
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Rachel PRIES & Hui June ZHU

The p-rank stratification of Artin-Schreier curves
Tome 62, no 2 (2012), p. 707-726.

<http://aif.cedram.org/item?id=AIF_2012__62_2_707_0>

© Association des Annales de l’institut Fourier, 2012, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2012__62_2_707_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Ann. Inst. Fourier, Grenoble
62, 2 (2012) 707-726

THE p-RANK STRATIFICATION
OF ARTIN-SCHREIER CURVES

by Rachel PRIES & Hui June ZHU (*)

Abstract. — We study a moduli space ASg for Artin-Schreier curves of genus
g over an algebraically closed field k of characteristic p. We study the stratification
of ASg by p-rank into strata ASg.s of Artin-Schreier curves of genus g with p-
rank exactly s. We enumerate the irreducible components of ASg,s and find their
dimensions. As an application, when p = 2, we prove that every irreducible com-
ponent of the moduli space of hyperelliptic k-curves with genus g and 2-rank s has
dimension g−1+ s. We also determine all pairs (p, g) for which ASg is irreducible.
Finally, we study deformations of Artin-Schreier curves with varying p-rank.
Résumé. — Nous étudions un espace de modules ASg des courbes d’Artin

Schreier de genre g sur k, un corps algébriquement clos de caractéristique p. Nous
étudions la stratification de ASg par le p-rang, dont la strate ASg,s décrit les
courbes de genre g et de p-rang s. On énumère les composantes irréductibles de
ASg,s et on donne leurs dimensions. Une application, dans le cas p = 2, est que
chaque composante irréductible de l’espace de modules des courbes hyperelliptiques
sur k de genre g et de 2-rang s est de dimension g−1+s. Nous déterminons toutes
les paires (p, g) pour lesquelles ASg est irréductible. Finalement, nous étudions les
déformations des courbes d’Artin-Schreier dont le p-rang varie.

1. Introduction

Let k be an algebraically closed field of characteristic p > 0. An Artin-
Schreier k-curve is a smooth projective connected k-curve Y which is a
(Z/p)-cover of the projective line. The Riemann-Hurwitz formula implies
that the genus g of Y is of the form g = d(p− 1)/2 for some integer d > 0.

Keywords: Artin-Schreier, hyperelliptic, curve, moduli, p-rank.
Math. classification: 11G15, 14H40, 14K15.
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about this paper. The second author thanks Rachel Pries and Jeff Achter for invitation
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The p-rank of Y is the integer s such that the cardinality of Jac(Y )[p](k)
is ps. It is well known that 0 6 s 6 g. By the Deuring-Shafarevich formula,
s = r(p− 1) for some integer r > 0.

In this paper, we study a moduli space ASg for Artin-Schreier k-curves
of genus g. We study its stratification by p-rank into strata ASg,s whose
points correspond to Artin-Schreier curves of genus g with p-rank exactly
s. Throughout, we assume g = d(p−1)/2 and s = r(p−1) for some integers
d > 1 and r > 0 since the problem is trivial otherwise. We denote by b·c
and d·e the floor and ceiling of a real number, respectively, and use the
notation {· · · } to denote a multi-set. We prove:

Theorem 1.1. — Let g = d(p− 1)/2 with d > 1 and s = r(p− 1) with
r > 0.

(1) The set of irreducible components of ASg,s is in bijection with the
set of partitions {e1, . . . er+1} of d + 2 into r + 1 positive integers
such that each ej 6≡ 1 mod p.

(2) The irreducible component of ASg,s for the partition {e1, . . . er+1}
has dimension

d− 1−
r+1∑
j=1
b(ej − 1)/pc.

The proof uses ideas from [3, Section 5.1], [11], and [18]. As an application
of Theorem 1.1, we determine all cases when ASg is irreducible, using the
fact that every irreducible component of ASg has dimension d − 1, [15,
Cor. 3.16].

Corollary 1.2. — The moduli space ASg is irreducible in exactly the
following cases: (i) p = 2; or (ii) g = 0 or g = (p− 1)/2; or (iii) p = 3 and
g = 2, 3, 5.

When p = 2, the moduli space ASg is the same as Hg, the moduli space
of hyperelliptic k-curves of genus g. By [13, Thm. 4.1], Hg is irreducible
of dimension 2g − 1 when p = 2. Let Hg,s ⊂ Hg denote the stratum
whose points correspond to hyperelliptic k-curves of genus g with 2-rank s.
Theorem 1.1 yields the following description of Hg,s. This also generalizes
the result dim(Hg,0) = g − 1 when p = 2 from [19, Prop. 4.1].

Corollary 1.3. — Let p = 2 and g > 1. The irreducible components
of Hg,s are in bijection with partitions of g+ 1 into s+ 1 positive integers.
Every component has dimension g − 1 + s.

The geometry of ASg is more complicated when p > 3. For example,
Theorem 1.1 shows that, for fixed g and s, the irreducible components of
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ASg,s can have different dimensions and thus ASg,s is not pure in general
when p > 3, Corollary 3.13.
Here is some motivation for these results, which also gives another illus-

tration how the geometry of ASg is more complicated when p > 3. Recall
that the moduli space Ag of principally polarized abelian varieties over k
of dimension g can be stratified by p-rank. Let Vg,s ⊂ Ag denote the stra-
tum of abelian varieties with p-rank s. By [17, 1.6], every component of
Vg,s has codimension g − s in Ag. Suppose M is a subspace of Mg, the
moduli space of k-curves of genus g. One can ask whether the image T (M)
of M under the Torelli morphism is in general position relative to the p-
rank stratification. A necessary condition for an affirmative answer is that
codim(T (M)∩ Vg,s, T (M)) = g − s. This has been verified when M =Mg

in [8, Thm. 2.3] and when M = Hg for p > 3 in [9, Thm. 1]. Corollary 1.3
shows that this necessary condition is satisfied for M = Hg when p = 2.
Corollary 3.13 shows that it is not satisfied for M = ASg when p > 3.
Finally, we study how the components of ASg,s (with varying s) fit to-

gether inside ASg. This is related to the study of deformations of wildly
ramified degree p covers with non-constant branch locus. Under the obvious
necessary conditions, we prove that the p-rank of an Artin-Schreier curve
can be increased by exactly p − 1 in a flat deformation. This yields the
following result.

Theorem 1.4. — Suppose 0 6 s 6 g−(p−1). If η is an irreducible com-
ponent of ASg,s which is not open and dense in an irreducible component
of ASg, then η is in the closure of ASg,s+(p−1) in ASg.

