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BANACH SPACES WITHOUT MINIMAL SUBSPACES –
EXAMPLES

by Valentin FERENCZI & Christian ROSENDAL (*)

Abstract. — We analyse several examples of separable Banach spaces, some
of them new, and relate them to several dichotomies obtained in [11],by classifying
them according to which side of the dichotomies they fall.
Résumé. — Plusieurs exemples d’espaces de Banach séparables, dont certains

sont nouveaux, sont analysés, et reliés à plusieurs dichotomies obtenues dans [11].
Ces exemples sont classifiés en fonction de quelle alternative de chaque dichotomie
ils satisfont.

1. Introduction

In this article we give several new examples of Banach spaces, corre-
sponding to different classes of a list defined in [11]. This paper may be
seen as a more empirical continuation of [11] in which our stress is on the
study of examples for the new classes of Banach spaces considered in that
work.

1.1. Gowers’ list of inevitable classes

In the paper [15], W.T. Gowers had defined a program of isomorphic
classification of Banach spaces. The aim of this program is a loose classifi-
cation of Banach spaces up to subspaces, by producing a list of classes of
Banach spaces such that:

Keywords: tight Banach spaces, dichotomies, classification of Banach spaces.
Math. classification: 46B03, 03E15.
(*) The first author acknowledges the support of FAPESP grant 2008/11471-6 and the
second author the support of NSF grant DMS 0556368.
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(a) if a space belongs to a class, then every subspace belongs to the same
class, or maybe, in the case when the properties defining the class depend
on a basis of the space, every block subspace belongs to the same class,

(b) the classes are inevitable, i.e., every Banach space contains a subspace
in one of the classes,
(c) any two classes in the list are disjoint,
(d) belonging to one class gives a lot of information about operators that

may be defined on the space or on its subspaces.
We shall refer to such a list as a list of inevitable classes of Gowers. For

the motivation of Gowers’ program as well as the relation of this program
to classical problems in Banach space theory we refer to [11]. Let us just
say that the class of spaces c0 and `p is seen as the nicest or most regular
class, and so, the objective of Gowers’ program really is the classification
of those spaces (such as Tsirelson’s space T ) which do not contain a copy
of c0 or `p. Actually, in [11], mainly spaces without minimal subspaces
are classified, and so in this article, we shall consider various examples of
Banach spaces without minimal subspaces. We shall first give a summary
of the classification obtained in [11] and of the results that led to that
classification.
After the construction by Gowers and Maurey of a hereditarily inde-

composable (or HI) space GM , i.e., a space such that no subspace may
be written as the direct sum of infinite dimensional subspaces [16], Gow-
ers proved that every Banach space contains either an HI subspace or a
subspace with an unconditional basis [14]. This dichotomy is called first di-
chotomy of Gowers in [11]. These were the first two examples of inevitable
classes. He then refined the list by proving a second dichotomy: any Banach
space contains a subspace with a basis such that either no two disjointly
supported block subspaces are isomorphic, or such that any two subspaces
have further subspaces which are isomorphic. He called the second property
quasi minimality. Finally, H. Rosenthal had defined a space to be minimal
if it embeds into any of its subspaces. A quasi minimal space which does
not contain a minimal subspace is called strictly quasi minimal, so Gowers
again divided the class of quasi minimal spaces into the class of strictly
quasi minimal spaces and the class of minimal spaces.
Gowers therefore produced a list of four inevitable classes of Banach

spaces, corresponding to classical examples, or more recent couterexamples
to classical questions: HI spaces, such as GM ; spaces with bases such that
no disjointly supported subspaces are isomorphic, such as the couterexam-
ple Gu of Gowers to the hyperplane’s problem of Banach [12]; strictly quasi
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EXAMPLES OF BANACH SPACES 441

minimal spaces with an unconditional basis, such as Tsirelson’s space T [21];
and finally, minimal spaces, such as c0 or `p, but also T ∗, Schlumprecht’s
space S [19], or as proved recently in [18], its dual S∗.

1.2. The three new dichotomies

In [11] three dichotomies for Banach spaces were obtained. The first one
of these new dichotomies, the third dichotomy, concerns the property of
minimality defined by Rosenthal. Recall that a Banach space is minimal
if it embeds into any of its infinite dimensional subspaces. On the other
hand, a space Y is tight in a basic sequence (ei) if there is a sequence of
successive subsets I0 < I1 < I2 < . . . of N, such that for all infinite subsets
A ⊆ N, we have

Y 6v
[
en
∣∣ n /∈

⋃
i∈A

Ii

]
.

A tight basis is a basis such that every subspace is tight in it, and a tight
space is a space with a tight basis [11].
The subsets In may clearly be chosen to be intervals or even to form a

partition of N. However it is convenient not to require this condition in the
definition, in view of forthcoming special cases of tightness.

It is observed in [11] that the tightness property is hereditary, incompat-
ible with minimality, and it is proved that:

Theorem 1.1 (3rd dichotomy, Ferenczi-Rosendal 2007). — Let E be a
Banach space without minimal subspaces. Then E has a tight subspace.

Actual examples of tight spaces in [11] turn out to satisfy one of two
stronger forms of tightness. The first was called tightness by range. Here the
range, range x, of a vector x is the smallest interval of integers containing
its support on the given basis, and the range of a block subspace [xn] is⋃
n rangexn. A basis (en) is tight by range when for every block subspace

Y = [yn], the sequence of successive subsets I0 < I1 < . . . of N witnessing
the tightness of Y in (en) may be defined by Ik = range yk for each k. This is
equivalent to no two block subspaces with disjoint ranges being comparable,
where two spaces are comparable if one embeds into the other.
When the definition of tightness may be checked with Ik = supp yk

instead of range yk, then a stronger property is obtained which is called
tightness by support, and is equivalent to the property defined by Gowers
in the second dichotomy that no disjointly supported block subspaces are

TOME 62 (2012), FASCICULE 2



442 Valentin FERENCZI & Christian ROSENDAL

isomorphic. Therefore Gu is an example of space with a basis which is tight
by support and therefore by range.
The second kind of tightness was called tightness with constants. A basis

(en) is tight with constants when for for every infinite dimensional space
Y , the sequence of successive subsets I0 < I1 < . . . of N witnessing the
tightness of Y in (en) may be chosen so that Y 6vK [en

∣∣ n /∈ IK ] for
each K. This is the case for Tsirelson’s space T or its p-convexified version
T (p) [8].
As we shall see, one of the aims of this paper is to present various exam-

ples of tight spaces of these two forms.
In [11] it was proved that there are natural dichotomies between each of

these strong forms of tightness and respective weak forms of minimality. For
the first notion, a space X with a basis (xn) is said to be subsequentially
minimal if every subspace of X contains an isomorphic copy of a subse-
quence of (xn). Essentially this notion had been previously considered by
Kutzarova, Leung, Manoussakis and Tang in the context of modified par-
tially mixed Tsirelson spaces [17].

Theorem 1.2 (4th dichotomy, Ferenczi-Rosendal 2007). — Any Banach
space E contains a subspace with a basis that is either tight by range or is
subsequentially minimal.

The second case in Theorem 1.2 may be improved to the following hered-
itary property of a basis (xn), that we call sequential minimality: (xn) is
quasi minimal and every block sequence of [xn] has a subsequentially min-
imal block sequence.
There is also a dichotomy concerning tightness with constants. Recall

that given two Banach spaces X and Y , we say that X is crudely finitely
representable in Y if there is a constant K such that for any finite-dimen-
sional subspace F ⊆ X there is an embedding T : F → Y with constant K,
i.e., ‖T‖ · ‖T−1‖ 6 K. A space X is said to be locally minimal if for some
constant K, X is K-crudely finitely representable in any of its subspaces.

Theorem 1.3 (5th dichotomy, Ferenczi-Rosendal 2007). — Any Banach
space E contains a subspace with a basis that is either tight with constants
or is locally minimal.

Finally there exists a sixth dichotomy theorem due to A. Tcaciuc [20],
stated here in a slightly strengthened form. A space X is uniformly inho-
mogeneous when

∀M > 1 ∃n ∈ N ∀Y1, . . . , Y2n ⊆ X ∃yi ∈ SYi
(yi)ni=1 6∼M (yi)2n

i=n+1,
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where Y1, . . . , Y2n are assumed to be infinite-dimensional subspaces of X.
On the contrary, a basis (en) is said to be strongly asymptotically `p,
1 6 p 6 +∞, [9], if there exists a constant C and a function f : N→ N such
that for any n, any family of n unit vectors which are disjointly supported
in [ek

∣∣ k > f(n)] is C-equivalent to the canonical basis of `np . Tcaciuc then
proves [20]:

Theorem 1.4 (Tcaciuc’s dichotomy, 2005). — Any Banach space con-
tains a subspace with a basis which is either uniformly inhomogeneous or
strongly asymptotically `p for some 1 6 p 6 +∞.

The six dichotomies and the interdependence of the properties involved
can be visualised in the following diagram.

Strongly asymptotic `p ∗ ∗ Tcaciuc’s dichotomy ∗ ∗ Uniformly inhomogeneous
⇓ ⇑

Unconditional basis ∗ ∗ 1st dichotomy ∗ ∗ Hereditarily indecomposable
⇑ ⇓

Tight by support ∗ ∗ 2nd dichotomy ∗ ∗ Quasi minimal
⇓ ⇑

Tight by range ∗ ∗ 4th dichotomy ∗ ∗ Sequentially minimal
⇓ ⇑

Tight ∗ ∗ 3rd dichotomy ∗ ∗ Minimal
⇑ ⇓

Tight with constants ∗ ∗ 5th dichotomy ∗ ∗ Locally minimal

Moreover,
Strongly asymptotic `p not containing `p, 1 6 p < +∞ ⇒ Tight with constants,

and
Strongly asymptotic `∞ ⇒ Locally minimal.

Note that while a basis tight by support must be unconditional, a ba-
sis which is tight by range may span a HI space. So tightness by support
and tightness by range are two different notions. We would lose this subtle
difference if we required the sets In to be intervals in the definition of tight-
ness. Likewise a basis may be tight by range without being (nor containing
a basis which is) tight with constants, and tight with constants without
being (nor containing a basis which is) tight by range. Actually none of the
converses of the implications appearing on the left or the right of the list of
the six dichotomies holds, even if one allows passing to a further subspace.
All the claims of this paragraph are easily checked by looking at the list of
examples of Theorem 1.5, which is the aim of this paper.
The fact that a strongly asymptotically `p space not containing `p must

be tight with constants is proved in [11] but is essentially due to the authors
of [9], and the observation that such bases are unconditional may also be
found in [9]. The easy fact that HI spaces are uniformly inhomogeneous

TOME 62 (2012), FASCICULE 2
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(with n = 2 in the definition) is observed in [11]. That HI spaces are quasi-
minimal is due to Gowers [15], and that minimal spaces are locally minimal
is a consequence of an observation by P. G. Casazza [7] that every minimal
space must K-embed into all its subspaces for some K > 1. The other im-
plications are direct consequences of the definitions, and more explanations
and details may be found in [11].

