Hussein MOURTADA

Jet schemes of complex plane branches and equisingularity

<http://aif.cedram.org/item?id=AIF_2011__61_6_2313_0>
JET SCHEMES OF COMPLEX PLANE BRANCHES
AND EQUISINGULARITY

by Hussein MOURTADA (*)

Abstract. — For \(m \in \mathbb{N} \), we determine the irreducible components of the \(m \)-th Jet Scheme of a complex branch \(C \) and we give formulas for their number \(N(m) \) and for their codimensions, in terms of \(m \) and the generators of the semigroup of \(C \). This structure of the Jet Schemes determines and is determined by the topological type of \(C \).

1. Introduction

Let \(K \) be an algebraically closed field. The space of arcs \(X_\infty \) of an algebraic \(K \)-variety \(X \) is a non-Noetherian scheme in general. It has been introduced by Nash in [10]. Nash has initiated its study by looking at its image by the truncation maps \(X_\infty \to X_m \) in the jet schemes of \(X \). The \(m \)-th jet scheme \(X_m \) of \(X \) is a \(K \)-scheme of finite type which parametrizes morphisms \(\text{Spec} \ K[t]/(t)^{m+1} \to X \). From now on, we assume \(\text{char} \ K = 0 \).

In [10], Nash has derived from the existence of a resolution of singularities of \(X \), that the number of irreducible components of the Zariski closure of the set of the \(m \)-truncations of arcs on \(X \) that send 0 into the singular locus of \(X \) is constant for \(m \) large enough. Besides a theorem of Kolchin asserts that if \(X \) is irreducible, then \(X_\infty \) is also irreducible. More recently,

Keywords: Jet schemes, singularities of plane curves.
Math. classification: 14E18, 14B05.
(*) I would like to express all my gratitude to Monique Lejeune-Jalabert, without whom this work would not exist. I also would like to thank the referee for his careful reading and comments.
the jet schemes have attracted attention from various viewpoints. In [9], Mustata has characterized the locally complete intersection varieties having irreducible X_m for $m \geq 0$. In [2], a formula comparing the codimensions of Y_m in X_m with the log canonical threshold of a pair (X, Y) is given. In this work, we consider a curve C in the complex plane \mathbb{C}^2 with a singularity at 0 at which it is analytically irreducible (i.e. the formal neighborhood $(C, 0)$ of C at 0 is a branch). We determine the irreducible components of the space $C_m^0 := \pi_m^{-1}(0)$ where $\pi_m : C_m \rightarrow C$ is the canonical projection, and we show that their number is not bounded as m grows. More precisely, let x be a transversal parameter in the local ring $\mathcal{O}_{\mathbb{C}^2, 0}$, i.e. the line $x = 0$ is transversal to C at 0 and following [2], for $e \in \mathbb{N}$, let

$$\text{Cont}_e(x)_m (\text{resp. Cont}_{>e}(x)_m) := \{ \gamma \in C_m \mid \text{ord}_x \circ \gamma = e(\text{resp.} > e) \},$$

where Cont stands for contact locus. Let $\Gamma(C) = < \bar{\beta}_0, \cdots, \bar{\beta}_g >$ be the semigroup of the branch $(C, 0)$ and let $e_i = \gcd(\bar{\beta}_0, \cdots, \bar{\beta}_i)$, $0 \leq i \leq g$. Recall that $\Gamma(C)$ and the topological type of C near 0 are equivalent data and characterize the equisingularity class of $(C, 0)$ as defined by Zariski in [13]. We show in theorem 4.9 that the irreducible components of C_m^0 are

$$C_{m\kappa_1} = \text{Cont}^{\kappa \bar{\beta}_0}(x)_m,$$

for $1 \leq \kappa$ and $\kappa \bar{\beta}_0 + e_1 \leq m$,

$$C_{m\kappa_2}^{j} = \text{Cont}^{\kappa \bar{\beta}_j}(x)_m$$

for $2 \leq j \leq g, 1 \leq \kappa, \kappa \neq 0 \mod \frac{e_j - 1}{e_j}$ and $\kappa \bar{\beta}_0 \bar{\beta}_1 + e_1 \leq m < \kappa \bar{\beta}_j$,

$$B_m = \text{Cont}^{> \bar{\beta}_0 \bar{\beta}_1 \bar{\beta}_1 \cdots}(x)_m,$$

if $q \bar{\beta}_0 + \bar{\beta}_1 + e_1 \leq m < (q + 1)n_1 \bar{\beta}_1 + e_1$.

These irreducible components give rise to infinite and finite inverse systems represented by a tree. We recover $< \bar{\beta}_0, \cdots, \bar{\beta}_g >$ from the tree and the multiplicity $\bar{\beta}_0$ in corollary 4.13, and we give formulas for the number of irreducible components of C_m^0 and their codimensions in terms of m and $(\bar{\beta}_0, \cdots, \bar{\beta}_g)$ in proposition 4.7 and corollary 4.10. We recover the fact coming from [2] and [6] that

$$\min_m \frac{\text{codim}(C_m^0, C_m^2)}{m + 1} = \frac{1}{\bar{\beta}_0} + \frac{1}{\bar{\beta}_1}.$$

The structure of the paper is as follows: The basics about Jet schemes and the results that we will need are presented in section 2. In section 3
we present the definitions and the results we will need about branches. The last section is devoted to the proof of the main result and corollaries.

