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MOVING FRAMES, GEOMETRIC POISSON
BRACKETS AND THE KDV-SCHWARZIAN

EVOLUTION OF PURE SPINORS

by Gloria MARÍ BEFFA

Abstract. — In this paper we describe a non-local moving frame along a curve
of pure spinors in O(2m, 2m)/P , and its associated basis of differential invariants.
We show that the space of differential invariants of Schwarzian-type define a Pois-
son submanifold of the spinor Geometric Poisson brackets. The resulting restriction
is given by a decoupled system of KdV Poisson structures. We define a general-
ization of the Schwarzian-KdV evolution for pure spinor curves and we prove that
it induces a decoupled system of KdV equations on the invariants of projective
type, when restricted to a certain level set. We also describe its associated Miura
transformation and non-commutative modified KdV system.
Résumé. — Nous décrivons un repère mobile non local pour les courbes de

spineurs purs dans O(2m, 2m)/P , et la base correspondante d’invariants différen-
tiels. Nous montrons que l’espace des invariants différentiels de type Schwarzien
définit une sous-variété de crochets de Poisson géométriques de spineurs purs. La
restriction résultante est donnée par un systéme découplé de crochets de Poisson
de KdV . Nous définissons une généralisation de l’évolution de Schwarz-KdV pour
les courbes de spineurs purs et nous montrons que, en restriction à un niveau fixé,
cela induit un système d’équations de KdV découplé pour les invariants de type
projectif. Nous décrivons par ailleurs la transformation correspondante de Miura
et le système non commutatif modifié de KdV.

1. Introduction

Given a map u : R→ R, we define the Schwarzian derivative of u as

S(u) = uxxx
ux
− 3

2

(
uxx
ux

)2
.

Keywords: Moving frame, spinor evolutions, geometric Poisson brackets, KdV equations,
differential invariants, Miura transformation, non-commutative modified KdV system.
Math. classification: 37K, 53D55.



2406 Gloria MARÍ BEFFA

Locally, one can think of u as taking values in RP1. In that case, the
Schwarzian derivative is the unique differential invariant for the projec-
tive action of SL(2) on RP1 (defined by fractional transformations). The
evolution

ut = uxS(u) = uxxx −
3
2
u2
xx

ux
is called the Schwarzian-KdV evolution. It is invariant under the projective
action of SL(2) and, when written as an evolution on the invariant S(u), it
becomes the KdV equation, the well-known completely integrable equation

S(u)t = S(u)xxx + 3S(u)xS(u).

The KdV equation is also bi-Hamiltonian, that is, Hamiltonian with respect
to two different but compatible Poisson (or Hamiltonian) structures. These
two Poisson structures can be generated using the background projective
geometry of u, as in [30]. The author called these structures geometric Pois-
son structures. In particular, one of them is linked to evolutions of curves
u, in the sense that any associated Hamiltonian evolution will come from
an invariant evolution of curves u(t, x) in identically the same way KdV
is obtained from the Schwarzian-KdV equation. We say these evolution of
curves are projective geometric realizations of the Hamiltonian systems.
Thus, the Schwarzian-KdV equation is a projective realization of the KdV
equation. For more information see [33].
This relation between invariant curve flows and integrable systems occurs

in a variety of different geometries for which both integrable systems and
their Hamiltonian structures are generated by the background geometry of
the flow. The best known example is the Vortex filament flow, an evolu-
tion of curves in R3, invariant under the Euclidean group. When written
in terms of the Euclidean natural curvatures, the Vortex Filament flow be-
comes the Nonlinear Schrödinger equation, or NLS ([19], [24]). That is, the
Vortex filament flow is an Euclidean realization of NLS. Other completely
integrable systems also have geometric realizations, often in different ge-
ometries. For example, the Sawada-Koterra equation has both equi-centro
affine and projective realizations and their Hamiltonian structures can be
obtained using both equi-centro affine and projective invariants ([5]). The
recent literature in this subject is extensive, with many authors finding
many different geometric realizations and linking curve evolutions, Hamil-
tonian structures and background geometry to integrable systems, using
many different points of view. See for example [2], [1], [8], [9], [16], [20],
[21], [26], [25], [28], [39], [27], [37], [40], [41], a list that it is not meant to
be, by any means, exhaustive.

ANNALES DE L’INSTITUT FOURIER
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The link between projective geometry and the periodic KdV follows from
work of Kirillov [23], Segal [38] and others. The Schwarzian has the follow-
ing cocycle property

S(f ◦ g) = g2
xS(f) ◦ g + S(g).

This allows us to use it in the definition of the action of the group diff(S1)
on the space of projective connection, as defined by the kernel of Hill’s
operators L = d

dx2 + p(x) (in fact, p(x) = 1
2S( ξ1

ξ2
) where ξi are independent

solutions of Lξ = 0). The space of projective connections can be viewed
in two different ways: as dual to the Virasoro algebra - itself a central
extension of the algebra of diff(S1) by a cocycle related to S(u); or as the
space of projective invariants of curves in RP1. This invariant space can
be obtained as in [30] choosing G = SL(2) acting projectively on RP1.
Two geometric Poisson brackets are defined on this space, namely the two
Hamiltonian structures for KdV.
We will say that a differential invariant is of projective or Schwarzian

type if

(1.1) φ∗I =
(
φ2
xI
)
◦ φ−1 + S(φ) ◦ φ−1

where by φ∗ we mean the pull-back, and where φ is a diffeomorphism of
the line. That is, the invariant behaves like the Schwarzian under changes
of variable.
In [31] the author described a conjecture by M. Eastwood about differ-

ential invariants of projective type. Eastwood conjectured that there exist
invariants of projective type for curves in Hermitian symmetric manifolds
(parabolic manifolds with |1|-gradation of the algebra) and hence a natural
projective structure along curves given by the choice of a special type of
parametrization. It was conjectured that the existence of these parametriza-
tions indicates the existence of Hamiltonian structures of KdV type on these
invariants. Indeed, in the conformal case M = O(p + 1, q + 1)/P , with P
an appropriate parabolic subgroup, the two invariants of projective type
are directly connected to invariant differential operators that appear in the
work of Bailey and Eastwood (see [3] and [4]). There the authors used them
to defined conformal circles and preferred parametrization that endow the
conformal circles with a projective structure (theirs is an explicit proof of
Cartan’s observation that a curve in a conformal manifold inherits a natural
projective structure, see [7]). Furthermore, the author of [15] stated that,
if for a given curve all other non-projective invariants vanish, the curve
is the orbit of the inversion subgroup of the conformal group. The author
proved in [32] that, if we use a conformal natural moving frame, then two

TOME 61 (2011), FASCICULE 6



2408 Gloria MARÍ BEFFA

compatible geometric conformal Poisson brackets can be restricted to the
space of invariants of projective type as invariants of non-projective type
vanish. The result is a complexly coupled system of KdV equations, while a
different choice of orbit results in a decoupled system of KdV equations, as
in [12]. That is, in the conformal case, the Poisson brackets linked to pro-
jective structures along the flow are restrictions of the geometric conformal
Poisson brackets to an appropriate submanifold.
A similar situation seems to exist for the Lagrangian Grassmannian in

