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EXPONENTIAL-TYPE NAGUMO NORMS AND
SUMMABILITY OF FORMAL SOLUTIONS OF

SINGULAR PARTIAL DIFFERENTIAL EQUATIONS

by Zhuangchu LUO, Hua CHEN & Changgui ZHANG

Abstract. — In this paper, we study a class of first order nonlinear degen-
erate partial differential equations with singularity at (t, x) = (0, 0) ∈ C2. Using
exponential-type Nagumo norm approach, the Gevrey asymptotic analysis is ex-
tended to case of holomorphic parameters in a natural way. A sharp condition is
then established to deduce the k-summability of the formal solutions. Furthermore,
analytical solutions in conical domains are found for each type of these nonlinear
singular PDEs.
Résumé. — Dans cet article, nous étudions une classe d’équations aux déri-

vées partielles du premier ordre, non linéaires, dégénérées et ayant une singularité
en (t, x) = (0, 0) ∈ C2. Au moyen d’une famille de normes de Nagumo de type
exponentiel, l’analyse asymptotique Gevrey s’étend naturellement au cas de pa-
ramètres holomorphes. Une condition optimale est ainsi établie pour déduire la
k-sommabilité des solutions formelles. En outre, des solutions analytiques dans des
domaines coniques sont obtenues pour chaque type de ces PDE singulières non
linéaires.

1. Introduction

As early as in 1913, Gevrey [14] studied following forward-backward dif-
fusion equations

(1.1) A(t, x)ux −B(t, x)utt + (lower order terms) = f,

where the coefficient A(t, x) changes sign through the line A(t, x) = 0.
Later, this kind of equations has been used widely, e.g. to deal with the so-
called “counter-current convection diffusion” process which appeared from

Keywords: Nagumo norm, singular differential equations, Fuchsian singularity, Borel
summability, Stokes phenomenon, k-summability, holomorphic parameters.
Math. classification: 30E15, 32D15, 35C10, 35C20.
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some physical or chemical problems. Even for the simplest forms of the
degenerated equation (1.1), such as

xux −
1
2utt + tut = 0, tux − utt = 0,

and
x3ux − x2utt − tut = f(t, x),

we can also find some interesting applications in kinetic theory and sto-
chastic processes (cf. [15, 30] and references therein), these examples would
be covered by more general degenerated PDEs, such as

(1.2) (t∂t)mu = F (t, x, (t∂t)i∂jxu),

where one may assume the indices i, j to be such that in + jm 6 mn

and i < m, with some positive integers m and n. Note also that several
reaction-diffusion equations [12] of type

∂tu = ∂xxu+ f(u)

can be written in a form of the (1.2) while the time variable t is put into a
suitable “exponential scale" t 7→ τ = eλt.
In this paper, only the case of m = 1, n = 1 will be considered for the

partial differential equation (1.2) under the initial condition u(0, x) = 0
and the approach used in the following can be expected to be applied to
general cases. More precisely, we will suppose that F (t, x, u, v) be a function
holomorphic at 0 ∈ C4 such that F (0, x, 0, 0) ≡ 0. Then, equation (1.2)
can be written into the following form:

t∂tu = a(x)t+ b(x)u+ γ(x)∂xu+(1.3) ∑
i+j+α>2

ai,j,α(x)tiuj(∂xu)α, u(0, x) = 0,

where a(x), b(x), γ(x), ai,j,α(x) are holomorphic on an open disc centered
at 0 ∈ C.

The existence and uniqueness of holomorphic solution of (1.3) depend
mainly on the valuation of the function γ at x = 0 (see [13], chapters 5, 6
and [6]). So, let p = val(γ) be the valuation of γ(x) at x = 0. For the case
p = 1, the existence and uniqueness of holomorphic solutions of (1.3) are
proved in [8, 9, 5]. For the case 2 6 p < ∞, if the following condition (F )
is satisfied:

(F ) b(0) /∈ N∗ = {1, 2, 3, ...} and ai,j,α(0) = 0, ∀ α > 0,

ANNALES DE L’INSTITUT FOURIER
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then, thanks to Theorem 1.2 of [6], the equation (1.3) has a unique power
series solution, which is convergent in t and divergent in x with Gevrey
order 1/k or 1 + 1/k according to convention of [6] (k = p− 1).

1.1. Main results

For convenience, we rewrite γ(x) as xk+1c(x) and let c = c(0), b = b(0),
with c 6= 0 . One main result of this paper may be the following

Theorem 1.1. — Under the condition (F ), the equation (1.3) has a
unique formal solution û(t, x), which is convergent in t and k-summable in
all directions of the x-plane except at most a countable directions belonging
to the following set:

(1.4) SDb,c;k :=
k−1⋃
ν=0

{
arg(z) + 2νπ

k
: z ∈

{1
c
,

1− b
c

,
2− b
c

,
3− b
c

, · · ·
}}

.

On the other hand, if the condition (F ) is not satisfied, the formal power
series solution may be divergent in both variables t and x. For example,
the following nonlinear partial differential equation

(1.5) t∂tu = a(x)t+ x2∂xu+ t(∂xu)2, u(0, x) = 0

has a unique formal solution in the Gevrey type power series space
C[[t, x]] 1

2 ,1 if a(x) 6≡ a(0) and val(a(x)) 6 1 (see [6]).

Theorem 1.2. — Consider the equation (1.5) and suppose that a(x) 6≡
a(0) and val(a) = 0 or 1. Let

û(t, x) =
∑
n>0

vn(x)tn+1

be the formal solution of (1.5) and denote

Û(τ, x) =
∑
n>0

vn(x)
Γ(n+1

2 )
τn

as the formal 2-Borel transform of û(t, x) on t. Then the power series Û is
convergent in τ and Borel summable with respect to the variable x in any
direction excepted in R+.

However, by using transformation such as w(t, x) = u(tx, x), the condi-
tion (F ) would be always satisfied for every equation (1.3), provided the
initial equation admits a formal solution, e.g. if b(0) /∈ N∗. Applying The-
orem 1.1 to this new equation yields the following result.

TOME 62 (2012), FASCICULE 2



574 Zhuangchu LUO, Hua CHEN & Changgui ZHANG

Theorem 1.3. — For any equation of the form (1.3), if b(0) /∈ N∗ and
val(γ) = k + 1, then for almost every sector V of openness larger than but
enough close to π/k, there exists R > 0 such that (1.3) admits an analytic
solution in the associated conical domain {(t, x) ∈ C×V : |t| < R|x| < R2}.

The result stated in Theorem 1.1 is more general than that given in our
previous note [20] where, instead of the condition (F ), the following more
restrictive condition is assumed:

(F1) b(0) /∈ N∗ = {1, 2, 3, ...} and val(ai,j,α) + νj > val(γ), ∀ α > 0,

where ν = min(val(a), ν0) with ν0 = min {val(ai,0,0) : i > 2}; see [7] for
more details. In spite of the above condition (F1), we are led to study
a convolution PDE that can be decomposed into an infinite dimensional
system of nonlinear convolution differential equations. In order to prove
the existence of solutions with exponential growth at infinity, we introduce
a family of Nagumo type norms to Banach spaces which were used in our
previous paper [7].
The original definition of the k-summability may be found in [31]; see

also [1], where the k-summability and the multi-summability are both ap-
plied to the analytic ODEs with singularities. Even the situation seems
somewhat similar as what happens for singular perturbation problems [4],
the principal framework in our study remains inside the k-summability
with holomorphic parameters, such as in [24]. A more precise version of
Theorems 1.1, 1.2 and 1.3 will be given as Theorems 7.1, 10.3 and 9.4,
respectively, and also by expression (8.1) and Corollary 9.5.
Observe Theorem 1.1 can be improved to the case where coefficients

a(x), ..., ai,j,α(x) of (1.3) are only assumed to be k-summable in suitable
directions; see Theorem 8.1. In the semilinear case, a simple analytic change
of coordinates suffices to resolve any equation by k-summable functions (cf.
Theorem 9.1).

1.2. Plan of the paper

This paper contains two parts: the part 1, from Section 2 to Section 5, is
devoted to a reformulation of k-summability with holomorphic parameters
by means of Nagumo norms in (generalized) Borel-plane; the part 2 is
concentrated to application of results of Part 1 to the class of PDEs of the
form (1.3).
In Section 2, several functional spaces are introduced by means of a

family of exponential-Nagumo type norms; these spaces may be of interest

ANNALES DE L’INSTITUT FOURIER
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in a general setting for studying PDE summability. In Section 3, the main
result is Lemma 3.1, which allows us to give estimates on derivatives of
a function in terms of exponential-Nagumo norms; see also Corollary 3.4.
Results of these two sections will be extended to any positive level k > 0
in Section 4.
In Section 5, we will start by recalling some basic definitions or facts on

k-summability over C and therefore deal with a version with holomorphic
parameters introduced by J. Martinet and J.-P. Ramis in [24]. The Nagumo
type norms examined in the previous sections are used and useful as test
tool for studying these functions in (generalized) Borel plane.
From Section 6, we consider equation (1.3) and, firstly, by assuming the

condition (F ) we check an analytical equivalent form for that applying
Borel transform gives raise to a good convolution equation. In Section 7, we
will give the proof of Theorems 1.1 for the case of k = 1, which corresponds
exactly to the Borel-summability case. A complete proof of Theorems 1.1
will be given in Section 8.
In Section 9, we consider more general cases in which the condition (F )

will be not satisfied. By using some elementary transformations on the
initial variables, we study the summability of the formal solutions in this
case, particularly, it will be proved that, in this special case, the equation
(1.3) admits an analytical solution in some suitable conical domains for each
time while the formal solution exists; see Theorem 9.4 and its Corollary 9.5.
Finally, Theorem 1.2 will be proved in Section 10, together with Theo-

rem 10.3, by extending the Maillet-Malgrange Theorem to algebraic ODEs
with Gevrey power series as coefficients; see Appendix A, Proposition A.1.

1.3. Notations and related problems

The following notations will be used in this paper.
• For R > 0 and a ∈ C, D(a;R) denotes the open disc {|x− a| < R}
in complex plane.

• The symbol log will denote the principal branch of the complex
logarithm given over its Riemann surface denoted by C̃∗.

• The set of non-zero complex numbers can be identified as (0,∞)×
S1, where S1 denotes the unit circle {|x| = 1}. We will call direction
(over C) any element d ∈ S1, that can be represented by a real
number belonging to [0, 2π).

• If Ω denotes a domain of C or Cm for any positive integer m, O(Ω)
will be the set of functions defined and analytic in Ω.

TOME 62 (2012), FASCICULE 2
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• For all k > 0, C[[x]]1/k denotes the space of power series of Gevrey
order k:

∑
n>0 anx

n ∈ C[[x]]1/k if, and only if,
∑
n>0

an
Γ(1+n/k)x

n

admits a positive radius of convergence. When k = ∞, by conven-
tion C[[x]]0 = C{x} denotes the set of germs of analytic functions
at x = 0.

It would be interesting if results of this paper might be extended and
applied to classical equations mentioned in the beginning of Introduction.
Also it seems that a generalization to high order equations would be possi-
ble whilst k-summability with holomorphic parameters would be replaced
by multisummability version. In addition, analyzing Stokes phenomenon
would be possible and interesting at least for some particular cases, e.g.
one of the cases may be the equations of semilinear case.

Since the work [22] on the summability of formal solutions of the heat
equation, many authors have studied the (multi-)summability for PDEs,
see, for example, [2, 10, 16, 17, 18, 27, 28, 29] and the references therein.
Theorem 1.2 of this paper illustrates in what manner a combination of
summations in two variables becomes necessary for some singular PDEs.
This study will be continued in a forthcoming work [21] while the Gevrey
type asymptotic analysis and summability involving two complex variables
are considered.

Part 1. Nagumo norms and k-summable functions

A power series is said Borel-summable in a given direction d if its Borel
transform represents an analytic function at the origin in the Borel plane,
saying ξ = 0, which can be analytically extended into a function possessing
at most an exponential growth of the first order at the infinity over an open
sector bisected by d. It is natural to introduce exponential type norms for
functions in the ξ-plane.

As it is easy to be seen, any analytic partial differential equation may
be, in most of cases, read as an infinte dimensional system of equations
while expending along one variable. So one may be led to study a sequence
of exponential norms and this is why we will consider Nagumo type norms
to improve exponential norms over a sector; see Section 2. The classical
Nagumo’s norm (cf. [26]) consists of some functional norm depending on
the distance to the boundary (e.g. a circle for a disc) of every point in
a domain where one has to make functional estimates. See [4, §3] and
references therein for more information on Nagumo type norms and their
applications.

