1)es and
r €U asx = x1e! +xo(—e! +e2). Using Example 2.2, with ®NW = e; +eo
and ANW =Z(e1 + e2) at v1(e1 + e2), we have
Ber™2 = Ber(® NW,ANW, 12)(vi(e1 + e2))
1

:——/Ul

2
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In the above coordinates of U, the operator Ber™?(9,) = 1 —9,, under the
identification P(0,)e'®*) = P(a)e{®®). Then,

Pol(Ber™, ®, F)(v) = Res.—q ((Berm(@w) ' H(¢+E>) )
pe@\Ww 7’ =0

o 1 ev1z1t+(va—vi)wa+(va—vy)z
= Res.— (((5 —0n1) o

_ : 1 ev1T1+(va—v1)z
= Res.—o <<(2 arl) (z1-2)z x1=0

= %(1 — V1 — 1}2)(1}1 - ’02),
which is indeed the jump Ber(®, A, 71)(v) — Ber(®, A, 72)(v) as it can be

seen from the explicit expression in Example 2.3.

Example 7.8. — Recall the data of Example 2.4.
(a) Jump over the wall W = Rey: Then E = e, @ N W = {e;} and
ANW = Ze; (see figure 7.1(b)).

H¢e<1>\<1>mw <¢’I+ZE>
o . 1 . e'u1m1+'u2:n2+vzz
=TeS=0 (( 811 + i) (zo+2)(z1+T2+2)(T1—T2—2) 22=0

= %v%(%l - 1),

which is indeed the jump Ber(®, A, 75)(v) — Ber(®, A, 71)(v) as it can be
seen from the explicit expression in Example 2.4.

(b) Jump over the wall W = R(e1 +e2): Then E = —el + 2. We express
v = vie; + vaeg € Vas v = vi(e; + e3) + (voa —v1)ex and z € U as
x = z1et + 29(—e! + €2). Using Example 2.2, with ® N W = e; + e3 and
ANW = Z(e1 + e2) at vi(e1 + e2), we have Ber™ = Ber(® N W,A N

W, 723)(v1(e1 + e2)) = 3 — v1. Then,

Pol(Ber™, @, B)fa) = Reseco (Ber™(00) - [0

Pol(Ber™, ®, E)(v)

_ 1 o171+ (v2 —v1)@a+(va—v1)=
= Res,—o (((2 - (956‘1) (x1—ma—2)(w2+2)(21—222—-22) ) . _

= 7%(01 -1+ ’02)('01 — 1)2)2,

which is indeed the jump Ber(®, A, 73)(v) — Ber(®, A, 7)(v) as it can be
seen from the explicit expression in Example 2.4.

8. The affine case

This section generalizes previous results to the affine case. Results proven
here are not needed for the following section.
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Let ® = [¢1, ..., ¢n] be alist of elements of Vi and let z = [z1, 22, . . ., 2N]
be a list of complex numbers. We consider the augmented list ¢ :=
[[#1,21],---,[OnN, 2n]] and define

Dreg(®) = T'N Upeg(®)

where
Ureg(®) = {u € U| (¢;,u) + z; # 0 for all j}.
DEFINITION 8.1. — The affine multiple Bernoulli series is the distribu-
tion

2im(v,Y)
dAU.

B(®,A) = €
"/Gl—g(é) H;\Izl 227T(<¢j7 ry> + ZJ)

The distribution B (‘i), A) has the following properties, similar to its non-
affine counterpart:

o If @ is the empty set, then B(®P,A) is the §-distribution of the lattice
A.

e If A; C Ay. Then B(®, Ay) is obtained from B(®, A;) by averaging over
A2 /All
(8.1) B(®,Ar)= D, t(A)B(®A).