When p = 2, we are further able to give a complete combinatorial de-
scription of how the irreducible components of Hg,s (with varying s) fit
together in Hg, Corollary 4.8.
Here is an outline of the paper. In Section 2, we describe the p-ranks

of Artin-Schreier curves and the relationship between irreducible compo-
nents and partitions. Section 3 contains the proof of the main results. One
finds Theorem 1.1 in Section 3.4, Corollary 1.2 in Section 3.5, and Corol-
lary 1.3 in Section 3.6. The deformation results, including Theorem 1.4, are
in Section 4. We conclude with some open questions.
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2. Partitions and Artin-Schreier curves

2.1. Partitions

Fix a prime p > 0 and an integer d > 1, with d even if p = 2. Let Ωd
be the set of partitions of d + 2 into positive integers e1, e2, . . . with each
ej 6≡ 1 mod p. Let Ωd,r be the subset of Ωd consisting of partitions of length
r+ 1. If ~E ∈ Ωd, let r := r( ~E) be the integer so that ~E ∈ Ωd,r. Write ~E as
a multi-set {e1, . . . , er+1} with e1 6 · · · 6 er+1.
There is a natural partial ordering ≺ on Ωd so that ~E ≺ ~E′ if ~E′ is a

refinement of ~E, in other words, if the entries of ~E′ can be divided into
disjoint subsets whose sums are in bijection with the entries of ~E. Using
this partial ordering, one can construct a directed graph Gd. The vertices
of the graph correspond to the partitions ~E in Ωd. There is an edge from
~E to ~E′ if and only if ~E ≺ ~E′, and ~E 6= ~E′, and there is no partition lying
strictly in between them (i.e., if ~E ≺ ~E′′ ≺ ~E′ for some ~E′′ in Ωd then
~E′′ = ~E or ~E′′ = ~E′).
An edge ~E ≺ ~E′ in the directed graph Gd can be of two types. The

first type has r( ~E) = r( ~E′) − 1. In this case, one entry e of ~E splits into
two entries e1 and e2 of ~E′ such that e = e1 + e2 and none of the three
is congruent to 1 modulo p. One can summarize this by writing {e} 7→
{e1, e2}. The second type has r( ~E) = r( ~E′) − 2. In this case, one entry e
of ~E splits into three entries e1, e2, e3 of ~E′ such that e = e1 + e2 + e3 and
each ej ≡ (p+ 1)/2 mod p. It follows that none of the four is congruent to
1 modulo p. One can summarize this by writing {e} 7→ {e1, e2, e3}.

Example 2.1. — Let p = 3 and d = 10. Here is the graph G10 for Ω10.
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We skip the proofs of some of the following straightforward results.
Lemma 2.2 is used in [2], while Lemmas 2.3 and 2.4 are used in Section 3.5.

Lemma 2.2. — The set Ωd,0 is nonempty if and only if p - (d + 1). If
p - (d+1), then Ωd,0 contains one partition {d+2} which is an initial vertex
of Gd. If p | (d + 1), then Ωd,1 consists of d(d + 1)(p − 2)/2pe partitions,
and every vertex of Gd is larger than one of these.

Lemma 2.3. — If p = 2, there is a unique maximal partition {2, . . . , 2}
in Ωd with length d/2 + 1.

Lemma 2.4. — Let p > 3. A partition is maximal if and only if its
entries all equal two or three. Every integer r + 1 with (d − 1)/3 6 r 6
d/2 occurs exactly once as the length of a maximal partition. There are
bd/2c−d(d−4)/3e maximal partitions. There is a unique maximal partition
if and only if d ∈ {1, 2, 3, 5}.

Proof. — The first statement is true since if e > 4 then there are e1, e2 ∈
Z>0 so that ej 6≡ 1 mod p and e1 + e2 = e. For the other statements, let ~E
be a maximal partition of d+ 2. Let b denote the number of the entries of
~E which equal 3. Note that 0 6 b 6 (d + 2)/3. Let r + 1 be the length of
~E. Then d+ 2 = 2(r+ 1) + b and (d+ 2)/3 6 r+ 1 6 (d+ 2)/2. Any choice
of r+ 1 in this range yields a unique choice of b which determines a unique
partition ~E. �

Remark 2.5. — When p = 2, every path in Gd from the partition {d+2}
to the partition {2, . . . , 2} has the same length, which is d/2. When p = 3,
every path in Gd from a minimal to a maximal vertex has the same length,
which is bd/3c. This property does not hold in general for p > 5.

2.2. Artin-Schreier curves

Here is a review of some basic Artin-Schreier theory. Let Y be an Artin-
Schreier k-curve. Then there is a Z/p-cover φ : Y → P1

k with an affine
equation of the form yp−y = f(x) for some non-constant rational function
f(x) ∈ k(x). At each ramification point, there is a filtration of the inertia
group Z/p, called the filtration of higher ramification groups in the lower
numbering [21, IV].

Let {P1, . . . , Pr+1} be the set of poles of f(x) on the projective line P1
k.

Let dj be the order of the pole of f(x) at Pj . One may assume that p - dj
by Artin-Schreier theory. Then dj is the lower jump at Pj , i.e., the last

TOME 62 (2012), FASCICULE 2



712 Rachel PRIES & Hui June ZHU

index for which the higher ramification group above Pj is nontrivial. Let
ej = dj + 1. Then ej > 2 and ej 6≡ 1 mod p. The ramification divisor of φ
is D :=

∑r+1
j=1 ejPj .

Lemma 2.6. — The genus of Y is gY = ((
∑r+1
j=1 ej) − 2)(p − 1)/2. The

p-rank of Y is sY = r(p− 1).
Proof. — The first statement follows from the Riemann-Hurwitz formula

using [21, IV, Prop. 4] and the second from the Deuring-Shafarevich formula
[6, Cor. 1.8]. See [23, Remark 1.4] or [24, Section 2] for details. �

2.3. The p-rank of Artin-Schreier curves and partitions

The Artin-Schreier curves of genus g = d(p − 1)/2 with p-rank r(p − 1)
are intimately related to the partition sets Ωd,r as defined in Section 2.1.
Lemma 2.7. — There exists an Artin-Schreier k-curve of genus g with

p-rank r(p− 1) if and only if d := 2g/(p− 1) is a nonnegative integer and
Ωd,r is nonempty.

Proof. — By Lemma 2.6, the existence of an Artin-Schreier k-curve with
genus g = d(p − 1)/2 and p-rank r(p − 1) is equivalent to the existence of
f(x) ∈ k(x) whose poles have orders {e1−1, . . . , er+1−1} where each ej 6≡
1 mod p and

∑r+1
j=1 ej = d + 2. This is equivalent to Ωd,r being nonempty.