ANNALES DE L’INSTITUT FOURIER
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In §3, Lemma 3.1 will be established for assuming estimates of derivatives
in terms of norms of given function; it will play a key role in the proof of
Theorem 1.1, done in Sections 7 and 8 of Part 2. In §4, after considering
extension to the case of a sector joined by a disc–this is really the case for
the classical definition of Borel-summability, we give also k-summability
version of previous results.
Section 5 is devoted to k-summability with holomorphic parameters, in-

spired by the work [24] of J. Martinet and J.-P. Ramis. In terms of Nagumo
norms, some equivalent conditions will be given, in Theorem 5.6, to as-
sume holomorphic parameters k-summability. These creteria will be fol-
lowed through all of the Part 2 for the study of summability of partial
differential equations.

2. Nagumo norms and some functional spaces

Let us start by the following Banach space ES,µ studied in [10] and [20].
For any d ∈ S1 and θ ∈ (0, π), we set

S(d, θ) = {ξ ∈ C∗ : | arg ξ − d| < θ}.

Let S = S(d, θ) and µ > 0; a functions f ∈ O(S) belongs to ES,µ if

‖f‖S,µ := M0 sup
ξ∈S
|f(ξ)(1 + |ξ|2)e−µ|ξ|| <∞,

where M0 is the constant given by the formula

(2.1) M0 = sup
s>0

2(1 + s2)
s(4 + s2) (ln(1 + s2) + s arctan s).

Among interesting proprieties of ES,µ, we are content to notice that
(ES,µ, ‖ ‖S,µ) constitutes a Banach algebra with respect to the convolu-
tion product and, moreover, if µ2 > µ1 and fi ∈ ES,µi , then

(2.2) ‖f1 ∗ f2‖S,µ2 6 4[M0(µ2 − µ1)]−1‖f1‖S,µ1‖f2‖S,µ2 .

When µ1 = µ2, the above relation (2.2) can be modified as follows:

(2.3) ‖f1 ∗ f2‖S,µ2 6 ‖f1‖S,µ1‖f2‖S,µ2 .

Now we introduce some Nagumo type norms for extending these func-
tional spaces. We will see that such norms allow to estimate the derivatives
in terms of any given function; see Section 3, Lemma 3.1 and Corollary 3.4.

TOME 62 (2012), FASCICULE 2
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Definition 2.1. — Let θ ∈ (0, π), S := S(d, θ) and let µ ∈ (0,∞e−id),
i.e µeid ∈ (0,+∞); for any ξ ∈ S, let

(2.4) δ(ξ) = δ(ξ, S) := min{d+ θ − arg ξ,−d+ θ + arg ξ, 1} .

For any f ∈ O(S) and n > 0, we define:

‖f‖S,µ,n := M0 sup
ξ∈S

∣∣f(ξ)e−µξ(1 + |ξ|2)δ(ξ)n
∣∣ ,

where M0 is the positive constant given by (2.1).
The function f will be said belonging to ES,µ,n if ‖f‖S,µ,n <∞.

In the definition 2.1, the parameter n > 0 can be often chosen as a
non-negative integer.

Remark 2.2. — In Definition 2.1, contrary to what done in our pre-
vious paper [7], we make use of e−µξ instead of e−µ|ξ|; this modification
permits much flexibility to carry arguments inside Complex Analysis. See
Corollary 3.4, Proposition 4.4 and so on.

We notice firstly that if θ < π/2, S = S(d, θ) and µ = |µ|e−id, then the
following inclusions hold for any n > 0:

(2.5) ES,|µ| cos θ ⊂ ES,µ,0 ⊂ ES,µ,n.

Indeed, in view of the fact that δ(ξ, S) 6 1 and

|µ||ξ| cos θ < <(µξ) 6 |µ||ξ|, ∀ ξ ∈ S(d, θ),

it follows that, for any given f ∈ O(S):

(2.6) ‖f‖S,µ,n 6 ‖f‖S,µ,0 6 ‖f‖S,|µ| cos θ .

One can easily prove that each (ES,µ,n, ‖ · ‖S,µ,n) constitutes a Banach
space. Let µ, µ′ ∈ (0,∞e−id) with |µ| > |µ′| and let n > n′ > 0. Observe,
as in (2.5) and (2.6), the Banach space ES,µ′,n′ can be considered as a
subspace of ES,µ,n and the following inequality holds:

(2.7) ∀ f ∈ ES,µ′,n′ , ‖f‖S,µ,n 6 ‖f‖S,µ′,n′ .

With regard to the estimates of (2.2) and (2.3) for the convolution prod-
uct, one has following result.

Proposition 2.3. — Let S = S(d, θ) and µ as in Definition 2.1 and let
n, n′ > 0. The following assertions hold.

(1) If f ∈ ES,µ,n and g ∈ ES,µ,n′ , then f ∗ g ∈ ES,µ,n+n′ and

(2.8) ‖f ∗ g‖S,µ,n+n′ 6 ‖f‖S,µ,n‖g‖S,µ,n′

ANNALES DE L’INSTITUT FOURIER
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(2) Let µ′ ∈ (0,∞e−id) such that |µ| 6 |µ′|. If f ∈ ES,µ,0, g ∈ ES,µ′,n,
then f ∗ g ∈ ES,µ′,n and

(2.9) ‖f ∗ g‖S,µ′,n 6 Cµ′−µ ‖f‖S,µ,0 ‖g‖S,µ′,n,

where, M0 being defined by (2.1), we set:

Cµ′−µ = 4
M0 cos(θ/2) |µ′ − µ| .

Proof. — Let f ∈ ES,µ,n, g ∈ ES,µ,n′ and let ξ ∈ S. For any τ ∈ (0, ξ), it
follows that δ(τ) = δ(ξ − τ) = δ(ξ); hence, the following inequality holds
for all τ ∈ (0, ξ):

(2.10) |f(τ) g(ξ − τ)| 6 Cf,g
|eµξ| δ(ξ)−n−n′

(1 + |ξ − τ |2)(1 + |τ |2) ,

where we set
Cf,g := ‖f‖S,µ,n ‖g‖S,µ,n

′

M0 2 .

By expressing f ∗g(ξ) as integral of τ 7→ f(τ) g(ξ− τ) over interval (0, ξ)
and by considering (2.10) in this expression, one can deduce that

|f ∗ g(ξ)| 6 Cf,g δ(ξ)−n−n
′
|eµξ|

∣∣∣ ∫ ξ

0

dτ

(1 + |ξ − τ |2)(1 + |τ |2)

∣∣∣ .
If we define

I(s) =
∫ s

0

dt

(1 + (s− t)2)(1 + t2) ∀s > 0,

then we get the following estimate:

|f ∗ g(ξ)| 6 Cf,g δ(ξ)−n−n
′
|eµξ| I(|ξ|).

Since
I(s) = 2

s(4 + s2) (s arctan s+ ln(1 + s2)) 6 M0

1 + s2 ,

we obtain the estimate (2.8), which implies that f ∗ g ∈ ES,µ,n+n′ , the first
part of Proposition 2.3 is proved.
Next, let f ∈ ES,µ,0, g ∈ ES,µ′,n, instead of (2.10), we have

(2.11) |f(τ) g(ξ − τ)| 6 C ′f,g
|eµ′ξ−(µ′−µ)τ | δ(ξ)−n

(1 + |ξ − τ |2)(1 + |τ |2) ,

where C ′f,g is a similar constant as Cf,g, thus by similar way, we can prove
the estimate (2.9) holds, the second part of Proposition 2.3 is proved. �

If we take n = n′ = 0 in (2.8), we find following corollary.

Corollary 2.4. — The Banach space ES,µ,0 constitutes a Banach al-
gebra w.r.t. the convolution product.

TOME 62 (2012), FASCICULE 2
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Proof. — It is clear. �

On the other hand, from Proposition 2.3, one can not know whether
the space (ES,µ,n, ‖ · ‖S,µ,n) does constitute a Banach algebra w.r.t. the
convolution product when n > 1.

3. A key lemma

In this section, the main result is Lemma 3.1, in which we will give
an estimate of the first order derivative of a function in functional spaces
introduced in Section 2. Let SDb,c;k be the set given by (1.4). It is easy
to check that, for any direction d which does not belong to SDb,c;k, there
exist positive constants θ and σ such that for any n ∈ N∗ and ξ ∈ S(d, θ),
the following estimate holds:

(3.1) |n− b− cξk| > σ(n+ |ξk|),

where b = b(0) and c = c(0).

Lemma 3.1 (Key Lemma). — Let θ ∈ (0, π), S := S(d, θ) and n be
a positive integer. If for k = 1 and σ > 0 the inequality (3.1) holds and
(n− b− cξ)f ∈ ES,µ,n−1, then ξ∂ξf ∈ ES,µ,n and

(3.2) ‖ξ∂ξf‖S,µ,n 6 E‖(n− b− cξ)f‖S,µ,n−1,

where E = σ−1(e3 + |µ|) and σ is a positive constant satisfying (3.1) in the
case of k = 1.

The proof of Lemma 3.1 will be given later in this section, which will
depend on following two propositions.

3.1. Nagumo norms inside Cauchy formula

Notice that the function ξ 7→ δ(ξ) given by (2.4) depends on the angular
distance of ξ to the half-lines sides of the sector S. If we set η = log ξ, this
means that ξ = eη, then the sector S = S(d, θ) will be transformed into
a horizontal strip Ω := Ω(d, θ), which can be identified to the unbounded
rectangular domain R× (d− θ, d+ θ)i. Let d(ζ) = δ(eζ) for any ζ ∈ Ω, and
let d(ξ, ∂Ω) be the distance from ζ to the boundary of Ω. It follows:

(3.3) d(ζ) 6 min{1, d(ζ, ∂Ω)}, d(ζ + η) > d(ζ)− |η|

for any (ζ, η) ∈ Ω× Ω such that ζ + η ∈ Ω.

ANNALES DE L’INSTITUT FOURIER
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Proposition 3.2. — Let D be a simply connected region of the com-
plex plane and let d(ζ) be a positive function defined in D satisfying the
condition (3.3) where Ω is replaced by D. Let f ∈ O(D). If there exist
k > 0, n > 0 and C > 0 such that, for any ζ ∈ D,

(3.4) |f(ζ)| 6 C

(1 + |eζ |2k)d(ζ)n ,

then the following estimate holds over the whole domain D:

(3.5) |f ′(ζ)| 6 e2k+1(n+ 1)C
(1 + |eζ |2k)d(ζ)n+1 .

Proof. — Let ζ ∈ D and choose a positive r such that r < d(ζ). Let
Cζ,r be the positively oriented circle centered at ζ with radius r. By using
Cauchy formula, it follows:

f ′(ζ) = 1
2πi

∫
Cζ,r

f(y)
(y − ζ)2 dy.

Replacing ζ by ζ + reiα in (3.4), one has

|f ′(ζ)| 6 1
2πr

∫ 2π

0

C dα

(1 + |eζ+reαi |2k)[d(ζ + reαi)]n
,

which implies that

(3.6) |f ′(ζ)| 6 e2kC

1 + |eζ |2k
1

r[d(ζ)− r]n ,

in view of (3.3) and of the fact that r < d(ζ) 6 1.
If n = 0, from (3.6) we get the required estimate (3.5) by choosing

r = d(ζ)
e . If n > 1, we choose r = d(ζ)

n+1 , which implies the estimate (3.5)
from (3.6); indeed, we have following obvious estimate:

1
r[d(ζ)− r]n = n+ 1

d(ζ)

(
1

d(ζ)
1 + n

n

)n
= n+ 1
d(ζ)n+1

(n+ 1
n

)n
6
e(n+ 1)
d(ζ)n+1 .

Proposition 3.2 is then proved. �

The following result can be proved as a direct application of Proposi-
tion 3.2 with D = Ω = logS(d, θ) and d(ζ) = δ(eζ).

Proposition 3.3. — Let h ∈ O(S) with S = S(d, θ). Let δ(ξ) be as in
(2.4). If there exist constants k > 0, n > 0 and C > 0 such that

|h(ξ)(1 + |ξ|2k)δ(ξ)n| 6 C

for all ξ ∈ S, then the following estimate holds over S:

(3.7) |(1 + |ξ|2k)δ(ξ)n+1ξ∂ξh(ξ)| 6 (n+ 1)e2k+1C.
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Proof. — It suffices to apply Proposition 3.2 to the function f(ζ) = h(eζ)
for ζ ∈ Ω = log(S) and d(ζ) = δ(eζ), noticing that

f ′(ζ) = eζh′(eζ) = ξ∂ξh(ξ)

and
|f(ζ)| 6 C

(1 + |eζ |2k)d(ζ)n .

�

The estimate (3.7) can be also expressed as follows: for all ξ ∈ S,

(1 + |ξ|2k)δ(ξ)n+1|ξ∂ξh(ξ)|
6 (n+ 1)e2k+1 sup

ξ′∈S
|h(ξ′)(1 + |ξ′|2k)δ(ξ′)n|;

if we put k = 1 and replace n by n− 1, we find, for all ξ ∈ S and n > 1:

(1 + |ξ|2)δ(ξ)n|ξ∂ξh(ξ)|(3.8)
6 e3 n sup

ξ′∈S
|h(ξ′)(1 + |ξ′|2)δ(ξ′)n−1| .