A2€Az /Ay

In the special case z; = (¢;, z) for z € Ug, it is more natural to consider
the distribution

Eis(®, A, z)(v) = >

N . .
veTiby a0 LLj=1 2005, 7 + 2)

e2i7r<v,'y+z)

Clearly,
Eis(®, A, 2)(v) = ¥ ™2 B(D, A) (v)

for ® = [[¢1, (¢1,2)], - [dN, (dn, 2)]]. If z is regular, that is (¢,~) + 2z # 0
for all ¢ € @, then Eis(®, A, z)(v) defines a distribution of v with coefficients
meromorphic functions on Tg = Ug /T which is studied in [3].

Example 8.2. — Let A = Zw, and let &, = [[w,2],[w,2],...,[w,2]]
where [w, 2] is repeated k times. If z is integral, we simply have
B(®, A)(tw) = e 2™ B(Dy, A (tw).
If z is not integral and k = 1, then, using Lemma 16 of [3],

e2imnt e([t]—t)?iﬂ'z

(8.2) B(@1, 4)(tw) = Z 2im(n + 2) dt = 1 — e—2imz’
nez

which is an analytic function of ¢ in each tope.
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If £ > 1, z not integral, and 0 < ¢ < 1, we use the residue theorem for
the integral

eftu
d
/|UR (2iTz —u)k(1 —ev) b
which tends to 0 when R tends to infinity. Then,

—tu

B(@k,A)(tw) = — Resy—2inz (e—du

2i7rz—u)kgl—e*“)
bu

— 2Tzt
=e€ ReSu=0 mdu

Thus, we see that B(®y, A)(tw) is a product of an exponential function of
t and a polynomial in ¢. In particular, in the interval 0 < ¢t < 1, it is an
analytic function of ¢. For example, for k =2 and 0 < t < 1, we get

B e—2i7rzt 1
B(®2, A)(tw) = 1=z <t+ eQurz_l) :

8.1. Recurrence relations

In the affine case the recurrence relation (3.2) is slightly modified.
Let ¢ = [¢, 2] be an element of ®. We consider two cases.
e Suppose there exists v, € I' such that

(8.3) (¢,72) +2=0.
Then, we may express 7 € Dyog(® — {¢}) satisfying (y,6) + 2z = 0 as
v =19"+7:. Clearly, (y',¢) =0.
We consider the system
Oo = [[¢), 2 + (5,7:)], 85 € D — {9}]
in Vp =V/ < ¢ >. The sum
e(Qiﬂv,’y’)

Z =0 Ly, co-qoy 2im((05,7") + (D5, 72) + 25)

"//erreg(&)_{q;}%('yla(ﬁ =

is constant in the direction of ¢ and identifies with B(®o, A)(7). Hence, we
get the following recurrence relation.

(8.4) (Dg + 2im2)B(®, A)(v) = B(® — {§}, A)(v) — 2™ 720 B(Dg, Ao) ().

e If there does not exist v, satisfying the relation (8.3), then Tyeq(® —
{¢}) = I'1eg(P), and the equation (8.4) reduces to

(0g + 2im2)B(®, A)(v) = B(® — {4}, A)(v).
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8.2. Piecewise exponential polynomial behavior

We consider ¢ = [0, 2] € ® with ¢ # 0. Consider the complex hyperplane
Hj = {u € Uc: (u,¢) + z = 0}. Consider the set

H=H@®) = {Hj, § b}

of hyperplanes in Uc. We denote by R the ring of rational functions on
Uc with poles along H. That is, if S (V) denotes the symmetric algebra of
Ve, identified with the ring of polynomial functions on Uc, then Ry is the
ring S(V¢) of polynomial functions on Uc together with inverses of forms
(¢,-) + 2 for [¢, 2] € ®.

For g € Ry we define the distribution B(H,A,g) on V by

BH Mg = Y g dy,
vEFreg(ﬂ)

where I'vog (H) = I‘reg(ci)), as regularity does not depend on the multiplicity
of an element in ®.

We fix ¢ € @, and define H' = H \ Hj. For g € Ry, we compare
B(H,A,g) and B(H', A, g).