2. Jet schemes

Let \mathbb{K} be an algebraically closed field of arbitrary characteristic. Let X be a \mathbb{K}–scheme of finite type over k and let $m \in \mathbb{N}$. The functor $F_m : \mathbb{K} \text{– Schemes} \rightarrow \text{Sets}$ which to an affine scheme defined by a \mathbb{K}–algebra A associates

$$F_m(\text{Spec}(A)) = \text{Hom}_K(\text{Spec}A[t]/(t^{m+1}), X)$$

is representable by a \mathbb{K}–scheme X_m [12]. X_m is the m–th jet scheme of X, and F_m is isomorphic to its functor of points. In particular the closed points of X_m are in bijection with the $\mathbb{K}[t]/(t^{m+1})$ points of X.

For $m, p \in \mathbb{N}, m > p$, the truncation homomorphism $A[t]/(t^{m+1}) \rightarrow A[t]/(t^{p+1})$ induces a canonical projection $\pi_{m,p} : X_m \rightarrow X_p$. These morphisms clearly verify $\pi_{m,p} \circ \pi_{q,m} = \pi_{q,p}$ for $p < m < q$.

Note that $X_0 = X$. We denote the canonical projection $\pi_{m,0} : X_m \rightarrow X_0$ by π_m.

Example 2.1. — Let $X = \text{Spec} \frac{\mathbb{K}[x_0, \ldots, x_n]}{(f_1, \ldots, f_r)}$ be an affine \mathbb{K}–scheme. For a \mathbb{K}-algebra A, to give a A-point of X_m is equivalent to give a \mathbb{K}–algebra homomorphism

$$\varphi : \frac{\mathbb{K}[x_0, \ldots, x_n]}{(f_1, \ldots, f_r)} \rightarrow A[t]/(t^{m+1}).$$

The map φ is completely determined by the image of $x_i, i = 0, \cdots, n$

$$x_i \mapsto \varphi(x_i) = x_i^{(0)} + x_i^{(1)}t + \cdots + x_i^{(m)}t^m$$

such that $f_l(\varphi(x_0), \ldots, \varphi(x_n)) \in (t^{m+1}), l = 1, \cdots, r$.

If we write

$$f_l(\varphi(x_0), \cdots, \varphi(x_n)) = \sum_{j=0}^{m} F_l^{(j)}(x^{(0)}, \cdots, x^{(j)}) t^j \mod (t^{m+1})$$

where $x^{(j)} = (x_0^{(j)}, \cdots, x_n^{(j)})$, then

$$X_m = \text{Spec} \frac{\mathbb{K}[x_0^{(0)}, \ldots, x_n^{(m)}]}{(F_l^{(j)})_{j=0,\ldots,m}}$$
Example 2.2. — From the above example, we see that the m-th jet scheme of the affine space A^n_K is isomorphic to $A^{(m+1)n}_K$ and that the projection $\pi_{m,m-1} : (A^n_K)_m \to (A^n_K)_{m-1}$ is the map that forgets the last n coordinates.

Let $\text{char}(K) = 0$, $S = K[x_0, \ldots, x_n]$ and $S_m = K[x^{(0)}, \ldots, x^{(m)}]$. Let D be the K-derivation on S_m defined by $D(x^{(j)}) = x^{(j+1)}$ if $0 \leq j < m$, and $D(x^{(m)}) = 0$. For $f \in S$ let $f^{(1)} := D(f)$ and we recursively define $f^{(m)} = D(f^{(m-1)})$.

Proposition 2.3. — Let $X = \text{Spec}(S/(f_1, \ldots, f_r)) = \text{Spec}(R)$ and $R_m = \Gamma(X_m)$. Then

$$R_m = \text{Spec}(K[x^{(0)}, \ldots, x^{(m)}]/(f^{(j)})_{j=0, \ldots, m, i=1, \ldots, r}).$$

Proof. — For a K-algebra A, to give an A-point of X_m is equivalent to give an homomorphism

$$\phi : K[x_0, \ldots, x_n] \to A[t]/(t^{m+1})$$

which can be given by

$$x_i \to x^{(0)}_i/0! + x^{(1)}_i/1! t + \cdots + x^{(m)}_i/m! t^m.$$

Then for a polynomial $f \in S$, we have

$$\phi(f) = \sum_{j=0}^{m} \frac{f^{(j)}(x^{(0)}, \ldots, x^{(j)})}{j!} t^j.$$

To see this, it is sufficient to remark that it is true for $f = x_i$, and that both sides of the equality are additive and multiplicative in f, and the proposition follows. \hfill \square

Remark 2.4. — Note that the proposition shows the linearity of the equations $F^{(j)}_i(x^{(0)}, \ldots, x^{(j)})$ defining X_m with respect to the new variables i.e $x^{(j)}$. We can deduce from this that if X is a nonsingular K-variety of dimension n, then the projections $\pi_{m,m-1} : X_m \to X_{m-1}$ are locally trivial fibrations with fiber A^n_K. In particular, X_m is a non-singular variety of dimension $(m + 1)n$.