R2n where there are n invariants of projective type defining different pro-
jective structures on flows, much like the situation in the conformal case. In
[33] the author defined these invariants as the eigenvalues of the Schwarzian
derivative of curves of Lagrangian planes. The author proved that, if an
appropriate moving frame is chosen along curves of Lagrangian planes,
then as non-projective type invariants vanish, the Lagrangian Grassman-
nian geometric Poisson bracket restricts to the manifold of invariants of
projective type to produce a bi-Hamiltonian structure for a decoupled sys-
tem of n-KdV equations. She proved that the Lagrangian Schwarzian-KdV
equation for curves of Lagrangian planes is a geometric realization for this
decoupled KdV system whenever we restrict to curves for which invariants
of non-projective type vanish. She also found the Lagrangian Grassman-
nian analog of a Miura transformation and an associated non-commutative
modified KdV system of equations. The Schwarzian derivative for curves
of Lagrangian planes was first defined by Ovsienko in [35] where the role
of inversions in the generation of these invariants was also described. A
definition can also be found in [36] where the interested reader can find a
thorough description of projective geometry and many of its applications.
On the other hand, the case of curves of pure spinors, another Sym-

metric Hermitian case (case M = O(n, n)/P for an appropriate parabolic
subgroup P ), remains elusive. Invariants of projective type for the even
dimensional case were defined in [29], but the precise connection to KdV
structures and projective structures on flows was not clear. In [29] the au-
thor proved that no local choice of moving frame would produce a result
similar to that of the Lagrangian Grassmannian, in spite of their algebraic
similarities (the Lagrangian moving frame in [29] was local). In the odd
dimensional case the differential invariants are too involved to be effective
for this type of study (this part of the study is not published).
In this paper we find a non-local moving frame along curves of even pure

spinors and we prove that the situation in the Lagrangian Grassmannian
manifold also takes place for pure even spinors. Recall that, although the

ANNALES DE L’INSTITUT FOURIER
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Lagrangian moving frame is local, natural moving frames for both Rie-
mannian and conformal manifolds are non-local in nature. As this paper
shows, the choice of an appropriate moving frame is fundamental to estab-
lishing the connection between the projectively-induced Poisson structures
and the geometric ones. We use a group-based definition of moving frame
introduced by Fels and Olver in [13, 14]. This definition is becoming well-
known, but not so much as to make many in the area familiar with this
new concept. Hence we have included a section on background information
about group-based moving frames. This, information on geometric Poisson
brackets and a brief description of the manifold of pure spinors is included
in our second section.
In Section 3, Theorem 4.2, we describe an appropriate choice of non-

local moving frame and their associated basis of differential invariants. This
choice is produced using a non-local gauge of a moving frame appearing in
[32], which is also described here. In Section 4, Theorem 4.3, we prove that
the spinor geometric Poisson structure can be restricted to the manifold
of invariants of projective type (the manifold where non-local invariants
of non-projective type vanish) to produce a decoupled system of m KdV
Poisson structures, where n = 2m. We also prove that a second compat-
ible Poisson structure can be reduced to the submanifold of invariants of
projective type to produce a system of decoupled and compatible Pois-
son structures for KdV. In Theorem 4.4 we describe a generalization of the
Schwarzian-KdV evolution for spinors and we prove it is a spinor geometric
realization for the decoupled system of KdV equations, as far as we restrict
initial conditions to curves with vanishing non-projective invariants. Our
last theorem (Theorem 4.5) describes the spinor Miura transformation and
its associated non-commutative modified KdV for flows of skew-symmetric
matrices. Notice that, although similar to Drinfeld and Sokolov’s contruc-
tion, the reduction process here is not quite the same as the one presented
in [10]. The idea of reducing the Poisson brackets to a certain quotient
is the same, but they use a different gradation of the algebra (we use a
|1|-gradation here, while they use the gradation induced by the natural
gradation of gl(n,R), that is, the finest possible one). It is still not clear
if, when or how their construction produces a geometric realization in the
group quotient.
Now, it seems natural to conjecture that what is true for conformal, La-

grangian and spinor cases, will also be true for general Symmetric Hermit-
ian, and perhaps parabolic manifolds. A general proof is still not apparent:
the methods used rely heavily on a proper choice of moving frame for which

TOME 61 (2011), FASCICULE 6
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the vanishing of non-projective invariants does not produce singularities in
the geometric Hamiltonian vector field. It is not clear what such a choice
must be in general, but one could predict that, once this point is cleared
up, a general proof is within reach.

2. Definitions and background

2.1. Group-based moving frames
and their associated differential invariants

The classical concept of moving frame was developed by Élie Cartan
([6]). A classical moving frame along a curve in a manifold M is a curve
in the frame bundle of the manifold over the curve, invariant under the
action of the transformation group under consideration. This method is a
very powerful tool, but its explicit application relied on intuitive choices
that were not clear on a general setting. Some ideas in Cartan’s work and
later work of Griffiths ([18]), Green ([17]) and others laid the foundation
for the concept of a group-based moving frame, that is, an equivariant
map between the jet space of curves in the manifold and the group of
transformations. Recent work by Fels and Olver ([13, 14]) finally gave the
precise definition of the group-based moving frame. In this section we will
describe Fels and Olver’s moving frame and its relation to the classical
moving frame. We will also introduce some definitions that are useful to the
study of Poisson brackets and biHamiltonian nonlinear PDEs. From now
on we will assume M = G/H with G acting on M via left multiplication
on representatives of a class. We will also assume that curves in M are
parametrized and, therefore, the group G does not act on the parameter.

Definition 2.1. — Let Jk(R,M) be the space of k-jets of curves, that
is, the set of equivalence classes of curves inM up to kth order of contact. If
we denote by u(x) a curve inM and by ur the r derivative of u with respect
to the parameter x, ur = dru

dxr , the jet space has local coordinates that can
be represented by u(k) = (x, u, u1, u2, . . . , uk). The group G acts naturally
on parametrized curves, therefore it acts naturally on the jet space via the
formula

g · u(k) = (x, g · u, (g · u)1, (g · u)2, . . . )
where by (g · u)k we mean the formula obtained when one differentiates
k times g · u and then writes the result in terms of g, u, u1, etc. This is
the natural way for G to act on jets and it is usually called the prolonged
action of G on Jk(R,M).

ANNALES DE L’INSTITUT FOURIER



MOVING FRAMES AND GEOMETRIC BRACKETS 2411

Definition 2.2. — A function

I : Jk(R,M)→ R

is called a kth order differential invariant if it is invariant with respect to
the prolonged action of G.

Definition 2.3. — A map

ρ : Jk(R,M)→ G

is called a left (resp. right) moving frame if it is equivariant with respect
to the prolonged action of G on Jk(R,M) and the left (resp. right) action
of G on itself.

If a group acts (locally) effectively on subsets, then for k large enough a
moving frame always exists on a neighborhood of a regular jet (for example,
on a neighborhood of a generic curve, see [13, 14] for more details).
The group-based moving frame already appears in a familiar method for

calculating the curvature of a curve u(s) in the Euclidean plane. In this
method one uses a translation to take u(s) to the origin, and a rotation to
make one of the axes tangent to the curve. The curvature can classically be
found as the coefficient of the second order term in the Taylor expansion
of the curve around u(s). The crucial observation made by Fels and Olver
is that the element of the group carrying out the translation and rotation
depends on u and its derivatives and so it defines a map from the jet space
to the group. This map is a right moving frame, and it carries all the
geometric information of the curve. In fact, Fels and Olver developed a
similar normalization process to find right moving frames (see [13, 14] and
our next theorem).