�

Example 2.8. — Let p = 2. Let g > 0 and 0 6 s 6 g. Then Ω2g,s
is non-empty since 2g + 2 can be partitioned into s + 1 even integers.
Therefore, there exists an Artin-Schreier k-curve of genus g and p-rank s
in characteristic 2.
Example 2.9. — Let p > 3. There exists an Artin-Schreier k-curve of

genus g = d(p− 1)/2 with p-rank 0 if and only if p - (d+ 1) by Lemma 2.2.
There exists an ordinary Artin-Schreier k-curve (i.e., with p-rank g) if and
only if 2 | d. If 2 - d, the largest p-rank which occurs for an Artin-Schreier
k-curve of genus g is s = g − (p− 1)/2 by Lemma 2.4.

3. Moduli spaces of Artin-Schreier curves

Consider fixed parameters p, g = d(p−1)/2 with d > 1, and s = r(p−1)
with 0 6 s 6 g. In this section, we study the p-rank s strata ASg,s of
the moduli space ASg of Artin-Schreier curves of genus g. We show the
irreducible components of ASg,s are in bijection with the elements of Ωd,r
and find the dimensions of these components.

ANNALES DE L’INSTITUT FOURIER



THE p-RANK STRATIFICATION OF ARTIN-SCHREIER CURVES 713

3.1. Artin-Schreier covers

Let S be a k-scheme. An S-curve is a proper flat morphism Y → S whose
geometric fibres are smooth connected curves. An Artin-Schreier curve Y
over S is an S-curve for which there exists an (unspecified) inclusion ι :
Z/p ↪→ AutS(Y ) such that the quotient Y/ι(Z/p) is a ruled scheme. This
means that there is an (unspecified) isomorphism between each geometric
fibre of Y/ι(Z/p) and P1. An Artin-Schreier cover over S is a Z/p-cover
φ : Y → P1

S . In other words, it is an Artin-Schreier curve Y over S along
with the data of a specified inclusion ι : Z/p ↪→ AutS(Y ) and a specified
isomorphism Y/ι(Z/p) ' P1

S .
Consider the following contravariant functors from the category of k-

schemes to sets: ASg (resp. AScovg) which associates to S the set of iso-
morphism classes of Artin-Schreier curves (resp. covers) over S with genus
g. As in [15, Prop. 2.7], one can show that there is an algebraic stack rep-
resenting ASg which we denote again by the symbol ASg. Similarly, e.g.,
[14, pg. 1], there is an algebraic stack representing AScovg which we denote
again by the symbol AScovg. The next lemma is about a natural map from
AScovg to ASg.

Lemma 3.1. — Let g > 2. There is a morphism F : AScovg → ASg
and the fibre of F over every geometric point of ASg has dimension 3.

Proof. — There is a functorial transformation AScovg(S) → ASg(S)
that takes the isomorphism class of a given Artin-Schreier cover φ : Y → P1

S

over S to the isomorphism class of the Artin-Schreier curve Y over S. In
other words, the transformation is defined by forgetting the inclusion ι

and the isomorphism Y/ι(Z/p) ' P1 (and taking the quotient of the set
of inclusions ι by the action of Aut(Z/p)). This transformation yields a
morphism F : AScovg → ASg by Yoneda’s lemma.
To prove the second claim, it suffices to work locally in the étale topology.

Given an Artin-Schreier S-curve Y , by [3, pg. 232], after an étale extension
of S, there exists an inclusion ι : Z/p ↪→ AutS(Y ) and an isomorphism I :
Y/ι(Z/p)→ P1

S . Thus Y is in the image of F . There are only finitely many
choices for ι since AutS(Y ) is finite for g > 2 (e.g., [7, Theorem 1.11]). There
is a three-dimensional choice for the isomorphism I since dim(Aut(P1

S))=3.
Thus the fibre of F over Y has dimension three. �

TOME 62 (2012), FASCICULE 2
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3.2. The ramification divisor

This section is about the ramification divisor of a given Artin-Schreier
cover.

Let S be a k-scheme and let n ∈ Z>0. Consider the contravariant functor
Cdivn, from the category of k-schemes to sets, which associates to S the
set of isomorphism classes of relative effective Cartier divisors of P1

S of
constant degree n. This functor is represented by a (Hilbert) scheme which
we denote also by Cdivn.
There is a discrete invariant ~E which induces a natural stratification

Cdivn, ~E of Cdivn. To see this, suppose S = Spec(K) where K is a field
with char(K) = p. Given D ∈ Cdivn(S), one can associate to D a locally
principal effective Weil divisor of P1

S with degree n by [12, II, Prop. 6.11, Re-
mark 6.11.2]. After a finite flat extension S′ → S, one can write D′ = D×S
S′ =

∑r+1
j=1 ejPj where ej > 1 and

∑r+1
j=1 ej = n and where {P1, . . . , Pr+1}

is a set of distinct horizontal sections of P1
S′ . Let ~E(D) = {e1, . . . , er+1}

with e1 6 · · · 6 er+1. The partition ~E(D) of n induces a natural strat-
ification Cdivn, ~E of Cdivn (where the sections {P1, . . . , Pr+1} associated
to D can vary). Let Cdiv1

n = ∪~E∈Ωn−2
Cdivn, ~E (i.e., all ~E for which each

ej 6≡ 1 mod p). For fixed ~E, let H~E ⊂ Sr+1 be the subgroup of the sym-
metric group generated by all transpositions (j1, j2) for which ej1 = ej2 .

Lemma 3.2. — If ~E ∈ Ωd,r, then Cdivd+2, ~E is irreducible of dimension
r + 1.

Proof. — Let ∆ denote the weak diagonal of (P1)r+1, consisting of (r+1)-
tuples with at least two coordinates equal. The quotient of (P1)r+1−∆ by
the action of H~E is irreducible with dimension r + 1. By the remarks pre-
ceding this lemma, the spaces Cdivd+2, ~E and [(P1)r+1−∆]/H~E are locally
isomorphic for the finite flat topology, where the isomorphism identifies D
with the equivalence class of (P1, . . . , Pr+1). Thus Cdivd+2, ~E is irreducible
with dimension r + 1. �

Proposition 3.3. — Let d = 2g/(p − 1). There is a morphism B :
AScovg → Cdivd+2 and the image of B is Cdiv1

d+2.

Proof. — Given an Artin-Schreier cover φ over S, consider the closed
subscheme D of the fixed points under ι(Z/p); this is a relative Cartier
divisor of P1

S of constant degree d + 2 by [3, Lemma 5.2.3, pg. 232]. The
functorial transformation AScovg(S) → Cdivd+2, ~E(S) yields a morphism
B : AScovg → Cdivd+2 by Yoneda’s lemma.