3. Semigroup of complex branches

The main references for this section are [14],[8],[1],[11],[5],[4],[7]. Let $f \in \mathbb{C}[[x,y]]$ be an irreducible power series, which is y-regular (i.e $f(0, y) = $
$y^{n}u(y)$ where u is invertible in $\mathbb{C}[[y]]$ and such that $\text{mult}_0 f = \beta_0$ and let C be the analytically irreducible plane curve(branch for short) defined by f in $\text{Spec} \ \mathbb{C}[[x, y]]$. By the Newton-Puiseux theorem, the roots of f are

$$y = \sum_{i=0}^{\infty} a_i w^i x^{\beta_0}$$

where w runs over the β_0-th-roots of unity in \mathbb{C}. This is equivalent to the existence of a parametrization of C of the form

$$x(t) = t^{\beta_0}$$

$$y(t) = \sum_{i \geq \beta_0} a_i t^i.$$ We recursively define

$$\beta_i = \min\{i, a_i \neq 0, \gcd(\beta_0, \cdots, \beta_{i-1}) \text{ is not a divisor of } i\}.$$ Let $e_0 = \beta_0$ and $e_i = \gcd(e_{i-1}, \beta_i), i \geq 1$. Since the sequence of positive integers

$$e_0 > e_1 > \cdots > e_i > \cdots$$

is strictly decreasing, there exists $g \in \mathbb{N}$, such that $e_g = 1$. The sequence $(\beta_1, \cdots, \beta_g)$ is the sequence of Puiseux exponents of C. We set

$$n_i := \frac{e_{i-1}}{e_i}, m_i := \frac{\beta_i}{e_i}, i = 1, \cdots, g$$

and by convention, we set $\beta_{g+1} = +\infty$ and $n_{g+1} = 1$. On the other hand, for $h \in \mathbb{C}[[x, y]]$, we define the intersection number

$$(f, h)_0 = (C, C_h)_0 := \dim_{\mathbb{C}} \frac{\mathbb{C}[[x, y]]}{(f, h)} = \text{ord}_t h(x(t), y(t))$$

where C_h is the Cartier divisor defined by h and $\{x(t), y(t)\}$ is as above. The mapping $v_f : \frac{\mathbb{C}[[x, y]]}{(f)} \to \mathbb{N}, h \mapsto (f, h)_0$ defines a divisorial valuation. We define the semigroup of C to be the semigroup of v_f, i.e. $\Gamma(C) = \Gamma(v_f)$ = \{(f, h)_0 \in \mathbb{N}, h \neq 0 \mod(f)\}. The following propositions and theorem from [14] characterize the structure of $\Gamma(C)$.

Proposition 3.1. — There exists a unique sequence of $g + 1$ positive integers $(\beta_0, \cdots, \beta_g)$ such that:

i) $\beta_0 = \beta_0$,

ii) $\beta_i = \min\{\Gamma(C) \setminus \langle \beta_0, \cdots, \beta_{i-1} \rangle, 1 \leq i \leq g$,

iii) $\Gamma(C) = \langle \beta_0, \cdots, \beta_g \rangle$,

where for $i = 1, \cdots, g + 1, \langle \beta_0, \cdots, \beta_{i-1} \rangle$ is the semigroup generated by $\beta_0, \cdots, \beta_{i-1}$. By convention, we set $\beta_{g+1} = +\infty$.

TOME 61 (2011), FASCICULE 6
Proposition 3.2. — The sequence \((\widehat{\beta}_0, \ldots, \widehat{\beta}_g)\) verifies:

i) \(e_i = \gcd(\beta_0, \ldots, \beta_i), 0 \leq i \leq g,\)

ii) \(\widehat{\beta}_0 = \beta_0, \widehat{\beta}_1 = \beta_1\) and \(\widehat{\beta}_i = n_{i-1}\beta_{i-1} + \beta_i - \beta_{i-1} \in \mathbb{C}.\) In particular \(n_i \beta_i < \widehat{\beta}_{i+1},\)

for \(i = 2, \ldots, g.\)

Theorem 3.3. — The sequence \((\widehat{\beta}_0, \ldots, \widehat{\beta}_g)\) and the sequence \((\beta_0, \ldots, \beta_g)\) are equivalent data. They determine and are determined by the topological type of \(C.\)

Then from the appendix of [14], [1] or [11], we can choose a system of approximate roots (or a minimal generating sequence) \(\{x_0, \ldots, x_{g+1}\}\) of the divisorial valuation \(v_f.\) We set \(x = x_0, y = x_1;\) for \(i = 2, \ldots, g + 1, x_i \in \mathbb{C}[[x, y]]\) is irreducible; for \(1 \leq i \leq g,\) the analytically irreducible curve \(C_i = \{x_i = 0\}\) has \(i - 1\) Puiseux exponents and \(C_{g+1} = C.\) This sequence also verifies

i) \(v_f(x_i) = \hat{\beta}_0, 0 \leq i \leq g,\)

ii) \(\Gamma(C_i) = \{\hat{\beta}_0 / e_{i-1}, \ldots, \hat{\beta}_{i-1} / e_{i-1}\} > 1 \leq i \leq g + 1.\)

iii) \(2 \leq i \leq g,\) there exists a unique system of nonnegative integers \(b_{ij}, 0 \leq j < i\) such that for \(1 \leq j < i, b_{ij} < n_j\) and \(n_i \hat{\beta}_i = \Sigma_{0 \leq j < i} b_{ij} \hat{\beta}_j.\)