Theorem 2.4 ([13, 14]). — Let · denote the prolonged action of the
group on u(k) and assume we have normalization equations of the form

g · u(k) = ck

where ck are constants (called normalization constants). Assume we have
enough normalization equations to determine g as a function of u, u1, . . . .
Then, the solution g = ρ is a right moving frame.

The direct relation between classical moving frames and group-based
moving frames is stated in the following theorem, whose proof can be found
in [33].

Theorem 2.5 ([33]). — Let Φg : G/H → G/H be defined by the action
of g ∈ G. That is Φg([x]) = [gx]. Let ρ be a group-based left moving frame

TOME 61 (2011), FASCICULE 6



2412 Gloria MARÍ BEFFA

with ρ · o = u where o = [H] ∈ G/H is the base-point. Let ei, i = 1, . . . , n
be generators of the vector space ToG/H. Then, Ti = dΦρ(o)ei form a
classical moving frame.

This theorem illustrates how classical moving frames are described only
by the action of the group-based moving frame on first order frames, while
the action on higher order frames is left out. Accordingly, those invariants
determined by the action on higher order frames will be not be found with
the use of a classical moving frame.

We will next describe the equivalent to the classical Serret-Frenet equa-
tions. This concept if fundamental in our Poisson geometry study.

Definition 2.6. — Consider Kdx to be the horizontal component of
the pullback of the left (resp. right) Maurer-Cartan form of the group G

via a group-based left (resp. right) moving frame ρ. That is

K = ρ−1ρx ∈ g(resp. K = ρxρ
−1).

We call K the Maurer-Cartan element of the algebra (or Maurer-Cartan
matrix if G ⊂ GL(n,R)), andK = ρ−1ρx the left (resp. right) Serret-Frenet
equations for the moving frame ρ.

Notice that if ρ is a left moving frame, then ρ−1 is a right moving frame
and their Serret-Frenet equations are the negative of each other. A com-
plete set of generating differential invariants can always be found among
the coefficients of group-based Serret-Frenet equations generated by nor-
malization equations, a crucial difference with the classical picture. The
following Theorem can be found in [22].

Theorem 2.7. — Let ρ be a (left or right) moving frame along a curve
u, determined through a normalization process. Then, the coefficients of the
(left or right) Serret-Frenet equations for ρ contain a basis for the space of
differential invariants of the curve. That is, any other differential invariant
for the curve is a function of the coordinates of K in some basis of the
algebra (its entries if G ⊂ GL(n,R)) and their derivatives with respect
to x.

There are formulas relating K directly to the invariantization of jet coor-
dinates. They are called recurrence formulas in [13], and the theorem below
is the adaptation of the results in [13] to our particular case.

Theorem 2.8. — Assume a right invariant moving frame is determined
by the normalization equations(

g · u(r))α = cαr

ANNALES DE L’INSTITUT FOURIER
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for some choices of α and r, where cr = (cαr ) (α indicates individual coor-
dinates). Let K = −ρxρ−1 be the left invariant Serre-Frenet equations of
ρ. Let Iαr = ρ · uαr for any r = 0, 1, 2, . . . and any α = 1, . . . ,dimM . Then
K satisfies the equations

(2.1) (K · Ir)α = Iαr+1 − (Iαr )x ,

where the dot in K · Ir denotes the prolonged infinitesimal action of the
Lie algebra on J (r)(R,M).

Notice that Iαr = cαr whenever r and α correspond to normalization
equations, that is, Iαr are either constant or differential invariants.
Finally, there is a formula that allow us to write any invariant evolution

of curves in G/H in terms of a left group-based moving frame and the
differential invariants they generate. When we say an invariant evolution,
we mean invariant under the action of G (that is, G takes solutions to
solutions). The theorem below is a simple consequence of Theorem 2.5 and
results in [34] found in page 249 of that book.

Theorem 2.9 ([30]). — Let u(x, t) be a one parameter family of curves
in G/H; let ρ be a left group-based moving frame and let dΦρ(o)ei = Ti
be an associated classical moving frame. Then, any evolution of curves in
G/H invariant under the action of G can be written as

(2.2) ut = r1T1 + . . . rnTn = dφρ(o)r

where ri are differential invariants, that is, functions of the entries of K
and their derivatives, and where r = (ri).

2.2. Geometric Poisson structures

Assume g is semisimple. One can define two natural Poisson brackets on
Lg∗ (see [11] for more information): Let B be an invariant bilinear form
that can be used to identify the algebra with its dual. If H,F : Lg∗ → R
are two functionals defined on Lg∗ and if L ∈ Lg∗, we denote by δH

δL (L)
and δF

δL (L) their variational derivatives at L identified, as usual, with an
element of Lg. We can identify δH

δL (L) ∈ Lg with its dual counterpart using
B and we can define

(2.3) {H,F}1(L) =
∫
S1

〈
B

(
δH
δL

(L)
)
x

+ ad∗
(
δH
δL

(L)
)

(L), δF
δL

(L)
〉
dx

where 〈, 〉 is the natural coupling between g∗ and g (usually the trace of
the product if we identify g and g∗).

TOME 61 (2011), FASCICULE 6
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One also has a compatible family of second brackets, namely

(2.4) {H,F}2(L) =
∫
S1

〈
(ad∗

(
δH
δL

(L)
)

(L0), δF
δL

(L)
〉
dx

where L0 ∈ g∗ is any constant element. Since g is semisimple we can iden-
tify g with its dual g∗ and we will do so from now on. From now on we
will also assume that our curves on homogeneous manifolds have a group
monodromy, i.e., , there exists m ∈ G such that

u(t+ T ) = m · u(t)

where T is the period. Under these assumptions, the differential invariants
will be periodic.
The following theorem is the foundation of the definition of Geometric

Hamiltonian structures. It was proved in [33].

Theorem 2.10. — Let ρ be a left or right right moving frame along
a curve u, determined by normalization equations. Let K be the manifold
of Maurer-Cartan matrices K for nearby curves, generated using the same
normalization equations. Then, K ∼= U/LH where U ⊂ Lg∗ is an open set,
and where LH acts on U via a gauge transformation. Furthermore, the
Poisson bracket defined on Lg∗ by (2.3) is reducible to the submanifold K.

We call this first reduced Poisson bracket a Geometric Poisson bracket
on G/H.
The reduction of the Poisson bracket can be often found explicitly

through algebraic manipulations. Indeed, if an extension H of h is con-
stant on the gauge leaves of LH, then its variational derivative will satisfy

(2.5)
(
δH
δL

(K)
)
x

+
[
K,

δH
δL

(K)
]
∈ h0

where h0 ⊂ g∗ is the annihilator of h, and where K is any Maurer-Cartan
element. This relation is often sufficient to determine δH

δL (K) completely
and with it the reduced Poisson bracket. The reduced Poisson bracket will
be defined through the application of (2.3) to two such extensions.
The Poisson bracket (2.4) does not reduce in general to this quotient.

