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ALBANESE VARIETIES WITH MODULUS
AND HODGE THEORY

by Kazuya KATO & Henrik RUSSELL (*)

Abstract. — Let X be a proper smooth variety over a field k of characteristic
0 and Y an effective divisor on X with multiplicity. We introduce a generalized
Albanese variety Alb(X, Y ) of X of modulus Y , as higher dimensional analogue
of the generalized Jacobian with modulus of Rosenlicht-Serre. Our construction is
algebraic. For k = C we give a Hodge theoretic description.
Résumé. — Soient X une variété propre et lisse sur un corps k de caractéris-

tique 0 et Y un diviseur effectif avec multiplicité sur X. Nous introduisons une
variété d’Albanese généralisée Alb(X, Y ) de X, de module Y , comme analogue
en dimension supérieure de la jacobienne généralisée avec module de Rosenlicht-
Serre. Notre construction est algébrique. Si k = C, nous donnons une description
en termes de théorie de Hodge.

1. Introduction

1.1. Let X be a proper smooth variety over a field k of characteristic 0,
and let Alb(X) be the Albanese variety of X. In the work [10], the sec-
ond author constructed generalized Albanese varieties AlbF (X), which are
commutative connected algebraic groups over k with surjective homomor-
phisms AlbF (X)→ Alb(X) (see Section 5 for a review). If Y is an effective
divisor on X, a special case of AlbF (X) becomes the generalized Albanese
variety Alb(X,Y ) of X of modulus Y (cf., Section 5). This is a higher di-
mensional analogue of the generalized Jacobian variety with modulus of
Rosenlicht-Serre. Note that the divisor Y can have multiplicity, and so the
algebraic group Alb(X,Y ) can have an additive part.

Keywords: generalized Albanese variety, modulus of a rational map, generalized mixed
Hodge structure.
Math. classification: 14L10, 14C30, 14F42.
(*) The second author was supported by the DFG.



784 Kazuya KATO & Henrik RUSSELL

Assume now k = C. The purpose of this paper is to give Hodge theoretic
presentations (Theorem 1.1) of Alb(X,Y ).
The case when Y has no multiplicity was studied in the work [3] of

Barbieri-Viale and Srinivas. A Hodge theoretic presentation of a generalized
Albanese variety in the case without modulus but allowing singularities on
X was given in the work [6] of Esnault, Srinivas and Viehweg.

1.2. First we review the curve case. Let X be a proper smooth curve over
C and let Y be an effective divisor on X. In this case, the Albanese variety
Alb(X,Y ) of X relative to Y coincides with the generalized Jacobian vari-
ety J(X,Y ) of X relative to Y . In the following, we will write the complex
analytic space associated to X simply by X, and the sheaf of holomorphic
functions on it by OX . Let I = Ker(OX → OY ) be the ideal of OX which
defines Y . The cohomology below is for the topology of the analytic space
X (not for Zariski topology).

The generalized Jacobian variety J(X,Y ) is the kernel of the degree
map Pic(X,Y ) → Z where Pic(X,Y ) = H1(X,Ker(O×X → O×Y )). Let
j : X − Y −→ X be the inclusion map and let j!Z(1) be the 0-extension of
the constant sheaf Z(1) of X − Y to X. (For r ∈ Z, Z(r) denotes Z(2πi)r
as usual.) Then we have an exact sequence

0 −→ j!Z(1) −→ I
exp−→ Ker(O×X → O

×
Y ) −→ 0

and hence we have an isomorphism

(1.1) Pic(X,Y ) ∼= H2(X, [j!Z(1)→ I]).

Here in the complex [j!Z(1)→ I], j!Z(1) is put in degree 0.
We have another presentation of J(X,Y ) given in (2) below. Let I1 be the

ideal of OX which defines the reduced part of Y and let J = II−1
1 ⊂ OX .

Note that the composition of the two inclusion maps of complexes

[I d→ JΩ1
X ] −→ [I d→ Ω1

X ] −→ [I1
d→ Ω1

X ]

is a quasi-isomorphism. Hence we have an isomorphism in the derived cat-
egory

[I d→ Ω1
X ] ∼= [I1

d→ Ω1
X ]⊕ (Ω1

X/JΩ1
X)[−1].

Since j!C −→ [I1
d→ Ω1

X ] is a quasi-isomorphism, we have an exact sequence
(1.2)
H0(X,Ω1

X) −→ H1
c

(
X−Y,C/Z(1)

)
⊕H0(X,Ω1

X/JΩ1
X) −→ J(X,Y ) −→ 0.

(Here Hc is the cohomology with compact supports.)

ANNALES DE L’INSTITUT FOURIER



ALBANESE WITH MODULUS AND HODGE THEORY 785

1.3. Now let X be a proper smooth variety over C of dimension n and
let Y be an effective divisor on X.
Again in the following theorem, cohomology groups are for the topology

of the complex analytic spaces, and the notation O and Ω stand for analytic
sheaves.
Let I be the ideal of OX which defines Y , let I1 be the ideal of OX which

defines the reduced part of Y , and let J = II−1
1 ⊂ OX .

Theorem 1.1.
(1) We have an exact sequence

0 −→ Alb(X,Y ) −→ H2n(X,DX,Y (n)
) deg−→ Z −→ 0,

where for r ∈ Z, DX,Y (r) denotes the kernel of the surjective homo-
morphism of complexes DX(r) → DY (r) with DX(r) the Deligne
complex

[Z(r)→ OX
d→ Ω1

X
d→ . . .

d→ Ωr−1
X ]

and DY (r) the similar complex

[Z(r)Y → OY
d→ Ω1

Y
d→ . . .

d→ Ωr−1
Y ].

(2) We have an exact sequence

Hn−1(X,ΩnX) −→ H2n−1
c

(
X − Y,C/Z(n)

)
⊕Hn−1(X,ΩnX/JΩnX)

−→ Alb(X,Y ) −→ 0.

Note that the case n = 1 of Theorem 1.1 (1) (resp. (2)) becomes the
presentation of J(X,Y ) given by (1) (resp. (2)) in No. 1.2.

Remark 1.2. — We give some remarks on this theorem.
(a) The case Y = 0 of Theorem 1.1 (1) is nothing but the well known

exact sequence

(1.3) 0 −→ Alb(X) −→ H2n(X,DX(n)
) deg−→ Z −→ 0

by using the Deligne cohomology H2n(X,DX(n)
)
. (Usually the Deligne

cohomology Hm(X,DX(r)) is denoted by Hm
D

(
X,Z(r)

)
.)

The case Y = 0 of Theorem 1.1 (2) is nothing but the usual presentation

(1.4) Alb(X) ∼= HZ\HC/F
0HC

of the Albanese variety Alb(X) of X, where (HZ, HC, F
•) is the following

Hodge structure of weight −1. HZ = H2n−1(X,Z(n))/(torsion part), HC =

TOME 62 (2012), FASCICULE 2



786 Kazuya KATO & Henrik RUSSELL

C ⊗Z HZ = H2n−1(X,Ω•X), and F • is the Hodge filtration on HC defined
as

F−1 = HC, F 0 = Hn−1(X,ΩnX), F 1 = 0.