ANNALES DE L’INSTITUT FOURIER
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IfD ∈ Cdivd+2(S), then there is a restriction on ~E(D). As before, one can
identify a pullback D′ = D×S S′ with an effective Weil divisor

∑r+1
j=1 ejPj

where ej > 1 are such that
∑r+1
j=1 ej = d + 2 and where {P1, . . . , Pr+1} is

a set of distinct horizontal sections of P1
S′ . If D = B(φ) is in the image

of B, then {P1, . . . , Pr+1} constitutes the branch locus of the pullback
φ′ = φ ×S S′ of φ and dj = ej − 1 is the lower jump of φ′ above the
geometric generic point of Pj by [21, IV, Prop. 4]. As seen in Section 2.2,
ej 6≡ 1 mod p for 1 6 j 6 r + 1. Thus the image of B is contained in
Cdiv1

d+2.
Suppose ~E ∈ Ωd. To prove that Cdiv1

d+2, ~E is contained in the image of
B, by descent, it suffices to work locally in the finite flat topology. Given
D =

∑r+1
j=1 ejPj , consider the divisor D̃ =

∑r+1
j=1(ej − 1)Pj of P1

S . There is
a non-constant function f(x) ∈ O(S)(x) with div∞(f(x)) = D̃. Consider
the cover φ : Y → P1

S given by the affine equation yp − y = f(x). Then φ
is an Artin-Schreier cover with ramification divisor D and the fibres of Y
have genus g by Lemma 2.6. Thus D ∈ Im(B). �

Let ASg, ~E (resp. AScovg, ~E) denote the locally closed reduced subspace
ofASg (resp.AScovg) whose geometric points correspond to Artin-Schreier
covers whose ramification divisor has partition ~E. The morphisms F and B
respect the partition ~E. Let F~E : AScovg, ~E → ASg, ~E andB~E : AScovg, ~E→
Cdivd+2, ~E denote the natural restrictions.

3.3. Artin-Schreier covers with fixed ramification divisor

In this section, we fix a partition ~E ∈ Ωg,r and a divisor D ∈ Cdivd+2, ~E
and study the fibre of B over D. Using [3, Section 5.1], we show that this
fibre is irreducible and compute its dimension. We provide some intuition
by describing the equations for an Artin-Schreier cover with ramification
divisor D.

Notation 3.4. — Let ~E ∈ Ωd,r be a fixed partition {e1, . . . , er+1} of
d + 2. Consider a fixed divisor D corresponding to a point of Cdivd+2, ~E .
Let AScovg,D be the fibre of B~E : AScovg, ~E → Cdivd+2, ~E over D.

Notation 3.5. — For 1 6 j 6 r+1, let tj = dj−bdj/pc where dj = ej−1.
Let N~E =

∑r+1
j=1 tj . Let Mj = (A1)tj−1 × (A1 − {0}). Let M = ×r+1

j=1Mj .
There is an action on M by the subgroup H~E ⊂ Sr+1 generated by all
transpositions (j1, j2) for which dj1 = dj2 . Define MD = M/H~E .

TOME 62 (2012), FASCICULE 2
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Proposition 3.6. — With notation as in 3.4 and 3.5, the fibre
AScovg,D of B~E over D is locally isomorphic for the finite flat topology to
MD. Thus AScovg,D is irreducible with dimension N~E over k.

Proof. — By the definition ofMD, the first claim implies the second. For
the first claim, let η denote a labeling of the r+ 1 points in the support of
D. Let AScovηg,D be the contravariant functor which associates to S the set
of covers φ in the fibre AScovg,D(S) along with a labeling η of the branch
locus. It suffices to show that the moduli space for AScovηg,D is locally
isomorphic to M . This statement can be found in [3, pg. 229, pg. 233]. �

Remark 3.7. — In [11, Cor. 2.10], the author constructs an ind-scheme
M which is a fine moduli space for covers Y → P1 of k-schemes with group
Z/p and branch locus {P1, . . . , Pr+1} (where Y has unbounded genus). The
k-points of AScovg,D are in bijection with the k-points ofM such that Y
has genus g. Recall from [11] that M is a direct limit of affine schemes.
This direct limit arises because if S = Spec(K) whereK is not perfect, then
there are non-trivial Artin-Schreier covers over S which become trivial after
a finite flat extension of S. In [18], the author addressed this issue using
a configuration space whose k-points are in bijection with covers defined
over k. In Proposition 3.6, we instead followed the approach of [3, Section
5.1].

Remark 3.8. — Proposition 3.6 implies that a flat base change of
AScovg, ~E is a Gna ×Gm-bundle over Cdivd+2, ~E for some n.

Remark 3.9. — For the convenience of the reader, we provide some
intuition about Proposition 3.6. Let S be an irreducible affine k-scheme.
Suppose φ ∈ AScovg,D(S) is an Artin-Schreier cover over S with ramifi-
cation divisor D. Then φ has an affine equation yp − y = f(x) for some
f(x) ∈ O(S)(x). The automorphism σ = ι(1) acts via σ(y) = y+z for some
z ∈ (Z/p)∗. Two such covers φ1 : yp−y = f1(x) and φ2 : yp−y = f2(x) are
isomorphic if and only if f2(x) = (z2/z1)f1(x)+δp−δ for some δ ∈ O(S)(x),
see e.g., [18, Lemma 2.1.5]. After possibly changing f(x), one can suppose
z = 1.
The cover φ is in standard form if p - i for any monomial cixi in f(x)

whose coefficient ci is generically non-nilpotent. Given an Artin-Schreier
cover φ, after a finite flat extension S′ → S, then φ ×S S′ has an affine
equation in standard form. To prove this, one uses an étale cover S′′ → S

with equation ap − a = c0 to remove a constant coefficient c0 ∈ O(S) from
f(x). If f(x) contains a monomial cxpw with w ∈ Z>0, one uses a purely
inseparable cover S′ → S′′ with equation bp = c to replace cxpw with the
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monomial bxw. These transformations are uniquely determined and do not
change the isomorphism class of φ×S S′.
Suppose D =

∑r+1
j+1 ejPj where {P1, . . . Pr+1} is a fixed set of distinct

horizontal sections of P1
S . If φ has ramification divisor D, then f(x) has

a partial fraction decomposition f(x) =
∑r+1
j=1 gj(x) where gj(x) ∈ (x −

Pj)−1O(S)[(x − Pj)−1] is a polynomial of degree dj in the variable (x −
Pj)−1 with no constant term. (If Pj = P∞, let (x − Pj)−1 denote x for
consistency of notation.) If φ is in standard form, one can write gj(x) =∑dj

i=1 ci,j(x − Pj)−i where ci,j = 0 if p | i and cdj ,j is never zero. The
isomorphism betweenM and AScovηg,D in the finite flat topology identifies
(×r+1

j=1 ×
dj

i=1, p-i ci,j) with the isomorphism class of the Artin-Schreier cover
yp − y =

∑r+1
j=1 gj(x) (with the implicit labeling of {P1, . . . , Pr+1}).