Furthermore, for \(1 \leq i \leq g,\) one can choose \(x_i\) such that they satisfy identities of the form

\[
x_{i+1} = x_i^{n_i} - c_i x_0^{b_{i0}} \cdots x_{i-1}^{b_{i(i-1)}} - \sum_{\gamma = (\gamma_0, \ldots, \gamma_i) \neq 0} c_i, \gamma x_0^{\gamma_0} \cdots x_i^{\gamma_i}, (*)
\]

with, \(0 \leq \gamma_j < n_j, 1 \leq j \leq i,\) and \(\Sigma_j \gamma_j \hat{\beta}_j > n_i \hat{\beta}_i\) and with \(c_i, \gamma, c_i \in \mathbb{C}\) and \(c_i \neq 0.\) These last equations (*) let us realize \(C\) as a complete intersection in \(\mathbb{C}^{g+1} = \text{Spec } \mathbb{C}[[x_0, \ldots, x_g]]\) defined by the equations

\[
f_i = x_{i+1} - (x_i^{n_i} - c_i x_0^{b_{i0}} \cdots x_{i-1}^{b_{i(i-1)}} - \sum_{\gamma = (\gamma_0, \ldots, \gamma_i) \neq 0} c_i, \gamma x_0^{\gamma_0} \cdots x_i^{\gamma_i})
\]

for \(1 \leq i \leq g,\) with \(x_{g+1} = 0\) by convention.

Let \(h \in \mathbb{C}[[x, y]]\) be a \(y\)-regular irreducible power series with multiplicity \(p = \text{ord}_y h(0, y).\) Let \(f(x, y^1)\) and \(z(x^1)\) be respectively roots of \(f\) and \(h\) as in (1). We call contact order of \(f\) and \(h\) in their Puiseux series the following rational number

\[
o_f(h) := \max\{\text{ord}_x (y(wx_0^{1/\beta_0}) - z(\lambda x^1)); w^{\beta_0} = 1, \lambda^p = 1\} = \\
\max\{\text{ord}_x (y(wx_0^{1/\beta_0}) - z(x^1)); w^{\beta_0} = 1\} = \\
\max\{\text{ord}_x (y(x_0^{1/\beta_0}) - z(\lambda x^1)); \lambda^p = 1\} = o_h(f).
\]

The following formula is from [8], see also [5].
Proposition 3.4. — Assume that \(f \) and \(h \) are as above; let \((\beta_1, \cdots, \beta_g) \) the sequence of Puiseux exponents of \(f \) and let \(i \leq g + 1 \) be the smallest strictly positive integer such that \(o_f(h) \leq \frac{\beta_i}{\beta_0} \). Then
\[
\frac{(f, h)_0}{p} = \sum_{k=1}^{i-1} \frac{e_{k-1} - e_k}{\beta_0} \beta_k + e_{i-1} o_f(h) = (\beta_{i-1} e_{i-2} + (\beta_0 o_f(h) - \beta_{i-1}) e_{i-1}) \frac{1}{\beta_0}.
\]

Corollary 3.5. — [1][5] Let \(i > 0 \) be an integer. Then \(o_f(h) \leq \frac{\bar{\beta}_i}{\bar{\beta}_0} \) iff \(\frac{(f, h)_0}{p} \leq e_{i-1} \frac{\bar{\beta}_i}{\bar{\beta}_0} \). Moreover \(o_f(h) = \frac{\bar{\beta}_i}{\bar{\beta}_0} \) iff \(\frac{(f, h)_0}{p} = e_{i-1} \frac{\bar{\beta}_i}{\bar{\beta}_0} \). In particular \(o_f(x_i) = \frac{\bar{\beta}_i}{\bar{\beta}_0}, 1 \leq i \leq g \). We say that \(C_i x_i = 0 \) has maximal contact with \(C \).

4. Jet schemes of complex branches

We keep the notations of sections 2 and 3. We consider a curve \(C \subset \mathbb{C}^2 \) with a branch of multiplicity \(\beta_0 > 1 \) at 0, defined by \(f \). Note that in suitable coordinates we can write
\[
f(x_0, x_1) = (x_1^{n_1} - cx_0^{m_1}) e_1 + \sum_{a \beta_0 + b \beta_1 > \beta_0 \beta_1} c_{ab} x_0^a x_1^b; c \in \mathbb{C}^* \text{ and } c_{ab} \in \mathbb{C}. \tag{\odot}
\]
We look for the irreducible components of \(C_m := (\pi_m^{-1}(0)) \) for every \(m \in \mathbb{N} \), where \(\pi_m : C_m \to C \) is the canonical projection. Let \(J_m \) be the radical of the ideal defining \((\pi_m^{-1}(0)) \) in \(\mathbb{C}^2 \).
In the sequel, we will denote the integral part of a rational number \(r \) by \([r]\).