(b) Recall that the presentations (3) and (4) of Alb(X) are related as
follows. Consider the exact sequence of complexes 0 → Ω6n−1

X [−1] →
DX(n) → Z(n) → 0, where Ω6n−1

X denotes the part of degree 6 n − 1
of the de Rham complex Ω•X , which is actually a quotient complex of Ω•X .
By taking the cohomology associated to this exact sequence, we have an
exact sequence

H2n−1(X,Z(n)
)
−→ H2n−1(X,Ω6n−1

X ) −→ H2n
D

(
X,Z(n)

) deg−→ Z −→ 0.

Since

H2n−1(X,Ω6n−1
X ) ∼= H2n−1(X,Ω•X)/Hn−1(X,ΩnX)

∼= H2n−1(X,C)/Hn−1(X,ΩnX),

the exact sequence (4) is equivalent to (3).
(c) (1) and (2) of Theorem 1.1 are related similarly. Let S be the subcom-

plex of the de Rham complex Ω•X of X defined by Sp = Ker(ΩpX → ΩpY )
for 0 6 p 6 n− 1 and Sn = ΩnX . Then Theorem 1.1 (1) is equivalent to

Alb(X,Y ) ∼= HZ\H2n−1(X,S)/Hn−1(X,ΩnX)

where HZ = H2n−1
c (X − Y,Z(n))/(torsion part). As shown in § 6, we have

a commutative diagram with an isomorphism in the lower row

Hn−1(X,ΩnX) = Hn−1(X,ΩnX)
↓ ↓

H2n−1(X,S) ∼= H2n−1
c (X − Y,C)⊕Hn−1(X,ΩnX/JΩnX).

Thus (1) and (2) of Theorem 1.1 are deduced from each other.

1.4. As mentioned above, Theorem 1.1 shows that Alb(X,Y ) is expressed
as HZ\HV /F

0 where:

HZ = H2n−1
c

(
X − Y,Z(n)

)/
(torsion part),

HV = HC ⊕Hn−1(X,ΩnX/JΩnX) ∼= H2n−1(X,S)

(HC = C⊗HZ and S is as in 1.5 (d)),

F • is the decreasing filtration on HV given by

F−1 = HV , F 0 = Hn−1(X,ΩnX), F 1 = 0.

ANNALES DE L’INSTITUT FOURIER



ALBANESE WITH MODULUS AND HODGE THEORY 787

Note that HV can be different from HC here, and so (HZ, HV , F
•) here

need not be a Hodge structure. It is some kind of “mixed Hodge struc-
ture with additive part”. This object (HZ, HV , F

•) with a weight filtration,
which we will denote by H2n−1(X,Y−)(n) in Section 6, belongs to a cat-
egory H introduced in Section 2 which contains the category of mixed
Hodge structures but is larger than that. In the proof of Theorem 1.1, it
is essential to consider such an object. This category H is related to the
category of “enriched Hodge structures” of Bloch-Srinivas [4] and to the
category of “formal Hodge structures” of Barbieri-Viale [1]. However, the
relations between these three categories are not trivial, see 4.6 and [2, 4.2].
Our definition of H aims to stick close to the classical language of Hodge
structures and to express duality in a simplest possible way. In the proof
of Theorem 1.1, we use a Hodge theoretic description of the category of
“1-motives with additive parts” over C in terms of H. This description is
similar to the result of Barbieri-Viale in [1].

1.5. The theory of generalized Albanese varieties in characteristic p > 0
is given in [11], basing on duality theory of “1-motives with unipotent
parts”.
In characteristic p > 0, syntomic cohomology is an analogue of Deligne

cohomology. We expect that we can have presentations of the p-adic com-
pletion of Alb(X,Y )(k) (k is the base field), which is similar to Theorem 1.1,
by using crystalline cohomology theory and syntomic cohomology theory.
We are thankful to Professor Hélène Esnault for advice.

2. Mixed Hodge structures with additive parts

2.1. For a proper smooth variety X over C of dimension n and for
an effective divisor Y on X, we will have in Section 6 certain structures
H1(X,Y+) and H2n−1(X,Y−) which are kinds of “mixed Hodge structures
with additive parts”. (These structures for the case when X is a curve are
explained in Example 2.1 below.) The authors imagine that there is a nice
definition of the category of “mixed Hodge structures with additive parts”,
which contains these H1(X,Y+) and H2n−1(X,Y−) as objects, but can not
define it. Instead, we define a category H containing these objects, which
may be a very simple approximation of such a nice category.

2.2. The category H. An object of H is by definition a tuple H =
(HZ, HV ,W•HQ,W•HV , F

•HV , a, b), where HZ is a finitely generated Z-
module, HV is a finite dimensional C-vector space, W•HQ is an increasing

TOME 62 (2012), FASCICULE 2



788 Kazuya KATO & Henrik RUSSELL

filtration on HQ := Q⊗HZ (called weight filtration), W•HV is an increas-
ing filtration on HV (called weight filtration), F • is a decreasing filtration
on HV (called Hodge filtration), a is a C-linear map HC := C⊗HZ → HV

which sends WwHC := C ⊗Q WwHQ into WwHV for any w ∈ Z, and b is
a C-linear map HV → HC which sends WwHV into WwHC for any w ∈ Z
such that b ◦ a is the identity map of HC. We sometimes denote an object
H of H simply by (HZ, HV ).
A morphism f : H → H ′ in H is a pair of homomorphisms (fZ, fV ),

where fZ : HZ → H ′Z is compatible with the weight filtrations and fV :
HV → H ′V is compatible with weight filtrations and Hodge filtrations,
which is compatible with the maps a, b and a′, b′.

The category of mixed Hodge structures is naturally embedded into H
as a full subcategory, by putting HV = HC.

Similarly as for mixed Hodge structures we can give Hom(H,H ′) the
structure of an object of H for H,H ′ ∈ Ob(H). We call Hom(H,Z) the
object dual to H. The full subcategory of H consisting of all objects H
such that HZ are torsion free is clearly self-dual.
We will say that a sequence H ′ → H → H ′′ in H is exact, if and only if

the following sequences are all exact:

H ′Z → HZ → H ′′Z , H ′V → HV → H ′′V ,

WwH
′
Q →WwHQ →WwH

′′
Q, WwH

′
V →WwHV →WwH

′′
V ,

F pH ′V → F pHV → F pH ′′V ,

for all w, p ∈ Z.
See No. 4.6 for the relation of this category H to the category of enriched

Hodge structures of Bloch-Srinivas [4] and to the category of formal Hodge
structures of Barbieri-Viale [1].