This estimate permits to establish the following interesting result.

Corollary 3.4. — Let S = S(d, θ), µ and n as in Definition 2.1. Sup-
pose n > 1 and let f ∈ ES,µ,n−1. If ξf ∈ ES,µ,n, then ξ∂ξf(ξ) ∈ ES,µ,n and,
moreover, the following estimate holds:

(3.9) ‖ξ∂ξf(ξ)‖S,µ,n 6 e3 n‖f‖S,µ,n−1 + |µ|‖ξf‖S,µ,n .

Proof. — If we write h(ξ) = f(ξ)e−µξ for all ξ ∈ S, it follows that

M0|(1 + ξ|2)|h(ξ)|δ(ξ)n−1 6 ‖f‖S,µ,n−1,

where M0 denotes the positive constant given by (2.1). From relation (3.8)
one deduces immediately that

(3.10) M0(1 + |ξ|2)δ(ξ)n|ξ∂ξh(ξ)| 6 e3 n‖f‖S,µ,n−1.

On the other hand, since

ξ∂ξh(ξ) = e−µξξ∂ξf(ξ)− µξf(ξ)e−µξ,

from (3.10) we obtain:

M0|(1 + |ξ|2)δn(ξ)e−µξξ∂ξf(ξ)|
6 e3 n ‖f‖S,µ,n−1 +M0(1 + |ξ|2)δ(ξ)n |e−µξµξf(ξ)| .

We finish the proof by taking the sup of both sides for all ξ ∈ S and making
use of the definition of ‖ · ‖S,µ,n and that of ‖ · ‖S,µ,n−1, respectively. �
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3.2. Proof of lemma 3.1

Proof. — By hypothesis, (n−b−cξ)f ∈ ES,µ,n−1 with n > 1; so, we may
define:

(3.11) Kn−1 := ‖(n− b− cξ)f‖S,µ,n−1 <∞.

As in the proof of Corollary 3.4, let h(ξ) = f(ξ)e−µξ for all ξ ∈ S and, by
a similar way, we can find the following estimate:

M0|(1 + |ξ|2)δn(ξ)e−µξξ∂ξf(ξ)|(3.12)

6
e3

σ
Kn−1 +M0(1 + |ξ|2)δ(ξ)n |e−µξµξf(ξ)| .

Since δ(ξ) 6 1, relation (3.12) implies that

‖ξ∂ξf(ξ)‖S,µ,n 6 C Kn−1 = C ‖(n− b− cξ)f‖S,µ,n−1

if we set
C = e3

σ
+ sup
ξ∈S

|µξ|
|n− b− cξ|

.

So from (3.1), we have

C <
e3 + |µ|

σ
= E.

The proof of Lemma 3.1 is complete.
�

4. Two extensions

The present section will be devoted to make some extensions for results
obtained in the last two sections, §2 and §3. The first extension will be
given by adding to any sector S(d, θ) an open disc centered at the origin,
and the second one will concern the case of any positive level k.

4.1. Case of a sector joined by a disc

For any R > 0 and d ∈ R, θ ∈ (0, π), we define

S(R; d, θ) := S(d, θ) ∪ {ξ ∈ C : 0 < |ξ| < R} .

Noticing that S(0; d, θ) = S(d, θ), we will see how to continue to have
results known for S(d, θ) while replaced by S(R; d, θ). A such sector may
be said sector joined by a disc.
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In the proof of Proposition 3.3, one identifies each open sector S(d, θ) to
a horizontal strip, saying

Ω(d, θ) = R × {(d− θ, d+ θ)i},

via the complex logarithm application log (with principal branch...) and, by
this way, the angular distance δ(ξ, S) given by (2.4) is exactly the distance
of log ξ to the boundary of Ω(d, θ). This observation inspires the following
definition.

Definition 4.1. — Let S = S(R; d, θ) with R > 0. Let

Ω = Ω(R; d, θ) := Ω(d, θ) ∪ {η ∈ C : <η < lnR}.

We define, for any ξ ∈ S:

(4.1) δ(ξ) = δ(ξ, S) := min(1, inf
η∈∂Ω

| log ξ − η|) ,

where log ξ denotes any number η ∈ Ω(R; d, θ) such that ξ = eη.

See Figure 4.1 below for the correspondence between S(R; d, θ) and
Ω(R; d, θ). As R → 0, we see the domain Ω(R; d, θ) approaching the hori-
zontal strip Ω(d, θ).

S(R; d, θ) ξ −→ η = log ξ ∈ Ω(R; d, θ)

S(R; d, θ) 3 ξ −→ η = log ξ ∈ Ω(R; d, θ)

Figure 4.1

Remark that if ξ belongs to the open disc D(0;R), then δ(ξ, S) depends
on the distance of ξ to the boundary of the disc, that is to say, δ(ξ, S)
depends of |ξ|. In this case, (4.1) can be read as follows:

(4.2) δ(ξ) = 1 or δ(ξ) = lnR− ln |ξ|

if
0 < |ξ| 6 R/e or R/e 6 |ξ| < R,

respectively.
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Definition 4.2. — Let S = S(R; d, θ), µ ∈ (0,∞e−id) and let n > 0.
Let f ∈ O(S). We say that f belongs to ES,µ,n if

‖f‖S,µ,n := M0 sup
ξ∈S
|f(ξ)e−µξ(1 + |ξ|2)δ(ξ)n| <∞,

whereM0 denotes the positive constant given in (2.1) and δ(ξ), the function
defined by (4.1).

In the above, the set S(R; d, θ) does not contain the point at the origin of
the complex plane and, therefore, the function f is not, a priori, assumed
to be defined at this point. From (4.2), one may observe that, as ξ → 0,

|f(ξ)| . ‖f‖S,µ,n
M0

,

which implies that f can be continued to be an analytic function at ξ = 0.

Proposition 4.3. — Let S = S(R; d, θ), with R > 0. Let f ∈ O(S). If
limξ→0 f(ξ) = 0 and f ∈ ES,µ,n, then f

ξ ∈ ES,µ,n and, moreover:

(4.3) ‖f
ξ
‖S,µ,n 6

e

R
‖f‖S,µ,n.

Proof. — In view of the fact that f may be analytically continued at
zero and that its limit value is zero, it follows that f

ξ can be continued as
analytic function at ξ = 0. Therefore, applying the maximum principle to
f
ξ on the closed disc D̄ := D̄(0;R/e) allows us to get (4.3) if one checks
the definition of ‖ fξ ‖S,µ,n over the disc D̄ and then over its complement
separately. We omit the details. �

One can state similar properties for Banach spaces (ES,µ,n, ‖ · ‖) as in
the case of R = 0. Namely, instead of Proposition 2.3, one can notice the
following fact.

Proposition 4.4. — Let S = S(R; d, θ), with d ∈ S1, θ ∈ (0, π) and
R > 0. If f ∈ ES,µ,n and g ∈ ES,µ,n′ , then f ∗ g ∈ ES,µ,n+n′ and

‖f ∗ g‖S,µ,n+n′ 6 ‖f‖S,µ,n ‖g‖S,µ,n′ .

Proof. — Let ξ ∈ S. For any τ ∈ (0, ξ), one can see that

(4.4) δ(τ, S) > δ(ξ, S), δ(ξ − τ, S) > δ(ξ, S),

so that one can give a similar proof as that done for Proposition 2.3, (1).
The details are left to the reader. �

With respect to the derivative of a function belonging to ES,µ,n, we men-
tion the following result.
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Proposition 4.5. — Let S = S(R; d, θ) with R > 0. Let f ∈ ES,µ,n−1
for some µ ∈ (0,∞e−id) and n > 1. Then ∂ξf ∈ ES,µ,n and

(4.5) ‖∂ξf(ξ)‖S,µ,n 6 (ne
4

R
+ |µ|) ‖f(ξ)‖S,µ,n−1.

Proof. — As in the proof of Corollary 3.4 and also that of Lemma 3.1,
we write f(ξ) = h(ξ)eµξ and, by taking into account of (4.3), one can easily
check that

(4.6) ‖∂ξf(ξ)‖S,µ,n 6
e

R
‖eµξξ∂ξh(ξ)‖S,µ,n + ‖µf(ξ)‖S,µ,n.

Since d(ζ) := δ(eζ , S) satisfies condition (3.3) of Proposition 3.2, one can
also prove that, for any holomorphic function h in S(R; d, θ), if we let

Ch,n := sup
ξ∈S
|h(ξ)(1 + |ξ|2)δ(ξ, S)n−1| <∞,

then the following relation holds (see the proof of Proposition 3.3):

|(1 + |ξ|2)δ(ξ, S)nξ∂ξh(ξ)| 6 ne3Ch,n.

Therefore, one can find that

(4.7) ‖eµξξ∂ξh(ξ)‖S,µ,n 6 n e3 ‖eµξh(ξ)‖S,µ,n−1,

which, together with (4.6) implies relation (4.5) and thus one ends the proof
of Proposition 4.5. �

As application, we give the following result, that is in the same line as
our key Lemma 3.1.

Corollary 4.6. — Let S = S(R; d, θ) with R > 0. Let f ∈ O(S). Let
P (n, ξ) be a sequence of functions defined and analytic over S. Suppose
that the following condition is fulfilled:

C := sup
(n,ξ)∈N×S

max(n, |ξ|)
|P (n, ξ)| <∞ .

If P (n, ξ) f(ξ) ∈ ES,µ,n−1, then ∂ξf ∈ ES,µ,n, ∂ξ(ξ∂ξ)f ∈ ES,µ,n+1 and,
moreover, the following estimates hold:

(4.8) ‖∂ξf‖S,µ,n 6
eE0

R
‖P (n, ξ) f‖S,µ,n−1

and

(4.9) ‖∂ξξ∂ξf‖S,µ,n+1 6
neE0

2

R
‖P (n, ξ) f‖S,µ,n−1,

where we set E0 = (2e3 + |µ|)C.
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Proof. — Relation (4.8) follows directly from (4.5) and the definition of
constant C. Furthermore, one can obtain (4.9) from (4.7), by observing
that

‖ξ∂ξf(ξ)‖S,µ,n 6M0 sup
ξ∈S
|(ne3 + |µξ|)f(ξ)e−µξ(1 + |ξ|2)δ(ξ, S)n−1| .

�

4.2. Extension to an arbitrary level k > 0

In the rest of this section, we will discuss the case of any arbitrary positive
level k. Indeed, the Borel summability requires an exponential growth of
at most order one at infinity where the general k-summability needs to
make use of exponential growth of order k. For this matter, one can see
[31, 1, 3, 25].
We firstly give a version of level k for the Banach spaces (ES,µ,n, ‖·‖S,µ,n).

In what follows, if S = S(d, θ), we define the so-called k-ramified sector S(k)

by
S(k) = S(k)(d, θ) := S(d

k
,
θ

k
),

so that we may write the following 1− 1 ramification map:

S(d, θ) 3 ξ 7→ ρkξ := ξ1/k ∈ S(k)(d, θ).

More general, if f is a function given in some sector S(k), we will denote
by ρkf the function defined in the sector S by the following relation:

∀ξ ∈ S, ρkf(ξ) = f(ξ1/k).

Definition 4.7. — Let S = S(d, θ), µ and n be as in Definition 2.1.
Let k > 0. A function f ∈ O(S(k)) is said belonging to the set E(k)

S,µ,n if
ρkf ∈ ES,µ,n. In this case, we define:

(4.10) ‖f‖(k)
S,µ,n = ‖ρkf‖S,µ,n .

In other words, one may write E(k)
S,µ,n as follows:

E(k)
S,µ,n = ρk

−1(ES,µ,n);

so, it is easy to see that each (E(k)
S,µ,n, ‖ · ‖

(k)
S,µ,n) constitutes a Banach space.

From (2.7), we deduce the following relations:

E(k)
S,µ′,n′ ⊂ E(k)

S,µ,n, ‖f‖(k)
S,µ,n 6 ‖f‖

(k)
S,µ′,n′

if n > n′ and |µ| > |µ′|.
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Let f and g be continuous functions in some sector S(k). Following [25,
§2] (see also [3, (1.7)]), the so-called convolution product of level k of f and
g, traditionally denoted by f ∗k g, is the function defined in S(k) by the
following relation:

(4.11) ρk(f ∗k g) = (ρkf) ∗ (ρkg) .

Proposition 4.8. — Let S = S(d, θ) and µ as in Definition 4.7 and let
n, n′ > 0. Let k > 0. The following assertions hold.

(1) If f ∈ E(k)
S,µ,n and g ∈ E(k)

S,µ,n′ , then f ∗k g ∈ E(k)
S,µ,n+n′ and

(4.12) ‖f ∗k g‖(k)
S,µ,n+n′ 6 ‖f‖(k)

S,µ,n ‖g‖
(k)
S,µ,n′ .