Similar to the nonaffine case, for a fixed ¢ € @, we define #' :=H \ H 3
and 7 to be the collection of affine hyperplanes H N Hj for those H € H
not parallel to H:, that is, for H € H associated to [0),25] € ® with
¢; # ¢. The collection H, is a collection of affine hyperplanes in the affine
space H 3

We consider two cases:

e There exists 7, € I' lying in Hq;. Thus (¢,v.) + z = 0. Let Hy be
the real hyperplane with equation ¢ = 0. If K € Ho, then K — {7.} is
a complex hyperplane in (Hp)c. Let 7-26 be the collection of hyperplanes
K — {v.} with K € Ho. Then, for g € R;;,, we define go(u) == g(u +7.)
lying in Ry Let Vo = V/R¢, and Ay the image of A in Vj.

It immediately follows from the set theoretic partition in the proof of
Proposition 4.3 that:

LEMMA 8.3. — If g € Ry,, then
B(,]:Za A7g) = 8(7:'[/7/\79) - 627;7T<’U”yz>p*8(7:l87A0790)'

e In the case that there does not exist any 7, € I' lying in Hj and
satisfying Equation (8.3), we have

B(H, A, g) = B(H', A, g).
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For a fixed ® we will denote the list of vectors ¢ coming from the first
component of the pairs in ® by ®. Suppose that the vectors in ® associated
to ® span V. Let G denote the subspace of Rj; generated by functions of

the form
~ 1

0(L)(x) =
HaEL <Ol, £L’> + 2o
where L is a list of vectors coming from ® generating V.

We call a function that is a sum of products of exponential functions and
polynomial functions an exponential polynomial.

We will say that a locally L' function f is piecewise exponential polyno-
mial, if there exists a decomposition of V' in a union of polyhedral pieces
C; such that the restriction of f to C; is given by a exponential polynomial
formula. We then say that the distribution f(v)dav is piecewise exponential
polynomial.

PROPOSITION 8.4. — Ifg € G5, then B(H, A, g) is a piecewise exponen-
tial polynomial distribution.

Proof. — We use the same line of argument as in the proof Proposi-
tion 5.5. As before, we scale the denominator of g = é(L) such that all
a € L lie in the lattice A. In the case that L has independent elements,
B(?—l, A, g) can be written as a product of exponential polynomial functions
B(®y, A), whose expression changes whether the (scaled) z are integral or
not. The expression for both cases is given explicitly in example 8.2 and
they are piecewise exponential polynomials. We then use the averaging
formula (8.1).

In order to reduce the general case to the case of independent vectors we
use an analogue of Lemma 5.4, and in the case that same « with distinct
z appears in ®, we use the relation

1 1 1 1 1

(a4 z1)(@+22) 2z1—22(a+21) 20— 21 (@+ 22)

We then get the claimed property of B(H, A, g) by induction using Lemma
8.3. O

The above proposition for ® = [[¢1, 2], ..., [¢n, zn]] and

o(z) = !
[12, 2im((¢5, ) + 2;)

gives:

COROLLARY 8.5. — If ® associated to ® generates V, then B(®, A)(v)
is an exponential polynomial function of v on a tope of T (®, A).
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Remark 8.6. — Using the same proof as above, we see that
Eis(®, A, 2)(v) = ¥ ) B(®, A)(v) is an exponential polynomial func-
tion of v on each tope 7 in T(®,A). Furthermore, when z is regular, the
recurrence relation simplifies to

(8.5) 9y Eis(®, A, 2) = Eis(® \ {¢}, A, 2).

The system of relations in (8.5) are the relations of Dahmen-Miccelli [4].
In particular, on each tope 7, we obtain that Eis(®, A, z)(v) = Y K;(v) F;(2)
where K;(v) are Dahmen-Micchelli polynomials and F;(z) meromorphic
functions of z.

8.3. Wall crossing

Given a tope 7 in T(®,A), we denote by Ber(®,A,7) the polynomial
exponential function on V such that the restriction of B(®, A) to 7 coincides
with the restriction of Ber(@ A, 7)(v)dv on 7.