Example 2.1. — Let X be a proper smooth curve over C and let Y
be an effective divisor on X. Let I be the ideal of OX which defines Y ,
let I1 be the ideal of OX which defines the reduced part of Y , and let
J = II−1

1 ⊂ OX .
We define objects H1(X,Y+) and H1(X,Y−) of H.
First, we define H = H1(X,Y+). Let

HZ = H1(X − Y,Z), HV = H1(X, [OX
d→ I−1Ω1

X ]).

The map a : HC → HV is

H1(X − Y,C) ∼= H1(X, [OX → I−1
1 Ω1

X ]) −→ H1(X, [OX → I−1Ω1
X ]).

ANNALES DE L’INSTITUT FOURIER



ALBANESE WITH MODULUS AND HODGE THEORY 789

The map b : HV → HC is the composition

H1(X, [OX → I−1Ω1
X ]) −→ H1(X, [J−1 → I−1Ω1

X ])
'←− H1(X, [OX → I−1

1 ΩX ]) ∼= H1(X − Y,C).

The weight filtrations and the Hodge filtration are given by

W2HQ = HQ, W1HQ = H1(X,Q), W0HQ = 0,

W2HV = HV , W1HV = H1(X,C), W0HV = 0,
where H1(X,C) is embedded in HV via a, and

F 0HV = HV , F 1HV = H1(X,C), F 2HC = 0.

Next, we define H = H1(X,Y−). Let

HZ = H1
c (X − Y,Z), HV = H1(X, [I d→ Ω1

X ]).

The map a : HC → HV is the composition

H1
c (X − Y,C) ∼= H1(X, [I1 → Ω1

X ])
'←− H1(X, [I → JΩ1

X ]) −→ H1(X, [I → Ω1
X ]).

The map b : HV → HC is

H1(X, [I → Ω1
X ]) −→ H1(X, [I1 → Ω1

X ]) ∼= H1
c (X − Y,C).

The weight filtrations and the Hodge filtration are given by

W1HQ = HQ, W0HQ = Ker
(
HQ → H1(X,Q)

)
, W−1HQ = 0,

W1HV = HV , W0HV = Ker
(
HV → H1(X,C)

)
, W−1HV = 0,

where H1(X,C) is regarded as quotient of HV via b, and

F 0HV = HV , F 1HV = Ker
(
HV → H1(X,OX)

)
, F 2HC = 0.

Then we have exact sequences in H

0 −→ H1(X) −→ H1(X,Y+) −→ H0(Y )(−1) −→ Z(−1) −→ 0,

0 −→ Z −→ H0(Y ) −→ H1(X,Y−) −→ H1(X) −→ 0.
Here for r ∈ Z, Z(r) is the usual Hodge structure Z(r) regarded as an object
of H. H1(X) is also the usual Hodge structure of weight 1 associated to
the first cohomology of X, regarded as an object of H. Finally the object
H0(Y ) of H is defined as below, and H0(Y )(−1) is the −1 Tate twist.
The definition of H = H0(Y ) is as follows. HZ = H0(Y,Z) = ⊕y∈Y Z.

HV = H0(Y,OY ). a is the canonical map H0(Y,C) → H0(Y,OY ). b is
the canonical map H0(Y,OY ) → H0(Y,C) given by OY → C which is

TOME 62 (2012), FASCICULE 2



790 Kazuya KATO & Henrik RUSSELL

OY,y → OY,y/my = C at each y ∈ Y (my denotes the maximal ideal of
OY,y). The weight filtration and the Hodge filtration are given by

W0H = H, W−1H = 0,

F 0HV = HV , F 1HV = 0.

Note that HC → HV can be like C → C[T ]/(Tn), and need not be an
isomorphism.
The evident self-duality Hom( ,Z) for torsion free objects in H induces

H1(X,Y−) ∼= Hom
(
H1(X,Y+),Z

)
(−1).

3. 1-motives with additive parts

In [9], Laumon formulated the notion of a “1-motive with additive part”
over a field of characteristic 0. We give a short review assuming that the
base field is algebraically closed for simplicity.
Fix an algebraically closed field k of characteristic 0.

3.1. Let Ab/k be the category of sheaves of abelian groups on the fppf-
site of the category of affine schemes over k. Let C[−1,0](Ab/k) be the
abelian category of complexes in Ab/k concentrated in degrees −1 and 0.
A 1-motive with additive part over k is an object of C[−1,0](Ab/k) of

the form [F → G], where G is a commutative connected algebraic group
over k and F ∼= Zt ⊕ (Ĝa)s for some t and s. (cf., [9, Def. (5.1.1)].) Here
Z is regarded as a constant sheaf and Ĝa denotes the formal completion
of the additive group Ga at 0. Recall that for any commutative ring R,
Ĝa(R) is the subgroup of the additive group R consisting of all nilpotent
elements. We have F = Fét ⊕ Finf , where Fét is the étale part of F which
corresponds to Zt in the above isomorphism and Finf is the infinitesimal
part of F which corresponds to (Ĝa)s.
We denote the category of 1-motives with additive parts over k byM1.

3.2. The categoryM1 admits a notion of duality (called “Cartier dual-
ity”). Let [F → G] be a 1-motive with additive part over k. Then we have
the “Cartier dual” [F ′ → G′] of [F → G] which is an object ofM1 obtained
as follows. Let 0→ L→ G→ A→ 0 be the canonical decomposition of G
as an extension of an abelian variety A by a commutative connected affine
algebraic group L. Note that L ∼= (Gm)t⊕ (Ga)s for some t and s. We have

F ′ = HomAb/k(L,Gm), G′ = Ext1
C[−1,0](Ab/k)([F → A],Gm)

ANNALES DE L’INSTITUT FOURIER
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and the homomorphism F ′ → G′ is the connecting homomorphism

HomAb/k(L,Gm) −→ Ext1
C[−1,0](Ab/k)([F → A],Gm)

associated to the short exact sequence 0 −→ L −→ [F → G] −→ [F →
A] −→ 0 in C[−1,0](Ab/k). Since

HomAb/k(Gm,Gm) ∼= Z, HomAb/k(Ga,Gm) ∼= Ĝa,

we have F ′ ' Zt ⊕ (Ĝa)s for some t and s. We have an exact sequence

0 −→ HomAb/k(F ,Gm) −→ Ext1
C[−1,0](Ab/k)([F → A],Gm)

−→ Ext1
Ab/k(A,Gm) −→ 0,

Ext1
Ab/k(A,Gm) is the dual abelian variety of A, and since

HomAb/k(Z,Gm) ∼= Gm, HomAb/k(Ĝa,Gm) ∼= Ga,

HomAb/k(F ,Gm) ∼= (Gm)t⊕ (Ga)s for some t and s. Hence G′ is a commu-
tative connected algebraic group over k. Thus [F ′ → G′] is a 1-motive with
additive part. The Cartier dual of [F ′ → G′] is canonically isomorphic to
[F → G].