3.4. Irreducible components of the p-rank strata

Recall that g = d(p−1)/2 with d > 1 and d even if p = 2 and s = r(p−1)
with 0 6 s 6 g. The p-rank induces a stratification of ASg (resp. AScovg).
Let ASg,s (resp. AScovg,s) denote the locally closed reduced subspace of
ASg (resp. AScovg) whose geometric points have p-rank s.

Theorem 3.10. — The irreducible components of AScovg,s are the
strata AScovg, ~E with ~E ∈ Ωd,r. If ~E = {e1, . . . , er+1}, then the dimension
over k of the irreducible component AScovg, ~E is d+ 2−

∑r+1
j=1b(ej − 1)/pc.

Proof. — The image of AScovg,s under B is the union of the strata
Cdivd+2, ~E of Cdiv1

d+2 with r( ~E) = r by Proposition 3.3. The stratum
Cdivd+2, ~E is irreducible of dimension r + 1 by Lemma 3.2.
For ~E ∈ Ωd,r, consider the morphism B~E : AScovg, ~E → Cdivd+2, ~E . The

fibre of B~E over a fixed divisor D is irreducible by Proposition 3.6. By
Zariski’s main theorem, AScovg, ~E is irreducible since B~E has irreducible
fibres and image. Thus the irreducible components of AScovg,s are the
strata AScovg, ~E with ~E ∈ Ωd,r.

The morphism B~E is flat since all its fibres are isomorphic. Thus the
dimension of AScovg, ~E is the sum of the dimensions of Cdivd+2, ~E and of
the fibres of B~E . This equals r+ 1 +

∑r+1
j=1(dj −bdj/pc) by Lemma 3.2 and

Proposition 3.6. This simplifies to d+ 2−
∑r+1
j=1b(ej − 1)/pc. �

Theorem 1.1 in the introduction follows immediately from the next corol-
lary.
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Corollary 3.11. — The irreducible components of ASg,s are the stra-
ta ASg, ~E with ~E ∈ Ωd,r. If ~E = {e1, . . . , er+1}, then the dimension d~E over
k of the irreducible component ASg, ~E is d− 1−

∑r+1
j=1b(ej − 1)/pc.

Proof. — Let W be an irreducible component of ASg,s. By Lemma 3.1,
F−1(W) is a union of irreducible components ofAScovg,s. By Theorem 3.10,
these are indexed by partitions ~E ∈ Ωd,r. The morphism F respects the
partition ~E. In other words, given an Artin-Schreier curve Y , every Artin-
Schreier cover φ : Y → P1

k has the same partition. Thus there is a unique
partition occurring for points in F−1(W ), and so F−1(W ) is irreducible. So
the irreducible components of ASg,s are the strata ASg, ~E with ~E ∈ Ωd,r.
The second statement follows by Lemma 3.1 for g > 2 since dim(W ) =
dim(F−1(W ))− 3 and by direct computation for g = 1. �

Example 3.12. — Let p = 3 and g = 10. Here are the dimensions d~E of
the irreducible components of AS10,s.

s dimension
0 d{12} = 6
2 d{3,9} = 7, d{6,6} = 7
4 d{2,2,8} = 7, d{2,5,5} = 7, d{3,3,6} = 8
6 d{2,2,2,6} = 8, d{2,2,3,5} = 8, d{3,3,3,3} = 9
8 d{2,2,2,3,3} = 9
10 d{2,2,2,2,2,2} = 9

The next corollary shows that the image of ASg under the Torelli mor-
phism is not in general position relative to the p-rank stratification of Ag
when p > 3.

Corollary 3.13. — If p > 3, then codim(ASg,s,ASg) < g − s.

Proof. — Let d = 2g/(p− 1) and r = s/(p− 1). Let ε = min
∑r+1
j=1b(ej −

1)/pc where the minimum ranges over all partitions {e1, . . . , er+1} with
fixed sum d + 2. By Corollary 3.11, codim(ASg,s,ASg) = ε. Since b(ej −
1)/pc 6 (ej − 2)/p, one sees that ε 6 (d− 2r)/p = 2(g − s)/p(p− 1). Thus
ε < g − s if p > 3. �

3.5. Irreducibility of the Artin-Schreier locus

As an application of Theorem 1.1, we determine all pairs (p, g) for which
ASg is irreducible.
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Corollary 1.2. The moduli space ASg is irreducible in exactly the fol-
lowing cases: (i) p = 2; or (ii) g = 0 or g = (p − 1)/2; or (iii) p = 3 and
g = 2, 3, 5.

Proof. — Let d = 2g/(p− 1). Recall that d~E is the dimension of ASg, ~E .
The first claim is that there is a bijection between irreducible components
of ASg and partitions ~E ∈ Ωd,r so that d~E = d − 1. To see this, note
that [15, Cor. 3.16] implies that every irreducible component of ASg has
dimension d − 1. If Γ is an irreducible component of ASg, then there is a
partition ~E ∈ Ωd and an open subset U ⊂ Γ so that U ⊂ ASg, ~E . Then
d~E = dim(Γ) = d − 1. Conversely, suppose d~E = d − 1 for some ~E ∈ Ωd.
Then the irreducible spaceASg, ~E is open in a unique irreducible component
Γ of ASg.

Thus, ASg is irreducible if and only if there is exactly one partition ~E ∈
Ωd with dimension d~E = d−1. Write ~E = {e1, . . . , er+1}. By Theorem 1.1,
d~E = d− 1 if and only if ej < p+ 1 for 1 6 j 6 r + 1.
If p = 2, only one partition satisfies the condition ej < 3 for each j,

namely the partition {2, . . . , 2}, Lemma 2.3. Thus Ag is irreducible for all
g when p = 2.
For arbitrary p, if g = 0 (resp. g = (p − 1)/2) then d = 0 (resp. d = 1),

and there is only one partition satisfying ej < p+ 1, namely the partition
{2} (resp. {3}). Thus ASg is irreducible in these cases.