Proposition 4.1. — For \(0 < m < n_1 \bar{\beta}_1 \), we have that
\[
(C_m^0)_{\text{red}} = (\pi_m^{-1}(0))_{\text{red}} = \text{Spec} \left[\mathbb{C}[x_0^{(0)}, \cdots, x_0^{(m)}, x_1^{(0)}, x_1^{(1)}, \cdots, x_1^{(m)}] \right. \left/ \langle x_0^{(0)}, \cdots, x_0^{(\lfloor \frac{m}{\bar{\beta}_1} \rfloor)}, x_1^{(0)}, \cdots, x_1^{(\lfloor \frac{m}{\bar{\beta}_0} \rfloor)} \rangle \right. ,
\]
and
\[
(C_{n_1 \bar{\beta}_1}^0)_{\text{red}} = (\pi_{n_1 \bar{\beta}_1}^{-1}(0))_{\text{red}} = \text{Spec} \left[\mathbb{C}[x_0^{(0)}, \cdots, x_0^{(n_1 \bar{\beta}_1)}, x_1^{(0)}, x_1^{(1)}, \cdots, x_1^{(n_1 \bar{\beta}_1)}] \right. \left/ \langle x_0^{(0)}, \cdots, x_0^{(n_1 - 1)}, x_1^{(0)}, \cdots, x_1^{(n_1 - 1)}, x_1^{(n_1)} - cx_0^{(n_1 m_1)} \rangle \right. .
\]

Proof. — We write \(f = \Sigma_{(a, b)} c_{ab} f_{ab} \) where \((a, b) \in \mathbb{N}^2, f_{ab} = x_0^a x_1^b, c_{ab} \in \mathbb{C} \) and \(a \beta_0 + b \bar{\beta}_1 \geq \beta_0 \beta_1 \) (the segment \([0, \beta_0)(\beta_1, 0])\) is the Newton Polygon of \(f \). Let \(\text{supp}(f) = \{(a, b) \in \mathbb{N}^2; c_{ab} \neq 0\} \).
For $0 < m < n_1 \bar{\beta}_1$, the proof is by induction on m. For $m = 1$, we have that

$$F^{(1)} = \sum_{(a,b) \in \text{supp}(f)} c_{ab} F^{(1)}_{ab}$$

where $(F^{(0)}, \ldots, F^{(i)})$ (resp. $(F^{(0)}_{ab}, \ldots, F^{(i)}_{ab})$) is the ideal defining the i-th jet scheme C_i of C (resp. C^a_{i}, the i-th jet scheme of C^a_{i}) in \mathbb{C}^2_i.

Then we have

$$F^{(1)}_{ab} = \sum_{i_k = 1} x_0^{(i_1)} \cdots x_0^{(i_a)} x_1^{(i_a+1)} \cdots x_1^{(i_a+b)},$$

where $\bar{\beta}_1(a + b) \geq a \beta_0 + b \bar{\beta}_1 > \beta_0 \bar{\beta}_1$ so $a + b \geq \beta_0 > 1$. Then for every $(a, b) \in \text{supp}(f)$ and every $(i_1, \ldots, i_a, \ldots, i_a+b) \in \mathbb{N}^{a+b}$ such that $\sum_{k=1}^{a+b} i_k = 1$ there exists $1 \leq k \leq a + b$ such that $i_k \neq 0$, this means that $F^{(1)}_{ab} \in (x_0^{(0)}, x_1^{(0)})$ and since we are looking over the origin, we have that $(x_0^{(0)}, x_1^{(0)}) \subseteq J_1$ therefore $(\pi^{-1}(0))_{\text{red}} = \text{Spec} \frac{\mathbb{C}[x_0^{(0)}, x_1^{(0)}, x_1^{(m-1)}]}{(x_0^{(0)}, \cdots, x_0^{(\frac{m-1}{\beta_1})}, x_1^{(0)}, \cdots, x_1^{(\frac{m-1}{\beta_0})})}$ (In fact this is nothing but the Zariski tangent space of C at 0).

Suppose that the lemma holds until $m - 1$ i.e.

$$(\pi_{m-1}^{-1}(0))_{\text{red}} = \text{Spec} \frac{\mathbb{C}[x_0^{(0)}, \cdots, x_0^{(m-1)}, x_1^{(0)}, \cdots, x_1^{(m-1)}]}{(x_0^{(0)}, \cdots, x_0^{(\frac{m-1}{\beta_1})}, x_1^{(0)}, \cdots, x_1^{(\frac{m-1}{\beta_0})})}.$$

First case: If $[\frac{m-1}{\beta_1}] = [\frac{m}{\beta_1}]$ and $[\frac{m-1}{\beta_0}] = [\frac{m}{\beta_0}]$. We have

$$F^{(m)} = \sum_{(a,b) \in \text{supp}(f)} c_{ab} \sum_{i_k = m} x_0^{(i_1)} \cdots x_0^{(i_a)} x_1^{(i_a+1)} \cdots x_1^{(i_a+b)}$$

Let $(a, b) \in \text{supp}(f)$; if for every $k = 1, \ldots, a$, we had $i_k \geq [\frac{m}{\beta_1}] + 1$, and for every $k = a + 1, \ldots, a + b$, we had $i_k \geq [\frac{m}{\beta_0}] + 1$, then

$$m \geq a([\frac{m}{\beta_1}] + 1) + b([\frac{m}{\beta_0}] + 1) \geq \frac{m}{\beta_1} a + \frac{m}{\beta_0} b = m \frac{a \beta_0 + b \beta_1}{\beta_0 \beta_1} \geq m.$$

The contradiction means that there exists $1 \leq k \leq a$ such that $i_k \leq [\frac{m}{\beta_1}]$ or there exists $a + 1 \leq k \leq a + b$ such that $i_k \leq [\frac{m}{\beta_0}]$. So $F^{(m)}$ lies in the ideal generated by J_{m-1}^0 in $\mathbb{C}[x_0^{(0)}, \cdots, x_0^{(m)}, x_1^{(0)}, \cdots, x_1^{(m)}]$ and $J_m = J_{m-1}^0 \mathbb{C}[x_0^{(0)}, \cdots, x_0^{(m)}, x_1^{(0)}, \cdots, x_1^{(m)}]$.