See [9, Section 5] for details or [10, Section 1] for another review.

3.3. LetM1,{−1,−2} be the full subcategory ofM1 consisting of all ob-
jects [F → G] such that F = 0.
Let M1,{0,−1} be the full subcategory of M1 consisting of all objects

[F → G] such that G is an abelian variety.
Then the self-duality of M1 in No. 3.2 induces an anti-equivalence be-

tween the categoriesM1,{−1,−2} andM1,{0,−1}.

4. Equivalences of categories

In [1], Barbieri-Viale constructed a Hodge theoretic category and proved
that in the case when the base field is C, the categoryM1 is equivalent to
his Hodge theoretic category. Here we reformulate his equivalence in the
style which is convenient for us, by using the category H from Section 2.

4.1. The category H1. An object of H1 is an object H of H endowed
with a splitting of the weight filtration on Ker(HV → HC) satisfying the
following conditions (i)–(iv).
(i) HZ is torsion free, F−1HV = HV , F 1HV = 0,W0H = H,W−3H = 0.

TOME 62 (2012), FASCICULE 2



792 Kazuya KATO & Henrik RUSSELL

(ii) grW−1H is a polarizable Hodge structure of weight−1. That is, grW−1HC
= grW−1HV and grW−1HZ with the Hodge filtration on grW−1HC is a polariz-
able Hodge structure of weight −1.
(iii) F 0 grW0 HV = grW0 HV .
(iv) F 0W−2HV = 0.
Morphisms of H1 are the evident ones.
The category H1 is self-dual by the functor Hom( ,Z)(1).

4.2. For a subset ∆ of {0,−1,−2}, let H1,∆ be the full subcategory of
H1 consisting of all objects H such that grWw H = 0 unless w ∈ ∆.
The categories H1,{−1,−2} and H1,{0,−1} are important for us. These

categories are in fact defined as full subcategories of H without reference
to the splitting of the weight filtration on Ker(HV → HC), for the weight
filtrations on Ker(HV → HC) of objects of these categories are pure.

Thus H1,{−1,−2} is the full subcategory of H consisting of all objects H
satisfying the following conditions (i)–(iii).
(i)HZ is torsion free, F−1HV = HV , F 1HV = 0,W−1H = H,W−3H=0.
(ii) grW−1H is a polarizable Hodge structure of weight −1.
(iii) F 0W−2HV = 0.
For example, the Tate twist H1(X,Y−)(1) of the object H1(X,Y−) of H

in Example 2.1 belongs to H1,{−1,−2}.
Similarly, H1,{0,−1} is the full subcategory of H consisting of all objects

H satisfying the following conditions (i)–(iii).
(i) HZ is torsion free, F−1HV = HV , F 1HV = 0,W0H = H,W−2H = 0.
(ii) grW−1H is a polarizable Hodge structure of weight −1.
(iii) F 0 grW0 HV = grW0 HV .
For example, the Tate twist H1(X,Y+)(1) of the object H1(X,Y+) of H

in Example 2.1 belongs to H1,{0,−1}.
The self-duality Hom( ,Z)(1) of H1 induces an anti-equivalence between

the categories H1,{−1,−2} and H1,{0,−1}.

Theorem 4.1. — (This is an analogue of the equivalence of categories
proved by Barbieri-Viale in [1].) We have an equivalence of categories H1 '
M1 which is compatible with dualities, and which induces the equivalences

H1,{−1,0} 'M1,{−1,0}, H1,{−2,−1} 'M1,{−2,−1}.

The equivalence H1 'M1 is described in No.s 4.3 and 4.4 below.

4.3. First we define the functor H1 →M1.

ANNALES DE L’INSTITUT FOURIER
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Let H be an object of H1. The corresponding object [F → G] ofM1 is
as follows.

G = W−1HZ\W−1HV /F
0W−1HV ,

Fét = grW0 (HZ),

Finf = the formal completion of Ker
(

grW0 (HV )→ grW0 (HC)
)
.

Here Fét is the étale part of F and Finf is the infinitesimal part of F . The
homomorphism F = Fét ⊕Finf → G is given as follows.
The part Fét → G: Let x ∈ Fét = grW0 HZ. Since the sequence 0 →

W−1HZ → HZ → grW0 HZ → 0 is exact, we can lift x to an element y
of HZ and this lifting is unique modulo W−1HZ. Since the sequence 0 →
F 0W−1HV → F 0HV → F 0 grW0 HV → 0 is exact, we can lift x to an
element z of F 0HV and this lifting is unique modulo F 0W−1HV . Note that
y − z ∈W−1HV . We have a well-defined homomorphism

Fét = grW0 HZ −→W−1HZ\W−1HV /F
0W−1HV = G ; x 7−→ y − z.

The part Finf→G: Identify Hom(Finf , G) with HomC
(

Lie(Finf),Lie(G)
)
.

We give the corresponding homomorphism Lie(Finf) = Ker
(

grW0 (HV ) →
grW0 (HC)

)
→ Lie(G) = W−1HV /F

0W−1HV . Let x ∈ Ker
(

grW0 (HV ) →
grW0 (HC)

)
. The given splitting of the weight filtration on Ker(HV → HC)

sends x to an element y of Ker(HV → HC). Since the sequence 0 →
F 0W−1HV → F 0HV → F 0 grW0 HV → 0 is exact, we can lift x to an
element z of F 0HV and this lifting is unique modulo F 0W−1HV . Note that
y − z ∈W−1HV . We have a well-defined homomorphism

Ker(grW0 HV → grW0 HC) −→W−1HV /F
0W−1HV = Lie(G) ; x 7−→ y−z.

4.4. We give the functorM1 → H1.
Let [F → G] be an object ofM1. The corresponding object H of H1 is

as follows. Let 0→ L→ G→ A→ 0 be the exact sequence of commutative
algebraic groups where A is an abelian variety and L is affine. Let Fét be
the étale part of F and let Finf be the infinitesimal part of F .
First,HZ is the fiber product of Fét → G← Lie(G), where Lie(G)→ G is

the exponential map, so we have a commutative diagram of exact sequences

0 → H1(G,Z) → HZ → Fét → 0
↓ ↓ ↓

0 → H1(G,Z) → Lie(G) → G → 0.
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The weight filtration on HZ is given as follows.

W0HZ = HZ,

W−1HZ = H1(G,Z),
W−2HZ = H1(L,Z) = Ker

(
H1(G,Z)→ H1(A,Z)

)
,

W−3HZ = 0.

Next,
HV = HC ⊕ Lie(La)⊕ Lie(Finf)

where La is the additive part of L. The weight filtration on HV is as follows.

W0HV = HV ,

W−1HV = H1(G,C)⊕ Lie(La),
W−2HV = H1(L,C)⊕ Lie(La),
W−3HV = 0.