When it does, it indicates the existence of an associated completely in-
tegrable system, as we will see. The geometric Poisson bracket above is
directly related to invariant evolutions through our next theorem. Assume

(2.6) ut = W (u, u1, u2, . . . )

ANNALES DE L’INSTITUT FOURIER
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is an evolution of curves invariant under the action of the group. Assume
(2.6) induces an evolution of the form

(2.7) kt = Q(k,k1,k2, . . . )

on a generating system of differential invariants of the flow u(t, x). We say
that (2.6) is a G/H-geometric realization of the flow (2.7).
Assume that g = m ⊕ h and assume ς : G/H → G to be a section that

identifies ToG/H with m. Our following theorem finds geometric realiza-
tions for any Geometric Hamiltonian flow, Hamiltonian with respect to the
reduced Poisson bracket.

Theorem 2.11 ([33]). — Assume that K is described by an affine sub-
space of Lg∗. Let h : K → R be a Hamiltonian functional such that, if
H : Lg∗ → R is an extension of h, constant on the leaves of LH under the
gauge action. Let δH

δL (k) = δH
δL (k)m + δH

δL (k)h be the components defined
by the splitting of the algebra. Then

ut = dΦρ(o)dς(o)−1 δH
δL

(k)m

is a geometric realization of the reduced Hamiltonian system with Hamil-
tonian functional h. Notice that this evolution is of the form (2.2) with

(2.8) δH
δL

(k)m = dς(o)r.

Equation (2.8) is often referred to as the compatibility condition.
To finish this section we will give a brief description of the flat manifold

of pure spinors.

2.3. The manifold of pure spinors

The manifold of pure spinors can be represented as the homogeneous
space O(n, n)/P =M where O(n, n) is defined as the subgroup of GL(2n,R)
preserving the matrix

J =
(
I 0
0 −I

)
.

TOME 61 (2011), FASCICULE 6



2416 Gloria MARÍ BEFFA

In a neighborhood of the identity O(n, n) can be described as matrices
factoring as g = g1g0g−1 with
(2.9)

g1 = g1(Z) =
(
I + Z −Z
Z I − Z

)
, g−1 = g−1(Y ) =

(
I + Y Y

−Y I − Y

)

g0 = g0(Θ) = 1
2

(
Θ + Θ−T Θ−T −Θ
Θ−T −Θ Θ + Θ−T

)
,

where Z and Y are skew symmetric matrices in GL(n), and where Θ ∈
GL(n,R). This factorization follows the gradation of the algebra as in [32].
The parabolic subgroup P is given by P = G1 ·G0, where Gi is the subgroup
of matrices of the form gi. i = 1, 0,−1. Therefore, we can locally identify
O(n, n)/P with skew symmetric matrices (in our notation Y ) in GL(n,R),
or with G−1. This will be our section ς : M → O(n, n) and under this
section, a curve u(x) in O(n, n)/P can be identified with a curve in G−1 of
the form

g−1(u(x)) =
(
I + u(x) u(x)
−u(x) I − u(x)

)
.

Since we are working on a homogeneous manifold, the action of O(n, n) on
M is determined by the relation gg−1(u) = g−1(g · u)h, with g ∈ O(n, n),
g−1(u) and g−1(g · u) ∈ G−1, and h ∈ P . With the factorization given
above, this relation can be written as

1
2

(
I + Z −Z
Z I − Z

)(
Θ + Θ−T Θ−T −Θ
Θ−T −Θ Θ + Θ−T

)(
I + Y Y

−Y I − Y

)(
I + u u

−u I − u

)

= 1
2

(
I + g · u g · u
−g · u I − g · u

)(
I + Ẑ −Ẑ
Ẑ I − Ẑ

)(
Θ̂ + Θ̂−T Θ̂−T − Θ̂
Θ̂−T − Θ̂ Θ̂ + Θ̂−T

)

for some

h = 1
2

(
I + Ẑ −Ẑ
Ẑ I − Ẑ

)(
Θ̂ + Θ̂−T Θ̂−T − Θ̂
Θ̂−T − Θ̂ Θ̂ + Θ̂−T

)
∈ P.

This relation uniquely determines the action. After some calculations we
obtain the formula for the action to be

(2.10) g · u = Θ(u+ Y )
(
Θ−T + 4ZΘ(u+ Y )

)−1
.
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The associated Lie algebra gradation is given by g = g1⊕ g0⊕ g−1, with gi
being the Lie algebra associated to Gi and Vi ∈ gi, i = 1, 0,−1, given by

(2.11)

V1 = V1(z) =
(
z −z
z −z

)
, V−1 = V−1(y) =

(
y y

−y −y

)

V0 = V0(C) = V0(A−B) =
(
A B

B A

)
where z, y, A are skew symmetric matrices, and B is a symmetric matrix.
Notice that −B and A are the symmetric and skew-symmetric components,
respectively, of C = A− B. The commutation relations of the algebra are
given by

[V−1(y), V1(z)] = 4V0(yz), [V1(z), V0(C)] = V1(zC + CT z)

[V0(C), V−1(y)] = V−1(Cy + yCT ).

3. Moving frame and differential invariants
for even spinor curves

3.1. Spinor moving frame

Assume from now on that n = 2m. The study of differential invariants
for even spinors was carried out in [32] through a process of normalization
that can be summarized as follows. Assume g = g1(Z)g0(Θ)g−1(Y ).
Zeroth order normalization. The zero order normalization equation is

simply
g · u = c0 = 0

which is readily solved choosing Y = −u.
First order normalization. The first order normalization equations are

obtained differentiating the action g · u to obtain g · u1, and restricting to
previous normalizations results. The equation is given by

g · u(1) = Θu1
(
Θ−T + 4ZΘ(u+ Y )

)−1

−Θ(u+Y )
(
Θ−T+4ZΘ(u+Y )

)−14ZΘu1
(
Θ−T +4ZΘ(u+ Y )

)−1

= Θu1ΘT = c1 = J.

This equation determines Θ up to an element of the symplectic group
Sp(2m). We write Θ as Θ = θµ for some θ ∈ Sp(2m) to be determined by
later normalizations.
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Second order normalizations. We will now skip some lengthy but straight-
forward calculations. If we differentiate once more the action and substitute
the values we have obtained in previous normalizations we obtain the sec-
ond normalization equation to be

(3.1) g · u(2) = Θu2ΘT − 8JZJ = c2 = 0.

This equation solves for Z in terms of Θ, which we still have to determine
completely. That is

(3.2) Z = 1
8JΘu2ΘTJ.

Third order normalizations. These equations are again obtained differ-
entiating a third time and substituting previous values of the frame. It is
given by

(3.3) g · u(3) = θµ
(
u3 −

3
2u2u

−1
1 u2

)
µT θT = c3

We call

(3.4) S(u) = µ
(
u3 −

3
2u2u

−1
1 u2

)
µT

the skew-symmetric Schwarzian derivative of u, unique up to the action of
an element of the symplectic group. Notice that µu1µ

T = J and so µ can
be viewed as a skew-symmetric square root of u1. The expression S(u) is
the skew-symmetric version of the Lagrangian Schwarzian derivative, first
introduced by V. Ovsienko in [35]. The normal form of a skew-symmetric
matrix S under this action of Sp(2m) is

θSθT = D =
(

0 D
−D 0

)
where, if ±aki are the eigenvalues of S, then D is the diagonal matrix
having ak down the diagonal (see [32] for details). We choose c3 = D for
the choice S = S(u).