If p = 3 and d = 2 (resp. 3, 5), only one partition satisfies the condition
ej < 4, namely {2, 2}, (resp. {2, 3}, {2, 2, 3}). Thus ASg is irreducible in
these cases.
Suppose p > 3 and d > 2 and that ASg is irreducible. If ~E is a maximal

partition, then its entries satisfy ej 6 3 < p + 1. Thus Ωd has a unique
maximal partition. By Lemma 2.4, this implies d ∈ {2, 3, 5}. If p > 5, then
there are at least two partitions satisfying ej < p+ 1: for example, {4} and
{2, 2} when d = 2; {5} and {2, 3} when d = 3; {2, 5} and {2, 2, 3} when
d = 5. This is a contradiction and so cases (i)-(iii) are the only cases when
ASg is irreducible. �

3.6. Hyperelliptic curves in characteristic 2

Let Hg be the moduli space of hyperelliptic k-curves of genus g. Let Hg,s
denote the locally closed reduced subspace of Hg parametrizing hyperellip-
tic k-curves of genus g with p-rank s. When p = 2, Hg is the same as ASg.
This yields the following result.
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Corollary 1.3. Let p = 2. The irreducible components of Hg,s are in bi-
jection with partitions of g+1 into s+1 positive integers. Every component
has dimension g − 1 + s over k.

Proof. — By Corollary 3.11, the irreducible components of Hg,s are in
bijection with the partitions of d + 2 = 2g + 2 into s + 1 even positive
integers, which are in bijection with the partitions of g + 1 into s + 1
positive integers. The dimension of the irreducible component for ~E =
{e1, . . . , es+1} is (d − 1) −

∑s+1
j=1b(ej − 1)/2c. This simplifies to g − 1 + s

since ej is even and b(ej − 1)/2c = ej/2− 1. �

4. Deformation results and open questions

In this section, we give some results on how the irreducible components of
ASg,s (with varying s) fit together within ASg. This involves deformations
of wildly ramified covers with non-constant branch locus.

4.1. A deformation result for wildly ramified covers

The main result of this section is that, under the obvious necessary con-
ditions, the p-rank of an Artin-Schreier curve can be increased by exactly
p − 1 in a flat deformation. Let S = Spec(k[[t]]) and let s be the closed
point of S.

Proposition 4.1. — Suppose p | e1 or p | e2. Suppose ψ◦ is an Artin-
Schreier cover over k, branched at a point b with lower jump e1 + e2 − 1.
Then there exists an Artin-Schreier cover ψS over S whose special fibre
is isomorphic to ψ◦, whose generic fibre is branched at two points that
specialize to b and which have lower jumps e1 − 1 and e2 − 1, and whose
ramification divisor is otherwise constant.

Proof. — Let e = e1 + e2. By hypothesis, p - (e − 1). Without loss of
generality, suppose p | e1.
Consider the Artin-Schreier cover ψ◦ : Y◦ → Z◦ which is wildly ramified

at the point y◦ ∈ Y◦ above b where it has lower jump e − 1. Let ψ̂◦ :
Ŷ◦ → Ẑ◦ be the germ of ψ◦ at y◦. It is an Artin-Schreier cover of germs of
curves. Using formal patching, see e.g., [11, Prop. 2.7] or [3, Thm. 3.3.4],
deformations of ψ◦ can be constructed locally via deformations of ψ̂◦. With
this technique, one can suppose that the deformation of ψ◦, and thus the
ramification divisor, is constant away from b.
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Now Ẑ◦ ' Spec(k[[x−1]]). After a change of variables, one can suppose
that the restriction of ψ̂◦ to Spec(k((x−1))) has equation yp − y = xe−1.

Consider the deformation ψ̂S of ψ̂◦ over S = Spec(k[[t]]) given by the
normal extension of Spec(k[[x−1, t]]) with the following affine equation:

yp − y = xe−1/(1− xt)e1 .

On the special fibre, when t = 0, then ψ̂s is isomorphic to ψ̂◦. On the
generic fibre, when t 6= 0, then ψ̂S−s is branched above x−1 = 0 and above
x−1 = t. Let F (x) = xe−1/(1 − xt)e1 . The order of the pole of F (x) at
x−1 = 0 is e− 1− e1 = e2− 1, which is prime-to-p by hypothesis. Thus the
lower jump above x−1 = 0 is e2 − 1.

To compute the lower jump above x−1 = t, one can expand F (x) around
1/t:

F (x) = (−1)e1t−(e+e1−1)(x− 1/t)−e1

+ (e− 1)(−1)e1t−(e+e1−2)(x− 1/t)−e1+1 + . . . .

After a finite inseparable extension of k((t)) with equation tp1 = t, the
leading term of F (x) is a pth power. The second term of F (x) is non-
zero since p - (e − 1) and thus it becomes the leading term of the affine
equation in standard form for ψ̂S−s. Thus the lower jump above x−1 = t

is e1 − 1. Thus the cover ψ̂S−s is branched at two points that specialize to
b and which have lower jumps e1 − 1 and e2 − 1. By Lemma 2.6 and [20,
Lemma IV.2.3], the deformation ψ̂S of ψ̂◦ over S is smooth. �

The next result shows that, under a mild necessary condition, the p-rank
of an Artin-Schreier curve can be increased by exactly p − 1 under a flat
deformation. In particular, an Artin-Schreier curve of genus g > p(p− 1)/2
and p-rank 0 can be deformed to an Artin-Schreier curve of genus g and
p-rank p− 1.

Proposition 4.2. — Suppose that Y◦ is an Artin-Schreier k-curve of
genus g and p-rank r(p− 1). Suppose there is a ramified point of Y◦ under
the Z/p-action whose lower jump d satisfies d > p + 1. Then there exists
an Artin-Schreier curve YS over S whose special fibre is isomorphic to Y◦
and whose generic fibre has genus g and p-rank (r + 1)(p− 1).

Proof. — Let e1 = p and e2 = d + 1 − p. By hypothesis, there is an
Artin-Schreier cover ψ◦ : Y◦ → P1

k, branched at r + 1 points, including
one point b with lower jump e1 + e2 − 1. The result is then immediate
from Proposition 4.1, because the generic fibre of ψS is branched at r + 2
points. �

TOME 62 (2012), FASCICULE 2



722 Rachel PRIES & Hui June ZHU

4.2. Preliminary closure results

In this section, we show that the combinatorial data in the graph Gd
gives partial information about how the irreducible components of ASg,s
(with varying s) fit together in ASg. In fact, we will see in Section 4.3 that
the graph Gd gives complete information about this question when p = 2.
For i = 1, 2, consider a partition ~Ei ∈ Ωd,ri . Let si = ri(p − 1). Let

Γ ~Ei
:= ASg, ~Ei

be the irreducible component of ASg,si
corresponding to ~Ei

as defined below Proposition 3.3. There is a partial ordering ≺ on Ωd from
Section 2.1.