Second case: If $[\frac{m-1}{\beta_1}] = [\frac{m}{\beta_1}]$ and $[\frac{m-1}{\beta_0}] + 1 = [\frac{m}{\beta_0}]$ (i.e. β_0 divides m). We have that

$$F^{(m)} = F^{(m)}_{0, \beta_0} + \sum_{(a,b) \in \text{supp}(f); (a,b) \neq (0, \beta_0)} F^{(m)}_{ab}.$$

(*)
where
\[
F_{0\beta_0}^{(m)} = \sum_{i_k = m} x_1^{(i_1)} \cdots x_1^{(i_{\beta_0})} = x_1^{(\frac{m}{\beta_0})} + \sum_{i_k = m; (i_1, \cdots, i_{\beta_0}) \neq (\frac{m}{\beta_0}, \cdots, \frac{m}{\beta_0})} x_1^{(i_1)} \cdots x_1^{(i_{\beta_0})},
\]
but \(\sum i_k = m\) and \((i_1, \cdots, i_{\beta_0}) \neq (\frac{m}{\beta_0}, \cdots, \frac{m}{\beta_0})\) implies that there exists \(1 \leq k \leq \beta_0\) such that \(i_k < \frac{m}{\beta_0}\), so
\[
\sum_{i_k = m; (i_1, \cdots, i_{\beta_0}) \neq (\frac{m}{\beta_0}, \cdots, \frac{m}{\beta_0})} x_1^{(i_1)} \cdots x_1^{(i_{\beta_0})} \in J^{0}_{m-1} \mathbb{C}[x_0^{(0)}, \cdots, x_0^{(m)}, x_1^{(0)}, \cdots, x_1^{(m)}].
\]
For the same reason as above, we have that
\[
\sum_{(a,b) \in \text{supp}(f); (a,b) \neq (0,\beta_0)} F^{(m)} \in J^{0}_{m-1} \mathbb{C}[x_0^{(0)}, \cdots, x_0^{(m)}, x_1^{(0)}, \cdots, x_1^{(m)}].
\]
From (**) we deduce that \(x_1^{(\frac{m}{\beta_0})} \in J^{0}_{m}\) and
\[
F^{(m)} \in (x_0^{(0)}, \cdots, x_0^{(\lfloor \frac{m}{\beta_1} \rfloor)}, x_1^{(0)}, \cdots, x_1^{(\frac{m}{\beta_0})}).
\]
Then \(J^{0}_{m} = (x_0^{(0)}, \cdots, x_0^{(\lfloor \frac{m}{\beta_1} \rfloor)}, x_1^{(0)}, \cdots, x_1^{(\frac{m}{\beta_0})})\).
The third case i.e. if \(\lfloor \frac{m-1}{\beta_1} \rfloor + 1 = \lfloor \frac{m}{\beta_1} \rfloor\) and \(\lfloor \frac{m-1}{\beta_0} \rfloor = \lfloor \frac{m}{\beta_0} \rfloor\) is discussed as the second one. Note that these are the only three possible cases since \(m < n_1 \beta_1 = \text{lcm}(\beta_0, \beta_1)\)(here \(\text{lcm}\) stands for the least common multiple).

For \(m = n_1 \beta_1\), we have that \(F^{(m)}\) is the coefficient of \(tm\) in the expansion of
\[
f(x_0^{(0)} + x_0^{(1)} t + \cdots + x_0^{(m)} t^m, x_1^{(0)} + x_1^{(1)} t + \cdots + x_1^{(m)} t^m).
\]
But since we are interested in the radical of the ideal defining the \(m\)-th jet scheme, and we have found that \(x_0^{(0)}, \cdots, x_0^{(n_1-1)}, x_1^{(0)}, \cdots, x_1^{(m_1-1)} \in J^{0}_{m-1} \subseteq J^{0}_{m}\), we can annihilate \(x_0^{(0)}, \cdots, x_0^{(n_1-1)}, x_1^{(0)}, \cdots, x_1^{(m_1-1)}\) in the above expansion. Using (\(\circ\)), we see that the coefficient of \(tm\) is \((x_1^{(m_1)})^{n_1} - cx_0^{(n_1)m_1})e_1.

\[\square\]

In the sequel if \(A\) is a ring, \(I \subseteq A\) an ideal and \(f \in A\), we denote by \(V(I)\) the subvariety of \(\text{Spec} A\) defined by \(I\) and by \(D(f)\) the open set in \(\text{Spec} A\), \(D(f) := \text{Spec} A_f\).