1.3. The list of 19 inevitable classes

Combining the six dichotomies and the relations between them, the fol-
lowing list of 19 classes of Banach spaces contained in any Banach space is
obtained in [11]:

Theorem 1.5 (Ferenczi - Rosendal 2007). — Any infinite dimensional
Banach space contains a subspace of one of the types listed in the following
chart:

Type Properties Examples
(1a) HI, tight by range and with constants ?
(1b) HI, tight by range, locally minimal G∗

(2) HI, tight, sequentially minimal ?
(3a) tight by support and with constants, uniformly inhomogeneous ?
(3b) tight by support, locally minimal, uniformly inhomogeneous G∗u
(3c) tight by support, strongly asymptotically `p, 1 6 p <∞ Xu, Xabr

(3d) tight by support, strongly asymptotically `∞ X∗u
(4) unconditional basis, quasi minimal, tight by range ?
(5a) unconditional basis, tight with constants, sequentially minimal, ?

uniformly inhomogeneous
(5b) unconditional basis, tight, sequentially and locally minimal, ?

uniformly inhomogeneous
(5c) tight with constants, sequentially minimal, T , T (p)

strongly asymptotically `p, 1 6 p <∞
(5d) tight, sequentially minimal, strongly asymptotically `∞ ?
(6a) unconditional basis, minimal, uniformly inhomogeneous S, S∗

(6b) minimal, reflexive, strongly asymptotically `∞ T∗

(6c) isomorphic to c0 or lp, 1 6 p <∞ c0, `p

The class of type (2) spaces may be divided into two subclasses, using
the 5th dichotomy, and the class of type (4) into four, using the 5th and
the 6th dichotomy, giving a total of 19 inevitable classes. Since we know of
no example of a type (2) or type (4) space to begin with, we do not write
down the list of possible subclasses of these two classes, leaving this as an
exercise to the interested reader.

Note that the tightness property may be used to obtain lower bounds of
complexity for the relation of isomorphism between subspaces of a given
Banach space. This was initiated by B. Bossard [6] who used Gowers’ space
Gu and its tightness by support. Other results in this direction may be
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found in [11]. We also refer to [10] for a more introductory work to this
question.
In [11] the existence of Xu and the properties of S, G, Gu and Xu

which appear in the chart and are mentioned without proof. It is the main
objective of this paper to prove the results about the spaces which appear
in the above chart.
So in what follows various (and for some of them new) examples of “pure”

tight spaces are analysed combining some of the properties of tightness or
minimality associated to each dichotomy. We shall provide several examples
of tight spaces from the two main families of exotic Banach spaces: spaces of
the type of Gowers and Maurey [16] and spaces of the type of Argyros and
Deliyanni [3]. Recall that both types of spaces are defined using a coding
procedure to “conditionalise” the norm of some ground space defined by
induction. In spaces of the type of Gowers and Maurey, the ground space
is the space S of Schlumprecht, and in spaces of the type of Argyros and
Deliyanni, it is a mixed (in further versions modified or partly modified)
Tsirelson space associated to the sequence of Schreier families. The space S
is far from being asymptotic `p and is actually uniformly inhomogeneous,
and this is the case for our examples of the type of Gowers-Maurey as
well. On the other hand, we use a space in the second family, inspired
by an example of Argyros, Deliyanni, Kutzarova and Manoussakis [4], to
produce strongly asymptotically `1 and `∞ examples with strong tightness
properties.

2. Tight unconditional spaces
of the type of Gowers and Maurey

In this section we prove that the dual of the type (3) spaceGu constructed
by Gowers in [12] is locally minimal of type (3), that Gowers’ hereditarily
indecomposable and asymptotically unconditional space G defined in [13]
is of type (1), and that its dual G∗ is locally minimal of type (1). These
spaces are natural variations on Gowers and Maurey’s space GM , and so
familiarity with that construction will be assumed: we shall not redefine
the now classical notation relative to GM , such as the sets of integers K
and L, rapidly increasing sequences (or R.I.S.), the set Q of functionals,
special functionals, etc., instead we shall try to give details on the parts in
which Gu or G differ from GM .
The idea of the proofs is similar to [12]. The HI property for Gowers-

Maurey’s spaces is obtained as follows. Some vector x is constructed such

TOME 62 (2012), FASCICULE 2
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that ‖x‖ is large, but so that if x′ is obtained from x by changing signs of the
components of x, then x∗(x′) is small for any norming functional x∗, and
so ‖x′‖ is small. The upper bound for x∗(x′) is obtained by a combination
of unconditional estimates (not depending on the signs) and of conditional
estimates (i.e., based on the fact that |

∑n
i=1 εi| is much smaller than n if

εi = (−1)i for all i).
For our examples we shall need to prove that some operator T is un-

bounded. Thus we shall construct a vector x such that say Tx has large
norm, and such that x∗(x) is small for any norming x∗. The upper bound
for x∗(x) will be obtained by the same unconditional estimates as in the HI
case, while conditional estimates will be trivial due to disjointness of sup-
ports of the corresponding component vectors and functionals. The method
will be similar for the dual spaces.

Recall that if X is a space with a bimonotone basis, an `n1+-average
with constant 1 + ε is a normalised vector of the form

∑n
i=1 xi, where

x1 < · · · < xn and ‖xi‖ 6 1+ε
n for all i. An `n∞+-average with constant

1 + ε is a normalised vector of the form
∑n
i=1 xi, where x1 < · · · < xn

and ‖xi‖ > 1
1+ε for all i. An `n1+-vector (resp. `n∞+-vector) is a non zero

multiple of an `n1+-average (resp. `n∞+-average). The function f is defined
by f(n) = log2(n+ 1). The space X is said to satisfy a lower f -estimate if
for any x1 < · · · < xn,

1
f(n)

n∑
i=1
‖xi‖ 6

∥∥∥ n∑
i=1

xi

∥∥∥.
Lemma 2.1. — Let X be a reflexive space with a bimonotone basis and

satisfying a lower f -estimate. Let (y∗k) be a normalised block sequence of
X∗, n ∈ N, ε, α > 0. Then there exists a constantN(n, ε), successive subsets
Fi of [1, N(n, ε)], 1 6 i 6 n, and λ > 0 such that if x∗i := λ

∑
k∈Fi

y∗k
for all i, then x∗ =

∑n
i=1 x

∗
i is an `n∞+- average with constant 1 + ε.

Furthermore, if for each i, xi is such that ‖xi‖ 6 1, rangexi ⊆ rangex∗i
and x∗i (xi) > α‖x∗i ‖, then x =

∑n
i=1 xi is an `n1+-vector with constant 1+ε

α

such that x∗(x) > α
1+ε‖x‖.

Proof. — Since X satisfies a lower f -estimate, it follows by duality that
any sequence of successive functionals x∗1 < · · · < x∗n in G∗u satisfies the
following upper estimate:

1 6
∥∥∥ n∑
i=1

x∗i

∥∥∥ 6 f(n) max
16i6n

‖x∗i ‖.
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Let N = nk where k is such that (1 + ε)k > f(nk). Assume towards a
contradiction that the result is false for N(n, ε) = N , then

y∗ = (y∗1 + . . .+ y∗nk−1) + . . .+ (y∗(n−1)nk−1+1 + . . .+ y∗nk )

is not an `n∞+-vector with constant 1 + ε, and therefore, for some i,

‖y∗ink−1+1 + . . .+ y∗(i+1)nk−1‖ 6
1

1 + ε
‖y∗‖.

Applying the same reasoning to the above sum instead of y∗, we obtain,
for some j,

‖y∗jnk−2+1 + . . .+ y∗(j+1)nk−2‖ 6
1

(1 + ε)2 ‖y
∗‖.

By induction we obtain that

1 6 1
(1 + ε)k ‖y

∗‖ 6 1
(1 + ε)k f(nk),

a contradiction.
Let therefore x∗ be such an `n∞+-average with constant 1 + ε of the form∑
i x
∗
i . Let for each i, xi be such that ‖xi‖ 6 1, rangexi ⊆ rangex∗i and

x∗i (xi) > α‖x∗i ‖. Then∥∥∥∑
i

xi

∥∥∥ > x∗(∑
i

xi

)
> α

(∑
i

‖x∗i ‖
)
>

αn

1 + ε
,

and in particular for each i,

‖xi‖ 6 1 6 1 + ε

αn

∥∥∥∑
i

xi

∥∥∥,
so
∑
i xi is a `n1+-vector with constant 1+ε

α . We also obtain that

x∗
(∑

i

xi

)
>

αn

1 + ε
>

α

1 + ε

∥∥∥∑
i

xi

∥∥∥,
as required. �

The following lemma is fundamental and therefore worth stating explic-
itly. It appears for example as Lemma 4 in [13]. Recall that an (M, g)-form
is a functional of the form g(M)−1(x∗1 + . . .+ x∗M ), with x∗1 < · · · < x∗M of
norm at most 1.

Lemma 2.2 (Lemma 4 in [13]). — Let f, g ∈ F with g >
√
f , let X be a

space with a bimonotone basis satisfying a lower f -estimate, let ε > 0 and
ε′ = min{ε, 1}, let x1, . . . , xN be a R.I.S. in X for f with constant 1+ ε and
let x =

∑N
i=1 xi. Suppose that

‖Ex‖ 6 sup
{
|x∗(Ex)| : M > 2, x∗ is an (M, g)-form

}

TOME 62 (2012), FASCICULE 2



448 Valentin FERENCZI & Christian ROSENDAL

for every interval E such that ‖Ex‖ > 1/3. Then ‖x‖ 6 (1+ε+ε′)Ng(N)−1.

2.1. A locally minimal space tight by support

Let Gu be the space defined in [12]. This space has a suppression uncon-
ditional basis, is tight by support and therefore reflexive, and its norm is
given by the following implicit equation, for all x ∈ c00:

‖x‖ = ‖x‖c0 ∨ sup
{
f(n)−1

n∑
i=1
‖Eix‖

∣∣∣ 2 6 n,E1 < . . . < En

}
∨ sup

{
|x∗(x)|

∣∣∣ k ∈ K,x∗ special of length k}
where E1, . . . , En are successive subsets (not necessarily intervals) of N.

Proposition 2.3. — The dual G∗u of Gu is tight by support and locally
minimal.

Proof. — Given n ∈ N and ε = 1/10 we may by Lemma 2.1 find some
N such that there exists in the span of any x∗1 < . . . < x∗N an `n∞+-average
with constant 1+ε. By unconditionality we deduce that any block-subspace
of G∗u contains `n∞’s uniformly, and therefore G∗u is locally minimal.

Assume now towards a contradiction that (x∗n) and (y∗n) are disjointly
supported and equivalent block sequences in G∗u, and let T : [x∗n]→ [y∗n] be
defined by Tx∗n = y∗n.

We may assume that each x∗n is an `n∞+-average with constant 1+ε. Using
Hahn-Banach theorem, the 1-unconditionality of the basis, and Lemma 2.1,
we may also find for each n an `n1+-average xn with constant 1+ε such that
suppxn ⊆ suppx∗n and x∗n(xn) > 1/2. By construction, for each n, Tx∗n is
disjointly supported from [xk], and up to modifying T , we may assume that
Tx∗n is in Q and of norm at most 1 for each n.