The differential invariants of a generic curve in O(2m, 2m)/H have all
order three or higher and the entries of the matrix D generate all differential
invariants of third order for u. We call the entries of D the differential
invariants of projective or Schwarzian Stype for curves in O(2m, 2m)/H.
They clearly satisfy property (1.1). For more details, please see [32].
Fourth order normalization equations. The isotropy subgroup of D is

given by elements of Sp(2m) with a factorization of the form

d =
(
I D1
0 I

)(
D2 0
0 D−T2

)(
I 0

D3 I

)
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where the three matrices Di, i = 1, 2, 3 are diagonal. They are the part of
the moving frame still to be determined. The fourth normalization equa-
tions, after simplifications, are given by
(3.5)
g·u(4) = dθµ

(
u4 − 2(u3u

−1
1 u2 + u2u

−1
1 u3) + 3u2u

−1
1 u2u

−1
1 u2

)
µT θT dT= c4.

If m > 3, a total of 3m normalizations can be performed in (3.5). That
means we will have 3m fifth order differential invariants appearing in the
positions of ρ · u(5) corresponding to the normalized positions chosen in
ρ · u(4). This implies the existence of m third order invariants, 2m(m− 2)
fourth order invariants and 3m fifth order invariants.
If m 6 3 one needs to go higher to normalize entries in the fifth order

normalization equations. In those cases we also obtain sixth order invariants
corresponding to the normalized fifth order entries in ρ · u(5) as located in
ρ · u(6). For m = 1 we are in the RP1 case. For m = 2 one can check that
we have two differential invariants of projective type, two of fifth order
and two of sixth order. For m = 3 one has three third order differential
invariants, four fourth order ones, seven fifth order and one sixth order. For
more details, please see [32].
The next section describes the Maurer-Cartan matrix associated to this

moving frame. This matrix was also described in [32], but here we will use
a different, more effective, method to find it.

3.2. Serret-Frenet equations
and a generating set of differential invariants

One could, in principle, attempt to find the Maurer-Cartan matrix di-
rectly; after all ρxρ−1 = K and we have determined ρ above. This is what
we did in [32]. Instead we will relate the entries of K to the normalization
equations and hence to the normalization constants. This way we obtain
directly the matrix K without having to differentiate ρ, while we illus-
trate the use of the recursion relations (2.1) in the proof of the theorem.
Different choices of normalization equations yield different shapes of the
Maurer-Cartan matrix. If one wants to do any type of further study of
invariants, having Serret-Frenet equations that are as simple as possible
is essential (our choice of normalization constants was done with this in
mind).

Theorem 3.1. — Let u be a generic curve in O(2m, 2m)/H. Let ρ
be the moving frame determined above. Then, the (left-invariant) Serret-
Frenet equations associated to ρ are given by ρ(ρ−1)x = −ρxρ−1 = K, with
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K equals

(3.6) K = V−1(J) + 1
8V1(D) + V0(K0),

and where K0 is of the form

(3.7) K0 =
(
R1 R2
R3 −RT1

)
∈ Sp(2m)

with R2 and R3 symmetric. The matrix R contains in the entries off the
diagonals of Ri, i = 1, 2, 3, a generating set of independent fourth order
differential invariants and also 3m normalized (constant) entries. The di-
agonals of Ri, i = 1, 2, 3 contain a set of 3m independent and generating
differential invariants of order 5 for m > 3 and of order 5 and higher if
m 6 3.

Proof. — Using Theorem 2.1 together with the normalizations used in
the previous section we can completely determine K. Let V = V1(z) +
V0(C) + V−1(y) be any element of the Lie algebra given as in (2.11). The
action (2.10) and its prolongations induce an infinitesimal action of the Lie
algebra on u given by

V · u = Cu+ uCT − 4uzu+ y

V · u(1) = Cu1 + u1C
T − 4(u1zu+ uzu1).

V · u(2) = Cu2 + u2C
T − 4 · 2u1zu1 + F2

V · u(3) = Cu3 + u3C
T − 4 · 3(u2zu1 + u1zu2) + F3,

where F2 and F3 are terms that vanish whenever u = 0. Assume K =
V1(K1) + V0(K0) + V−1(K−1) and recall that c0 = 0, c1 = J , c2 = 0,
c3 = D and c4 has fourth order independent invariants off its diagonals,
except for 3m normalized constant entries.
Then, according to (2.1) for r = 0, the matrix K must satisfy the equa-

tion

(3.8) K0c0 + c0K
T
0 − 4c0K1c0 +K−1 = K−1 = c1 = J.

For r = 1, K must satisfy

(3.9) K0c1 + c1K
T
0 = K0J + JKT

0 = c2 = 0.

This requires K0 to be symplectic.
For r = 2, K satifies

(3.10) K0c2 + c2K
T
0 − 8c1K1c1 = −8JK1J = c3 = D.

From here we obtain K1 = 1
8D.

ANNALES DE L’INSTITUT FOURIER



MOVING FRAMES AND GEOMETRIC BRACKETS 2421

If r = 3, we get

(3.11) K0c3 + c3K
T
0 − 12(c2K1c1 + c1K1c2) = K0D+DKT

0 = c4 − (c3)x.

If we denote
K0 =

(
R1 R2
R3 −RT1

)
with R2 and R3 symmetric, then

K0D +DKT
0 =

(
DR2 −R2D R1D−DR1
RT1 D−DRT1 R3D−DR3

)
= c4 − (c3)x.

This system allows us to solve for all entries in K0, other than those in
the diagonals of Ri. These determined entries are fourth order independent
generators and 3m normalized entries. Notice that from this equation we
can also conclude that the block diagonals of c4 and (c3)x are equal, since
the LHS of the equation has vanishing diagonals. For simplicity we are
using c4 and I4 interchangeably. Since not all entries in I4 are normalized
we should use I4 instead of c4. This should create no confusion, these entries
are either constant or differential invariants.
We have now found all possible entries other than the diagonals of Ri, i =

1, 2, 3. But we know two important facts: there are 3m fifth (or higher) order
(functionally) independent and generating differential invariants that have
not been found yet, and the entries of K generate all possible differential
invariants. Hence, we can conclude that the remaining entries in the block
diagonals of K0 are fifth (or higher) order independent generators.
The proof of the Theorem is now concluded. �

4. De-coupled KdV Hamiltonian structures
and the Schwarzian-KdV evolution of even pure spinors

The original Schwarzian-KdV evolution is an evolution for maps u : R→
R described by the equation

(4.1) ut = uxS(u)

where S(u) = uxxx

ux
− 3

2

(
uxx

ux

)2
is the Schwarzian derivative of u. This evo-

lution is invariant under the projective group PSL(2,R) and so it can be
written as an evolution of S(u), which is the generating projective differen-
tial invariant. If we call k = S(u), then whenever u satisfies (4.1), k satisfies
the KdV equation (hence the name)

kt = kxxx + 3kkx.
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This evolution was generalized to curves of Lagrangian subspaces in R2n