The proof of the following corollary is analogous to that of proposition 4.1.
Corollary 4.2. — Let \(m \in \mathbb{N} \); let \(k \geq 1 \) be such that \(m = \ell \bar{\beta}_1 + i \); \(1 \leq i \leq \ell \bar{\beta}_1 \). Then if \(i < \ell \bar{\beta}_1 \), we have that
\[
\text{Cont}^{\ell \bar{\beta}_1} (x_0)_m = (\pi_{m, \ell \bar{\beta}_1}^{-1} (V(x_0^{(0)}, \ldots, x_0^{(\ell \bar{\beta}_1)})))_{\text{red}} = \text{Spec} \left(\mathbb{C}[x_0^{(0)}, \ldots, x_0^{(m)}, x_1^{(0)}, \ldots, x_1^{(m)}] \right)
\]
and if \(i = \ell \bar{\beta}_1 \)
\[
\left(\pi_{m, \ell \bar{\beta}_1}^{-1} (V(x_0^{(0)}, \ldots, x_0^{(\ell \bar{\beta}_1)})) \right)_{\text{red}} = \text{Spec} \left(\mathbb{C}[x_0^{(0)}, \ldots, x_0^{((k+1)m_1-1)}, x_1^{(0)}, \ldots, x_1^{((k+1)m_1-1)}] \right)
\]

We now consider the case of a plane branch with one Puiseux exponent.

Lemma 4.3. — Let \(C \) be a plane branch with one Puiseux exponent. Let \(m, k \in \mathbb{N} \), such that \(k \neq 0 \) and \(m \geq \ell \bar{\beta}_1 + 1 \), and let \(\pi_{m, \ell \bar{\beta}_1} : C_m \to C_{\ell \bar{\beta}_1} \) be the canonical projection. Then
\[
C_{m}^{k} := \pi_{m, \ell \bar{\beta}_1}^{-1} (V(x_0^{(0)}, \ldots, x_0^{(k-1)}) \cap D(x_0^{(k)}))_{\text{red}}
\]
is irreducible of codimension \(k(m_1 + n_1) + 1 + (m - \ell \bar{\beta}_1) \) in \(\mathbb{C}^2_m \).

Proof. — First note that since \(e_1 = 1 \), we have \(m_1 = \frac{\beta_1}{e_1} = \beta_1 \). Let \(I_m^k \) be the ideal defining \(C_{m}^{k} \) in \(\mathbb{C}^2 \cap D(x_0^{(k)}) \). Since \(m \geq \ell \bar{\beta}_1 \), by corollary 4.2, \(x_0^{(0)}, \ldots, x_0^{(k-1)} \) \(\in I_m^k \). So \(I_m^k \) is the radical of the ideal \(I_m^{*ok} := (x_0^{(0)}, \ldots, x_0^{(m_1-1)}, x_1^{(0)}, \ldots, x_1^{(m_1-1)}, F(0), \ldots, F(m)) \). Now it follows from \(\diamond \) and proposition 2.3 that
\[
F^{(l)} \in (x_0^{(0)}, \ldots, x_0^{(k-1)}, x_1^{(0)}, \ldots, x_1^{(k-1)}) \text{ for } 0 \leq l < \ell m_1,
\]
\[
F^{(\ell m_1)} \equiv x_1^{(m_1)n_1} \
- cx_0^{(m_1)n_1} \mod (x_0^{(0)}, \ldots, x_0^{(k-1)}, x_1^{(0)}, \ldots, x_1^{(k-1)}),
\]
\[
F^{(\ell m_1 + l)} \equiv \ell m_1 x_1^{(m_1)n_1-1} x_1^{(k-1)} x_0^{(m_1)l} + m_1 cx_0^{(m_1)n_1-1} x_0^{(k-1)} \mod (x_0^{(0)}, \ldots, x_0^{(k-1)}, x_1^{(0)}, \ldots, x_1^{(k-1)}),
\]
for \(1 \leq l \leq m - \ell m_1 \). This implies that
\[
I_m^{*ok} = (x_0^{(0)}, \ldots, x_0^{(k-1)}, x_1^{(0)}, \ldots, x_1^{(k-1)}, F^{(m_1)}, \ldots, F^{(m)}).
\]
Moreover the subscheme of $\mathbb{C}^2_m \cap D(x_0^{(kn_1)})$ defined by I_{m}^{*0k} is isomorphic to the product of $\mathbb{C}^* (\mathbb{C}^* \text{ is isomorphic to the regular locus of } x_1^{(km_1)} - cx_0^{(kn_1)m_1})$ by an affine space and its codimension is $k(m_1 + n_1) + 1 + (m - kn_1m_1)$; so it is reduced and irreducible, and it is nothing but C_m^k, or equivalently $I_{m}^{0k} = I_{m}^{*0k}$.