If z1, . . . , zm is a R.I.S. of these `n1+-averages xn with constant 1+ε, with
m ∈ [logN, expN ], N ∈ L, and z∗1 , . . . , z

∗
m are the functionals associated

to z1, . . . , zm, then by [12] Lemma 7, the (m, f)-form z∗ = f(m)−1(z∗1 +
. . .+ z∗m) satisfies

z∗(z1 + . . .+ zm) > m

2f(m) >
1
4‖z1 + . . .+ zm‖,

and furthermore Tz∗ is also an (m, f)-form. Therefore we may build R.I.S.
vectors z with constant 1+ε of arbitrary lengthm in [logN, expN ], N ∈ L,
so that z is 4−1-normed by an (m, f)-form z∗ such that Tz∗ is also an
(m, f)-form. We may then consider a sequence z1, . . . , zk of length k ∈ K
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of such R.I.S. vectors of length mi, and some corresponding (mi, f)-forms
z∗1 , . . . , z

∗
k (i.e., z∗i 4−1-norms zi and Tz∗i is also an (mi, f)-form for all i),

such that Tz∗1 , . . . , T z∗k is a special sequence. Then we let z = z1 + · · ·+ zk
and z∗ = f(k)−1/2(z∗1 + . . .+ z∗k). Since Tz∗ = f(k)−1/2(Tz∗1 + . . .+ Tz∗k)
is a special functional it follows that

‖Tz∗‖ 6 1.

Our aim is now to show that ‖z‖ 6 3kf(k)−1. It will then follow that

‖z∗‖ > z∗(z)/‖z‖ > f(k)1/2/12.

Since k was arbitrary in K this will imply that T−1 is unbounded and
provide the desired contradiction.
The proof is almost exactly the same as in [12]. Let K0 = K \ {k} and

let g be the corresponding function given by [12] Lemma 6. To prove that
‖z‖ 6 3kf(k)−1 it is enough by [12] Lemma 8 and Lemma 2.2 to prove
that for any interval E such that ‖Ez‖ > 1/3, Ez is normed by some
(M, g)-form with M > 2.

By the discussion in the proof of the main theorem in [12], the only pos-
sible norming functionals apart from (M, g)-forms are special functionals
of length k. So let w∗ = f(k)−1/2(w∗1 + · · · + w∗k) be a special functional
of length k, and E be an interval such that ‖Ez‖ > 1/3. We need to show
that w∗ does not norm Ez.

Let t be minimal such that w∗t 6= Tz∗t . If i 6= j or i = j > t then by defi-
nition of special sequences there exist M 6= N ∈ L, min(M,N) > j2k, such
that w∗i is an (M,f)-form and zj is an R.I.S. vector of size N and constant
1 + ε. By [12] Lemma 8, zj is an `N

1/10

1+ -average with constant 2. If M < N

then 2M < log log logN so, by [12] Corollary 3, |w∗i (Ezj)| 6 6f(M)−1.
If M > N then log log logM > 2N so, by [12] Lemma 4, |w∗i (Ezj)| 6
2f(N)/N . In both cases it follows that |w∗i (Ezj)| 6 k−2.
If i = j = t we have |w∗i (Ezj)| 6 1. Finally if i = j < t then w∗i = Tz∗i .

Since Tz∗i is disjointly supported from [xk] and therefore from zj , it follows
simply that w∗i (Ezj) = 0 in that case.
Summing up we have obtained that

|w∗(Ez)| 6 f(k)−1/2(k2.k−2 + 1) = 2f(k)−1/2 < 1/3 6 ‖Ez‖.

Therefore w∗ does not norm Ez and this finishes the proof. �

TOME 62 (2012), FASCICULE 2



450 Valentin FERENCZI & Christian ROSENDAL

2.2. Uniformly inhomogeneous examples

It may be observed that G∗u is uniformly inhomogeneous. We state this
in a general form which implies the result for Gu, Schlumprecht’s space
S and its dual S∗. This is also true for Gowers-Maurey’s space GM and
its dual GM∗, as well as for G and G∗, where G is the HI asymptotically
unconditional space of Gowers from [13], which we shall redefine and study
later on. As HI spaces are always uniformly inhomogeneous however, we
need to observe that a slightly stronger result is obtained by the proof of
the next statement to see that Proposition 2.4 is not trivial in the case of
GM , G or their duals - see the three paragraphs after Proposition 2.4.

Proposition 2.4. — Let f ∈ F and letX be a space with a bimonotone
basis satisfying a lower f -estimate. Let ε0 = 1/10, and assume that for every
n ∈ [logN, expN ], N ∈ L, x1, . . . , xn a R.I.S. in X with constant 1 + ε0
and x =

∑N
i=1 xi,

‖Ex‖ 6 sup
{
|x∗(Ex)| : M > 2, x∗ is an (M,f)-form

}
for every interval E such that ‖Ex‖ > 1/3. Then X and X∗ are uniformly
inhomogeneous.

Proof. — Given ε > 0, let m ∈ L be such that f(m) > 24ε−1. Let
Y1, . . . , Y2m be arbitrary block subspaces of X. By the classical method for
spaces with a lower f estimate, we may find a R.I.S. sequence y1 < · · · < ym
with constant 1 + ε0 with yi ∈ Y2i−1,∀i. By Lemma 2.2,∥∥∥ m∑

i=1
yi

∥∥∥ 6 2mf(m)−1.

Let on the other hand n ∈ [m10, expm] and E1 < · · · < Em be sets
such that

⋃m
j=1Ej = {1, . . . , n} and |Ej | is within 1 of n

m for all j. We
may construct a R.I.S. sequence x1, . . . , xn with constant 1 + ε0 such that
xi ∈ Y2j whenever i ∈ Ej .
By Lemma 2.2,∥∥∥ ∑

i∈Ej

xi

∥∥∥ 6 (1 + 2ε0)
( n
m

+ 1
)
f
( n
m
− 1
)−1
6 2nf(n)−1m−1.

Let zj = ‖
∑
i∈Ej

xi‖−1∑
i∈Ej

xi. Then zj ∈ Y2j for all j and∥∥∥ m∑
j=1

zj

∥∥∥ > f(n)−1
m∑
j=1

(∥∥∥ ∑
i∈Ej

xi

∥∥∥−1 ∑
i∈Ej

‖xi‖
)
> m/2.
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Therefore ∥∥∥ m∑
i=1

yi

∥∥∥ 6 4f(m)−1
∥∥∥ m∑
i=1

zi

∥∥∥ 6 ε∥∥∥ m∑
i=1

zi

∥∥∥.
Obviously (yi)mi=1 is not ε−1-equivalent to (zi)mi=1, and this means that X
is uniformly inhomogeneous.
The proof concerning the dual is quite similar and uses the same notation.

Let Y1, . . . , Y2m be arbitrary block subspaces of X∗. By Lemma 2.1 we may
find a R.I.S. sequence y1 < · · · < ym with constant 1 + ε0 and functionals
y∗i ∈ Y2i−1 such that range y∗i ⊆ range yi and y∗i (yi) > 1/2 for all i. Since
‖
∑m
i=1 yi‖ 6 2mf(m)−1, it follows that∥∥∥ m∑

i=1
y∗i

∥∥∥ > ∥∥∥ m∑
i=1

yi

∥∥∥−1 m∑
i=1

y∗i (yi) > f(m)/4.

On the other hand we may construct a R.I.S. sequence x1, . . . , xn with
constant 1 + ε0 and functionals x∗i such that rangex∗i ⊆ rangexi, x∗i (xi) >
1/2 for all i, and such that x∗i ∈ Y2j whenever i ∈ Ej . Since ‖

∑
i∈Ej

xi‖ 6
2nf(n)−1m−1, it follows that∥∥∥ ∑

i∈Ej

x∗i

∥∥∥ > n

3m
mf(n)

2n = f(n)/6.

Let z∗j = ‖
∑
i∈Ej

x∗i ‖−1∑
i∈Ej

x∗i . Then z∗j ∈ Y2j for all j and∥∥∥ m∑
j=1

z∗j

∥∥∥ 6 6
f(n)f(n) = 6.

Therefore ∥∥∥ m∑
i=1

z∗i

∥∥∥ 6 24f(m)−1
∥∥∥ m∑
i=1

y∗i

∥∥∥ 6 ε∥∥∥ m∑
i=1

y∗i

∥∥∥.
�

Corollary 2.5. — The spaces S, S∗, GM , GM∗, G, G∗, Gu, and G∗u
are uniformly inhomogeneous.

A slightly stronger statement may be obtained by the proof of Proposi-
tion 2.4, in the sense that the vectors yi in the definition of uniform inho-
mogeneity may be chosen to be successive. More explicitely, the conclusion
may be replaced by the statement that

∀M > 1 ∃n ∈ N ∀Y1, . . . , Y2n ⊆ X ∃yi ∈ SYi (yi)ni=1 6∼M (yi)2n
i=n+1.

where y1 < · · · < yn and yn+1 < · · · < y2n, and as before Y1, . . . , Y2n are
infinite-dimensional subspaces of X.
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This property is therefore a block version of the property of uniform
inhomogeneity. It was observed in [11] that the sixth dichotomy had the
following “block” version: any Schauder basis of a Banach space contains a
block sequence which is either block uniformly inhomogeneous in the above
sense or asymptotically `p for some p ∈ [1,+∞].

It is interesting to observe that either side of this dichotomy corresponds
to one of the two main families of HI spaces, namely spaces of the type of
Gowers-Maurey, based on the example of Schlumprecht, and spaces of the
type of Argyros-Deliyanni, based on Tsirelson’s type spaces. More precisely,
spaces of the type of Gowers-Maurey are block uniformly inhomogeneous,
while spaces of the type of Argyros-Deliyanni are asymptotically `1. Ob-
serve that the original dichotomy of Tcaciuc fails to distinguish between
these two families, since any HI space is trivially uniformly inhomogeneous,
see [11].

3. Tight HI spaces of the type of Gowers and Maurey

In this section we show that Gowers’ space G constructed in [13] and its
dual are of type (1). The proof is a refinement of the proof that Gu or G∗u
is of type (3), in which we observe that the hypothesis of unconditionality
may be replaced by asymptotic unconditionality. The idea is to produce
constituent parts of vectors or functionals in Gowers’ construction with
sufficient control on their supports (and not just on their ranges, as would
be enough to obtain the HI property for example).