Let (H (v, 2)|f) = [ioq f(ta)e > dt.

Given a wall W, assume that we have renumber @ so that
d = [[¢17 Zl]? ce [(b;ﬂv Z:D]’ [¢P+1’ Zerﬂ, EER) [¢p+q7 Zp+q]]

where the first p elements ¢, belongs to W and the last ¢ elements ¢, ;
do not belong to W. Then, we define the lists

&) NnNWwW .= [[¢1; Zl]7 ceey [¢p7 Zp]]
and

o \W = [[dpt1, 2p41]s - -5 [Bptas 2p4l-
Let E be an equation for the wall W. We define
T(@\W,E):= [] -H(-¢i,—z)x ][] H(i )
(¢, E)<0 (¢i,E)>0

We remark that due to the periodicity property of B(®,A) it suffices to
consider jumps over an hyperplane W passing through the origin. We have,
similar to Theorem 7.4,

THEOREM 8.7. — Let 7y and 12 be two adjacent topes of T(®,A) sep-
arated by the hyperplane W, with equation E. Assume that (v,E) > 0
for v € 1. Denote by 115 the tope in T(® N W, A NW) containing 71 N 75
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in its closure. Let Ber(i) NW,ANW,1i2)dh be the analytic density on W
determined by T2. Then,

(Ber(®, A, 71) — Ber(®, A, 7))dv
= Ber(® N W, 712) * T(®\ W, E) — Ber(® N W, 112) * T(®\ W, —E).

Proof. — The proof follows the same line of argument as in the proof
of Theorem 7.4. For the first inductive step, we are reduced by the same
argument as in Theorem 7.4 to a product situation of W with the line R¢.
Then we compute explicitly using Formula (8.2). O

Example 8.8. — Recall the data of Example 8.2. Let 7y and 75 be two
adjacent topes defined by inequalities 0 < t < 1 and —1 < t < 0 respec-
tively. By Theorem 8.7,

Ber(®y, A, 7)(t) — Ber(®y, A, ) (t) = e~ 2%t

which is also seen from the explicit expression of B(®;,A)(tw) in Exam-
ple 8.2.

9. A decomposition formula

Let A and ® be as before. We do not necessarily assume that ® gener-
ates V.

In this section, we express B(®, A) as a sum of distributions A(®, A, a, 3)
associated to affine admissible subspaces a and a generic vector g in V.

Let us start the construction of the distribution A(®, A, a, ).

Let s be a ®-admissible subspace of V. Then ® Ns generate s, and ANs
is a lattice in s. Let 7 be a tope in T (®Ns, ANs). We can then consider the
distribution B(7)(s) := Ber(® Ns, ANs,7)(s)ds. It is a polynomial density
on 5. We still denote by B(7) this distribution considered as a distribution
on V:

(B(1), test) = /test(s)B(T)(s)ds.

5
Let A € A. Then a:= XA + s is an affine ®-admissible subspace of V. We
say that a is of direction s. By definition, a tope 7 of a is such that 7 — A is
a tope in 5. We define B(® N s, 7) as a distribution supported on a by the
formula
(B(® s, 7), test) — / test(s + N B(r — A)(s).

s
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We remark that the definition of B(® Ns, 7) above depends only on 7 and
not on the choice of A. Indeed, for another A’ € A such that a = X + s, X
is necessarily of the form X' = X\ + )\ for some \g € A Ns. Then,

/test(s +A+X)B(T—=A—=Xo)(s) = /test(s +N)B(T = A= Xo)(s — No)-

s 5
Using relation (5.2), we have B(T — A — Xg)(s — Ag) = B(7 — A)(s), hence
the independence of the expression.

For a ®-admissible subspace s, consider an element v € U vanishing on
s and polarizing for ® \ s. Then, the multispline distribution T'(® \ s,u) is
well defined.

DEFINITION 9.1. — Let a be a ®-admissible affine subspace of V of
direction s. Let T be a tope in a, and let u € U be a vector vanishing on s
and polarizing for ® \ s. Then, we define

A@, A a,7,u) :=B(@Ns,7)«T(P\s,u).