(2) Let µ′ ∈ (0,∞e−id) such that |µ| 6 |µ′|. If f ∈ E(k)
S,µ,0, g ∈ E

(k)
S,µ′,n,

then f ∗k g ∈ E(k)
S,µ′,n and

(4.13) ‖f ∗k g‖(k)
S,µ′,n 6 Cµ′−µ ‖f‖(k)

S,µ,0 ‖g‖
(k)
S,µ′,n,

where Cµ′−µ denotes the positive constant defined in Proposition 2.3,
Assertion 2.

Proof. — It follows directly from Proposition 2.3, by taking into account
the relations (4.10) and (4.11). �

Concerning the key lemma 3.1, we mention the following generalization.

Proposition 4.9. — Let θ ∈ (0, π) and S := S(d, θ) be such that
inequality (3.1) holds, with k > 0. Let n be a positive integer. If (n − b −
cξk)f ∈ E(k)

S,µ,n−1, then ξ∂ξf ∈ E
(k)
S,µ,n and

(4.14) ‖ξ∂ξf‖(k)
S,µ,n 6

k(e3 + |µ|)
σ

‖(n− b− cξk)f‖(k)
S,µ,n−1,

where σ denotes a positive constant satisfying (3.1).

Proof. — It suffices to make use of Lemma 3.1, by noticing the following
elementary relations:

ρk[(n− b− cξk)f ] = (n− b− cξ)ρkf

and

ξ∂ξ(ρkf) = 1
k
ρk(ξ∂ξf) .

�
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We leave to the reader to translate Corollary 3.4 into the k-level’s context.
Finally we mention that one can combine § 4.1 with § 4.2 to get an

extension more general as follows: letting

(4.15) S(k) = S(k)(R; d, θ) := D(0, R1/k) ∪ S(k)(d, θ),

one may then define, by an obvious way, the functional spaces E(k)
S,µ,m for

µ ∈ (0,∞e−id) and m > 0.

5. k-summable functions or series with holomorphic
parameters

In this section, we will begin by recalling some definitions concerning the
k-summability of a power series in the sense of Ramis [31], including Gevrey
asymptotic expansion and k-Borel-Laplace transformation. From § 5.2, we
will approach k-summability with holomorphic parameters, this means that
the fields C of complex number can be replaced by some suitable space of
holomorphic functions.

5.1. k-summable series or functions and Gevrey asymptotic
expansions

Let d ∈ [0, 2kπ) and let R > 0, ε > 0. We set:

(5.1) V (k)(R; d, ε) :=
{
x ∈ C : 0 < |x| < R,

∣∣arg x− d

k

∣∣ < π + ε

2k

}
.

Mind that V (k)(R; d, ε) presents a germ of open sector at 0 having open-
ness strictly larger than π/k, contrary to the sector S(k)(d, θ) or S(R; d, θ)
or S(k)(R; d, θ), that can be viewed as germ of open sectors along whole
direction d.

Definition 5.1. — A power series f̂ :=
∑
n>0 anx

n ∈ C[[x]] is said
k-summable in direction d and will be denoted by f̂ ∈ C{x}dk, if one of the
following equivalent conditions is satisfied:

(1) There exist V = V (k)(R; d, ε) and f ∈ O(V ) such that f admits
f̂ as Gevrey asymptotic expansion of order k at zero in V , in the
following sense: for any V ′ = V (k)(R′; d, ε′) with R′ ∈ (0, R) and
ε′ ∈ (0, ε), one can find positive constants C = CV ′ , A = AV ′ such
that the following relation holds for any non-negative integer N :

(5.2) sup
x∈V ′

∣∣∣x−N(f(x)−
N−1∑
n=0

anx
n
)∣∣∣ < C AN Γ(1 + N

k
) .
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(2) The power series

(5.3) Bk(f̂ −
k−1∑
n=0

anx
n) :=

∑
n>k

an
Γ(1 + n/k)ξ

n−k

defines a germ of analytic function at ξ = 0, saying φ, that can be
continued in a sector S(k)(d, θ) with a growth at most exponential
of the first order at infinity. In other words, φ ∈ E(k)

S,µ,0 for some
suitable S = S(R; d, θ) and µ ∈ (0,∞e−id).

If
(
V (k)(R1; d, ε1); f1

)
and

(
V (k)(R2; d, ε2); f2

)
satisfy both condition (1),

then f1 = f2 over the intersection domain V (k)(R1; d, ε1) ∩ V (k)(R1; d, ε1),
that inspires the following definition for the set of k-sums or, saying, k-
summable functions. We denote by G(k)(V ) ⊂ O(V ) the set of all func-
tions possessing a k-order Gevrey asymptotic expansion over V and we
define G(k)

d as the inductive limit of the system G(k)(V ) taking for all
V = V (k)(R; d, ε), where R > 0 and ε > 0. Therefore, for any f̂ ∈ C{x}dk,
there exists a unique f ∈ G(k)

d satisfying (5.2), called k-sum of f in direction
d and is denoted by f = Sdk f̂ .
At the same time, we write E(k)

d as the inductive limit of E(k)
S,µ,0 taking

over all S = S(R; d, θ) with R > 0 and θ > 0. The equivalence between (1)
and (2) can be then realized by the k-Borel-Laplace transform in direction
d (we consider only the case a0 = a = 1 = ... = ak−1 = 0):

G(k)
d 3 f 7→ Bdkf ∈ E

(k)
d , E(k)

d 3 φ 7→ Ldkφ ∈ G
(k)
d ,

where

(5.4) Bdk = ρk
−1 ◦ Bd ◦ ρk, Ldk = ρk

−1 ◦ Ld ◦ ρk .

5.2. k-summable series or functions with holomorphic
parameters

The following definition is very close to Definition 5.1.1 given in [24,
Chapitre I]; see also [32, §2.3] and, for a Banach space version of k-summa-
bility, see [1, Chapiter 6].

Definition 5.2. — Let U be an open set of Cm, with m > 1 and let V
be an open sector of vertex 0 in x-plane. A function f ∈ O(U×V ) is said k-
summable w.r.t. x in a direction d and will be denoted by f ∈ G(k)

d (O(U)),
if the following conditions are fulfilled:
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• The function f can be analytically continued over U×V (k)(R; d, ε),
for some R > 0 and ε ∈ (0, π).

• There exists a sequence (fn)n>0 in O(U) such that, for all relatively
compact subset U ′ ⊂ U and every sub-sector V ′ = V (k)(R′; d, ε′) ⊂
V (k)(R; d, ε), one can find positive constants C = CU ′,V ′ and A =
AU ′,V ′ with the following property: ∀N ∈ N,

(5.5) sup
(z,x)∈U ′×V ′

∣∣∣x−N(f(z, x)−
N−1∑
n=0

fn(z)xn
)∣∣∣ < C AN Γ(1 + N

k
) .

By interpreting O(U × V ) as being the set of analytic functions defined
from V to the Fréchet space O(U) with the uniform norms on compacts,
the above definition says that every f ∈ G(k)

d (O(U)) is merely k-summable
in direction d as a function of one variable with values in O(U). For any
given z0 ∈ Cm, we define G(k)

d (Oz0) the set obtained by taking the inductive
limit of G(k)

d (O(U)) over all open neighborhood U of z0 in Cm.
The power series

∑
n>0 fn(z)xn ∈ O(U)[[x]] satisfying (5.5) may be

called k-order Gevrey asymptotic expansion of f at 0 in V with holomor-
phic parameter in U and it will be denoted by Tx(f) or, in short, by T (f) if
no confusion is obvious. One can notice that if f is k-summable in direction
d, then it is also true for any direction sufficiently close to d and that the
expansion T (f) does not depend on the choice of the direction.
On the other hand, the space E(k)

d can extend to the holomorphic param-
eters case as follows: φ ∈ E(k)

d (Oz0) if there exist an open neighborhood U
of z0 in Cm, a disc plus sector S = S(R; d, θ) and µ ∈ (0,∞e−id) such that
φ(z, ·) ∈ E(k)

S,µ,0, uniformly for all compact K ⊂ U :

(5.6) sup
z∈K
‖φ(z, ·)‖(k)

S,µ,0 <∞ .

We will consider only the case where U is a neighborhood of 0 ∈ Cm, so
that we may write O0 ∼= C{z}.

Definition 5.3. — A power series

f̂(z, x) :=
∑

(`,n)∈Nm×N

a`,nz
`xn

is said k-summable w.r.t. x in direction d with holomorphic parameters at
0 in Cm and will be denoted by f̂ ∈ O0{x}dk, if the following conditions are
fulfilled:

• For all n ∈ N, the series
∑
`∈Nm a`,nz

` defines a germ of analytic
function at 0 ∈ Nm that will be denoted by fn(z).
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• There exists f ∈ G(k)
d (O0) such that T (f) =

∑
n>0 fn(z)xn.

It is important to notice that in the above definition, the function f ∈
G(k)
d (O0) is unique: it may be called k-sum of f̂ in direction d and will be

denoted by f = Sdk f̂ .
In the same line as in the case of k-summable series with constant coef-

ficients, we can establish the following result.

Theorem 5.4. — Let U be an open neighborhood of 0 in Cm, V =
V (k)(R; d, ε) with R > 0 and ε > 0 and let f ∈ O(U ×V ). We suppose that
the following relation holds for all z ∈ U and j = 0, ..., k − 1:

lim
V 3x→0

∂jxf(z, x) = 0 .

Then the following conditions are equivalent.
(1) We have f ∈ G(k)

d (O0).
(2) There exists a function φ ∈ E(k)

d (O0) such that f can be expressed
as k-Laplace transform of φ, i.e:

f(z, x) = (ρ−1
k ◦ L

d ◦ ρkφ)(z, x).

(3) For all relatively compact subset U ′ ⊂ U and every relatively com-
pact sub-sector V ′ = V (k)(R′; d, ε′) ⊂ V

(k)
d (R, ε), there exist posi-

tive constants C = CU ′,V ′ and A = AU ′,V ′ such that the following
relation holds for all non-negative integer n:

sup
(z,x)∈U ′×V ′

∣∣∣∂nxf(z, x)
n!

∣∣∣ < CAnΓ(1 + n

k
) .

Proof. — The proof can be done by an evident adaptation, noticing that
in (2), φ may be obtained as the k-Borel transform of Tx(f). See [32, 24]
or, for the classical case of C instead of O(U), see [31]. �

An immediate consequence is the following.

Proposition 5.5. — (1) The set G(k)
d (O0) constitutes a differential

algebra with respect to the usual product of functions and dif-
ferential operators in (z, x) and, moreover, if f ∈ G(k)

d (O0) with
f̂ = T (f), then the following relation holds for all ` ∈ Nm and all
n ∈ N:

(5.7) T (∂`z∂nxf) = ∂`z∂
n
x f̂ .

(2) The set E(k)
d (O0) constitutes a differential algebra with respect to

the k-convolution product relative to ξ, differential operators on z
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and the derivative expressed by taking the product by ξ. Moreover,
if φ, ψ ∈ E(k)

d (O0), then the following relation holds for any ` ∈ Nm:

(5.8) ∂`z(φ ∗k ψ) =
∑

`1+`2=`

(
`1
`

)
(∂`1
z φ) ∗k (∂`2

z ψ).

Proof. — We use of the Cauchy formula of [19] for expressing each de-
rivative function ∂`z∂nxf . Then, by taking into account (3) of Theorem 5.4,
we can therefore get the formula (5.7). It is similar to prove (5.8), we omit
the details here. �

5.3. Taylor expansion with k-summable coefficients

An element of G(k)
d (O0) can also be considered as a holomorphic function

defined from a neighborhood of 0 ∈ Cm to the Fréchet space G(k)
d for which

the uniform norms on relatively compact sectors may be considered. The
same remark remains true in the case of E(k)

d (O0). So we can establish the
following result.

Theorem 5.6. — Let d ∈ S1, m ∈ N∗, k ∈ N∗ and consider

f̂ :=
∑

(`,n)∈Nm×N

a`,nz
`xn+k ∈ xkC[[z, x]] .

For all ` ∈ Nm, let

f̂` :=
∑
n>0

a`,nx
n+k, φ` := Bkf̂` .

Then f̂ ∈ O0{x}dk if, and only if, one of the following equivalent conditions
is satisfied:

(1) For all ` ∈ Nm, f̂` ∈ C{x}dk, and the power series
∑
`∈Nm Sdk(f̂`)z`

is Taylor expansion of some function f ∈ G(k)
d (O0) at z = 0 ∈ Cm.

In other words, it follows that, in G(k)
d (O0):

Sdk f̂ =
∑
`∈Nm

Sdk(f̂`)z` .