3.1. A HI space tight by range

The spaceG has a norm defined by induction as inGM , with the addition
of a new term which guarantees that its basis (en) is 2-asymptotically
unconditional, that is for any sequence of normalised vectors N < x1 <

. . . < xN , any sequence of scalars a1, . . . , aN and any sequence of signs
ε1, . . . , εN , ∥∥∥ N∑

n=1
εnanxn

∥∥∥ 6 2
∥∥∥ N∑
n=1

anxn

∥∥∥.
The basis is bimonotone and, although this is not stated in [13], it may be
proved as for GM that G is reflexive. It follows that the dual basis of (en)
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is also 2-asymptotically unconditional. The norm on G is defined by the
implicit equation, for all x ∈ c00:

‖x‖ = ‖x‖c0 ∨ sup
{
f(n)−1

n∑
i=1
‖Eix‖

∣∣∣ 2 6 n,E1 < . . . < En

}
∨ sup

{
|x∗(Ex)|

∣∣∣ k ∈ K,x∗ special of length k,E ⊆ N
}

∨ sup
{
‖Sx‖

∣∣∣ S is an admissible operator
}
,

where E, E1, . . . , En are intervals of integers, and S is an admissible op-
erator if Sx = 1

2
∑N
n=1 εnEnx for some sequence of signs ε1, . . . , εN and

some sequence E1, . . . , EN of intervals which is admissible, i.e., N < E1
and 1 + maxEi = minEi+1 for every i < N .

R.I.S. pairs and special pairs are considered in [13]; first we shall need a
more general definition of these. Let x1, . . . , xm be a R.I.S. with constant
C, m ∈ [logN, expN ], N ∈ L, and let x∗1, . . . , x∗m be successive normalised
functionals. Then we call generalised R.I.S. pair with constant C the pair
(x, x∗) defined by x = ‖

∑m
i=1 xi‖−1(

∑m
i=1 xi) and x∗ = f(m)−1∑m

i=1 x
∗
i .

Let z1, . . . , zk be a sequence of successive normalised R.I.S. vectors with
constant C, and let z∗1 , . . . , z∗k be a special sequence such that (zi, z∗i ) is
a generalized R.I.S. pair for each i. Then we shall call generalised spe-
cial pair with constant C the pair (z, z∗) defined by z =

∑k
i=1 zi and

z∗ = f(k)−1/2(
∑k
i=1 z

∗
i ). The pair (‖z‖−1z, z∗) will be called normalised

generalised special pair.
Lemma 3.1. — Let (z, z∗) be a generalised special pair in G, of length

k ∈ K, with constant 2 and such that supp z∗ ∩ supp z = ∅. Then

‖z‖ 6 5k
f(k) .

Proof. — The proof follows classically the methods of [16] or [12]. Let
K0 = K \ {k} and let g be the corresponding function given by [13]
Lemma 5. To prove that ‖z‖ 6 5kf(k)−1 it is enough by Lemma 2.2 to
prove that for any interval E such that ‖Ez‖ > 1/3, Ez is normed by some
(M, g)-form with M > 2.

By the discussion in [13] after the definition of the norm, the only possible
norming functionals apart from (M, g)-forms are of the form Sw∗ where
w∗ is a special functional of length k, and S is an “acceptable” operator
according to the terminology of [13]. We shall not state the definition of
an acceptable operator S, we shall just need to know that since such an
operator is diagonal of norm at most 1, it preserves support and (M, g)-
forms, [13] Lemma 6. So let w∗ = f(k)−1/2(w∗1 + · · · + w∗k) be a special
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functional of length k, S be an acceptable operator, and E be an interval
such that ‖Ez‖ > 1/3. We need to show that Sw∗ does not norm Ez.
Let t be minimal such that w∗t 6= z∗t . If i 6= j or i = j > t then by

definition of special sequences there exist M 6= N ∈ L, min(M,N) > j2k,
such that w∗i and therefore Sw∗i is an (M,f)-form and zj is an R.I.S. vector
of size N and constant 2. By [13] Lemma 8, zj is an `N

1/10

1+ -average with
constant 4. If M < N then 2M < log log logN so, by [13] Lemma 2,
|Sw∗i (Ezj)| 6 12f(M)−1. If M > N then log log logM > 2N so, by [13]
Lemma 3, |Sw∗i (Ezj)| 6 3f(N)/N . In both cases it follows that |Sw∗i (Ezj)|
6 k−2.
If i = j = t we simply have |Sw∗i (Ezj)| 6 1. Finally if i = j < t then

w∗i = z∗i . and since suppSz∗i ⊆ supp z∗i and suppEzi ⊆ supp zi, it follows
that Sw∗i (Ezj) = 0 in this case.
Summing up we have obtained that

|Sw∗(Ez)| 6 f(k)−1/2(k2.k−2 + 1) = 2f(k)−1/2 < 1/3 6 ‖Ez‖.

Therefore Sw∗ does not norm Ez and this finishes the proof. �

The next lemma is expressed in a version which may seem technical but
this will make the proof that G is of type (1) more pleasant to read. At
first reading, the reader may simply assume that T = Id in its hypothesis.

Lemma 3.2. — Let n ∈ N and let ε > 0. Let (xi)16i6nk be a nor-
malised block basis in G of length nk and supported after 2nk, where
k = min{i

∣∣ f(ni) < (1 + ε)i}, and T : [xi] → G be an isomorphism
such that (Txi) is also a normalised block basis. Then for any n ∈ N and
ε > 0, there exist a finite interval F and a multiple x of

∑
i∈F xi such that

Tx is an `n1+-average with constant 1 + ε, and a normalised functional x∗
such that x∗(x) > 1/2 and suppx∗ ⊆

⋃
i∈F rangexi.

Proof. — The proof from [13] that the block basis (Txi) contains an `n1+-
average with constant 1 + ε is the same as for GM , and gives that such
a vector exists of the form Tx = λ

∑
i∈F Txi, thanks to the condition on

the length of (xi). We may therefore deduce that 2|F | − 1 < suppx. Let
y∗ be a unit functional which norms x and such that range y∗ ⊆ rangex.
Let x∗ = Ey∗ where E is the union of the |F | intervals rangexi, i ∈ F .
Then x∗(x) = y∗(x) = 1 and by unconditional asymptoticity of G∗, ‖x∗‖ 6
3
2‖y
∗‖ < 2. �

The proof that G is HI requires defining “extra-special sequences” after
having defined special sequences in the usual GM way. However, to prove
that G is tight by range, we shall not need to enter that level of complexity
and shall just use special sequences.
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Proposition 3.3. — The space G is of type (1).

Proof. — Assume some normalised block-sequence (xn) is such that [xn]
embeds into Y = [ei, i /∈

⋃
n rangexn] and look for a contradiction. Passing

to a subsequence and by reflexivity we may assume that there is some
isomorphism T : [xn]→ Y satisfying the hypothesis of Lemma 3.2, that is,
(Txn) is a normalised block basis in Y . Fixing ε = 1/10 we may construct
by Lemma 3.2 some block-sequence of vectors in [xn] which are 1/2-normed
by functionals in Q of support included in

⋃
n rangexn, and whose images

by T form a sequence of increasing length `n1+-averages with constant 1+ε.
If Tz1, . . . , T zm is a R.I.S. of these `n1+-averages with constant 1 + ε, with
m ∈ [logN, expN ], N ∈ L, and z∗1 , . . . , z

∗
m are the functionals associated

to z1, . . . , zm, then by [13] Lemma 7, the (m, f)-form z∗ = f(m)−1(z∗1 +
. . .+ z∗m) satisfies

z∗(z1+. . .+zm)> m

2f(m)>
1
4‖Tz1+. . .+Tzm‖ > (4‖T−1‖)−1‖z1+· · ·+zm‖.

Therefore we may build R.I.S. vectors Tz with constant 1 + ε of arbitrary
length m in [logN, expN ], N ∈ L, so that z is (4‖T−1‖)−1-normed by an
(m, f)-form z∗ of support included in

⋃
n rangexn. For such (z, z∗), (Tz, z∗)

is a generalised R.I.S. pair. We then consider a sequence Tz1, . . . , T zk of
length k ∈ K of such R.I.S. vectors, such that there exists some special
sequence of corresponding functionals z∗1 , . . . , z∗k, and finally the pair (z, z∗)
where z = z1 + · · ·+ zk and z∗ = f(k)−1/2(z∗1 + . . .+ z∗k): observe that the
support of z∗ is still included in

⋃
n rangexn. Since (Tz, z∗) is a generalised

special pair, it follows from Lemma 3.1 that

‖Tz‖ 6 5kf(k)−1.

On the other hand,

‖z‖ > z∗(z) > (4‖T−1‖)−1kf(k)−1/2.

Since k was arbitrary inK this implies that T−1 is unbounded and provides
the desired contradiction. �

3.2. A HI space tight by range and locally minimal

As we shall now prove, the dual G∗ of G is of type (1) as well, but also
locally minimal.
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Lemma 3.4. — Let (x∗i ) be a normalised block basis in G∗. Then for
any n ∈ N and ε > 0, there exists N(n, ε), a finite interval F ⊆ [1, N(n, ε)],
a multiple x∗ of

∑
i∈F x

∗
i which is an `n∞+-average with constant 1 + ε and

an `n1+-average x with constant 2 such that x∗(x) > 1/2 and suppx ⊆⋃
i∈F rangex∗i .

Proof. — We may assume that ε < 1/6. By Lemma 2.1 we may find for
each i 6 n an interval Fi, with |Fi| 6 2 minFi, and a vector y∗i of the form
λ
∑
k∈Fi

x∗k, such that y∗ =
∑n
i=1 y

∗
i is an `n∞+-average with constant 1+ ε.

Let, for each i, xi be normalised such that y∗i (xi) = ‖y∗i ‖ and rangexi ⊆
range y∗i . Let yi = Eixi, where Ei denotes the canonical projection on
[em,m ∈

⋃
k∈Fi

rangex∗k]. By the asymptotic unconditionality of (en), we
have that ‖yi‖ 6 3/2. Let y′i = ‖yi‖−1yi, then

y∗i (y′i) = ‖yi‖−1y∗i (yi) = ‖yi‖−1y∗i (xi) >
2
3‖y

∗
i ‖.

By Lemma 2.1, the vector x =
∑
i y
′
i is an `n1+-vector with constant 2, such

that x∗(x) > ‖x‖/2, and clearly suppx ⊆
⋃
i∈F rangex∗i . �

Proposition 3.5. — The space G∗ is locally minimal and tight by
range.

Proof. — By Lemma 3.4 we may find in any finite block subspace of G∗
of length N(n, ε) and supported after N(n, ε) an `n∞+-average with constant
1+ε. By asymptotic unconditionality we deduce that uniformly, any block-
subspace of G∗ contains `n∞’s, and therefore G∗ is locally minimal.
We prove that G∗ is tight by range. Assume towards a contradiction

that some normalised block-sequence (x∗n) is such that [x∗n] embeds into
Y = [e∗i , i /∈

⋃
n rangex∗n] and look for a contradiction. If T is the associated

isomorphism, we may by passing to a subsequence and perturbating T

assume that Tx∗n is successive.
Let ε = 1/10. By Lemma 3.4, we find in [x∗k] and for each n, an `n∞+-

average y∗n with constant 1+ ε and an `n1+-average yn with constant 2, such
that y∗n(yn) > 1/2 and supp yn ⊆

⋃
k rangex∗k. By construction, for each

n, Ty∗n is disjointly supported from [x∗k], and up to modifying T , we may
assume that Ty∗n is in Q and of norm at most 1 for each n.