The distribution A(®, A, a, 7, u) is supported on a+wuxg. It is polynomial
in the direction s.

Remark 9.2. — Choose a direct sum decomposition V' = s @ t and
express v € Vasv=s+rfor s €sandr € v. If &isequal to PNsd
® N v, then the function A(®,A,a,7,u) is, in product coordinates (s,r),
the product of B(® Ns,7)(s)ds with T(® \ s,u)(r). In general it is still
possible to express A(®, A, a,7,u)(s,r) as a linear combination of product
of multispline functions on v and polynomials on s.

Our main theorem is that B(®, A) can be decomposed as a sum of distri-
butions A(®, A, a,7,u) over all ®-admissible affine subspaces a for conve-
niently chosen 7 and w. Thus we think of the distributions A(®, A, a, 7, u)
as the basic building blocks of the theory.

Choose a scalar product (,) on V. If W is a subspace of V', or a quotient
space of V', then W inherits a scalar product.

Let 8 € V, and let a be a ® admissible affine subspace of direction 5. We
can then write 8 = By — 31 where By € a and f; € s*. The point Sy is the
orthogonal projection of 5 on a. Assume [ generic so that

e the point By lies in a tope 7(8y) of a.

e the element /3 is polarizing for @\ s: (¢, 31) # 0 for all ¢ € ® and not
in s.

We can then define

A((I)7 A7 a, ﬁ) = A(@v A7 a, T(ﬂ0)7 61)
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THEOREM 9.3. — Choose 8 € V generic. Then, we have
(9.1) B(®,A) =) A(®,A,a,p).
a

Here the sum is over all admissible affine subspaces a.

The sum above is infinite. But remark that, given a vector v € V by
the definition of A(®, A, a, 3), there exists only finitely many ®-admissible
affine spaces a such that A(®, A, a,3) gives a non zero contribution at the
element v € V, therefore the above sum is well defined.

For example, if s = 0, then the affine spaces a of direction s are reduced
to the points A in A and

A@, A, {\}, B) = 6y« T(®, ) — ).
We see that A(®, A, {\},5) is supported in an affine space A + £ with
(€, \— ) > 0. Thus the points v in the support satisfy |[v]|? = ||A[|? —||8]|>.
In particular the sum of the distributions
> A®@, A {A}LB)
XEA

is well defined. Similar estimates hold for any admissible subspace s, when
considering the sum over all affine spaces of direction s .

Remark 9.4. — If ® generates V, then V is admissible, and the term
corresponding to V' is the polynomial density Ber(®, A, 7(3)), with 7(3)
the tope containing 5. The other distributions A(®, A, a, 5) with a # V are
piecewise polynomial densities with support not intersecting 7.

Theorem 9.3 has the following meaning: although the distribution
B(®,A) is very complicated, it is however obtained by superposing sim-
pler functions which are products of polynomials and multisplines.

Before giving the proof of this theorem we demonstrate the decomposi-
tion in various examples and state a recurrence relation.

Example 9.5. — Let ® = (). Then, by definition,
B(®,A)(v) = > ¥,
yEA*
We would like to decompose this sum as in equation (9.1). Observe that

in this case a consists of points of A and any § in V is generic. Using
T(0, 8 — X) = dp, the decomposition in Theorem 9.3 gives

Z e2im(vv) — Z (5)\(7})7

yEA* AEA

which is the Poisson formula.
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Example 9.6. — (one dimensional case) Let A = Zw, and let &) =
[w,w,...,w], where w is repeated k times. Then s = 0 or s = V = Ruw,
correspondingly a are reduced to points {\} in A or a = V. Choose any 8 =
rw € V with 0 < r < 1, it is generic. The polynomial Ber(®, A, 7(3))(tw)
which coincide with B(®, A)(t) on 0 < t < 1is — 5 B(k, t), where B(k, t) is
the Bernoulli polynomial. Then, with the notation of Example 7.1, Theorem
9.3 gives,

B(@p, A)(tw) = —EHB(k,t)dt+ > O+ T(Dp, w")
n€Zso
+ ) O T (D, —w").
n€lgo

In Figure 9.1 we depict the decomposition of B(®s, A)(tw). In part (a) we
draw the graph of the periodic polynomial —%B(Q,t — [t]), the red graph
in part (b) is the graph of the polynomial —1B(2,t) and lines in black
correspond to contribution of splines.