(under the action of the symplectic group) in [29]. In the Lagrangian case,
Ovsienko ([35]) defined the Schwarzian derivative of a curve of Lagrangian
planes. In [29] we proved that its eigenvalues generate all Lagrangian differ-
ential invariants of projective type. We defined the Schwarzian-KdV evo-
lution for Lagrangian planes and we proved that, as non-projective type
invariants vanished and if u evolved following the Schwarzian-KdV evolu-
tion, the projective-type invariants evolved following a decoupled system of
KdV equations. Furthermore, for a particular choice of normalization con-
stants (the equivalent of a particular choice of invariants), as non-projective
differential invariants vanished, the Lagrangian geometric Poisson bracket
restricts to a decoupled system of KdV Poisson structures. That is, La-
grangian projective differential invariants constitute a Poisson submanifold
of K.
In [32] we showed that no local choice of moving frame produces these

integrable evolutions in the pure even spinor case (by local we mean depend-
ing on u and its derivatives, as are the results of a normalization process).
Indeed, we showed that no matter what choice of normalization equations
we have, the only constant values of non-projective differential invariants
that could be preserved by the flow are zeroes. And as the non-projective
invariants vanish, the evolution of the projective invariants blows up. In this
section we will show that there exists a non-local choice of moving frame
such that the Lagrangian situation can be replicated also in the manifold
of pure spinors. This non-local moving frame will effectively remove the
higher order invariants from the diagonals of the matrix K0 and will place
invariants in the current normalized entries. That way all entries of K0,
other than the constant diagonals, will be generators.

4.1. Non-local moving frame

In this section we will prove that there exists a non-local element of the
group, we will call it g, such that when we gauge the matrix K by g, we ob-
tain a Maurer-Cartan matrix Kn with vanishing diagonals in the Ri blocks.
The entries of the Maurer-Cartan matrix will still form a basis for the differ-
ential invariants meaning that all other differential invariants are functions
of the derivatives of the non-local ones. The fifth order invariants placed
in those diagonals will be transformed and moved into the 3m normalized
entries in R, while the other entries will also be modified. Furthermore, Kn

will also form an affine subspace of g. We remark here that given a random
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non-local gauge, there is no guarantee that the new Maurer-Cartan matrix
will have generating entries (the result in [22] applies only to moving frames
generated by local normalizing sections. Although the result could be also
true for a general gauge, no such theorem has been proven yet). Therefore,
once we gauge, generating properties need to be re-checked.

Lemma 4.1. — There exists an element g, not necessarily in LG, but
perhaps with a monodromy, such that

g−1gx + g−1Kg

has g0-component with vanishing diagonals.

Proof. — Let Θd be a matrix of the form

(4.2) Θd =
(
I 0
d3 I

)(
d1 0
0 d−1

1

)(
I d2
0 I

)
where di are diagonal matrices to be determined. The element g will pre-
serve both V−1(J) and V1(D), and a straightforward calculation shows that
if K is given as in (3.6), and g = g0(Θd) as in (2.9), then

g−1gx + g−1Kg = V−1(J) + 1
8V1(D) + V0(Kn)

where Kn = Θ−1
d K0Θd + Θ−1

d (Θd)x. The matrix Kn can be written explic-
itly as

Kn =
(
Y d2Y + d−1

1 (d1d2)x + d−1
1
(
d2(R1d1 + d1d3R2) + d−1R2

)
X −Y

)
where X = −d2

1
(
(d3)x +R3 + d3(R1 +RT1 ) + d2

3R2
)
and Y = −d2X +

d−1
1 (d1)x +R1 + d3R2.
If we want the diagonals of Kn to vanish, we need di to satisfy the

differential equations

(d1)x +
(
Rd1 +Rd2d3

)
d1 = 0

(d2)x +Rd2d
−2
1 = 0

(d3)x +Rd3 + 2Rd1d3 +Rd2d
2
3 = 0

where Rdi represents the diagonal component of the matrix Ri. This system
is clearly (non-locally) solvable since the last equation is a Riccati equation,
and once it is solved the other two can be trivially and explicitly integrated.
This system can also we written as block-diagonals of the system (Θd)x +
K0Θd = 0. �
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Theorem 4.2. — If di, i = 1, 2, 3, are chosen as solutions of the system
above, the Maurer-Cartan matrix Kn = g−1gx + g−1Kg has vanishing
diagonals and its entries generate all differential invariants of even spinor
curves. Furthermore, Kn describes an affine subspace of o(2m, 2m).

Proof. — We chose the equations to ensure that the diagonals vanish,
but we still need to show that the remaining matrix has generating entries
and forms an affine subspace. Recall that

ρ−1 · u4 = c4

and recall that c4 has 3m normalizing constants in its entries. This nor-
malizations were achieved through the equation (3.5)

dS4d
T = c4

where S4 depends uniquely on derivatives of u, and where d is of the same
type as Θd (that is, block diagonal). The normalizations in c4 were chosen
to ensure that this equation has full rank on d, that is, to guarantee that
d is uniquely determined by the normalizing equations. This also implies
that if we use the normalization entries in d−1c4d

−T = JdTJc4JdJ , or in
dTJc4Jd, one should be able to solve for all non-constant entries of d.
The recursion relation (3.11) can be re-written as

[K0, JD] = J(c4 −Dx).

If we conjugate by Θd as in (4.2), and using that Θ−1
d = −JΘT

d J , after
some short calculations we obtain

[Θ−1
d K0Θd, JD]J = Dx + JΘT

d c4ΘdJ = Dx + Θ−1
d Jc4JΘ−Td .

Therefore, if the normalized entries in ΘT
d Jc4JΘd generate all entries of

Θd, so do the ones located on the other side of the equality. Notice that the
invariants in D are located in the diagonals of the Maurer-Cartan equation,
while c4 is normalized off-diagonals. They do not interfere in the functional
generation of the entries of Θd. Notice also that we are choosing d = Θ−Td
to make this argument. From here we conclude that using the normalized
entries of Θ−1

d K0Θd and the entries of D, we can generate all the invariants
that Θd generates.

Finally, we can readily check that using the non-normalized entries in the
different blocks of Θ−1

d K0Θd, and using the already generated D and Θd,
we can also functionally generate all other invariants. Indeed, if Θ−1

d K0Θd

and Θd are both known, we can certainly generate K0 off the diagonals.
Therefore, all off-diagonal entries will be generators, and since the are the
same in number as the previous basis of non-projective invariants, they are
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also functionally independent. Together with D they form a basis for the
space of invariants and, therefore Kn generates an affine subspace. �

Now that we have the proper Serret-Frenet equations, we can prove that
the Geometric Poisson structure restricts to the manifold of projective-
type differential invariants (defined by D) as K0 → 0. Notice that we will
understand this as a limit statement since K0 = 0 is geometrically not well-
defined. Additionally, once we solve for Θd, the resulting invariants are not
periodic any longer, but they rather have a monodromy element associated
to them. Therefore, the remaining results should be understood as algebraic
formal statements. This same situation took place in the conformal case
([32]) when natural non-local frames were chosen and some of the invariants
were made to vanish.