If z1, . . . , zm is a R.I.S. of these `n1+-averages yn with constant 2, with
m ∈ [logN, expN ], N ∈ L, and z∗1 , . . . , z∗m are the `n∞+-averages associated
to z1, . . . , zm, then by [12] Lemma 7, the (m, f)-form z∗ = f(m)−1(z∗1 +
. . .+ z∗m) satisfies

z∗(z1 + . . .+ zm) > m

2f(m) >
1
6‖z1 + . . .+ zm‖,
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and furthermore Tz∗ is also an (m, f)-form. Therefore we may build R.I.S.
vectors z with constant 2 of arbitrary length m in [logN, expN ], N ∈ L,
so that z is 6−1-normed by an (m, f)-form z∗ such that Tz∗ is also an
(m, f)-form. We may then consider a sequence z1, . . . , zk of length k ∈ K
of such R.I.S. vectors of length mi, and some corresponding functionals
z∗1 , . . . , z

∗
k (i.e., z∗i 6−1-norms zi and Tz∗i is also an (mi, f)-form for all i),

such that Tz∗1 , . . . , T z∗k is a special sequence. Then we let z = z1 + · · ·+ zk
and z∗ = f(k)−1/2(z∗1 + . . .+ z∗k), and observe that (z, Tz∗) is a generalised
special pair. Since Tz∗ = f(k)−1/2(Tz∗1 + . . .+ Tz∗k) is a special functional
it follows that

‖Tz∗‖ 6 1.

But it follows from Lemma 3.1 that ‖z‖ 6 5kf(k)−1. Therefore

‖z∗‖ > z∗(z)/‖z‖ > f(k)1/2/30.

Since k was arbitrary inK this implies that T−1 is unbounded and provides
the desired contradiction. �

It remains to check that G∗ is HI. The proof is very similar to the one in
[13] that G is HI, and we shall therefore not give all details. There are two
main differences between the two proofs. In [13] some special vectors and
functionals are constructed, the vectors are taken alternatively in arbitrary
block subspaces Y and Z of G, and no condition is imposed on where to
pick the functionals. In our case there is no condition on where to choose
the vectors but we need to pick the functionals in arbitrary subspaces Y
and Z of G∗ instead. This is possible because of Lemma 3.4. We also need to
correct what seems to be a slight imprecision in the proof of [13] about the
value of some normalising factors, and therefore we also get worst constants
for our estimates.

Let ε = 1/10. Following Gowers we define an R.I.S. pair of size N to be
a generalised R.I.S. pair (x, x∗) with constant 1+ ε of the form (‖x1 + . . .+
xN‖−1(x1 + . . . + xN ), f(N)−1(x∗1 + · · · + x∗N )), where x∗n(xn) > 1/3 and
rangex∗n ⊂ rangexn for each n. A special pair is a normalised generalised
special pair with constant 1 + ε of the form (x, x∗) where x = ‖x1 + . . .+
xk‖−1(x1 + . . . + xk) and x∗ = f(k)−1/2(x∗1 + · · · + x∗k) with rangex∗n ⊆
rangexn and for each n, x∗n ∈ Q, |x∗n(xn)− 1/2| < 10−min supp xn . By [13]
Lemma 8, z is a R.I.S. vector with constant 2 whenever (z, z∗) is a special
pair. We shall also require that k 6 min suppx1, which will imply by [13]
Lemma 9 that for m < k1/10, z is a `m1+-average with constant 8 (see the
beginning of the proof of Proposition 3.6).
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Going up a level of “specialness”, a special R.I.S.-pair is a generalised
R.I.S.-pair with constant 8 of the form (‖x1 + . . . + xN‖−1(x1 + . . . +
xN ), f(N)−1(x∗1 + · · · + x∗N )), where rangex∗n ⊂ rangexn for each n, and
with the additional condition that (xn, x∗n) is a special pair of length at
least min suppxn. Finally, an extra-special pair of size k is a normalised
generalised special pair (x, x∗) with constant 8 of the form x = ‖x1 + . . .+
xk‖−1(x1 + . . . + xk) and x∗ = f(k)−1/2(x∗1 + · · · + x∗k) with rangex∗n ⊆
rangexn, such that, for each n, (xn, x∗n) is a special R.I.S.-pair of length
σ(x∗1, . . . , x∗n−1).

Given Y, Z block subspaces of G∗ we shall show how to find an extra-
special pair (x, x∗) of size k, with x∗ built out of vectors in Y or Z, such
that the signs of these constituent parts of x∗ can be changed according to
belonging to Y or Z to produce a vector x′∗ with ‖x′∗‖ 6 12f(k)−1/2‖x∗‖.
This will then prove the result.
Consider then an extra-special pair (x, x∗). Then x splits up as

ν−1
k∑
i=1

ν−1
i

Ni∑
j=1

ν−1
ij

kij∑
r=1

xijr

and x∗ as

f(k)−1/2
k∑
i=1

f(Ni)−1
Ni∑
j=1

f(kij)−1
kij∑
r=1

x∗ijr

where the numbers ν, νi and νij are the norms of what appears to the
right. These special sequences are chosen far enough “to the right” so that
kij 6 min suppxij1, and also so that (max suppxi j−1)2k−1

ij 6 4−(i+j). We
shall also write xi for ν−1

i

∑Ni

j=1 ν
−1
ij

∑kij

r=1 xijr and xij for ν−1
ij

∑kij

r=1 xijr.
We define a vector x′ by

k∑
i=1

ν′−1
i

Ni∑
j=1

ν′−1
ij

kij∑
r=1

(−1)rxijr,

where the numbers ν′i and ν′ij are the norms of what appears to the right.
We shall write x′i for ν′−1

i

∑Ni

j=1 ν
′−1
ij

∑kij

r=1(−1)rxijr and x′ij for ν′−1
ij

∑kij

r=1
(−1)rxijr.

Finally we define a functional x′∗ as

f(k)−1/2
k∑
i=1

f(Ni)−1
Ni∑
j=1

f(kij)−1
kij∑
r=1

(−1)kx∗ijr.

Proposition 3.6. — The space G∗ is HI.
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Proof. — Fix Y and Z block subspaces of G∗. By Lemma 3.4 we may
construct an extra-special pair (x, x∗) so that x∗ijr belongs to Y when r is
odd and to Z when r is even.
We first discuss the normalisation of the vectors involved in the defini-

tion of x′. By the increasing condition on kij and xijr and by asymptotic
unconditionality, we have that∥∥∥ kij∑

r=1
(−1)rxijr

∥∥∥ 6 2
∥∥∥ kij∑
r=1

xijr

∥∥∥,
which means that ν′ij 6 2νij . Furthermore it also follows that the functional
(1/2)f(kij)−1/2∑kij

r=1(−1)rx∗ijr is of norm at most 1, and therefore we have
that ‖

∑kij

r=1(−1)rxijr‖ > (1/2)kijf(kij)−1/2. Lemma 9 from [13] therefore
tells us that, for every i, j, x′ij is an `

mij

1+ -average with constant 8, if mij <

k
1/10
ij . But the kij increase so fast that, for any i, this implies that the

sequence x′i1, . . . , x′iNi
is a rapidly increasing sequence with constant 8. By

[13] Lemma 7, it follows that∥∥∥ Ni∑
j=1

x′ij

∥∥∥ 6 9Ni/f(Ni).

Therefore by the f -lower estimate in G we have that ν′i 6 9νi.
We shall now prove that ‖x′‖ 6 12kf(k)−1. This will imply that

‖x′∗‖ >
x′∗(x′)
‖x′‖

>
f(k)
12k

[
f(k)−1/2

k∑
i=1

f(Ni)−1ν′−1
i

Ni∑
j=1

f(kij)−1ν′−1
ij

kij∑
r=1

x∗ijr(xijr)
]

> f(k)1/2(12k)−1.18−1

[
k∑
i=1

f(Ni)−1ν−1
i

Ni∑
j=1

f(kij)−1ν−1
ij

kij∑
r=1

x∗ijr(xijr)
]

= f(k)1/2(216k)−1
k∑
i=1

x∗i (xi) > 648−1f(k)1/2.

By construction of x∗ and x′∗ this will imply that

‖y∗ − z∗‖ > 648−1f(k)1/2‖y∗ + z∗‖

for some non zero y∗ ∈ Y and z∗ ∈ Z, and since k ∈ K was arbitrary, as
well as Y and Z, this will prove that G∗ is HI.

The proof that ‖x′‖ 6 12kf(k)−1 is given in three steps:
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Step 1. The vector x′ is a R.I.S. vector with constant 11.

Proof. — We already know the sequence x′i1, . . . , x′iNi
is a rapidly in-

creasing sequence with constant 8. Then by [13] Lemma 8 we get that x′i is
also an `Mi

1+ -average with constant 11, if Mi < N
1/10
i . Finally, this implies

that x′ is an R.I.S.-vector with constant 11, as claimed. �

Step 2. Let K0 = K \ {k}, let g ∈ F be the corresponding function
given by [13] Lemma 5. For every interval E such that ‖Ex′‖ > 1/3, Ex′
is normed by an (M, g)-form.

Proof. — The proof is exactly the same as the one of Step 2 in the proof
of Gowers concerning G, apart from some constants which are modified
due to the change of constant in Step 1 and to the normalising constants
relating νi and νij respectively to ν′i and ν′ij . The reader is therefore referred
to [13]. �

Step 3. The norm of x′ is at most 12kg(k)−1 = 12kf(k)−1

Proof. — This is an immediate consequence of Step 1, Step 2 and of
Lemma 2.2. �

We conclude that the spaceG∗ is HI, and thus locally minimal of type (1).
�

4. Unconditional tight spaces
of the type of Argyros and Deliyanni

By Proposition 2.4, unconditional or HI spaces built on the model of
Gowers-Maurey’s spaces are uniformly inhomogeneous (and even block
uniformly inhomogeneous). We shall now consider a space of Argyros-
Deliyanni type, more specifically of the type of a space constructed by Argy-
ros, Deliyanni, Kutzarova and Manoussakis [4], with the opposite property,
i.e., with a basis which is strongly asymptotically `1. This space will also be
tight by support and therefore will not contain a copy of `1. By the implica-
tion at the end of the diagram which appears just before Theorem 1.5, this
basis will therefore be tight with constants as well, making this example
the “worst” known so far in terms of minimality.
Again in this section block vectors will not necessarily be normalized and

some familiarity with the construction in [4] will be assumed.
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4.1. A strongly asymptotically `1 space tight by support

In [4] an example of HI space Xhi is constructed, based on a “boundedly
modified” mixed Tsirelson space XM(1),u. We shall construct an uncondi-
tional version Xu of Xhi in a similar way as Gu is an unconditional version
of GM . The proof that Xu is of type (3) will be based on the proof that
Xhi is HI, conditional estimates in the proof of [4] becoming essentially
trivial in our case due to disjointness of supports.
Fix a basis (en) and M a family of finite subsets of N. Recall that a

family x1, . . . , xn is M-admissible if x1 < · · · < xn and {min suppx1, . . . ,

min suppxn} ∈ M, andM-allowable if x1, . . . , xn are vectors with disjoint
supports such that {min suppx1, . . . ,min suppxn} ∈ M. Let S denote the
family of Schreier sets, i.e., of subsets F of N such that |F | 6 minF ,Mj

be the subsequence of the sequence (Fk) of Schreier families associated to
sequences of integers tj and kj defined in [4] p. 70.