TANVANWAWANWAWAN

/\/\/\/\/\/\

(a) (b)

Figure 9.1. The decomposition of B(®2, A)(tw).

Let us now study the recurrence relations that the distributions
A(®, A, a, 3) satisfy. It will be convenient to define A(®, A, a, ) for any
affine subspace a, by declaring it to be equal to zero if a is not admissible.
If a = XA + s where ¢ € 5, we denote by a/ < ¢ > the image of the rational
space ain Vo =V/ < ¢ >.

LEMMA 9.7. — Let ¢ € ® and 8 € V. We still denote by [3 the projection
of BonV/ < ¢ >.
(i) If ¢ ¢ s, then

Dp AP, A, a,3) = A(®\ {¢}, A, a,5).
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(ii) If ¢ € 5, then
IpA(®, A, 0, 8) = A(@\{o}, A0, B)—A(R/ < ¢ >, A/ < ¢ >0/ <$>,0).
In (1), A(®\ {6}, A, a,p) is zero when ® Ns \ {¢} does not generate s.

Proof. — Part (i) follows from the relation

I T(®\ s, 1) =T((2\{}) \ 5, f1).

For part (i) we use equation (3.2) on 7, which gives

0y Ber(®Ns, ANs,T)
=Ber((2Ns)\ {¢},ANs,7)—Ber(®dNs/ < ¢ > ANs/ < ¢ >, 7).

Now suppose ¢ is a polynomial function on s constant in the direction
of ¢. Let X := [v1,va,...,un] be a sequence of nonzero vectors in V' \ s
generating a pointed cone. We denote the projection of v; to V/ < ¢ > by
v;. Then,

gxT(X / / v—z:tvZ )dty - -
U—Ztvl dtq - -

0
4+ T(X) < 6 >)(@).

Putting ¢ = Ber(®Ns/ < ¢ >, ANs/ < ¢ >,7) and X = @\ s, we get part
(ii). O

Proof. — We now prove Theorem 9.3 by induction on the number of
elements in ®. We assume that the theorem is true for any sublist of ®.
Denote by Req(®) the right hand side and by Leq(®) the left hand side of
equation (9.1).

Let ¢ € . Let " = @\ {¢}. We recall equation (3.2),

0pB(®,A) = B, A) — B(®) < ¢ > A/ < ¢ >).

Let Rag(®) be the collection of all ®-admissible affine subspaces of V.
Let R° be the subset consisting of the elements a whose direction s contains
o.

We now differentiate Req(®) with respect to ¢. Using relations given in
part (¢) and (i) of Lemma 9.7, we get

9pReq(®)
= > A@AaB) - Y AP/ <p> A <¢>a/<¢>p).
aER e (D) aceRO
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We observe that the collection of a/ < ¢ > with a € R? parametrizes
all affine spaces admissible for ®/ < ¢ >. The collection R,g(P) may be
larger than R.g(®’), but, if a is not in Rag(P’), then the contribution
A(®', A, a, ) is equal to 0.
Hence, we obtain by induction that d4(Leq(®) — Req(®)) = 0 for any ¢.
Thus Leq(®) —Req(®) is constant. But by construction Leq(®) —Req(P)
is equal to zero on 7, therefore the constant is zero. O

Example 9.8. — We will give a decomposition formula for the system
in Example 2.3. We recall the data: A = Ze; @ Zea, = [e1, €2, €1 + €3).

We will compute B(®,A)(v) using the decomposition formula for v in
the tope defined by the inequalities 0 < v < 1,1 <w; < 2 and vy —wvg > 1
(see figure 9.2).