(2) The power series
∑
`∈Nm φ` z

` is Taylor expansion of some function
φ ∈ E(k)

d (O0) at z = 0 ∈ Cm.
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(3) There exist R > 0, θ > 0, µ ∈ (0,∞e−id), ν > 0 such that if
S = S(R; d, θ), the power series

∑
`∈Nm ‖φ`‖(k)

S,µ,ν|`| z
` is Taylor ex-

pansion of some function φ ∈ O0, where |`| = `1 + ... + `m for
` = (`1, · · · , `m) ∈ Nm.

Proof. — If f̂ ∈ O0{x}dk and f̂ = T f , one can express ∂`zf(0) by Cauchy
formula; in view of (5.5), we obtain that f̂` ∈ C{x}dk and, furthermore,
f` = Sdk f̂`, which implies the above condition (1).
One can get the second condition from the first one by making use of

formal k-Borel transform w.r.t. x in the Taylor expansion of Sdk f̂ .
Condition (3) can be deduced from (2) by merely noticing the fact that,

for any m > 0, ‖φ`‖S,µ,m 6 ‖φ`‖S,µ,0.
By assuming condition (3) and by replacing S by a more smaller sec-

tor S′ = S(R′; d, θ′), one may suppose that
∑
`∈Nm ‖φ`‖(k)

S′,µ,0 z
` ∈ C{z}.

Therefore, applying k-Laplace transform yields the k-sum of f̂ , which ends
the proof of Theorem 5.6. �

Remark 5.7 (Convention for notations). — In Part 2, instead of z we
will write t, so that the set O0 will be merely C{t}. When k = 1, we
will remove the index (k) or k from all spaces considered above, e.g., we
will write O0{x}d, Gd(O0), Ed(O0) instead of O0{x}d1, G

(1)
d (O0), E(1)

d (O0),
respectively.

Part 2. Summability of formal solutions of singular partial
differential equations

Let us consider the Cauchy problem (1.3), that is introduced in the
beginning of the paper as follows:

(1.3)
t∂tu = a(x)t+ b(x)u+ xk+1c(x)∂xu

+
∑

i+j+α>2
ai,j,α(x)tiuj(∂xu)α, u(0, x) = 0,

where we suppose that a(x), b(x), c(x), ai,j,α(x) are holomorphic at x =
0 ∈ C and that c(0) 6= 0 and k > 1.
In this part, we shall use the results of Part 1 to study the problem (1.3).

In Section 6, it will be shown that for any equation (1.3) with the condition
(F ) can be regarded to have such form that the term ∂xu appears always
as x∂xu; see the equation (6.2) below. This preparative form will be used
in Sections 7 and 8, for the proof of Theorem 1.1.

In Section 9, the condition (F ) will be not necessarily satisfied and some
transformations will be undertook to be able to apply Theorem 1.1 or
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its generalization Theorem 8.1. In particular, such transformation can be
chosen to be analytic for semilinear cases; see Theorem 9.1. Section 10
is devoted to a particular study of nonlinear equation (1.5) in which the
condition (F ) will be not satisfied.

6. Analytical equivalence under condition (F )

Remember that condition (F ) requires the following property:

(F ) b(0) /∈ N∗ = {1, 2, 3, ...} and ai,j,α(0) = 0, ∀ α > 0.

If b(0) ∈ N∗, this is often called resonance case, and the equation (1.3)
may have no power series solution. So, we will always assume that
b(0) /∈ N∗. In this case, it is easy to check that the equation (1.3) admits
a unique power series solution that one can put in the following form:

(6.1) û(t, x) := u0(t) + u1(t)x+ u2(t)x2 + · · · ,

where, according to [6, Corollary 2.2], the coefficients functions un, n = 0,
1, 2, · · · , are all analytic in some open disc centered at t = 0 in t-plane.
Since û(0, x) = 0, it follows that un(0) = 0 for all n > 0

Proposition 6.1. — Consider the Cauchy problem (1.3), with k > 1.
If the condition (F ) is satisfied, then there exists a function v(t, x) holo-
morphic at (0, 0) ∈ C2 such that if the solution u is replaced by v + xu,
the equation (1.3) can be rewritten as following form:

(6.2)
t∂tu = ã(x)t+ b̃(x)u+ c̃(x)xk+1∂xu

+
∑

i+j+α>2
ãi,j,α(x)tiuj(x∂xu)α, u(0, x) = 0,

where ã, b̃, c̃ and ãi,j,α are all holomorphic at 0 ∈ C,

(6.3) b̃(0) = b(0), c̃(0) = c(0),

and

(6.4) val(ã) > k, val(ãi,0,0) > k for any i > 2.

Proof. — Assume that ai,j,α(0) = 0 for all α > 0 and let û(t, x) be the
power series solution of (1.3) given in (6.1). Let ` > 1 as a integer and set

(6.5) v(t, x) = u0(t) + u1(t)x+ u2(t)x2 + ...+ u`(t)x`,
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that is clearly holomorphic at 0 ∈ C2 and v(0, x) = 0. If we make the change
of unknown function u = v + xw in (1.3), then by a direct computation,
we can find that w satisfies the following partial differential equation:

xt∂tw = a1(x, t) + b1(x)w + xk+2c(x)∂xw
+R(t, x, v + xw, ∂xv + w + x∂xw), w(0, x) = 0,

where
R(t, x,X, Y ) =

∑
i+j+α>2

ai,j,α(x)tiXjY α,

a1(x, t) = a(x)t+ b(x)v + x2c(x)∂xv − t∂tv
and

b1(x) = x
(
b(x) + xkc(x)

)
.

From (6.5) and the fact that u0(t) + u1(t)x + u2(t)x2 + ... satisfies the
equation (1.3) terms by terms, one can easily see that

a1(x, t) +R(t, x, v, ∂xv) = x`+1tg(t, x), g ∈ C{t, x}.

Expanding the difference

R(t, x, v + xw, ∂xv + w + x∂xw)−R(t, x, v, ∂xv),

one conclude the proof by choosing the integer ` > k and setting that

ã(x) = x`g(0, x), b̃(x) = b(x) + xkc(x).

�

From Proposition 6.1, one has following remark.

Remark 6.2. — If the condition (F ) is satisfied, then the equation (1.3)
is analytically equivalent to following equation of the form:

(6.6)
t∂tu = ã(x)t+ b̃(x)u+ c̃(x)xk+1∂xu

+
∑

i+j+α>2
ãi,j,α(x)tiuj(∂xu)α, u(0, x) = 0,

where ã, b̃, c̃ and ãi,j,α are all holomorphic at 0 ∈ C and

b̃(0) = b(0), c̃(0) = c(0), val(ãi,j,α) > α, ∀α > 0.

Observe that, the same result holds even if the condition (F ) is weakened
as following condition:

(F ′) b(0) /∈ N∗ and val(ai,j,α(0)) + jq > 0, ∀ α > 0,

where q = min{val(ai,0,0) : i > 2}. Indeed, if the condition (F ′) is fulfilled
and q > 0, then there is no constant term in the power series expansion of
the formal solution û of (1.3) in the variable x. One may therefore write
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u(t, x) = xw(t, x) in (1.3) and deduce easily that the condition (F ) is then
satisfied for the obtained equation on w; so one can get an equation of type
(6.6) by using the required analytical transformation.
Comparing with the condition (F ), the condition (F ′) holds notably in

any case where we only need the conditions b(0) /∈ N∗ and val(ai,0,α) > 0
for the equation (1.3).

6.1. Extension to case where coefficients are given in a sector

In this subsection, we shall consider the equation (1.3) again with the
right hand side function F (t, x, u, v) to be only analytic in D×V ×D×D,
where D is an open disc centered at 0 ∈ C and V = {x ∈ C : θ1 < arg x <
θ2, 0 < |x| < R} is a germ of open sector of vertex at 0 ∈ C. Also here we
suppose that the function F (t, x, u, v) admits an asymptotic expansion for
x→ 0 in V , i.e. there exists a sequence (Fn)n∈N of elements of O(D3) such
that

F (t, x, u, v)−
N−1∑
n=0

Fn(t, u, v)xn = O(xN ), ∀N ∈ N ;

(cf. [24, §1] for the definition of an asymptotic expansion with holomorphic
parameters). In this case, the function F can be expanded again as follows:

(6.7) F (t, x, u, v) = a(x)t+ b(x)u+ γ(x)v +
∑

i+j+α>2
ai,j,α(x)tiujvα ,

where for the functions a(x), b(x), γ(x), ai,j,α(x), all belonging to O(V ),
each of them has an asymptotic expansion as x → 0 in V . In order to
interpret the condition (F ) in this case, we adopt the following natural
extension of the valuation at 0 ∈ C for an element f ∈ O(V ) : if f admits
an asymptotic expansion f0 + f1x+ f2x

2 + ... for x→ 0 in V , then:

val(f) = sup{n ∈ N : f0 = ... = fn−1 = 0, fn 6= 0} .

We can therefore notice that val(f) = ∞ if and only if f is infinitely flat
as x→ 0 in V .

Remark 6.3. — Let F be a function given as in (6.7) and let

k = val(γ)− 1 > 1, c(x) = γ(x)/xk+1.

If lim
x→0

b(x) /∈ N∗ and val(ai,j,α) > 0 for all α > 0, then there exists a
function v(t, x) which is holomorphic at (0, 0) ∈ C2 such that under the
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transformation of the unknown function u by v + xu, then the Cauchy
problem

(6.8) t∂tu = F (t, x, u, ∂xu), u(0, x) = 0

can be deduced into the form (6.2). Here we use the same notations as that
in Proposition 6.1, where the functions ã, b̃, c̃ and ãi,j,α are all holomorphic
in V and possess each an asymptotic expansion at 0, and condition (6.3)
may be read as follows: as x→ 0 in V ,

lim
x→0

b̃(x) = lim
x→0

b(x), lim
x→0

c̃(x) = lim
x→0

c(x) .

Indeed, the proof of Proposition 6.1 may be easily adapted, by consider-
ing the following fact: The equation (6.8) has a formal solution û ∈ C[[t, x]]
and, moreover, one can prove that û ∈ tC{t}[[x]].
The situation of Remark 6.3 will be discussed in subsection 8.2 for the

summability of the solutions.

7. Proof of Theorem 1.1 in case of k = 1

In case of k = 1, the corresponding k-summability becomes the classical
Borel summability. See Remark 5.7 for convention of notations.
Observe the Borel summability of a power series solution of any ana-

lytic ODE or PDE may be obtained by studying, in the Borel plane, the
convolution functional equation obtained from the given equation. We will
apply this idea to the Cauchy problem (1.3) and then to prove, for every
suitable direction d, the existence of solution in Ed(O0) for the transformed
equation; see the equation (7.3) below.
Let us assume (1.3) to be given in the form (6.2) with conditions (6.3)

and (6.4), so that the power series solution in (6.1) starts from the first
order term u1(t) w.r.t. x, that means

(7.1) û(t, x) = u1(t)x+ u2(t)x2 + · · ·+ un+1(t)xn+1 + · · · .

In order to simplify the notations, instead of ã(x), b̃(x), c̃(x), ãi,j,k(x), we
will write a(x), b(x), c(x) and ai,j,k(x).
Let ũ(t, ξ) = B(u)(t, ξ) be the formal Borel transform with respect to x

of the power series solution û(t, x) in (7.1):

(7.2) ũ(t, ξ) = u1(t) + u2(t)
1! ξ + · · ·+ un+1(t)

n! ξn + · · · .

According to Theorem 5.6, we can reformulate Theorem 1.1 by the following
statement, where SDb,c;1 will denote the set given by (1.4) for k = 1.
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Theorem 7.1. — For any direction d ∈ S1 that does not belong to
SDb,c;1, we have û ∈ O0{x}d or, equivalently, ũ ∈ Ed(O0), where O0 =
C{t}.

The rest of the section will contain three subsections. In §7.1, we will
establish the convolution product differential equation which is satisfied by
ũ(t, ξ). In §7.2, we apply Proposition 2.3 to get a contraction mapping and
therefore the Banach fixed point theorem can be used. We will complete
the proof of Theorem 7.1 in §7.3, which concludes the proof of Theorem 1.1
in the case of k = 1.

7.1. Convolution product differential equation

By making use of the following relations:

B(f(x)g(x))(ξ) = B(f)(ξ) ∗ B(g)(ξ), B(x2∂xu)(t, ξ) = ξB(u)(t, ξ),

and
B(x∂xu)(t, ξ) = ∂ξ(ξ B(u))(t, ξ) = (ξ∂ξ + 1)B(u)(t, ξ),

from (6.2) one obtains that ũ(t, ξ) satisfies the following convolution prod-
uct differential equation:
(7.3)

(t∂t − (b+ cξ))ũ = A(ξ)t+B(ξ) ∗ ũ+ C(ξ) ∗ (ξũ)

+
∑

i+j+α>2
ti
[
Ai,j,α(ξ) ∗ ũ∗j ∗ (∂ξξ ũ)∗α +Bi,j,αũ

∗j ∗ (∂ξξ ũ)∗α
]
.