Theorem 4.3. — Let {, }R be the Geometric Poisson bracket obtained
when we reduce the bracket (2.3) to the affine subspace K defined by ma-
trices K as in (3.6) with R = Rn defined by the non-local gauge. Then,
the bracket restricts to the K-submanifold K0 = 0 to produce a decou-
pled system of KdV-Hamiltonian structures. Furthermore, for the choice
L0 = V1(J), the bracket (2.4) reduces also to the K-submanifold K0 = 0
to produce a second compatible Hamiltonian structure for KdV.

Proof. — Since we do know that structure (2.3) reduces to K, and any
gauged transformation of it will do so, we simply need to show that the
reduction can be restricted to K0 = 0. For that we assume f, h : K → R to
be two Hamiltonian functionals with f depending on the entries of D only
and h being independent of D. We will show that their bracket at K0 = 0
vanishes. After this, we will calculate the bracket of two Hamiltonians that
depend on the entries of D only. The result will be the restriction of the
Geometric Poisson bracket to D.
Using Theorem 2.10, we can describe how the geometric Poisson bracket

is defined. As with any quotient reduction, since K ∼= U/LP the reduced
Poisson bracket is explicitly obtained extending the Hamiltonian function-
als f, h to operators on U ⊂ Lg∗ that are constant on the leaves of LP . If H
is such an extension of h, infinitesimally the extension property translates
into

(4.3)
(
δH
δL

(L)
)
x

+ [K, δH
δL

(L)] ∈ p0

(similarly with f), where p is the parabolic algebra (it corresponds to y = 0
in (2.11)) and p0 is its annihilator. Here we will use the trace of the product
as our invariant bilinear form, and hence we are identifying the dual of the
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algebra with the algebra itself (the dual of the entry (i, j) will be the entry
(j, i)). Therefore, p0 corresponds to a vanishing −1 and 0 component; that
is, y = 0, C = 0 in (2.11). If we split both K and δH

δL (L) according to
the gradation, δHδL (L) = V−1(H−1) + V0(H0) + V1(H1), then equation (4.3)
becomes

(H−1)x − JH
T
0 −H0J = 0(4.4)

(H0)x −
1
2H−1D − 4JH1 = 0(4.5)

where we are already assuming K0 = 0 already. Along the proof we will
see that restricting to K0 = 0 early on does not alter the result since the
rank of our equations is maximal and remains so as K0 vanishes.

Assume first that f depends only on D. Let F is any extension constant
on the leaves of LP , and assume we decompose F0 into symplectic and
non-symplectic part (F s0 = 1

2 (F0 + JFT0 J) and Fns0 = 1
2 (F0 − JFT0 J)).

Then, since off-diagonal elements in K0 are all of order higher than three
invariants and f is independent from K0, we can conclude that F s0 is block-
diagonal. Furthermore, we can also conclude that F−1 = δ̃f + f−1, where

δ̃f =
(

0 −δf
δf 0

)
with δf = diag( δfδki

), while f−1 has zero block-diagonals. Let us use (4.4)
for F . The first equation can be written as

2Fns0 J = (F−1)x.

The second equation splits into symplectic and non symplectic components.
They are given by

(Fns0 )x + 4JF1 −
1
4(F−1D − JDF−1J) = 0

(F s0 )x −
1
4(F−1D + JDF−1J) = 0.

Now, since F s0 is block diagonal, the second equation implies f−1 = 0 (and
as a consequence Fns0 = − 1

2 (δ̃f)xJ). The second equation also solves for
the block-diagonal F s0 , namely

F s0 = 1
4( d
dx

)−1 (δ̃fD − Jδ̃fDJ) = C

since all D, δ̃f and J commute. The matrix C is constant, and block diag-
onal. Notice that CTD − DC = 0. On the other hand, the first equation
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solves for F1, which is given by

F1 = 1
8(δ̃f)xx −

1
8Jδ̃fD.

Notice that the +1 component of the equation (4.3) will now be given by

(F1)x + 1
8(F0D +DFT0 ) = −1

8
(
(−δ̃f)xxx + J(δ̃fD)x + J(δ̃f)xD

)
.

This matrix is block-diagonal, with (1, 2) block given by 1
8

(
(δf)xxx +

(Dδf)x +(δf)xD
)
.

Assume next that h does not depend on D. This will imply that H−1
has zero diagonal in the (1, 2) and (2, 1) blocks. On the other hand, the
reduced bracket is defined as

{f, h}R(k) =
∫
S1

tr
((

(F1)x + 1
8(F0D +DFT0 )

)
H−1

)
dx.

This bracket vanishes since H−1 has zero diagonals, while its companion is
diagonal.
Finally, if both f and h depend on D only, then their bracket becomes

{f, h}R(k) =
∫

tr
((

(F1)x + 1
16(F0D +DFT0 )

)
H−1

)
dx

= −1
8

∫
S1

(
−(δ̃f)xxx + J

(
δ̃fD

)
x

+ J(δ̃f)xD
)
δ̃h dx.

whose block-diagonal defines the decoupled system of KdV structures
− 1

4
(
d
dx3 + D d

dx + d
dxD

)
for the entries of D.

The second bracket (2.4) can be seen to reduce directly. If we calculate
the bracket of two functionals using the extensions as above, we obtain

{f, h}0(k) =
∫

tr
(
δF
δL

(L)[V1(J), δH
δL

(L)]
)
dx = 3

∫
tr ((δf)xδh) dx.

This is a decoupled system of the KdV Poisson structures d
dx , companion

to our previous Hamiltonian structure. �

Finally, we will define the Schwarzian-KdV evolution for spinor curves
and we will show that, as K0 → 0, the evolution induced on D by the curve
evolution becomes indeed a decoupled system of KdV equations.
Consider the differential equation

(4.6) ut = u3 −
3
2u2u

−1
1 u2.

We call this equation the Spinor Schwarzian-KdV evolution.

TOME 61 (2011), FASCICULE 6



2428 Gloria MARÍ BEFFA

Theorem 4.4. — Let u(t, x) be a flow solution of the Schwarzian-KdV
evolution. Then, the level setRn = 0 is preserved by this evolution. Further-
more, let D be the diagonal matrix representing the invariants of projective-
type for the flow. If Rn → 0, then D satisfies

Dt = −1
2Dxxx + 3DxD,

that is, a decoupled system of KdV equations.

We can rephrase this theorem as stating that (4.6) is a spinor realization
of a de-coupled system of KdV equations, as far as we restrict the initial
conditions to the submanifold K0 = 0.

Proof. — The first step of this proof is to check that the spinor Schwar-
zian-KdV equation can be written as

(4.7) ρ̃−1
−1(ρ̃−1)t = Ad(ρ̃0)r

where r = V−1(D) ∈ g−1, and where ρ̃ = ρ̃−1ρ̃0ρ̃1 is the splitting of the
left moving frame according to the factorization inverse to (2.9). Indeed, a
straightforward conjugation shows us that

ρ̃−1
−1(ρ̃−1)t = (V−1(u))t = Ad(ρ̃0)r = −V−1(Θ−1DΘ−T )

where we have used that the left moving frame is the inverse to the right
moving frame, and hence ρ̃0 = g0(Θ−1), Θ defining the right moving frame.
Notice that Θ is found gauging the one we originally found using normal-
izations. We are abusing notation here when we denote both local and
non-local factors with the same letter. We hope this will not be confusing.
Recall that Θ was chosen to satisfy the first and third order normalization

equations

Θu1ΘT = J, Θ
(
u3 −

3
2u2u

−1
1 u2

)
ΘT = D

And since the gauge preserved these components, the same condition is
true for the non-local Θ. From here,

ut = Θ−1DΘ−T = u3 −
3
2u2u

−1
1 u2.