We need to define a new notion. For W a set of functionals which is
stable under projections onto subsets of N, we let convQW denote the set
of rational convex combinations of elements ofW . By the stability property
of W we may write any c∗ ∈ convQW as a rational convex combination
of the form

∑
i λix

∗
i where x∗i ∈ W and suppx∗i ⊆ supp c∗ for each i. In

this case the set {x∗i }i will be called a W -compatible decomposition of c∗,
and we let W (c∗) ⊆ W be the union of all W -compatible decompositions
of c∗. Note that if M is a family of finite subsets of N, (c∗1, . . . , c∗d) is M-
admissible, and x∗i ∈W (c∗i ) for all i, then (x∗1, . . . , x∗d) is alsoM-admissible.

Let B = {
∑
n λnen : (λn)n ∈ c00, λn ∈ Q ∩ [−1, 1]} and let Φ be a 1-1

function from B<N into 2N such that if (c∗1, . . . , c∗k) ∈ B<N, j1 is minimal
such that c∗1 ∈ convQAj1 , and jl = Φ(c∗1, . . . , c∗l−1) for each l = 2, 3, . . .,
then Φ(c∗1, . . . , c∗k) > max{j1, . . . , jk} (the set Aj is defined in [4] p. 71
by Aj = ∪n(Kn

j \ K0) where the Kn
j ’s are the sets corresponding to the

inductive definition of XM(1),u).
For j = 1, 2, . . ., we set L0

j = {±en : n ∈ N}. Suppose that {Lnj }∞j=1 have
been defined. We set Ln = ∪∞j=1L

n
j and

Ln+1
1 = ±Ln1 ∪

{1
2(x∗1 + . . .+ x∗d) : d ∈ N, x∗i ∈ Ln,

(x∗1, . . . , x∗d) is S − allowable
}
,

and for j > 1,
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Ln+1
2j = ±Ln2j ∪

{ 1
m2j

(x∗1 + . . .+ x∗d) : d ∈ N, x∗i ∈ Ln,

(x∗1, . . . , x∗d) isM2j − admissible
}
,

L′ n+1
2j+1 = ±Ln2j+1 ∪

{ 1
m2j+1

(x∗1 + . . .+ x∗d) : d ∈ N such that

∃(c∗1, . . . , c∗d)M2j+1 − admissible and k > 2j + 1
with c∗1 ∈ convQ L

n
2k, x

∗
1 ∈ Ln2k(c∗1),

c∗i ∈ convQ L
n
Φ(c∗1 ,...,c∗i−1), x

∗
i ∈ LnΦ(c∗1 ,...,c∗i−1)(c∗i ) for 1 < i 6 d

}
,

Ln+1
2j+1 = {Ex∗ : x∗ ∈ L′ n+1

2j+1 , E subset of N}.

We set Bj = ∪∞n=1(Lnj \ L0) and we consider the norm on c00 defined by
the set L = L0 ∪ (∪∞j=1Bj). The space Xu is the completion of c00 under
this norm.
In [4] the space Xhi is defined in the same way except that E is an

interval of integers in the definition of Ln+1
2j+1, and the definition of L′ n+1

2j+1 is
simpler, i.e., the coding Φ is defined directly onM2j+1-admissible families
x∗1, . . . , x

∗
d in L<N and in the definition each x∗i belongs to LnΦ(x∗1 ,...,x∗i−1).

To prove the desired properties for Xu one could use the simpler definition
of L′ n+1

2j+1 ; however this definition doesn’t seem to provide enough special
functionals to obtain interesting properties for the dual as well.
The ground space for Xhi and for Xu is the space XM(1),u associated to

a norming set K defined by the same procedure as L, except that Kn
2j+1 is

defined in the same way as Kn
2j , i.e.,

Kn+1
2j = ±Kn

2j ∪
{ 1
m2j

(x∗1 + . . .+ x∗d) : d ∈ N, x∗i ∈ Kn,

(x∗1, . . . , x∗d) isM2j+1 − admissible
}
.

For n = 0, 1, 2, . . . , we see that Lnj is a subset of Kn
j , and therefore

L ⊆ K. The norming set L is closed under projections onto subsets of
N, from which it follows that its canonical basis is unconditional, and has
the property that for every j and everyM2j–admissible family f1, f2, . . . fd
contained in L, f = 1

m2j
(f1 + · · · + fd) belongs to L. The weight of such

an f is defined by w(f) = 1/m2j . It follows that for every j = 1, 2, . . . and

ANNALES DE L’INSTITUT FOURIER



EXAMPLES OF BANACH SPACES 463

everyM2j–admissible family x1 < x2 < . . . < xn in Xu,∥∥∥ n∑
k=1

xk

∥∥∥ > 1
m2j

n∑
k=1
‖xk‖.

Likewise, for S–allowable families f1, . . . , fn in L, we have f = 1
2 (f1 + · · ·+

fd) ∈ L, and we define w(f) = 1/2. The weight is defined similarly in the
case 2j + 1.

Lemma 4.1. — The canonical basis of Xu is strongly asymptotically `1.

Proof. — Fix n 6 x1, . . . , xn where x1, . . . , xn are normalised and dis-
jointly supported. Fix ε > 0 and let for each i, fi ∈ L be such that
fi(xi) > (1 + ε)−1 and supp fi ⊆ suppxi. The condition on the supports
may be imposed because L is stable under projections onto subsets of N.
Then 1

2
∑n
i=1±fi ∈ L and therefore∥∥∥ n∑

i=1
λixi

∥∥∥ > 1
2

n∑
i=1
|λi|fi(xi) >

1
2(1 + ε)

n∑
i=1
|λi|,

for any λi’s. Therefore x1, . . . , xn is 2-equivalent to the canonical basis
of `n1 . �

It remains to prove thatXu has type (3). Recall that an analysis (Ks(f))s
of f ∈ K is a decomposition of f corresponding to the inductive definition
of K, see the precise definition in Definition 2.3 [4]. We shall combine
three types of arguments. First L was constructed so that L ≺ K, which
means essentially that each f ∈ L has an analysis (Ks(f))s whose elements
actually belong to L (see the definition on p. 74 of [4]); so all the results
obtained in Section 2 of [4] for spaces defined through arbitrary K̃ ≺ K

(and in particular the crucial Proposition 2.9) are valid in our case. Then
we shall produce estimates similar to those valid for Xhi and which are
of two forms: unconditional estimates, in which case the proofs from [4]
may be applied directly up to minor changes of notation, and thus we shall
refer to [4] for details of the proofs; and conditional estimates, which are
different from those of Xhi, but easier due to hypotheses of disjointness of
supports, and for which we shall give the proofs.
Recall that if F is a family of finite subsets of N, then

F ′ = {A ∪B : A,B ∈ F , A ∩B = ∅}.

Given ε > 0 and j = 2, 3, . . ., an (ε, j)-basic special convex combination
((ε, j)- basic s.c.c.) (relative to XM(1),u) is a vector of the form

∑
k∈F akek

such that: F ∈ Mj , ak > 0,
∑
k∈F ak = 1, {ak}k∈F is decreasing, and, for

every G ∈ F ′tj(kj−1+1),
∑
k∈G ak < ε.
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Given a block sequence (xk)k∈N in Xu and j > 2, a convex combination∑n
i=1 aixki

is said to be an (ε, j)-special convex combination of (xk)k∈N
((ε, j)-s.c.c), if there exist l1 < l2 < . . . < ln such that 2 < suppxk1 6
l1 < suppxk2 6 l2 < . . . < suppxkn

6 ln, and
∑n
i=1 aieli is an (ε, j)-basic

s.c.c. An (ε, j)-s.c.c.
∑n
i=1 aixki is called seminormalised if ‖xki‖ = 1, i =

1, . . . , n and ∥∥∥ n∑
i=1

aixki

∥∥∥ > 1
2 .

Rapidly increasing sequences and (ε, j)–R.I. special convex combinations
in Xu are defined by [4] Definitions 2.8 and 2.16 respectively, with K̃ = L.

Using the lower estimate forM2j-admissible families in Xu we get as in
[4] Lemma 3.1:

Lemma 4.2. — For ε > 0, j = 1, 2, . . . and every normalised block
sequence {xk}∞k=1 in Xu, there exists a finite normalised block sequence
(ys)ns=1 of (xk) and coefficients (as)ns=1 such that

∑n
s=1 asys is a seminor-

malised (ε, 2j)–s.c.c..

The following definition is inspired from some of the hypotheses of [4]
Proposition 3.3.

Definition 4.3. — Let j>100. Suppose that {jk}nk=1, {yk}nk=1, {c∗k}nk=1
and {bk}nk=1 are such that

(i) There exists a rapidly increasing sequence

{x(k,i) : k = 1, . . . , n, i = 1, . . . , nk}

with x(k,i) < x(k,i+1) < x(k+1,l) for all k < n, i < nk, l 6 nk+1,

such that:
(a) Each x(k,i) is a seminormalised

( 1
m4

j(k,i)
, j(k,i)

)
–s.c.c. where,

for each k, 2jk + 2 < j(k,i), i = 1, . . . nk.
(b) Each yk is a ( 1

m4
2jk

, 2jk)– R.I.s.c.c. of {x(k,i)}nk
i=1 of the form

yk =
∑nk

i=1 b(k,i)x(k,i).

(c) The sequence {bk}nk=1 is decreasing and
∑n
k=1 bkyk is a( 1

m4
2j+1

, 2j + 1
)
–s.c.c.

(ii) c∗k ∈ convQ L2jk
, and max(supp c∗k−1 ∪ supp yk−1) < min(supp c∗k ∪

supp yk), ∀k.
(iii) j1 > 2j + 1 and 2jk = Φ(c∗1, . . . , c∗k−1), k = 2, . . . , n.
Then (jk, yk, c∗k, bk)nk=1 is said to be a j-quadruple.

The following proposition is essential. It is the counterpart of Lemma 3.1
for the space Xu.
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Proposition 4.4. — Assume that (jk, yk, c∗k, bk)nk=1 is a j-quadruple in
Xu such that supp c∗k ∩ supp yk = ∅ for all k = 1, . . . , n. Then∥∥∥ n∑

k=1
bkm2jk

yk

∥∥∥ 6 75
m2

2j+1
.

Proof. — Our aim is to show that for every ϕ ∈ ∪∞i=1Bi,

ϕ
( n∑
k=1

bkm2jk
yk

)
6

75
m2

2j+1
.

The proof is given in several steps. �

1st Case: w(ϕ) = 1
m2j+1

. Then ϕ has the form ϕ = 1
m2j+1

(Ey∗1 + · · · +
Ey∗k2

+ Ey∗k2+1 + · · ·Ey∗d) where E is a subset of N and where y∗k ∈
L2jk

(c∗k) ∀k 6 k2 and y∗k ∈ L2jk
(d∗k) ∀k > k2 + 1, with d∗k2+1 6= c∗k2+1

(this is similar to the form of such a functional in Xhi but with the integer
k1 defined there equal to 1 in our case).