Here, ∗ denotes the convolution with respect to the variable ξ,

b = b(0), c = c(0) Bi,j,α = ai,j,α(0)

and the functions A, B, C, Ai,j,α are the Borel transforms respectively to
following functions:

a(x), b(x)− b, c(x)− c, ai,j,α(x)− ai,j,α(0) .

By the condition (6.4), one can notice that Bi,0,0 = 0.
If we write

(7.4) ũ(t, ξ) =
∑
n>1

ũn(ξ)tn,

then each coefficient ũn(ξ) satisfies a functional equation of the following
form:

(7.5) (n− b− cξ)ũn(ξ) = B(ξ) ∗ ũn(ξ) + C(ξ) ∗ (ξũn(ξ)) + Fn(ξ),
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where Fn(ξ) only depends on ũm and ξ∂ξũm for m 6 n − 1. Notice that
the function ũ1 is merely solution to the following equation:

(7.6) (1− b− cξ)ũ1(ξ) = B(ξ) ∗ ũ1(ξ) + C(ξ) ∗ (ξũ1(ξ)) +A(ξ) .

7.2. Contraction mapping in Banach space

Since the function F (t, x, u, v) appeared in (1.3) is assumed to be holo-
morphic near 0 ∈ C4, its Borel transform w.r.t. x, saying (BF )(t, ξ, u, v),
can be seen as an element of ∩d∈S1Ed(O0) with O0 = C{t, u, v}. Therefore,
for any sector S = S(d, θ) with θ < π/2, there exists µ0 ∈ (0,∞e−id) such
that the following condition is satisfied:

(7.7) A, B, C ∈ ES,µ0,0 and
∑

i+j+α>2
‖Ai,j,α‖S,µ0,0t

iujvα ∈ C{t, u, v} .

Lemma 7.2. — Let S = S(d, θ), θ ∈ (0, π/2), σ > 0 and µ0 ∈ (0,∞e−id)
be such that the conditions (3.1) (with k = 1) and (7.7) are satisfied. Let
µ ∈ (0,∞e−id) with

(7.8) |µ| = |µ0|+ 8(σM0 cos(θ))−1(‖B‖S,µ0,0 + ‖C‖S,µ0,0).

If Fn ∈ ES,µ,m for m > 0, then the equation (7.5) has a unique solution
ũn ∈ ES,µ,m and

(7.9) ‖(n− b− cξ)ũn‖S,µ,m 6 2‖Fn‖S,µ,m.

Proof. — Let ϕ(ξ) = (n− b− cξ)ũn(ξ), and consider the mapping

T : ϕ 7→ B(ξ) ∗ ϕ(ξ)
n− b− cξ

+ C(ξ) ∗ ξϕ(ξ)
n− b− cξ

+ Fn(ξ),

where, according to the condition (7.7), B, C ∈ ES,µ0,0.
Remember that if |µ1| 6 |µ2| and m1 6 m2, then the relation ES,µ1,m1 ⊂

ES,µ2,m2 holds and the (S, µ1,m1)-norm of each function is at most equal
to its corresponding (S, µ2,m2)-norm; see (2.7). Therefore, it follows in
particular that B, C ∈ ES,µ1,0 for any µ1 ∈ (0,∞e−id) such that |µ1| > |µ0|.

On the other hand, from the condition (3.1), one finds that
1

|n− b− cξ|
6

1
σ
,

|ξ|
|n− b− cξ|

6
1
σ
.

Thus, by taking into account Proposition 2.3 (1), one obtains that the map-
ping T , as given above, is really a well-defined mapping from the Banach
space ES,µ1,m to itself for any µ1 ∈ [µ0,∞e−id[ and Fn ∈ ES,µ1,m.
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Moreover, from Proposition 2.3 (2) and the relation (2.9), one may de-
duce that, if µ1 ∈]µ0,∞e−id[ and Fn ∈ ES,µ1,m, then the following relation
holds for any pair (ϕ,ψ) ∈ ES,µ1,m × ES,µ1,m:

‖T ϕ− T ψ‖S,µ1,m 6
Cµ1−µ0

σ

(
‖B‖S,µ0,0 + ‖C‖S,µ0,0)

)
‖ϕ− ψ‖S,µ1,m ,

where Cµ1−µ0 denotes the constant given by the formula (cf (2.9)):

Cµ1−µ0 = 4
M0 cos(θ/2)|µ1 − µ0|

.

Let µ be the complex number in ]µ0,∞e−id[ whose modulus is given by
(7.8). Since

|µ− µ0| =
8
(
‖B‖S,µ0,0 + ‖C‖S,µ0,0

)
σM0 cos θ ,

one finds finally that, for any pair (ϕ,ψ) ∈ ES,µ,m × ES,µ,m, the following
estimate holds:

‖T ϕ− T ψ‖S,µ,m 6
1
2 ‖ϕ− ψ‖S,µ,m .

Hence, from the Banach fixed point theorem, the equation (7.5) has unique
solution ũn such that (n− b− cξ)ũn(ξ) ∈ ES,µ,m. Moreover, the successive
approximation process shows that

‖(n− b− cξ)ũn(ξ)‖S,µ,m 6 2−1‖(n− b− cξ)ũn(ξ)‖S,µ,m + ‖Fn‖S,µ,m,

which implies the inequality (7.9) and therefore completes the proof of
Lemma 7.2. �

7.3. Proof of Theorem 7.1

Proof. — First, by induction on n, we can deduce that ũn ∈ ES,µ,n−1.
In fact, applying the result of Lemma 7.2 to the equation (7.6), one has
that ũ1 ∈ ES,µ,0, and then, from the result of Lemma 3.1, we have that
∂ξξũ1 ∈ ES,µ,1.

Secondly, let

(7.10) Y1 := max{‖ũ1‖S,µ,0, ‖∂ξ(ξũ1)‖S,µ,1} <∞.

Expanding all terms of the equation (7.3) as power series of t and by using
the result of Proposition 2.3 several times, one can find that, in (7.5), the
function Fn(ξ) satisfies the following estimates:

(7.11) ‖Fn‖S,µ,n−2 6
∑

i+j+α>2
Wi,j,α

∑
i+|h|+|m|=n

Uj,h Vα,m ,
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where h ∈ N∗j , m ∈ N∗α, |h| = h1 + · · ·+ hj , |m| = m1 + · · ·+mα and

(7.12) Wi,j,α = |Bi,j,α|+ ‖Ai,j,α‖S,µ,i+j+α−2 ,

Uj,h =
j∏
`=1
‖ũh`‖S,µ,h`−1, Vα,m =

α∏
`=1
‖∂ξ(ξũml)‖S,µ,ml−1 .

Indeed, we may notice that

i+ j + α− 2 + (h1 − 1) + · · ·+ (hj − 1) + (m1 − 1) + · · ·+ (mα − 1)
= i+ j + α− 2 + |h|+ |m| − j − α
= i+ |h|+ |m| − 2,

which shows that the condition for the indices n, n′ is satisfied as required in
the relation ‖f ∗ g‖S,µ,n+n′ 6 ‖f‖S,µ,n ‖g‖S,µ,n′ as that of Proposition 2.3.
At the same time, for any n > 2, since ‖ũn‖S,µ,n−1 6 ‖ũn‖S,µ,n−2, from

(3.1) (with k = 1) and Lemma 7.2, we obtain:

‖ũn‖S,µ,n−1 6 ‖σ−1(n− b− cξ)ũn‖S,µ,n−2 6 2σ−1‖Fn‖S,µ,n−2.

Therefore, combining Lemma 3.1 with Lemma 7.2 yields:

‖∂ξ(ξũn)‖S,µ,n−1 6 2(E + σ−1)‖Fn‖S,µ,n−2 .

Consequently, one finds that the terms U and V of (7.11) satisfy the
following relations:

Uj,h 6 (2σ−1)j
j∏
`=1
‖Fh`‖S,µ,h`−2

and

Vα,m 6
(
2(E + σ−1)

)α α∏
`=1
‖Fm`‖S,µ,m`−2 .

In other words, the sequence (‖Fn‖S,µ,n−2)n>2 has the following property:

‖Fn‖S,µ,n−2 6
∑

i+j+α>2
Wi,j,α

∑
i+|h|+|m|=n

j∏
`=1

(2σ−1)‖Fh`‖S,µ,h`−2

×
α∏
`=1

2(E + σ−1) ‖Fm`‖S,µ,m`−2

Finally, let Y (t) be the unique power series

Y (t) =
∑
n>1

Ynt
n
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satisfying the following analytic functional equation:

(7.13) Y = Y1t+ 2
σ

∑
i+j+α>2

Wi,j,α t
i (2σ−1Y )j (2(E + σ−1)Y )α,

with Y (0) = 0, where Y1 and Wi,j,α are defined by (7.10) and (7.12),
respectively. It follows that∑

n>1
‖ũn‖S,µ,n−1t

n � Y1t+ 2
σ

∑
n>2
‖Fn‖S,µ,n−2t

n � Y (t).

From (6.4) and the definition of Ai,j,α and Bi,j,α, it follows thatWi,0,0 =
0 for all i > 2, so that one has the following relation:

2
σ

∑
i+j+α>2

Wi,j,α t
i (2σ−1Z)j (2(E + σ−1)Z)α ∈ ZC{t, Z}.

By applying the implicit function theorem to the equation (7.13), we can
deduce that the power series Y (t) represents an analytic function at t =
0 ∈ C, which implies that∑

n>1
‖ũn‖S,µ,n−1t

n ∈ C{t} .

Since ∑
n>1
‖ũn‖S,µ,ntn �

∑
n>1
‖ũn‖S,µ,n−1t

n ,

one completes the proof of Theorem 7.1 by the help of Theorem 5.6. �

8. Theorem 1.1 and comments

In this section, we will give the proof for our main result Theorem 1.1 for
arbitrary level k > 0. Comparing with the situation of k = 1, the difference
here, instead of the Borel transform B, we shall use the composite transform
B ◦ ρk.
In §8.2, Theorem 1.1 has been extended to the case of equations whose

coefficients are assumed to be k-summable in suitable directions. This ex-
tension will be useful in next section while the condition (F ) will be not
satisfied. In §8.3, we will only discuss the Stokes lines, although a more
complete work on Stokes phenomena sounds interesting.
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8.1. End of proof of Theorem 1.1

Proof. — Let k > 1 and the equation (1.3) has been transformed to the
form of (6.2). For simplifying the notations, instead of ã(x), · · · , ãi,j,α(x),
the coefficients are still denoted by a(x), · · · , ai,j,α(x), and b = b(0), c =
c(0). From the condition (6.4) we know that all the coefficients a(x) and
ai,0,0(x), i = 2, · · · , belong to xk C{x}. It follows that the formal solution
û(t, x) belongs to xktC{t}[[x]].
Let ũ(t, ξ) be the k-Borel transform of û(t, x) w.r.t. x; as before, we write

ũ(t, ξ) =
∑
n>1

ũn(ξ)tn .

So, in view of Theorem 5.6 (3), we may complete the proof of Theorem 1.1
by checking the following statement:
For any direction d /∈ SDb,c;k, there exist S = S(R; d, θ), R > 0, θ ∈

(0, π/(2k)) and µ ∈ (0,∞e−id) such that the following relation holds:

(8.1)
∑
n>1
‖ũn‖(k)

S,µ,n t
n ∈ C{t} .

Indeed, we may write ũ(t, ξ) = B ◦ ρkû(u, ξ), where ρk denotes the ram-
ification operator of order k introduced in § 4.2. From the equation (6.2),
we know that ũ satisfies following functional equation:

(t∂t − (b+ cξ))ũ = A(ξ)t+B(ξ) ∗ ũ+ C(ξ) ∗ (kξũ)

+
∑

i+j+α>2
ti
[
Ai,j,α(ξ) ∗ ũ∗j ∗ (k∂ξξ ũ)∗α +Bi,j,αũ

∗j ∗ (k∂ξξ ũ)∗α
]
,

where, similar to the equation (7.3), the functions A, B, C and Ai,j,α
are obtained by applying successively ρk and B to each of a(x), b(x) − b,
c(x) − c and ai,j,α(x) − ai,j,α(0), respectively. Therefore, the proof given
in §7.3 may be easily adapted to prove (8.1), which implies the proof of
Theorem 1.1. �

8.2. Case of k-summable coefficients in equation (1.3)

Let us come back to the initial value problem (6.8), where the function F
is only assumed to have an asymptotic expansion for x approaching to zero
in a sector of the complex plane. If we suppose that F ∈ O0{x}dk for some
direction d ∈ S1, with O0 = C{t, u, v}, then, in the expression (6.7), the
coefficients a(x), b(x), γ(x), ai,j,α(x) belong to G(k)

d ; see Theorem 5.6 (1).
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We may therefore assume the function F to be given for any x in some open
sector V (k)(R; d, ε) defined by (5.1), for a suitable R > 0 and ε ∈ (0, π).