Finally, we need to use the compatibility conditions (2.8), proved in [30].
We can conclude that the evolution induced on the Maurer-Cartan matrix
by (4.7) is the reduced Hamiltonian evolution with V−1(δ̃h) = r = V−1(D),
or δh = D.
Finally, the level K0 = 0 is preserved by the Schwarzian-KdV equation

because it is preserved by the corresponding Hamiltonian evolution, as we
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saw before. When r = V−1(D) we obtain a decoupled system of KdV
equations.
The process relating invariant evolutions to geometric Hamiltonians is

general for any invariant evolution. But we can also calculate directly the
evolution of the invariants. Although this is not necessary for the proof of
this theorem, it will be convenient in the proof of our next theorem and it
will clarify our previous comment.

Assume N = ρ̃−1ρ̃t, where ρ̃ = ρ−1 is the left moving frame (ρ is the
right one as previously given), and where ρ̃t is induced on ρ̃ by (4.6). Since
K = ρ̃−1ρ̃x, compatibility conditions (or the horizontal component of the
pullback by ρ̃ of the structure equations) are given by

Kt = Nx + [K,N ].

This equation splits according to gradation as

V−1(J)t = 0 = (V−1(N−1))x + [V−1(J), V0(N0)] + [V0(K0), V−1(N−1)]
(V0(K0))t = (V0(N0))x + [V0(K0), V0(N0)] + [V−1(J), V1(N1)]

+ [V1(K1), V−1(N−1)]
(V1(K1))t = (V1(N1))x + [V1(K1), V0(N0)] + [V0(K0), V1(N1)].

As K0 → 0 (an assumption we make from now on), the first equation
become

0 = (N−1)x − (N0J + JNT
0 ),

and if we split N0 = Ns
0 + Nns

0 into symplectic and non-symplectic parts,
then

(4.8) Nns
0 = −1

2(N−1)xJ.

The second equation can be written as

(4.9) (K0)t = (N0)x + [K0, N0]− 1
2N−1D + 4JN1.

Let us assume that N−1 is block diagonal (we will show shortly it indeed
is). Using the non-symplectic part of (4.9), we get

0 = (Nns
0 )x −

1
2N−1D + 4JN1

which solves for N1

(4.10) N1 = −1
8 (J(N−1)xxJ + JN−1D) .

The third equation can be written as

(4.11) 1
8Dt = (N1)x + 1

8(DN0 +NT
0 D),
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and from here we can conclude: 1) Ns
0 is block diagonal; and 2) D evolves

according to
Dt = (N−1)xxx − (N−1D)x − (N−1)xD.

This results on our decoupled system of KdV whenever N−1 = r = D.
Indeed, the author proved in [30] that, if we use our formulation for the
curve evolutions, then N−1 = r for any Hermitian symmetric case.

Using this data in the symplectic component of (4.9) we conclude that
(K0)t = 0 and, therefore, K0 = 0 is preserved by the evolution. We also
conclude

(4.12) Ns
0 = C

where C is constant and block diagonal. The value of C will depend on the
initial conditions. �

Notice that the proof of this theorem shows that, assuming initial con-
ditions are restricted to vanishing non-projective invariants, for any choice
of block-diagonal r, the equation ut = Θ−1rΘ−T is a spinor realization of
the Hamiltonian system with Hamiltonian operator δh = r. In this sense
there is nothing special about the choice r = D. Notice also that, since
both brackets preserve the level set K0 = 0, the other brackets in the cor-
responding hierarchy will also preserve it. Indeed we obtained an entire
hierarchy of Poisson brackets defined by the associated recursion operator,
which is a decoupled system of recursion operators for KdV. Each evolution
in the hierarchy is obtained from the first Poisson bracket using different
Hamiltonians hk, where these Hamiltonians are generated using the recur-
sion operator. It suffices to choose r to be δhk for those Hamiltonians to
obtain the Hamiltonian evolution. It is clear that those evolutions all pre-
serve K0 = 0 because δhk will all be block diagonal. Observe also that
choosing r = δhk means we are defining spinor geometric realizations for
the entire hierarchy of this decoupled system of KdV equations.

Theorem 4.5. — Let Z be given by the right moving frame. Then, as
K0 → 0

(4.13) D = 8(−Zx + 4ZJZ),

and if u evolves according to (4.6), then Z satisfies the following system

(4.14) Zt = Zxxx − 42 · 3(ZJZJZx + ZxJZJZ) + [Z,C]

where C is given by (4.12).

If [Z,C] = 0 (for example, when C = 0), then Z evolves following a
noncommutative and skew-symmetric modified KdV system. In that case,
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we call the transformation (4.13) the spinor Miura transformation. Notice
that the appearance of C cannot be avoided as Z = 1

8JΘu2ΘTJ does not
need to be block diagonal. C appears once non-local terms are introduced.
Proof. — We can use directly the fact that K = −ρxρ−1 and N =

−ρtρ−1, and the definition of ρ to find the following relations

K0 = −4JZ −ΘxΘ−1

K1 = −Zx − 4ZJZ − ZΘxΘ−1 − (ΘxΘ−1)TZ
N−1 = r

N0 = −4rZ −ΘtΘ−1

N1 = −Zt − 4ZrZ − ZΘtΘ−1 − (ΘtΘ−1)TZ.

As K0 → 0 we also have relations (4.8), (4.10) and (4.12). If K0 = 0, we
can use the first equation to obtain ΘxΘ−1 = −4JZ and from here get an
expression for K1, namely

K1 = −Zx + 4ZJZ.

Since K1 = 1
8D, this gives the transformation (4.13). The evolution for

Z can equally be found from the last equation using (4.10). After a short
simplification one gets

Zt = −4ZJrJZ − 1
2(ZJrx + rxJZ)− 1

8(rxx − rJr) + [Z,C]

where we are assuming r is block diagonal so that it commutes with J . Now,
one only needs to choose r = D = 8K1 = 8(−Zx + 4ZJZ) and substitute
it in this equation to obtain the final equation (4.14). �

Notice that our first geometric Poisson bracket, when written in terms of
Z, is not equal to the expected bracket defined by the operator d

dx . In fact,
if d
dx was indeed the operator when written in terms of Z, the operator in

terms of the invariants D would be given by
δD
δZ

d

dx

δD
δZ

∗
.

Using δD
δZ = 8(− d

dx + 4(ZJ + JZ)) and after straightforward calculations,
one can see that this operator becomes a multiple of

− d3

dx3 + JD d

dx
+ J

d

dx
D +W [JZ − ZJ ]

where the functionW [x] vanishes only at zero. That is, the Poisson bracket
reduces to the expected Poisson bracket for Z only if Z commutes with J .
To understand how these brackets written in terms of invariants relate

to the Lax representation of these integrable systems we refer the reader to
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[5], where the relation between AKNS representations and moving frames
is explained.
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