The splitting of the weight filtration on Ker(HV → HC) = Lie(La) ⊕
Lie(Finf) is by definition this direct decomposition.
The Hodge filtration on HV is given as follows.

F−1HV = HV ,

F 1HV = 0,

F 0HV = Ker
(
HV → Lie(G)

)
where HV → Lie(G) is defined as follows. The part HC → Lie(G) of it is
the C-linear map induced by the canonical map HZ → Lie(G). The part
Lie(La)→ Lie(G) of it is the inclusion map. The part Lie(Finf)→ Lie(G) of
it is the homomorphism induced by Finf → G. We have hence HV /F

0HV
∼=

Lie(G).
It is easy to see that this functorM1 → H1 is quasi-inverse to the functor

H1 →M1 in No. 4.3.

4.5. The induced functor H1,{−1,−2}
'−→ M1,{−1,−2} is especially sim-

ple. It is given by
H 7−→ [0→ HZ\HV /F

0HV ].

4.6. For those who are familiar with formal Hodge structures from [1]
we explain the relation between H1 and the category FHSfr

1 of torsion free
formal Hodge structures of level 6 1, see [1, Def. 1.1.2]. (This No. is not
used in the rest of the paper.)

ANNALES DE L’INSTITUT FOURIER



ALBANESE WITH MODULUS AND HODGE THEORY 795

The categories H1 and FHSfr
1 are equivalent. The functor H1 → FHSfr

1 is
given by (HZ, HV ) 7→ (F , V ), where (F , V ) is the following object of FHSfr

1 .

F = Fét ⊕Finf ,

Fét = HZ,

Finf = formal completion of Ker
(

grW0 (HV )→ grW0 (HC)
)
,

V = W−1HV /W−1F
0HV

⊇ V 1 = W−2HV

⊇ V 0 = Ker(W−2HV →W−2HC),

v :F→V is def. by
{

v|Fét = a|HZ mod F 0HV (we have V = HV /F 0HV ),
v|Finf is the map Finf ⊂ Lie(Finf)→ Lie(G) as in No. 4.3,

HC/F
0HC

'−→ V/V 0 is the map induced by a.

The functor FHSfr
1 → H1 is given by (F , V ) 7→ (HZ, HV ), where (HZ, HV )

is the following object of H1.

HZ = Fét,

HV = HC ⊕ Lie(Finf)⊕ V 0,

W0HV = HV ,

F−1HV = HV , W−1HV = W−1HC ⊕ V 0,

F 0HV = Ker(HV → V ), W−2HV = W−2HC ⊕ V 0,

F 1HV = 0, W−3HV = 0,

where HV → V is the map given by (v|Fét ⊗ C,Lie(v|Finf ), V 0 ↪→ V ).
These functors are quasi-inverse to each other and yield an equivalence

of categories H1 ' FHSfr
1 . The relation between FHS1 and the category

EHS1 of enriched Hodge structures of level 6 1 from [4] is given in [2, 4.2]
by explicit functors. Composition yields an explicit functor EHSfr

1 → H1
(left to the reader). The category EHSfr

1 of torsion free enriched Hodge
structures of level 6 1 is equivalent to a subcategory of FHSfr

1 resp. H1, see
[2, Prop. 4.2.3].
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5. Generalized Albanese varieties

Let k be an algebraically closed field of characteristic 0 and let X be a
proper smooth algebraic variety over k of dimension n. We review general-
ized Albanese varieties AlbF (X) defined in [10](1) . For an effective divisor
Y on X, the generalized Albanese variety Alb(X,Y ) of modulus Y is a
special case of AlbF (X).

The Albanese variety Alb(X) is defined by a universal mapping prop-
erty for morphisms from X to abelian varieties. Similarly, the generalized
Albanese variety Alb(X,Y ) of modulus Y is characterized by a universal
property for morphisms from X − Y into commutative algebraic groups
with “modulus” 6 Y . See Proposition 5.1.

5.1. Let DivX be the sheaf of abelian groups on Ab/k defined as follows.
For any commutative ring R over k, DivX(R) is the group of all Cartier
divisors onX⊗kR generated locally on Spec(R) by effective Cartier divisors
which are flat over R. Let PicX be the Picard functor, and let Pic0

X ⊂ PicX
be the Picard variety of X. We have the class map DivX → PicX . Let
Div0

X ⊂ DivX be the inverse image of Pic0
X .

5.2. Let Λ be the set of all subgroup sheaves F of Div0
X such that F ∼=

Zt ⊕ (Ĝa)s for some t and s. For F ∈ Λ, we have an object [F → Pic0
X ] of

M1,{0,−1}. The generalized Albanese variety AlbF (X) is defined in [10] to
be the Cartier dual of [F → Pic0

X ]. It is an object ofM1,{−1,−2} and hence
is a commutative connected algebraic group over k.
If F ,F ′ ∈ Λ and F ⊂ F ′, we have a canonical surjective homomorphism

AlbF ′(X)→ AlbF (X). In the case F = 0, AlbF (X) = Alb(X).

5.3. Let Y be an effective divisor of X. Then the generalized Albanese
variety with modulus Y is defined as AlbF (X) where F = FX,Y ∈ Λ is
defined as follows. The étale part Fét of F is the subgroup of Div0

X(k)
consisting of all divisors whose support is contained in the support of Y .
The infinitesimal part Finf of F is as follows. Let I be the ideal of OX
(though the notation OX is often used in this paper for the sheaf of analytic
functions, OX here stands for the usual algebraic object on the Zariski site)
defining Y , let I1 be the ideal of OX which defines the reduced part of
Y , and let J = II−1

1 ⊂ OX . Then Finf is the formal completion Ĝa ⊗k
H0(X, J−1/OX) of the finite dimensional k-vector space H0(X, J−1/OX),

(1) In [10], X was assumed to be projective. This assumption was used only for singular
X, which is not our concern here. The construction of the AlbF (X) is valid in the same
way for proper X.
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which is embedded in Div0
X by the exponential map

exp : Ĝa ⊗k H0(X,J−1/OX) −→ Div0
X .

If Y ′ is an effective divisor on X such that Y ′ > Y , then FX,Y ′ ⊃ FX,Y
and hence we have a canonical surjective homomorphism Alb(X,Y ′) →
Alb(X,Y ). In the case Y = 0, Alb(X,Y ) = Alb(X).

In the case when X is a curve, Alb(X,Y ) coincides with the generalized
Jacobian variety J(X,Y ) of X with modulus Y as is explained in [10, Exm.
2.34].

5.4. As in [10], for F ∈ Λ we have a rational map

αF : X −→ AlbF (X)

which is canonically defined up to translation by a k-rational point of
AlbF (X). If F ′ ∈ Λ and F ⊂ F ′, then αF and αF ′ are compatible via
the canonical surjection AlbF ′(X)→ AlbF (X).
For an effective divisor Y onX, we denote the rational map αFX,Y

simply
by αX,Y . In Proposition 5.1 (2) below, we give a universal property of
αX,Y : X → Alb(X,Y ) concerning rational maps from X to commutative
algebraic groups. This property follows from a general universal property
of αF : X → AlbF (X) obtained in [10], as is shown in No. 5.6 below.