Theorem 8.1. — Let F be given as in (6.7) and k-summable w.r.t.
x in direction d with holomorphic parameters at (t, u, v) = 0 ∈ C3. If
limx→0 b(x) = b /∈ N∗, limx→0 γ(x)xk+1 = c and d /∈ SDb,c;k, then the
problem (6.8) admits a unique solution in O0{x}dk.

Proof. — According to Remark 6.3 and from (6.8), we get an analytically
equivalent equation of form (6.2). Follow the proof of Theorem 1.1, we
can obtain the k-summability in direction d of the unique formal solution
for this equation, and, by applying the k-Laplace transform, we can then
construct a solution which satisfying the condition of Theorem 8.1.
The uniqueness of the solution can be deduced from that of the formal

solution and that of k-sum function. See Theorem 5.6 and Theorem 5.4
here. �

8.3. Singular directions and Stokes phenomenon

In this paragraph, we only discuss the case of k = 1, and the general case
can be easily deduced by the help of the ramification operator of level k.
For any positive integer n, we set:

ξn := n− b
c

, dn = arg ξn, Ln := [ξn,∞eidn)

and we consider the simply connected domain Ωn defined by the following
relation:

Ωn := C \ ∪n`=1Ln = Ωn−1 \ Ln .
By convention, we write:

Ω0 = C, Ω∞ = ∩`>1Ω` .

By taking a determination of the complex logarithm over C \ [0,∞), all
functions log(ξ − ξn) will be defined on Ω` once ` > n. We notice also that
d /∈ SDb,c;1 if and only if, there exists θ > 0 such that S(d, θ) ⊂ Ω∞.

Definition 8.2. — Let Ω = Ωn, n ∈ N ∪ {∞} and d ∈ S1 and let
f ∈ O(Ω).

• We say that d is a proper direction in Ω if there exists θ > 0 such
that S(d, θ) ⊂ Ω.

• The function f is said to belong to E(Ω) if f ∈ Ed for any proper
direction d in Ω.
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When Ω = C, the set E(C) is merely the space of entire functions pos-
sessing at infinity a growth of at most first order. Observe that, in (7.6), all
functions A, B and C belong to E(C), one can see that the only singular
point for ũ1 may be ξ = ξ1 and, by this way, one would be able to analyze
the location of singularities for other ũn. So, the following statement would
be helpful to understand this problem and the more details would be given
in a forthcoming paper.

Conjecture 8.3. — Let n be a positive integer and let B, C and F ∈
E(Ωn−1). Then the following convolution equation:

(8.2) (ξ − ξn)ψ(ξ) = B ∗ ψ(ξ) + C ∗ (ξψ)(ξ) + F (ξ) ,

admits a unique solution ψ in E(Ωn) such that, for ξ → ξn in Ωn, ψ can be
written in the following form:

(8.3) ψ(ξ) = 1
ξ − ξn

∑
m>0

Am(ξ) (log(ξ − ξn))m ,

where Am ∈ E(Ωn−1).

9. Some results without Condition (F )

This section is devoted to some discussions while the condition (F ) is no
longer satisfied. In § 9.1, the equation (1.3) will be assumed to be linear
in ∂xu, that means that ai,j,α = 0 for all α > 1. In this case, we will show
that an analytic change of variables permits to reduce (1.3) into the form
of (6.2), in which Theorem 1.1 can be applied (cf. Theorem 9.1 here).
In § 9.2, a singular transformation (t, x) 7→ (t/x, x) can be used to study

more general Cauchy problem (1.3) in which we only suppose the formal
solution exists. Thanks to this change of variables, it will be shown, in The-
orem 9.4, that the problem (1.3) admits always a solution which is analytic
in any suitable conical domain of the form {(t, x) ∈ C× V (k)(R; d, ε) : 0 <
|tx| < R}.

9.1. Semilinear cases.

Let us consider the Cauchy problem (1.3) again with the conditions
ai,j,α = 0 for all α > 0 and j + α > 2. Then we have following semilinear
problem:

t∂tu = a1(t, x)t+ a2(t, x)xk+1∂xu(9.1)
+a3(t, x)t∂xu+ g(t, x, u), u(0, x) = 0,
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where aj(t, x), 1 6 j 6 3 and g(t, x, u) are holomorphic at 0 ∈ C2 or
0 ∈ C3, respectively. Moreover, without loss of generality, we can suppose
that g(0, x, 0) = ∂tg(0, x, 0) = 0.
Observe that, for the equation (9.1), the condition (F ) is satisfied if and

only if a3(t, 0) = 0. Thus we have

Theorem 9.1. — Consider the equation (9.1), if k > 1, a2(0, 0) 6= 0 and
a3(t, 0) 6= 0, then there exists a holomorphic function f(t) at t = 0 with
f(0) = 0, such that under the variable transformation, i.e. the variable x
being replaced by x−f(t), the equation (9.1) can be reduced into the form
of the equation (6.2).

Proof. — Let f be a solution of following nonlinear Fuchsian equation:

(9.2) ty′(t) = a2(t,−y(t))yk+1(t) + a3(t,−y(t))t, y(0) = 0.

Then according to Maillet-Malgrange Theorem [23], the problem (9.2) has
a unique analytic solution at t = 0, thus the solution f is a analytic function
at t = 0 with f(0) = 0. If we set

(9.3) z = x+ f(t) and w(t, z) = u(t, z − f(t)),

then we can rewrite (9.1) into the following form:

t∂tw + tf ′(t)∂zw = ā1(t, z)t+ ā2(t, z)(z − f(t))k+1∂zw(9.4)
+ā3(t, z)t∂zw + g(t, z − f(t), w), w(0, z) = 0,

where, for i = 1, 2, 3, we write āi(t, z) = ai(t, z− f(t)). Then the equation
(9.4) becomes:

(9.5)

 t∂tw = ā1(t, z) t+ ā2(t, z)zk+1∂zw +G(t, x, w, z∂zw),

w(0, z) = 0,
where

G(t, x, w, z∂zw) = ā2(t, z)
k∑
j=1

(k + 1)!
j!(k + 1− j)!f

j(t)zk−j (z∂zw)

− ā3(t, z)− ā3(t, 0)
z

t (z∂zw) + g(t, z − f(t), w) .

One can then complete the proof, by checking that (9.5) is a particular case
of the equation (6.2), where x and u are replaced by z and w, respectively.

�

Since a3(t, 0) 6= 0,, and from the equation (9.2), one has val(f) =
val(a3(t, 0)t) = q > 0, then the result of [6] implies that

û(t, x) ∈ C[[t, x]]1/(qk),1/k.
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Moreover, let

f(t) =
∞∑
m=q

fmt
m, pn(t) =

n∑
m=q

fmt
m (n > q)

and let û(t, x) be the formal solution of (9.1). If we consider the n-th mod-
ified formal solution û(t, x − pn(t)) := ŵn(t, x), then one can find that
ŵn(t, x) ∈ C[[t, x]]1/kqn,1/k, where qn = val(f(t) − qn(t)) > n. When
n → ∞, formally we have that ŵn(t, x) → ŵ(t, x) ∈ C{t}[[x]]1/k, thus by
using the result of Theorem 1.1, ŵ will be k-summable with holomorphic
parameter at 0 in almost all direction of x-plane.
In order to obtain the analytic solution of the equation (9.1), we let

a3(t, 0)t = βtq +O(qq+1), β 6= 0, q ∈ N∗

and define:

V (q,β;k)(R; d, ε) :=
{

(t, x) ∈ D(0;R)×C : t
q

β
+ x ∈ V (k)(R; d, ε)

}
,

where V (k)(R; d, ε) is defined by (5.1).

Theorem 9.2. — For any direction d /∈ {2jπ − arg a2(0, 0), j = 0, 1,
2, · · · , k − 1} and R > 0, ε > 0 sufficiently small, then the equation (9.1)
has a solution u(t, x) which is analytic in the domain V (q,β;k)(R; d, ε).

Proof. — It follows from Theorem 9.1. In this case, we can apply the
result of Theorem 1.1 to the power series of the solution ŵ(t, z) = û(t, z −
f(t)), with f(t) = tq/β + O(tq+1). Thus one can complete the proof of
Theorem 9.2 by using the result of Theorem 5.6 (1). �

We may notice that z = 0 is the singular surface of the solution w(t, z),
that is to say x = −f(t) is the singular surface of solution u(t, x). In
fact, one can prove that (t,−f(t), u(t,−f(t)) is the characteristics of the
equation (9.1). Namely we have following remark.

Remark 9.3. — For the semilinear singular equation (9.1), the singu-
larity at the origin propagates along the characteristics of this singular
PDEs.

9.2. General cases

Instead of holomorphic transformation (9.3), we introduce the following
singular transformation:

(9.6) τ = t

x
, w(τ, x) = u(xτ, x) ,
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thus we have following obvious relations

(9.7) t∂tu = τ∂τw, x∂xu = x∂xw − τ∂τw.

Theorem 9.4. — Under the only assumption that b(0) /∈ N∗, then
there is a unique formal solution û(t, x) for every equation (1.3). If we
set ŵ(τ, x) = û(τx, x), then ŵ(τ, x) is k-summable with holomorphic pa-
rameter τ at 0 in all directions of the x-plane except at most a countable
directions as those given in Theorem 1.1.

Proof. — The existence and uniqueness of the formal solution can be
directly verified by the elementary computations. In fact, if one puts∑
n>1 ûn(x)tn in both sides of the equation (1.3) and then identifies all

coefficients of tn to get ûn(x); so, û(t, x) =
∞∑
n=1

ûn(x)tn will be the for-

mal solution of the equation (1.3). Next, for each coefficient ûn which will
satisfy a ODE, thus, by induction on n, we can prove that for any given
positive integer n, ûn is k-summable in all direction except at most for n
directions of x-plane. Given a direction d /∈ DSb,c;k, let un ∈ G(k)

d be the
k-sum of ûn; replacing u(t, x) by u1(x)t+u2(x)t2 + t2u(t, x) may transform
the equation (1.3) into the following form:

t∂tu = a(x)t+ b(x)u+ c(x)xk+1∂xu+ h(x)t∂xu(9.8)

+
∑

i+j+α>2
ai,j,α(x)tiuj(t∂xu)α, u(0, x) = 0,

where a(x), ..., ai,j,α(x) belong to G(k)
d . Moreover, the right hand side in

(9.8) can be written as F (t, x, u, ∂xu) with F ∈ G(k)
d (O0), where O0 =

C{t, u, ∂xu}.
From the relations (9.6) and (9.7), the equation (9.8) becomes that

τ∂τw = a(x)xτ + b(x)w + c(x)(xk+1∂xw − xkτ∂τw)

+h(x)(x∂xw − τ∂τw)τ +
∑

i+j+α>2
ai,j,α(x)(xτ)iwj(τx∂xw − τ2∂τw)α.

By implicit function theorem, this equation can be rewritten as a partial
differential equation such as τ∂τw = F (τ, x, w, x∂xw) and then the proof
of Theorem 9.4 can be deduced directly by the result of Theorem 8.1. �

Applying the result of Theorem 5.6 (2) we have following corollary, which
implies Theorem 1.3 is true.

Corollary 9.5. — If b(0) /∈ N∗, then for any direction d /∈ SDb,c;k,
there exists a sector V (k)(R; d, ε) with R > 0 and ε > 0, such that equation
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(1.3) has a solution u(t, x) which is analytic in the domain
{

(t, x) ∈ C ×
V (k)(R; d, ε) : |t| < R|x|

}
.

Proof. — By using k-Borel-Laplace transformation, one can construct an
analytic solution from the formal power series ŵ(τ, x) of Theorem 9.4; see
Theorem 5.6 (2). �

10. Theorem 1.2 and summability in both variables

In the previous section, the proofs of Theorems 9.1 and 9.4 depended on
the special changes of variables, in which we can use the idea in the proofs
of Theorem 1.1 and Theorem 8.1 to get the results. In this section, we shall
study a kind of different nonlinear singular equation (1.5) given as follows:

(1.5) t∂tu = a(x)t+ x2∂xu+ t(∂xu)2, u(0, x) = 0

in which the condition (F ) is not satisfied. Here we shall give the proof of
Theorem 1.2.
The nonlinear singular equation (1.5) is a quasilinear equation with an-

ticipative factors, we shall discuss this problem in § 10.1. The proof of
Theorem 1.2 will be given in § 10.2, which depends on an extension of
Maillet-Malgrange Theorem [23] in the case of algebraic ODE with coeffi-
cients in Gevrey power series class.

10.1. Formal anticipative aspects

Suppose the coefficient a(x) of the equation (1.5), satisfying a(x) =
a0 + a1x+ a2x

2 + .... Also we expand the unknown function u(t, x) as the
form u0(t)x+u1(t)x2 + ..., then from the equation (1.5), we have following
relations (for all n > 0 and u−1(t) = 0):

(10.1) t∂tun(t) = ant+ (n− 1)un−1(t) + t

n+1∑
`=1

`(n+ 2− `)u`(t)un+2−`(t) ,

In some sense, this system may be called to be anticipative, that is to
say, to determinate the term un(t) we need to know the term un+1(t).