Lemma 4.3. — If Γ~E1
is in the closure of Γ~E2

in ASg, then ~E1 ≺ ~E2.

Proof. — Let S = Spec(k[[t]]) and consider an Artin-Schreier cover φS
so that the generic fibre yields a k((t))-point of Γ~E1

and the special fibre
yields a k-point of Γ~E2

. This is only possible if the branch points of φS
coalesce when t = 0. Since B(φS) is a relative Cartier divisor of constant
degree, the entries of the partition sum together under specialization and
the partition decreases in size. �

The next example and lemma show that the condition ~E1 ≺ ~E2 is fre-
quently not sufficient for Γ~E1

to be in the closure of Γ~E2
in ASg when

p > 5.

Example 4.4. — Let p = 5 and g = 4 and consider ~E1 = {4} and ~E2 =
{2, 2}. Then Γ~E1

and Γ~E2
are both components of AS4 with dimension one.

Although ~E1 ≺ ~E2, at most a zero-dimensional subvariety of Γ~E1
can be

in the closure of Γ~E2
. In fact, Γ~E1

is the supersingular family parametrized
by y5 − y = x3 + cx2; while Γ~E2

is the ordinary family parametrized by
y5 − y = x+ c/x.

For a ∈ Z>0, let a be the integer so that a ≡ a mod p and 0 6 a < p.

Lemma 4.5. — Suppose ~E1 ≺ ~E2 with an edge from ~E1 to ~E2.
(1) If the edge is of the form {e} 7→ {e1, e2} with 2 < e1 + e2 6 p,

then dimk(Γ~E1
) = dimk(Γ~E2

) and Γ~E1
is not in the closure of Γ~E2

in ASg.
(2) In all other cases, dimk(Γ~E1

) = dimk(Γ~E2
)− 1.

Proof. — The dimension comparison follows from Theorem 1.1. If
dimk(Γ~E1

) = dimk(Γ~E2
), then Γ~E1

is not in the closure of Γ~E2
since ASg

is separated. �
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4.3. Closure of the p-rank strata

The main result of this section is Theorem 4.7 which states that every
irreducible component of ASg,s satisfying an obvious necessary condition
is contained in the closure of ASg,s+(p−1) in ASg. In the case that p = 2,
Corollary 4.8 strengthens this result.
Recall, for i = 1, 2, that Γ ~Ei

:= ASg, ~Ei
is the irreducible component of

ASg,si
corresponding to ~Ei ∈ Ωd,ri

, where si = ri(p − 1). There are some
earlier results about when Γ~E1

is in the closure of Γ~E2
. For example, [16,

Thm. 6.5.1] implies that Γ~E1
is in the closure of Γ~E2

for an edge of the
form {2p − ` + 1} 7→ {p, p − ` + 1} as long as ` | (p − 1). Here is another
such result.

Proposition 4.6. — Let ~E1 ≺ ~E2 with an edge of the form {e} 7→
{e1, e2} from ~E1 to ~E2. If p | e1 or p | e2, then Γ~E1

is in the closure of Γ~E2

in ASg.

In other words, under the hypothesis of Proposition 4.6, if Y◦ is an Artin-
Schreier curve with partition ~E1 over k, then there exists an Artin-Schreier
curve YS over S = Spec(k[[t]]) whose special fibre is isomorphic to Y◦ and
whose generic fibre has partition ~E2.
Proof. — For i = 1, 2, let Γ~Ei

= ASg, ~E . Let Y◦ be the Artin-Schreier
curve corresponding to a k-point of Γ~E1

. There exists an Artin-Schreier
cover φ◦ : Y◦ → P1

k over k. The element e in the partition ~E1 determines a
branch point b ∈ P1

k so that the lower jump of φ◦ above b is e− 1.
Let S = Spec(k[[t]]). By Proposition 4.1, there exists an Artin-Schreier

cover φS over S whose special fibre is isomorphic to φ◦ and whose generic
fibre is branched at two points that specialize to b and that have lower
jumps e1− 1 and e2− 1. Furthermore, the ramification divisor is otherwise
constant. Thus the generic fibre of φS has partition ~E2. Thus Γ~E1

is in the
closure of Γ~E2

in ASg. �

Theorem 4.7. — Suppose 0 6 s 6 g−(p−1). If η is an irreducible com-
ponent of ASg,s which is not open and dense in an irreducible component
of ASg, then η is in the closure of ASg,s+(p−1) in ASg.

Proof. — The condition that η is not open and dense in an irreducible
component of ASg implies that dim(η) < d − 1 [15, Cor. 3.16]. By The-
orem 3.11, η = ASg, ~E for some partition ~E ∈ Ωd,r containing an entry
e > p+2. The result is then immediate from Proposition 4.6, letting e1 = p

and e2 = e− p. �
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The next corollary shows that the graph Gd gives a complete combina-
torial description of how the irreducible components of ASg,s fit together
in ASg when p = 2. This result is used in [2].

Corollary 4.8. — Suppose p = 2. Then Γ~E1
is in the closure of Γ~E2

in ASg if and only if ~E1 ≺ ~E2. Thus, if 0 6 s < g, then every component
of Hg,s is in the closure of Hg,s+1 in Hg.

Proof. — Lemma 4.3 implies the forward direction. For the converse,
one reduces to the case that there is an edge from ~E1 to ~E2. Since p = 2,
the edge has the form {e} 7→ {e1, e2} where e1 and e2 are even. Then
Proposition 4.6 applies. �

4.4. Open questions

An answer to the following question would help determine whether ASg
is connected.

Question 1. What are necessary and sufficient conditions on the edge
{e} 7→ {e1, e2} or the edge {e} 7→ {e1, e2, e3} for Γ~E1

to be in the closure
of Γ~E2

in ASg?

Remark 4.9. — By Proposition 4.6, a sufficient condition for an affir-
mative answer to Question 4.4 for the edge {e} 7→ {e1, e2} is that p | e1e2.
Here is a heuristic why this condition may also be necessary. Suppose that
K is a field of characteristic 0. If Φ : Y → P1

K is a Z/p-Galois cover and
y ∈ Y is a ramification point, then the identification of Z/p with Gal(Φ)
allows one to define a canonical generator gy ∈ Z/p of the inertia group at
y, see e.g., [22, Section 2.2.1]. The inertia type of Φ is the multi-set {gy}
for all ramification points y of Φ.
Now, if φ1 is an Artin-Schreier cover (in characteristic p) with partition

{e}, then φ1 can be lifted to a Z/p-cover of the projective line over a field of
characteristic 0, and the inertia type of this lifting is the multi-set of length
e of the form {1, . . . , 1, 1 − e} [10, Ex. 3.3.1]. Similarly, if φ2 is an Artin-
Schreier cover with partition {e1, e2}, then the inertia type of the lifting is
the multi-set of length e1+e2 = e of the form {1−e1, 1, . . . , 1, 1−e2}. So the
inertia types of the liftings are the same if and only if either 1−e1 ≡ 1 mod p
or 1− e2 ≡ 1 mod p, in other words, if and only if p | e1e2.