5.5. Let G be a commutative connected algebraic group over k and let
ϕ : X → G be a rational map. We define an effective divisor mod(ϕ) on
X which we call the modulus of ϕ.
We treat X as a scheme. This divisor mod(ϕ) is written in the form∑
v modv(ϕ) v, where v ranges over all points of X of codimension one and

modv(ϕ) is a non-negative integer defined as follows.
Let 0→ L→ G→ A→ 0 be the canonical decomposition of G and take

an isomorphism
(1) La ∼= (Ga)s

where La is the additive part of L.
Let K be the function field of X, and regard ϕ as an element of G(K).

Since the local ring OX,v of X at v is a discrete valuation ring and since
A is proper, we have A(OX,v) = A(K). By the commutative diagram with
exact rows

0 → L(OX,v) → G(OX,v) → A(OX,v) → 0
∩ ∩ ‖

0 → L(K) → G(K) → A(K) → 0,

we have G(K) = L(K)G(OX,v). Write ϕ ∈ G(K) as
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(2) ϕ = lg with l ∈ L(K) and g ∈ G(OX,v).
Let (lj)16j6s be the image of l in (Ga)s(K).
If ϕ belongs to G(OX,v), we define modv(ϕ) = 0. Assume that ϕ does

not belong to G(OX,v). Then we define

modv(ϕ) = 1 + max({−ordv(lj) | 1 6 j 6 s} ∪ {0}).

This integer modv(ϕ) is independent of the choice of the isomorphism (1)
and of the choice of the presentation (2) of ϕ.

For example, if G = Gm, modv(ϕ) is 0 if the element ϕ of G(K) = K×

belongs to O×X,v, and is 1 otherwise. If G = Ga, modv(ϕ) is 0 if the element
ϕ of G(K) = K belongs to OX,v, and is m + 1 if ϕ has a pole of order
m > 1 at v.

Proposition 5.1. — Let G be a commutative connected algebraic
group over k and let ϕ : X → G be a rational map.

(1) For a dense open set U of X, ϕ induces a morphism U → G (not
only a rational map) if and only if the support of mod(ϕ) does not
meet U .

(2) Let Y be an effective divisor on X. Then the following two condi-
tions (i) and (ii) are equivalent.
(i) There is a homomorphism h : Alb(X,Y ) → G such that ϕ

coincides with h ◦ αX,Y modulo a translation by G(k).
(ii) mod(ϕ) 6 Y.

Furthermore, if these equivalent conditions are satisfied, such homomor-
phism h is unique.

It is easy to prove (1). The proof of (2) is given in No. 5.7 below after
we review results on AlbF (X) from [10].

5.6. We review a general universal property of AlbF (X) proved in [10]
concerning rational maps from X into commutative algebraic groups.
Let ϕ : X → G be a rational map into a commutative connected algebraic

group G, and let L be the canonical connected affine subgroup such that
the quotient G/L is an abelian variety. One observes that ϕ induces a
natural transformation τϕ : L∨ → Div0

X (see [10, Section 2.2]), where
L∨ = HomAb/k(L,Gm) is the Cartier dual of L. It is shown in [10, Section
2.3] that if F ∈ Λ, there is a rational map αF : X → AlbF (X) for which the
corresponding homomorphism ταF : F → Div0

X coincides with the inclusion
map, and such rational map αF is unique up to translation by a k-rational
point of AlbF (X). For a rational map ϕ : X → G into a commutative
connected algebraic group G and for F ∈ Λ, there is a homomorphism
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h : AlbF (X) → G such that f coincides with h ◦ αF up to translation
by an element of G(k) if and only if the image of the homomorphism
τϕ : L∨ → Div0

X is contained in F . Furthermore, if such h exists, it is
unique.
Moreover, any rational map ϕ : X → G into a commutative connected

algebraic group G coincides with h ◦ αF up to translation by an element
of G(k) for some F ∈ Λ and for some homomorphism h : AlbF (X) → G.
This is because there is always some F ∈ Λ which contains the image of
L∨ → Div0

X .

5.7. We prove Proposition 5.1. By No. 5.6 we find that condition (i) of
Proposition 5.1 (2) is equivalent to
(i’) The image of τϕ is contained in FX,Y .

Write
Y =

∑
v

evv

where v ranges over all points of X of codimension one and ev ∈ N. Con-
dition (ii) of Proposition 5.1 (2) is expressed as
(ii’) modv(ϕ) 6 ev for all points v of codimension one in X.

Fix an isomorphism L ∼= (Gm)t× (Ga)s. For each point v of X of codimen-
sion one, take a presentation ϕ = lg as in (2) in No. 5.5, let (l′v,j)16j6t be
the image of l in (Gm)t(K) = (K×)t, and as in No. 5.5, let (lv,j)16j6s be
the image of l in (Ga)s(K) = Ks. Note that
(a) ϕ ∈ G(OX,v) if and only if l′v,j ∈ O×X,v for 1 6 j 6 t and lv,j ∈ OX,v

for 1 6 j 6 s.
By construction of the transformation τϕ in [10, Section 2.2], we have

the following (b) and (c).
(b) The étale part of τϕ

τϕ,ét : Zt −→ Div0
X(k)

sends the j-th base of Zt (1 6 j 6 t) to the divisor
∑
v ordv(l′v,j) v.

(c) The infinitesimal part of τϕ

τϕ,inf : (Ĝa)s −→ Div0
X

has the form

(aj)16j6s 7−→ exp
( s∑
j=1

ajfj

)
for some fj ∈ Γ(X,K/OX) = Lie(Div0

X) (1 6 j 6 s) such that for any
point v of X of codimension one, the stalk of fj at v coincides with lv,j
mod OX,v.
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Condition (i’) is equivalent to the condition that the following (i’ét) and
(i’inf) are satisfied.
(i’ét) The image of τϕ,ét is contained in the étale part of FX,Y .
(i’inf) The image of τϕ,inf is contained in the infinitesimal part of FX,Y .
By the above (b), (i’ét) is equivalent to the condition that the following
(i’ét,v) is satisfied for any point v of X of codimension one.
(i’ét,v) If ev = 0, then l′v,j ∈ O×X,v for 1 6 j 6 t.
On the other hand, by the above (c), (i’inf) is equivalent to

fj ∈ Γ(X, J−1/OX) for 1 6 j 6 s,

and hence equivalent to the condition that the following (i’inf,v) is satisfied
for any point v of X of codimension one.
(i’inf,v) If ev = 0, then lv,j ∈ OX,v for 1 6 j 6 s.