Since u(0, x) = 0, it follows that un(0) = 0 for all integer n; thus one can
deduce from (10.1) that

(10.2) ∂tun(0) = an + (n− 1)∂tun−1(0), 2∂2
t un(0) = (n− 1)∂2

t un−1(0)

and so on · · · .
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Proposition 10.1. — For sequence un(t), given in (10.1), with initial
condition un(0) = 0 for all integer n, then the following relations hold for
all positive integer m and all non-negative integer n:

(10.3) ∂2m
t un(0) = 0

and

(10.4) ∂2m+1
t un(0) =

n+1∑
`=1

m−1∑
j=0

`(n+ 2− `)
(

2j + 1
2m

)
Um,jn,` ,

where
Um,jn,` = ∂2j+1

t u`(0) ∂2(m−j)−1
t un+2−`(0).

Proof. — From the formula (10.2), we can deduce the formula (10.3) for
m = 1. Also, by a direct computation, we can get the proof of (10.4) for
m = 1. Next, by induction on m for m > 1, we can use the operator ∂2m−1

t

or ∂2m
t on both sides of (10.1), which will deduce the required formulae

(10.3) and (10.4). �

From Proposition 10.1, we may notice that the formal solution û(t, x)
belongs to the space tC[[t2, x]], which leads us to introduce the following
transformation:

(10.5) s = t2, w(s, x) = tu(t, x) ,

thus equation (1.5) becomes

(10.6) 2s∂sw = a(x)s+ w + x2∂xw + (∂xw)2, w(0, x) = 0 .

If we set w(s, x) = w0(s)+w1(s)x+ ..., then wn(0) = 0 for all integer n > 0.
Furthermore, the relations (10.2) and (10.4) imply that

(10.7) ∂swn(0) = an + (n− 1)∂swn−1(0)

and, for m > 1,

(10.8) 2m+ 1
(m+ 1)!∂

m+1
s wn(0) =

n+1∑
`=1

m−1∑
j=0

`(n+ 2− `)
m− j + 1 Wm,j

n,` ,

where

Wm,j
n,` = ∂j+1

s w`(0) ∂m−js wn+2−`(0)
(j + 1)! (m− j)! .

By induction on m, one can express each term ∂m+1
s wn(0) in terms of

∂swj(0) for 0 6 j 6 m+n+1. This constitutes a way of finding the unique
formal solution of (10.6) by starting from (10.7).
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Proposition 10.2. — Equation (10.6) admits a unique formal solution
ŵ(s, x) and the Gevrey order of ŵ(s, x) is exactly (1, 1). More precisely, if
we set ŵ(s, x) =

∑
m,n>0 wm,ns

m+1 xn, then

B1,1ŵ(s, x) :=
∑
m,n>0

wm,n
m!n! s

m+1 xn ∈ C{s, x}

and B1,1ŵ(s, x) is divergent if either |s| > 1 or |x| > 1 and s 6= 0.
Consequently, if ŵn(s) =

∑
m>0 wm,ns

m+1, then ŵn ∈ C[[s]]1.

Proof. — Consider the double sequence (Wm,n) defined by

Wm,n := wm,n
m!n! = ∂m+1

s wn(0)
(m+ 1)!m!n! .

The relation (10.7) implies that the sequence
(
∂swn(0)

)
n
is Gevrey of order

one, so that there exist positive constants C andK such that |W0,n| < CKn

for all integer n > 0.
On the other hand, one may rewrite the relation (10.8) in terms of Wm,n

and Wj,` as follows:

Wm,n =
n∑
`=0

m−1∑
j=0

(`+ 1)2(n− `+ 1)2

(m− j + 1)(m− j)(2m+ 1)
(
`
n

)(
j
m

)Wj,`+1Wm−j−1,n−`+1 .

Finally, if the positive constants C and K are chosen sufficiently large, one
has the inequality |Wm,n| < CKm+n for all integers m, n > 0.

To prove that the constant K can not be chosen less than 1, one can
utilize the idea of [6]. We omit the details of this part, which is not necessary
for the rest of this section. �

10.2. Proof of Theorem 1.2

It is easy to see that Theorem 1.2 is equivalent to following result:

Theorem 10.3. — Let ŵ(s, x) =
∑
m>0 v̂m(x)sm+1 be the unique for-

mal solution of equation (10.6). If we set

W (σ, x) :=
∑
m>0

v̂m(x)
m! σm ∈ C{σ}[[x]],

then for all direction d ∈ S1 \ {0}, it follows that W (σ, x) ∈ C{x}d(O0),
where O0 = C{σ}.
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Proof. — Let ŵn(s) be as given in Proposition 10.1, we may observe that

2s∂sŵ0 = a(0)s+ ŵ0 + ŵ2
1.

Therefore, replacing w by ŵ0(s) + ŵ1(s)x+ w in (10.6) yields that

(10.9) 2s∂sw = α(s, x) + w + x2∂xw + 2ŵ1(s)∂xw + (∂xw)2 ,

where α(s, x) is defined as

α(s, x) = (a(x)− a(0))s+
(
ŵ1(s)− 2s∂sŵ1(s)

)
x+ ŵ1(s)x2 .

The formal solution of (10.9) can be expanded as follows:

ŵ∗(s, x) =
∑
m>0

v̂∗m(x)sm+1 ,

where v̂∗m satisfies the following relation:

(10.10) v̂∗m(x) = v̂m(x)− wm,0 − wm,1x ∈ x2C[[x]]1.

Let W ∗(σ, x) be Borel transform w.r.t. s of ŵ∗(s, x), it follows that

W ∗(σ, x) = W (σ, x)− Bŵ0(σ)− Bŵ1(σ)x.

Thus, one needs only to prove that W ∗(σ, x) ∈ C{x}d(O0) or, thanks
to Theorem 5.6, it suffices to establish the following property: there exist
S = S(R; d, θ), µ ∈ (0,∞e−id) such that

(10.11)
∑
m>0

∥∥∥Bv̂∗m
m!

∥∥∥
S,µ,4m

σm ∈ C{σ} .

Let w̃(s, ξ) = Bw(s, ξ). Applying B to both sides of (10.9), we have
following convolution partial differential equation:

2s∂sw̃ = α̃(s, ξ) + (1 + ξ)w̃ + 2ŵ1(s)∂2
ξ (ξw̃) + (∂2

ξ ξw̃)∗2 ,

where
α̃(s, ξ) = A(ξ)s+ ŵ1(s)− 2s∂sŵ1(s) + ŵ1(s)ξ

and
A = B(a(x)− a(0)).

Equivalently, if we write ṽm = B(v̂∗m) and

α̃(s, ξ) =
∑
m>0

α̃m(ξ)sm+1, Pf(ξ) = ∂2
ξ (ξf(ξ)),

it follows that, for all m > 0,

(10.12) (2m+1−ξ)ṽm = α̃m+2
m−1∑
`=1

w`,1P ṽm−`−1 +
m−1∑
`=0
P ṽ` ∗P ṽm−`−1 .
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Since P ṽ` = ∂ξ ṽ` + ∂(ξ∂ξ ṽ`), it follows that

‖P ṽ`(ξ)‖S,µ,4`+2 6 ‖∂ξξ∂ξ ṽ`(ξ)‖S,µ,4`+2 + ‖∂ξ ṽ`(ξ)‖S,µ,4`+1.

By Corollary 4.6, one obtains that, for all ` > 0,

(10.13) ‖P ṽ`(ξ)‖S,µ,4`+2 6 (`+ 1)K‖(2`+ 1− ξ)ṽ`(ξ)‖S,µ,4`,

where K denotes a positive constant depending of R, |µ| and C which is
given by Corollary 4.6 with

P (n, ξ) = n+ 1
2 − ξ.

If we let Wm = ‖(2m + 1 − ξ)ṽm(ξ)‖S,µ,4m, from equation (10.12) and
inequality (10.13), we find:

Wm 6 ‖α̃m‖S,µ,4m + 2K
m−1∑
`=1
|w`,1|(m− `)Wm−`−1(10.14)

+K2
m−1∑
`=0

(`+ 1) (m− `)W`Wm−`−l,

Let

A(t) =
∑
m>0
‖α̃m‖S,µ,4mtm+1, B(t) =

∑
m>0
|wm,1|tm+1

and let
M(t) :=

∑
m>0

Mmt
m+1

be the formal solution of the following nonlinear differential equation:

y(t) = A(t) +K2 (t∂ty(t))2 + 2KB(t) t∂ty(t)),(10.15)

with y(0) = 0. Therefore, relation (10.14) implies that the sequence (Wm)
is majored by (Mm).
By Proposition 10.1, we know that A(t), B(t) are power series of Gevrey-

1. ThusM(t) is a formal solution of the nonlinear equation (10.15), in which
the coefficients A(t) and B(t) are Gevrey series of order one. Moreover, the
linearized equation of (10.15) along the formal solutionM(t) can be written
as follows:

2K
(
K t∂tM(t) +B(t)

)
t∂tZ − Z = 0.

By hypothesis, a(x) 6≡ a(0) in the equation (1.5), this means that α̃0 6≡ 0,
so that the coefficient ‖α̃0‖S,µ,0 of the first order term in t of the power
series A(t), and then that of M(t), are not equal to zero. In this manner,
one finds that the corresponding linearized equation is a singular equation
with irregular singularity at t=0, and the Newtonian polygon related to this
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case has a unique slope, whose value equals to the unity (so the Poincaré’s
rank is one).
By extending Maillet-Malgrange Theorem to the case of algebraic ordi-

nary differential equations with Gevrey power series as coefficients, one can
prove that M(t) will belong to the same Gevrey class as that for the coef-
ficients A(t) and B(t) (cf. Remark 10.4 and Appendix A for more details),
which completes the proof of (10.11). Theorem 10.3 is thus proved. �

Remark 10.4. — By making use of Malgrange’s approach [23], one can
prove the following statement: Any formal solution of an algebraic differ-
ential equation with coefficients Gevrey order 6 1/k is at most Gevrey
order 1/k if the Newton polygon of the variational equation has no slope
in interval (0, k); see Appendix A.

Appendix A. On an extension of Maillet-Malgrange
Theorem

In the following, k denotes a given positive number.
Let m ∈ N, z = (z0, ..., zm) and let F (x, z) ∈ C[[x, z]] be a power series.

Let δ = x ddx and for all φ ∈ xC[[x]], let Φ = (φ, δφ, ...δmφ). We introduce
the following linearized operator LF,φ along φ by

LF,φ :=
m∑
i=0

∂ziF (x,Φ) δi ∈ C[[x]][δ] ;

therefore one can define the so-called Newton polygonN (LF,φ) for LF,φ: this
is the convex envelop in [0,m]×[0,∞) of the set consisting of all the vertical
half-lines starting from (i, vi) with vi = valx=0∂ziF (x,Φ), 0 6 i 6 m. A
differential equation on φ, F (x,Φ) = b(x), is called to be Fuchsian type
at x = 0 if vm 6 vi for all i = 0, · · · , m or, equivalently, if N (LF,φ) ⊂
[0,m]× [vm,∞).

In the meanwhile, for any ν > 0, let Hν be the set of f̂ :=
∑
n>0 anx

n ∈
C[[x]]1/k such that :

‖f̂‖ν :=
∑
n>0
|an|nν (n!)−1/k <∞,

where, by convention, we denote 00 = 1; thus one gets a Banach space
(Hν , ‖ · ‖ν). A power series F (x, z) ∈ C[[x, z]] will be said to belong to
Hν{z} if

F (x, z) :=
∑

`∈Nm+1

f̂`(x)z`
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satisfies the following condition:∑
`∈Nm+1

‖f̂‖νz` ∈ C{z} .

Finally for all λ > 0, we write Fλ(x, z) = F (λx, z). As one extension of
Maillet-Malgrange Theorem [23, Théorème 1.4], the more details of Remark
10.4 can be stated as follows.

Proposition A.1. — Let F ∈ C[[x, z]] and suppose there exists (ν, λ) ∈
[0,∞) × (0,∞) such that Fλ ∈ Hν{z}. Let φ ∈ xC[[x]] be such that
F (x,Φ) ∈ C[[x]]1/k and valx=0(∂zmF (x,Φ)) < ∞. If N (LF,φ) have no
slope with value belonging to interval (0, k), then φ ∈ C[[x]]1/k.

Proof. — It suffices to adapt the Malgrange’s idea [23] to this situation.
The details are left to the interested reader. �

Remark A.2. — Malgrange’s approach [23] can be extended to
q-difference-differential equations and ultra-metric cases, respectively (cf.
[33] and [11]). It is not difficult to think up some generalization of these
results in a similar way as that in Proposition A.1 above.
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