Question 2. Let ~E ∈ Ωd,r. What Newton polygons occur for points of
ASg, ~E?
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When p � d, the Newton polygon occurring for the generic point of
ASg, ~E is found in [23]. Its limit as p → ∞ has slopes 0 and 1 occurring
with multiplicity r(p−1) and slopes { 1

ej−1 , . . . ,
ej−2
ej−1} with multiplicity p−1

for each 1 6 j 6 r + 1. See [5], [4] for recent results on this question.

Question 3. If p > 3 and g > s > 0, is every component of Hg,s in the
closure of Hg,s+1?
An answer to Question 3 would give more information about the geome-

try of the p-rank stratification of Hg, thus generalizing Corollary 4.8. In [1,
Cor. 3.15], the authors prove a related result: if p > 3 and 0 6 s′ < s 6 g,
then for each irreducible component S of Hg,s, there exists an irreducible
component Ts′ of Hg,s′ such that S̄ contains Ts′ .

BIBLIOGRAPHY

[1] J. Achter & R. Pries, “The p-rank strata of the moduli space of hyperelliptic
curves”, to appear in Advances of Mathematics, arXiv:0902.4637.

[2] J. D. Achter, D. Glass & R. Pries, “Curves of given p-rank with trivial automor-
phism group”, Michigan Math. J. 56 (2008), no. 3, p. 583-592, arXiv:0708.2199.

[3] J. Bertin & A. Mézard, “Déformations formelles des revêtements sauvagement
ramifiés de courbes algébriques”, Invent. Math. 141 (2000), no. 1, p. 195-238.

[4] R. Blache, “First vertices for generic Newton polygons, and p-cyclic coverings of
the projective line”, arXiv:0912.2051.

[5] ———, “p-Density, exponential sums and Artin-Schreier curves”, arXiv:0812.3382.
[6] R. Crew, “Étale p-covers in characteristic p”, Compositio Math. 52 (1984), no. 1,

p. 31-45.
[7] P. Deligne & D. Mumford, “The irreducibility of the space of curves of given

genus”, Inst. Hautes Études Sci. Publ. Math. No. 36 (1969), p. 75-109.
[8] C. Faber & G. van der Geer, “Complete subvarieties of moduli spaces and the

Prym map”, J. Reine Angew. Math. 573 (2004), p. 117-137.
[9] D. Glass & R. Pries, “Hyperelliptic curves with prescribed p-torsion”,Manuscripta

Math. 117 (2005), no. 3, p. 299-317.
[10] B. Green & M. Matignon, “Order p automorphisms of the open disc of a p-adic

field”, J. Amer. Math. Soc. 12 (1999), no. 1, p. 269-303.
[11] D. Harbater, “Moduli of p-covers of curves”, Comm. Algebra 8 (1980), no. 12,

p. 1095-1122.
[12] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate

Texts in Mathematics, No. 52, xvi+496 pages.
[13] K. Lønsted, “The hyperelliptic locus with special reference to characteristic two”,

Math. Ann. 222 (1976), no. 1, p. 55-61.
[14] S. Maugeais, “On a compactification of a Hurwitz space in the wild case”,

math.AG/0509118.
[15] ———, “Quelques résultats sur les déformations équivariantes des courbes stables”,

Manuscripta Math. 120 (2006), no. 1, p. 53-82.
[16] A. Mézard, “Quelques problèmes de déformations en caractéristique mixte”, thèse

de doctorat de mathématiques de l’université Joseph Fourier.

TOME 62 (2012), FASCICULE 2



726 Rachel PRIES & Hui June ZHU

[17] F. Oort, “Subvarieties of moduli spaces”, Invent. Math. 24 (1974), p. 95-119.
[18] R. Pries, “Families of wildly ramified covers of curves”, Amer. J. Math. 124 (2002),

no. 4, p. 737-768.
[19] J. Scholten & H. J. Zhu, “Hyperelliptic curves in characteristic 2”, Int. Math.

Res. Not. (2002), no. 17, p. 905-917.
[20] T. Sekiguchi, F. Oort & N. Suwa, “On the deformation of Artin-Schreier to

Kummer”, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 3, p. 345-375.
[21] J.-P. Serre, Corps Locaux, Hermann, 1968.
[22] H. Völklein, Groups as Galois groups, Cambridge Studies in Advanced Mathe-

matics, vol. 53, Cambridge University Press, Cambridge, 1996, An introduction,
xviii+248 pages.

[23] H. J. Zhu, “L-functions of exponential sums over one-dimensional affinoids: Newton
over Hodge”, Int. Math. Res. Not. (2004), no. 30, p. 1529-1550.

[24] ———, “Hyperelliptic curves over F2 of every 2-rank without extra automor-
phisms”, Proc. Amer. Math. Soc. 134 (2006), no. 2, p. 323-331 (electronic).

Manuscrit reçu le 13 juillet 2007,
révisé le 24 août 2010,
accepté le 29 novembre 2010.

Rachel PRIES
Colorado State University
Mathematics department, Weber 101
Fort Collins, CO, 80523 (USA)
pries@math.colostate.edu
Hui June ZHU
SUNY at Buffalo
Mathematics department
Buffalo, NY, 14260 (USA)
hjzhu@math.buffalo.edu

ANNALES DE L’INSTITUT FOURIER

mailto:pries@math.colostate.edu
mailto:hjzhu@math.buffalo.edu

	1. Introduction
	2. Partitions and Artin-Schreier curves
	2.1. Partitions
	2.2. Artin-Schreier curves
	2.3. The p-rank of Artin-Schreier curves and partitions

	3. Moduli spaces of Artin-Schreier curves
	3.1. Artin-Schreier covers
	3.2. The ramification divisor
	3.3. Artin-Schreier covers with fixed ramification divisor
	3.4. Irreducible components of the p-rank strata
	3.5. Irreducibility of the Artin-Schreier locus
	3.6. Hyperelliptic curves in characteristic 2

	4. Deformation results and open questions
	4.1. A deformation result for wildly ramified covers
	4.2. Preliminary closure results
	4.3. Closure of the p-rank strata
	4.4. Open questions

	Bibliography