If ev > 1, then ordv(lv,j) > 1− ev for 1 6 j 6 s.
By (a) above, for each v, (i’ét,v) and (i’inf,v) are satisfied if and only if
modv(ϕ) 6 ev. �

Corollary 5.2. — For any F ∈ Λ, there exists an effective divisor Y
such that F ⊂ FX,Y .

Proof. — Let Y = mod(αF ) be the modulus of the rational map αF :
X → AlbF (X) associated with F ∈ Λ. Then F = Image(ταF ) ⊂ FX,Y . �

6. Proof of Theorem 1.1

We prove Theorem 1.1. Let X be a proper smooth algebraic variety over
C of dimension n, and let Y be an effective divisor on X. Let I be the ideal
of OX which defines Y , let I1 be the ideal of OX which defines the reduced
part of Y , and let J = II−1

1 ⊂ OX .

6.1. Let H1(X,Y+)(1) be the object of H1,{0,−1} corresponding to the
object [FX,Y → Pic0(X)] of M1,{0,−1} in the equivalence of categories of
Theorem 4.1. Let H2n−1(X,Y−)(n) be the object of H1,{−1,−2} correspond-
ing to the object Alb(X,Y ) ofM1,{−1,−2}.
Since the equivalence of categories in Theorem 4.1 is compatible with

dualities, we have

(6.1) H2n−1(X,Y−)(n) ∼= Hom
(
H1(X,Y+)(1),Z

)
(1).

We prove Theorem 1.1 in the following way. First in No. 6.3, we give an
explicit description of H1(X,Y+)(1). From this, by (6.1), we can obtain an
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explicit description of H2n−1(X,Y−)(n) as in No. 6.4. Since Alb(X,Y ) cor-
responds to H2n−1(X,Y−)(n) in the equivalence of categories H1,{−1,−2} '
M1,{−1,−2}, we can obtain from No. 6.4 the explicit descriptions of Alb(X,Y)
as stated in Theorem 1.1.
We define objectsH1(X,Y+) andH2n−1(X,Y−) ofH as follows:H1(X,Y+)

is the Tate twist
(
H1(X,Y+)(1)

)
(−1) of H1(X,Y+)(1), and H2n−1(X,Y−)

is the Tate twist
(
H2n−1(X,Y−)(n)

)
(−n) of H2n−1(X,Y+)(n). These are

natural generalizations of the objects of H for the curve case considered in
Example 2.1.

6.2. We define canonical C-linear maps

(6.2) H1(X − Y,C) −→ H1(X,OX),

(6.3) Hn−1(X,ΩnX) −→ H2n−1
c (X − Y,C)

First assume that Y is with normal crossings. Then by [5], we have
canonical isomorphisms

Hm(X − Y,C) ∼= Hm
(
X,Ω•X(log(Y ))

)
,

Hm
c (X − Y,C) ∼= Hm

(
X,Ω•X(− log(Y ))

)
for m ∈ Z, where ΩpX(log(Y )) is the sheaf of differential p-forms with log
poles along Y , and ΩpX(− log(Y ))=I1ΩpX(log(Y )). Since OX =Ω0

X(log(Y ))
and ΩnX = ΩnX(− log(Y )), we have canonical maps of complexes Ω•X(log(Y ))
→ OX and ΩnX [−n] → Ω•X(− log(Y )). These maps induce the maps (6.2)
and (6.3) in the case Y is with normal crossings, respectively.
In general, take a birational morphism X ′ → X of proper smooth alge-

braic varieties over C such that the inverse image Y ′ of Y on X ′ is with
normal crossings. Then we have maps

Hn−1(X,ΩnX)−→Hn−1(X ′,ΩnX′)−→H2n−1
c (X ′−Y ′,C)=H2n−1

c (X−Y,C)

where the second arrow is the map (6.3) for X ′, and the composition
Hn−1(X,ΩnX)→ H2n−1

c (X−Y,C) is independent of the choice of X ′ → X.
The C-linear dual of (6.3) with respect to the Poincaré duality and Serre
duality gives the map (6.2). The map (6.2) is also obtained as the compo-
sition

H1(X − Y,C) = H1(X ′ − Y ′,C) −→ H1(X ′,OX′)
'←− H1(X,OX).

6.3. Let H = H1(X,Y+)(1), the object of H1,{0,−1} corresponding to the
object [FX,Y → Pic0(X)] of M1,{0,−1}. We describe H. By [3, Thm. 4.7]
which treats the case when Y has no multiplicity, we can identify HZ with
H1(X − Y,Z(1)

)
and identify the map HC → Lie(Pic0(X)) = H1(X,OX)
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with the map (6.2) in No. 6.2. We have HV = HC ⊕H0(X, J−1/OX), the
maps a : HC → HV and b : HV → HC are the evident ones, the weight
filtration is given by W0H = H, W−2H = 0,

W−1HQ = H1(X,Q(1)),

W−1HV = H1(X,C),

and the Hodge filtration is given by F−1HV = HV , F 1HV = 0, and

F 0HV = Ker
(
H1(X − Y,C)⊕H0(J−1/OX)→ H1(X,OX)

)
where the map H0(J−1/OX) → H1(X,OX) is the connecting map of the
exact sequence 0→ OX → J−1 → J−1/OX → 0.

6.4. Let H = H2n−1(X,Y−)(n), the object of H1,{−1,−2} corresponding
to the object Alb(X,Y ) ofM1,{−1,−2}. By (6.1) in No. 6.1, we obtain the
following description of H from the description of H1(X,Y+)(1) in No. 6.3.

HZ = H2n−1
c (X − Y,Z)/(torsion),

HV = HC ⊕Hn−1(X,ΩnX/JΩnX),

the maps a : HC → HV and b : HV → HC are the evident ones, the weight
filtration is given by W−1H = H, W−3H = 0,

W−2HQ = Ker
(
HQ → H2n−1(X,Q(n))

)
,

W−2HV = Ker
(
HV → H2n−1(X,C)

)
,

and the Hodge filtration is given by F−1HV = HV , F 1HV = 0, and

F 0HV = Image
(
Hn−1(X,ΩnX) −→ H2n−1

c (X−Y,C)⊕Hn−1(X,ΩnX/JΩnX)
)

where the map Hn−1(X,ΩnX) → H2n−1
c (X − Y,C) is (6.3) in No. 6.2 and

the map Hn−1(X,ΩnX)→ Hn−1(X,ΩnX/JΩnX) is the evident one.

6.5. We prove Theorem 1.1 (2). Let H = H2n−1(X,Y−)(n). Then

Alb(X,Y ) = HZ\HV /F
0HV

by No. 4.5. Hence the description of H2n−1(X,Y−)(n) in No. 6.4 proves
Theorem 1.1 (2).