We aim to demonstrate the dependence of the summands in the de-
composition formula in Theorem 9.3 to the chosen generic point in a tope,
though the value of B(®, A)(v) is clearly independent of this choice. We will
thus decompose B(®, A)(v) in two different ways, for two different choices
of generic points lying in the same tope.

Figure 9.2. Decomposition for various generic points

For the first (resp. second) computation we choose a generic 8 = bie; +
baey (resp. 4') in the tope defined by 0 < b3 < 1, 0 < by < 1 and by > ba,
and further satisfying by + by < 1 (resp. by + b2 > 1).

Figure 9.2 depicts two such choice of generic elements. We denote the
projection of 8 and 8’ to —ey @ R(e; + e2) by Sy and S respectively.
Since these projections lie in different topes for the reduced system (® N
5, A N s) their corresponding contribution to the sum in Theorem 9.3 will
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be different. In fact, choosing 8 as the generic point will enforce a nonzero
contribution of the lattice point (1,0) in evaluating the distribution at a
point v as depicted in Figure 9.2.
Computation with generic point 3:
B(®,A)(v) = A(®,A,V,5)(v) + A(D, A, Rey + 1, 8)(v)
+A(©7 A, R(el + 62) — €2, B)(U) + -A((I)v A, {(17 O)}v ﬁ)(v)

We now compute each summand using the formula in Lemma 7.3.
A(®, A, Res + €1, 5)(v)
= Ber(ez, 7(8o)) * T({e1, e1 + €2}, B1)(v)
(v,ztzel)
= 5(170) * RQSZZQ (((1/2 — 8x2) : m)z:0>
= %(’Ul —1)(—2vg 4+ v1)

A(éaAaR(el + 62) - 627[3)(1))
= Ber(e1 + e2,7(6o)) * T({e1, e2}, £1)(v) _
=0d(0,—1) * — Res.—o (((1/2 — Ox1) - efvote(ze +e) )a::O)

(x1—x2—2)(22+2)
= —%(—’Ul — ’UQ)(Ul — Uy — 1)

A(®, A, {(1,0)}, B)(v)
= 5(1,0) * —T(ey, —eg,e1 +e2) = —(v1 — 1 —wg)
Using the computation in example 2.3 for A(®, A, V, 8)(v), we get
B(®,A)(v) = —§(v1 — 2v2)(v1 — 1+ v2) (201 — 1 — v3)
+%(’U1 — 1)(—21)2 —+ ’Ul)
+%(’Ul + UQ)(Ul — Vg — 1) — ('Ul -1 'UQ)
= —%(Ul —-1- 2’[]2)(2'01 -3 - 'UQ)('Ul — 24 'UQ)
Computation with generic point 3':
B(®,A)(v) = AP, AV, 5")(v) + A(P, A, Rey + e1, 5)(v)+
A(D, A, R(e; +e2) +e1,8)(v).
The first two summands in the decomposition above are already computed.
The third summand equals:

A®, A, R(er + €3) + e1, 8) (v) = —%(2 1 — )01 — 1= va).

We then have
B(®,A)(v) = —=(v1 — 2v2)(v1 — 1+ v2)(201 — 1 — v3)
+%(’U1 — 1)(—27}2 + ’Ul) — %(2 — V1 — ’Ug)(’Ul —-1- ’U2)
—%(’Ul —1- 2’1)2)(21}1 -3 - UQ)(U1 — 24+ Ug)

o=

as expected.

ANNALES DE L’INSTITUT FOURIER



MULTIPLE BERNOULLI SERIES 857

In the affine case, we define

A(®, A, a,7,u) = Ber(®Ns,7)« T(®\ s, u).

We have a decomposition formula analogous to Theorem 9.3.

THEOREM 9.9. — Choose g € V sufficiently generic. Then we have

B(®,A) =) A(®,A,q,B).

The proof is precisely in the same line of arguments with that of Theo-
rem 9.3.
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