If k 6 k2 then c∗s and therefore y∗s is disjointly supported from yk, so
Ey∗s (yk) = 0 for all s, and therefore ϕ(yk) = 0. If k = k2 +1 then we simply
have |ϕ(yk)| 6 ‖yk‖ 6 17m−1

2jk
, [4] Corollary 2.17. Finally if k > k2 +1 then

since Φ is 1-1, we have that jk2+1 6= jk and for all s = k2 + 1, . . . , d, d∗s
and therefore y∗s belong to B2ts with ts 6= jk. It is then easy to check that
we may reproduce the proof of [4] Lemma 3.5, applied to Ey∗1 , . . . , Ey∗d, to
obtain the unconditional estimate

|ϕ(m2jk
yk)| 6 1

m2
2j+1

.

In particular instead of [4] Proposition 3.2, which is a reformulation of [4]
Corollary 2.17 for Xhi, we simply use [4] Corollary 2.17 with K̃ = L.

Summing up these estimates we obtain the desired result for the 1st
Case.

2nd Case: w(ϕ) 6 1
m2j+2

. Then we get an unconditional estimate for the
evaluation of ϕ(

∑n
k=1 bkm2jk

yk) directly, reproducing the short proof of [4]
Lemma 3.7, using again [4] Corollary 2.17 instead of [4] Proposition 3.2.
Therefore ∣∣∣ϕ( n∑

k=1
bkm2jk

yk

)∣∣∣ 6 35
m2j+2

6
35

m2
2j+1

.

3rd Case: w(ϕ) > 1
m2j+1

. We have yk =
∑nk

i=1 b(k,i)x(k,i) and the sequence
{x(k,i), k = 1, . . . n, i = 1, . . . nk} is a R.I.S. w.r.t. L. By [4] Proposition 2.9
there exist a functional ψ ∈ K ′ (see the definition in [4] p. 71) and blocks
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of the basis u(k,i), k = 1, . . . , n, i = 1, . . . , nk with suppu(k,i) ⊆ suppx(k,i),
‖uk‖`1 6 16 and such that∣∣∣ϕ( n∑

k=1
bkm2jk

( nk∑
i=1

b(k,i)x(k,i)

))∣∣∣
6 m2j1b1b(1,1) + ψ

( n∑
k=1

bkm2jk

( kn∑
i=1

b(k,i)u(k,i)

))
+ 1
m2

2j+2

6 ψ
( n∑
k=1

bkm2jk

( kn∑
i=1

b(k,i)u(k,i)

))
+ 1
m2j+2

.

Therefore it suffices to estimate

ψ
( n∑
k=1

bkm2jk

( nk∑
i=1

b(k,i)u(k,i)

))
.

In [4] ψ is decomposed as ψ1 + ψ2 and different estimates are applied to
ψ1 and ψ2. Our case is easier as we may simply assume that ψ1 = 0 and
ψ2 = ψ. We shall therefore refer to some arguments of [4] concerning some
ψ2 keeping in mind that ψ2 = ψ.

Let Dk
1 , . . . , D

k
4 be defined as in [4] Lemma 3.11 (a). Then as in [4],

4⋃
p=1

Dk
p =

nk⋃
i=1

suppu(k,i) ∩ suppψ.

The proof that

(4.1) ψ|⋃
k
Dk

2

(∑
k

bkm2jk

(∑
i

b(k,i)u(k,i)

))
6

1
m2j+2

,

(4.2) ψ|⋃
k
Dk

3

(∑
k

bkm2jk

(∑
i

b(k,i)u(k,i)

))
6

16
m2j+2

,

and

(4.3) ψ|⋃
k
Dk

1

(∑
k

bkm2jk

(∑
i

b(k,i)u(k,i)

))
6

1
m2j+2

,

may be easily reproduced from [4] Lemma 3.11. The case of Dk
4 is slightly

different from [4] and therefore we give more details. We claim
Claim: Let D =

⋃
kD

k
4 . Then

(4.4) ψ|D
(∑

k

bkm2jk

(∑
i

b(k,i)u(k,i)

))
6

64
m2j+2

.

Once the claim is proved it follows by adding the estimates that the
3rd Case is proved, and this concludes the proof of the Proposition.
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Proof of the claim. — Recall that Dk
4 is defined by

Dk
4 =

{
m ∈

nk⋃
i=1

A(k,i) : for all f ∈
⋃
s

Ks(ψ)

with m ∈ supp f, w(f) > 1
m2jk

and

there exists f ∈
⋃
s

Ks(ψ) with m ∈ supp f, w(f) = 1
m2jk

and

for every g ∈
⋃
s

Ks(ψ) with supp f ⊂ supp g strictly, w(g) > 1
m2j+1

}
.

For every k = 1, . . . , n, i = 1, . . . , nk and every m ∈ suppu(k,i) ∩ Dk
4 ,

there exists a unique functional f (k,i,m) ∈
⋃
sK

s(ψ) with m ∈ supp f ,
w(f) = 1

m2jk
and such that, for all g ∈

⋃
sK

s(ψ) with supp f ⊆ supp g
strictly, w(g) > 1

m2j+1
. By definition, for k 6= p and i = 1, . . . , nk, m ∈

suppu(k,i), we have supp f (k,i,m) ∩Dp
4 = ∅. Also, if f (k,i,m) 6= f (k,r,n), then

supp f (k,i,m) ∩ supp f (k,r,n) = ∅.
For each k = 1, . . . , n, let {fk,t}rk

t=1 ⊆
⋃
Ks(ϕ) be a selection of mu-

tually disjoint such functionals with Dk
4 =

⋃rk

t=1 supp fk,t. For each such
functional fk,t, we set

afk,t =
nk∑
i=1

b(k,i)
∑

m∈supp fk,t

am.

Then,

(4.5) fk,t
(
bkm2jk

(∑
i

b(k,i)u(k,i)

))
6 bkafk,t .

We define as in [4] a functional g ∈ K ′ with |g|∗2j 6 1 (see definition
[4] p. 71), and blocks uk of the basis so that ‖uk‖`1 6 16, suppuk ⊆⋃
i suppu(k,i) and

ψ|D4

(∑
k

bkm2jk

(∑
i

b(k,i)u(k,i)

))
6 g
(

2
∑
k

bkuk

)
,

hence by [4] Lemma 2.4 (b) we shall have the result.
For f = 1

mq

∑d
p=1 fp ∈

⋃
sK

s(ψ|D4) we set

J = {1 6 p 6 d : fp = fk,t for some k = 1 . . . , n, t = 1, . . . , rk},

T = {1 6 p 6 d : there exists fk,t with supp fk,t ⊆ supp fp strictly}.
For every f ∈

⋃
sK

s(ψ|D4) we shall define by induction a functional gf ,
by gf = 0 when J ∪ T = ∅, while if J ∪ T 6= ∅ we shall construct gf with
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the following properties. Let Df =
⋃
p∈J∪T supp fp and uk =

∑
afk,tefk,t ,

where efk,t = emin suppfk,t , then:
(a) supp gf ⊆ supp f .
(b) gf ∈ K ′ and w(gf ) > w(f),
(c) f |Df

(
∑
k bkm2jk

(
∑
i b(k,i)u(k,i))) 6 gf (2

∑
k bkuk).

Let s>0 and suppose that gf have been defined for all f ∈
⋃s−1
t=0 K

t(ψ|D4)
and let f = 1

mq
(f1 + . . .+ fd) ∈ Ks(ψ|D4) rKs−1(ψ|D4) where the family

(fp)dp=1 is Mq-admissible if q > 1, or S-allowable if q = 1. The proofs of
case (i) (1/mq = 1/m2jk

for some k 6 n) and case (ii) (1/mq > 1/m2j+1)
are identical with [4] p. 106. Assume therefore that case (iii) holds, i.e.,
1/mq = 1/m2j+1. For the same reasons as in [4] we have that T = ∅.
Summing up we assume that f ∈ Ks(ψ|D4)rKs−1(ψ|D4) is of the form

f = 1
m2j+1

d∑
p=1

fp = 1
m2j+1

(Ey∗1 + . . .+ Ey∗k2
+ Ey∗k2+1 + . . .+ Ey∗d),

where (y∗i )i is associated to (c∗1, . . . , c∗k2
, d∗k2+1, . . .) with d∗k2+1 6= c∗k2+1, that

T = ∅ and J 6= ∅, and it only remains to define gf satisfying (a)(b)(c).
Now by the proof of [4] Proposition 2.9, ψ = ψϕ was defined through the

analysis of ϕ, in particular by [4] Remark 2.19 (a),

ψ = 1
m2j+1

∑
k∈I

ψEy∗
k

for some subset I of {1, . . . , d}. Furthermore, for l ∈ I, l 6 k2 and 1 6
k 6 d, suppEy∗l ∩ suppxk = ∅, therefore there is no functional in a family
of type I and II w.r.t. xk of support included in suppEy∗l (see [4] Defini-
tion 2.11 p. 77). This implies that DEy∗

l
= ∅ ([4] Definition p. 85), and

therefore that ψEy∗
l

= 0 ([4] bottom of p. 85).
For l ∈ I, l > k2+1, then since Φ is 1−1, w(Ey∗l ) = w(Ed∗l ) 6= 1/m2jk

∀k.
Therefore w(ψEy∗

l
) 6= 1/m2jk

∀k, [4] Remark 2.19 (a). Then by the definition
of Dk

4 , suppψEy∗
l
∩Dk

4 = ∅ for all k.
Finally this means that ψ|D4 = 1

m2j+1
ψEy∗

k2+1|D4 and J = {k2 + 1},
Df = supp fk2+1. Write then fk2+1 = fk0,t and set gf = 1

2e
∗
fk2+1

, therefore
(a)(b) are trivially verified. It only remains to check (c). But by (5),

f |Df

(∑
k

bkm2jk

(∑
i

b(k,i)u(k,i)

))
6 bk0afk2+1

= bk0afk2+1e
∗
fk2+1

(efk2+1) = gf (2bk0afk2+1efk2+1)

= gf

(
2
∑
t

bk0a
fk,tefk,t

)
= gf

(
2
∑
k

bkuk

)
.
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So (c) is proved. Therefore gf is defined for each f by induction, and the
Claim is verified. This concludes the proof of the Proposition. �

Proposition 4.5. — The space Xu is of type (3).

Proof. — Assume towards a contradiction that T is an isomorphism from
some block-subspace [xn] of Xu into the subspace [ei, i /∈

⋃
n suppxn]. We

may assume that max(suppxn, suppTxn) < min(suppxn+1, suppTxn+1)
and min suppxn < min suppTxn for each n, and by Lemma 4.2, that each
xn is a ( 1

m4
2n
, 2n) R.I.s.c.c. ([4] Definition 2.16). We may write

xn =
pn∑
t=1

an,txn,t

where (xn,1, . . . , xn,pn
) is M2n-admissible. Let for each n, t, x∗n,t ∈ L be

such that suppx∗n,t ⊆ suppTxn,t and such that

x∗n,t(Txn,t) >
1
2‖Txn,t‖ >

1
4‖T−1‖

,

and let x∗n = 1
m2n

(x∗n,1+. . .+x∗n,pn
) ∈ L2n. Note that suppx∗n∩suppxn = ∅

and that

x∗n(Txn) > 1
m2n

pn∑
t=1

an,t
4‖T−1‖

= (4‖T−1‖m2n)−1.