6.6. As a preparation for the proof of Theorem 1.1 (1), we review a kind
of Serre-duality obtained in the appendix by Deligne of the book [8].
Let S be a proper scheme over a field k, let C be a closed subscheme of S,

let U = S−C, and let IC be the ideal of OS which defines C. Assume U is
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smooth over k and purely of dimension n. Let F be a coherent OS-module.
Then for any p ∈ Z, we have a canonical isomorphism

Hp
(
U,RHomOU

(F|U ,ΩnU )
) ∼= lim−→

m

Homk

(
Hn−p(X, ImC F), k

)
.

In the case when C is empty and F is locally free, this is the usual Serre
duality

Hp
(
X,HomOX

(F ,ΩnX)
) ∼= Homk

(
Hn−p(X,F), k

)
.

6.7. We start the proof of Theorem 1.1 (1).
Let CY be the subcomplex of Ω•X defined as

CpY = ker(ΩpX → ΩpY ) for 0 6 p 6 n− 1, CnY = JΩnX .

Proposition 6.1. — For p = 2n, 2n − 1, the maps Hp
c (X − Y,C) →

Hp(X,CY ) induced by the homomorphism j!C→ CY are isomorphisms.

6.8. We prove Proposition 6.1 in the case Y = Y1. We have an exact
sequence of complexes

0 −→ CY1 −→ Ω•X −→ Ω6n−1
Y1

−→ 0.

Since the support of Ω6n−1
Y1

is of dimension 6 n − 1 and since Ω6n−1
Y1

has
only terms of degree 6 n − 1, we have Hp(X,Ω6n−1

Y1
) = 0 for p > 2n − 1.

Hence

H2n(X,CY1) ∼= H2n(X,Ω•X) ∼= H2n(X,C) ∼= H2n
c (X − Y,C).

The above exact sequence of complexes induces the lower row of the com-
mutative diagram with exact rows

H2n−2(X,C) → H2n−2(Y1,C) → H2n−1
c (X \ Y1,C)→ H2n−1(X,C) → 0

↓ ↓ ↓ ↓
H2n−2(X, Ω•X)→ H2n−2(Y1, Ω6n−1

Y1

)
→ H2n−1(X, CY1)→ H2n−1(X, Ω•X)→ 0.

The vertical arrows except possibly the map H2n−1
c (X − Y1,C)→ H2n−1

(X,CY1) are isomorphisms. Hence the last map is also an isomorphism.

Lemma 6.2. — Let Y ′ and Y ′′ be effective divisors on X whose sup-
ports coincide with Y1 and assume Y ′ > Y ′′. Then the canonical map
H2n−1(X,CY ′) → H2n−1(X,CY ′′) is surjective and the canonical map
H2n(X,CY ′)→ H2n(X,CY ′′) is an isomorphism.

Proof. — Let N = CY ′′/CY ′ . We have

Np = Ker(ΩpY ′ → ΩpY ′′) for 0 6 p 6 n− 1, Nn = J ′′ΩnX/J ′ΩnX .
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Here, J ′ = I ′I−1
1 , J ′′ = I ′′I−1

1 with I ′ (resp. I ′′) the ideal of OX which
defines Y ′ (resp. Y ′′). Since the support of N is of dimension 6 n−1 and N
has only terms of degree 6 n, we have H2n(X,N) = 0. Hence it is sufficient
to prove H2n−1(X,N) = 0.

Let Σ be the set of all singular points of Y1. Then Σ is of dimension
6 n − 2. Let Ω•X(log(Y1)) be the de Rham complex on X − Σ with log
poles along Y1 −Σ. Then, as is easily seen, the restriction of CY to X −Σ
coincides with IΩ•X(log(Y1)). Let IΣ be the ideal of OX defining Σ (here
Σ is endowed with the reduced structure). For k > 0, let Nk be the sub-
complex of N defined by Np

k = I
max(k−p,0)
Σ Np. In particular, N0 = N .

Then if k > j > 0, since the support of Nj/Nk is of dimension 6 n − 2
and Nj/Nk has only terms of degree 6 n, we have H2n−1(X,Nj/Nk) = 0.
Hence H2n−1(X,Nk) → H2n−1(X,Nj) is surjective. Applying No. 6.6 for
S = X and C = Σ yields that lim←−kH

2n−1(X,Nk) is the dual vector space
of H0(X − Σ, [(J ′)−1/(J ′′)−1 d−→ (J ′)−1ΩX(log Y1)/(J ′′)−1ΩX(log Y1)]

)
.

Since d : (J ′)−1/(J ′′)−1 → (J ′)−1ΩX(log Y1)/(J ′′)−1ΩX(log Y1) is injec-
tive, the last cohomology group is 0. Hence H2n−1(X,Nk) = 0 for all
k > 0. In particular, H2n−1(X,N) = 0. �

6.9. We prove Proposition 6.1 in general. By Lemma 6.2, the map lim←−Y ′
H2n−1(X,CY ′) → H2n−1(X,CY ) is surjective, where Y ′ ranges over all
effective divisors on X whose supports coincide with Y1. By No. 6.6, which
we apply by taking S = X and C = Y , we have that lim←−Y ′ H

2n−1(X,CY ′)
is the dual vector space of H1((X − Y )zar,Ω•X−Y,alg

)
where “zar” means

Zariski topology and “alg” means the algebraic version. But H1((X −
Y )zar,Ω•X−Y,alg

)
' H1(X−Y,C) by Grothendieck’s Theorem [7, Thm. 1’].

This proves lim←−Y ′ H
2n−1(X,CY ′) ∼= H2n−1

c (X − Y,C). Hence the map
H2n−1
c (X − Y,C) → H2n−1(X,CY ) is surjective. Since the composition

H2n−1
c (X − Y,C)→ H2n−1(X,CY )→ H2n−1(X,CY1) ∼= H2n−1

c (X − Y,C)
is the identity map, the map H2n−1

c (X − Y,C) → H2n−1(X,CY ) is an
isomorphism.

6.10. We prove (1) of Theorem 1.1. Let SY = Ker(Ω•X → Ω6n−1
Y ). Then

CY ⊂ SY ⊂ CY1 . We have an exact sequence of complexes

0 −→ CY −→ SY −→ ΩnX/JΩnX [−n] −→ 0.
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Hence we have an exact sequence

H2n−1(X,CY )→ H2n−1(X,SY )→ Hn−1(X,ΩnX/JΩnX)→ H2n(X,CY )

→ H2n(X,SY ).

Note that for p = 2n, 2n− 1, the compositions

Hp(X,CY ) −→ Hp(X,SY ) −→ Hp(X,CY1)

are isomorphisms by Proposition 6.1. Hence by Proposition 6.1, we have
an isomorphism

H2n−1(X,SY ) ∼= H2n−1
c (X − Y,C)⊕Hn−1(X,ΩnX/JΩnX)

which is compatible with the maps from Hn−1(X,ΩnX). Hence (1) of The-
orem 1.1 follows from (2) of Theorem 1.1.
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