We may therefore for any j > 100 construct a j-quadruple (jk, yk, c∗k, bk)nk=1
satisfying the hypotheses of Proposition 4.4 and such that yk ∈ [xi]i and
c∗k(Tyk) > (4‖T−1‖m2jk

)−1 for each k (note that we may assume that
c∗k ∈ Lj2k

for each k). From Proposition 4.4 we deduce∥∥∥ n∑
k=1

bkm2jk
yk

∥∥∥ 6 75
m2

2j+1
.

On the other hand ψ = 1
m2j+1

∑n
k=1 c

∗
k belongs to L therefore

∥∥∥T( n∑
k=1

bkm2jk
yk

)∥∥∥ > ψ( n∑
k=1

bkm2jk
Tyk

)
>

1
4‖T−1‖m2j+1

.

We deduce finally that

m2j+1 6 300‖T‖‖T−1‖,

which contradicts the boundedness of T . �
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4.2. A strongly asymptotically `∞ space tight by support

Since the canonical basis of Xu is tight and unconditional, it follows that
Xu is reflexive. In particular this implies that the dual basis of the canonical
basis of Xu is a strongly asymptotically `∞ basis of X∗u. It remains to prove
that this basis is tight with support.
It is easy to prove by duality that for any M2j-admissible sequence of

functionals f1, . . . , fn in X∗u, we have the upper estimate∥∥∥∑
i

fi

∥∥∥ 6 m2j sup
i
‖fi‖.

We use this observation to prove a lemma about the existence of s.c.c.
normed by functionals belonging to an arbitrary subspace of X∗u. The proof
is standard except that estimates have to be taken in X∗u instead of Xu.

Lemma 4.6. — For ε > 0, j = 1, 2, . . . and every normalised block
sequence {fk}∞k=1 in X∗u, there exists a normalised functional f ∈ [fk] and
a seminormalised (ε, 2j)–s.c.c. x in Xu such that supp f ⊆ suppx and
f(x) > 1/2.

Proof. — For each k let yk be normalised such that supp yk = supp fk
and fk(yk) = 1. Recall that the integers kn and tn are defined by k1 = 1,
2tn > m2

n and kn = tn(kn−1 + 1) + 1, and thatMj = Fkj
for all j.

Applying Lemma 4.2 we find a successive sequence of (ε, 2j)–s.c.c. of
(yk) of the form (

∑
i∈Ik

aiyi)k with {fi, i ∈ Ik} Fk2j−1+1-admissible. If
‖
∑
i∈Ik

fi‖ 6 2 for some k, we are done, for then(∑
i∈Ik

fi

)(∑
i∈Ik

aiyi

)
>

1
2

∥∥∥∑
i∈Ik

fi

∥∥∥.
So assume ‖

∑
i∈Ik

fi‖ > 2 for all k, apply the same procedure to the
sequence f1

k = ‖
∑
i∈Ik

fi‖−1∑
i∈Ik

fi, and obtain a successive sequence of
(ε, 2j)–s.c.c. of the sequence (y1

k)k associated to (f1
k )k, of the form (

∑
i∈I1

k
a1
i

y1
i )k, with {fl : supp fl ⊆

∑
i∈I1

k
f1
i } a Fk2j−1+1[Fk2j−1+1]-admissible, and

thereforeM2j-admissible set. Then we are done unless ‖
∑
i∈I1

k
f1
i ‖ > 2 for

all k, in which case we set

f2
k =

∥∥∥∑
j∈I1

k

f1
j

∥∥∥−1 ∑
j∈I1

k

f1
j

and observe by the upper estimate in X∗u that

1 = ‖f2
k‖ =

∥∥∥∑
j∈I1

k

∑
i∈Ij

∥∥∥∑
j∈I1

k

f1
j

∥∥∥−1∥∥∥∑
i∈Ij

fi

∥∥∥−1
fi

∥∥∥ 6 m2j/4.
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Repeating this procedure we claim that we are done in at most t2j steps.
Otherwise we obtain that the set

A =
{
fl : supp fl ⊆

∑
i∈I

t2j−1
k

f
t2j−1
i

}

is M2j-admissible. Since f t2j

k =
∑
fl∈A αlfl, where the normalising factor

αl is less than (1/2)t2j for each l, we deduce from the upper estimate that

1 = ‖f t2j

k ‖ 6 2−t2jm2j ,

a contradiction by definition of the integers ti’s. �

To prove the last proposition of this section we need to make two observa-
tions. First if (f1, . . . , fn)∈convQ L isM2j-admissible, then 1

m2j

∑n
k=1 fk ∈

convQ L2j . Indeed using the stability of L under projections onto subsets
of N we may easily find convex rational coefficients λi such that each fk is
of the form

fk =
∑
i

λif
k
i , f

k
i ∈ L, supp fki ⊆ supp fk ∀i.

Then 1
m2j

∑n
k=1 fk =

∑
i λi(

1
m2j

∑n
k=1 f

k
i ) and each 1

m2j

∑n
k=1 f

k
i belongs

to L2j .
Likewise if ψ = 1

m2j+1
(c∗1 + . . . + c∗d), k > 2j + 1, c∗1 ∈ convQ L2k and

c∗l ∈ convQ LΦ(c∗1 ,...,c∗l−1) ∀l > 2, then ψ ∈ convQ L. Indeed as above we may
write

ψ =
∑
i

λi

( 1
m2j+1

d∑
l=1

f li

)
, f1

i ∈ L2k, f
l
i ∈ LΦ(c∗1 ,...,c∗i−1)(c∗i ) ∀l > 2,

and each 1
m2j+1

∑d
l=1 f

l
i belongs to L′n+1

2j+1 ⊆ L.

Proposition 4.7. — The space X∗u is of type (3).

Proof. — Assume towards a contradiction that T is an isomorphism from
some block-subspace [fn] of X∗u into the subspace [e∗i , i /∈ ∪n supp fn]. We
may assume that max(supp fn, suppTfn) < min(supp fn+1, suppTfn+1)
and min suppTfn < min supp fn for each n. Since the closed unit ball of
X∗u is equal to convQ L we may also assume that fn ∈ convQL for each n.
Applying Lemma 4.6, we may also suppose that each fn is associated to
a ( 1

m4
2n
, 2n) s.c.c. xn with Tfn(xn) > 1/3 and suppxn ⊂ suppTfn, and

we shall also assume that ‖Tfn‖ = 1 for each n. Build then for each k a
( 1
m4

2k

, 2k) R.I.s.c.c. yk =
∑
n∈Ak

anxn such that (Tfn)n∈Ak
and therefore
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(fn)n∈Ak
isM2k-admissible. Then note that by the first observation before

this proposition,
c∗k := m−1

2k

∑
n∈Ak

fn ∈ convQL2k,

and observe that supp c∗k ∩ supp yk = ∅ and that Tc∗k(yk) > (3m2k)−1.
We may therefore for any j>100 construct a j-quadruple (jk,yk,c∗k,bk)nk=1

satisfying the hypotheses of Proposition 4.4 and such that c∗k ∈ [fi]i and
Tc∗k(yk) > (3m2jk

)−1 for each k. From Proposition 4.4 we deduce∥∥∥ n∑
k=1

bkm2jk
yk

∥∥∥ 6 75
m2

2j+1
.

Therefore ∥∥∥ d∑
k=1

Tc∗k

∥∥∥ > ∑d
k=1 bkm2jk

Tc∗k(yk)
‖
∑n
k=1 bkm2jk

yk‖
>
m2

2j+1

225 ,

but on the other hand ∥∥∥ d∑
k=1

c∗k

∥∥∥ 6 m2j+1

since by the second observation the functional m−1
2j+1

∑d
k=1 c

∗
k belongs to

convQL. We deduce finally that

m2j+1 6 225‖T‖,

which contradicts the boundedness of T . �

5. Problems and comments

Obviously the general question one is compelled to ask is whether it is
possible to find an example for each of the classes or subclasses appearing
in the chart of Theorem 1.5. However we wish to be more specific here
and concentrate on the classes which either seem particularly interesting,
or easier to study, or which are related to one of the spaces considered in
this paper.

Let us first observe that the examples of locally minimal, tight spaces pro-
duced so far could be said to be so for trivial reasons: since they hereditarily
contain `n∞’s uniformly, any Banach space is crudely finitely representable
in any of their subspaces. It remains open whether there exist other exam-
ples. Observing that a locally minimal and tight space cannot be strongly
asymptotically `p, 1 6 p < +∞, by one of the implications in the diagram
before Theorem 1.5, and up to the 6th dichotomy, the problem may be
summed up as:

ANNALES DE L’INSTITUT FOURIER



EXAMPLES OF BANACH SPACES 473

Problem 5.1. — Find a tight, locally minimal, uniformly inhomoge-
neous Banach space which does not contain `n∞’s uniformly, or equivalently,
which has finite cotype.

It also unknown whether tightness by range and tightness with constants
are the only possible forms of tightness, up to passing to subspaces. Equiv-
alently, using the 4th and 5th dichotomy:

Problem 5.2. — Find a tight Banach space which is sequentially and
locally minimal.

Or, since such a space would have to be of type (2), (5b), (5d):

Problem 5.3.
(a) Find a HI space which is sequentially minimal.
(b) Find a space of type (5b).
(c) Find a space of type (5d). Is the dual of some modified mixed

Tsirelson’s space such a space?

For the next problem, we observe that the only known examples of spaces
tight with constants are strongly asymptotic `p spaces not containing `p,
where 1 6 p < +∞.

Problem 5.4. — Find a space tight with constants and uniformly in-
homogeneous.

More specifically, listing two subclasses for which we have a possible
candidate:

Problem 5.5.
(a) Find a space of type (1a). Is G or one of its subspaces such a space?
(b) Find a space of type (3a). Is Gu or one of its subspaces such a

space?

Recently, S. Argyros, K. Beanland and T. Raikoftsalis [2, 1] constructed
an exampleXabr with a basis which is strongly asymptotically `2 and there-
fore weak Hilbert, yet every operator is a strictly singular perturbation of
a diagonal map, and no disjointly supported subspaces are isomorphic. In
our language, Xabr is therefore a new space of type (3c), which we include
in our chart.
We conclude by mentioning the very recent and remarkable result of

S. Argyros and R. Haydon solving the scalar plus compact problem [5]:
there exists a HI space which is a predual of `1 and on which every operator
is a compact perturbation of a multiple of the identity. To our knowledge
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nothing is known about the exact position of this space in the chart of
Theorem 1.5.

Problem 5.6. — Find whether Argyros-Haydon’s space is of type (1)
or of type (2).
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