Corollary 4.4. — Let C be a plane branch with one Puiseux exponent. Let $m \in \mathbb{N}, m \neq 0$. Let $q \in \mathbb{N}$ be such that $m = q n_1 \beta_1 + i; 0 < i \leq n_1 \beta_1$. Then $C_m^0 = \pi_{m-1}^{-1}(0)$ has $q + 1$ irreducible components which are:

$$C_{mkI} = \overline{C_m^k}, 1 \leq k \leq q,$$

and $B_m = \text{Cont}^{> q_1}(x) = \pi_{m,qn_1 \beta_1}^{-1}(V(x_0^{(0)}, \ldots, x_0^{(q_1)})).$

We have that

$$\text{codim}(C_{mkI}, \mathbb{C}^2_m) = k(m_1 + n_1) + 1 + (m - kn_1m_1)$$

and

$$\text{codim}(B_m, \mathbb{C}^2_m) = q(m_1 + n_1) + \left\lceil \frac{i}{\beta_0} \right\rceil + \left\lceil \frac{i}{\beta_1} \right\rceil + 2 = \left\lceil \frac{m}{\beta_0} \right\rceil + \left\lceil \frac{m}{\beta_1} \right\rceil + 2 \text{ if } i < n_1 \beta_1$$

$$\text{codim}(B_m, \mathbb{C}^2_m) = (q + 1)(m_1 + n_1) + 1 \text{ if } i = n_1 \beta_1.$$

Proof. — The codimensions and the irreducibility of B_m and C_{mkI} follow from corollary 4.2 and lemma 4.3. This shows that if $1 \leq k < k' \leq q$, we have $\text{codim}(C_{mkI}, \mathbb{C}^2_m) < \text{codim}(C_{mk'I}, \mathbb{C}^2_m)$, then $C_{mk'I} \not\subseteq C_{mkI}$. On the other hand, since $C_{mk'I} \subseteq V(x_0^{(kn_1)})$ and $C_{mkI} \not\subseteq V(x_0^{(kn_1)})$, we have that $C_{mkI} \not\subseteq C_{mk'I}$. This also shows that $\dim B_m \geq \dim C_{mkI}$ for $1 \leq k \leq q$, therefore $B_m \not\subseteq C_{mkI}, 1 \leq k \leq q$. But $C_{mkI} \not\subseteq B_m$ because $B_m \subseteq V(x_0^{(q_1)})$ and $C_{mkI} \not\subseteq V(x_0^{(q_1)})$ for $1 \leq k \leq q$. We thus have that $C_{mkI} \not\subseteq B_m$ and $B_m \not\subseteq C_{mkI}$. We conclude the corollary from the fact that by construction $C_m^0 = \bigcup_{k=1}^q C_{mkI} \cup B_m$.

To understand the general case, i.e. to find the irreducible components of C_m^0, where C has a branch with g Puiseux exponents at 0, since for $kn_1 \beta_1 < m \leq (k+1)n_1 \beta_1, m, k \in \mathbb{N}$ we know by corollary 4.2 the structure of the m-jets that project to $V(x_0^{(0)}, \ldots, x_0^{(kn_1)}) \cap C_{m,kn_1 \beta_1}^0,$ we have to understand for $m > kn_1 \beta_1$ the m-jets that projects to $V(x_0^{(0)}, \ldots, x_0^{(kn_1-1)}) \cap D(x_0^{(kn_1)}),$ i.e. $C_m^k := \pi_{m,kn_1 \beta_1}^{-1}(V(x_0^{(0)}, \ldots, x_0^{(kn_1-1)}) \cap D(x_0^{(kn_1)}))_{\text{red}}.$

Let $m, k \in \mathbb{N}$ be such that $m \geq kn_1 \beta_1$. Let $j = \max\{l, n_2 \cdots n_{l-1} \text{ divides } k\}$ (we set $j = 2$ if the greatest common divisor $(k, n_2) = 1$ or if $g = 1$). Set κ such that $k = \kappa n_2 \cdots n_{j-1},$ then we have $kn_1 = \kappa \frac{\beta_0}{n_j \cdots n_g}$.

TOME 61 (2011), FASCICULE 6
Indeed, we have that \(\pi_i \leq g + 1 \); for \(i = 2, \ldots, g \), and \(kn_1 \beta_1 < m < \kappa e_i - 1 \beta_i \), we have that
\[
C_m^k = \pi_{m, [\frac{m}{m-n_i}]}(C_{m, [\frac{m}{m-n_i}]}),
\]
where \(\pi_{m, [\frac{m}{m-n_i}]} : C_m^2 \rightarrow C_{\frac{m}{m-n_i}}^2 \) is the canonical map. For \(j < g + 1 \) and \(m \geq \kappa \beta_j \), we have that
\[
C_m^k = \emptyset
\]

Proof. — Let \(\phi \in C_m^k \). Let \(\tilde{\phi} : \text{Spec } \mathbb{C}[[t]] \rightarrow (\mathbb{C}^2, 0) \) be such that \(\phi = \tilde{\phi} \mod t^{m+1} \). Let \(\tilde{f} \in \mathbb{C}[[x, y]] \) be a function that defines the branch \(\tilde{C} \) image of \(\tilde{\phi} \). We may assume that the map \(\text{Spec } \mathbb{C}[[t]] \rightarrow \tilde{C} \) induced by \(\tilde{\phi} \) is the normalization of \(\tilde{C} \). Since \(\text{ord}_i x_0 \circ \tilde{\phi} = kn_1, \text{ord}_i x_1 \circ \tilde{\phi} = km_1 \) the multiplicity \(m(\tilde{f}) \) of \(\tilde{C} \) at the origin is \(\text{ord}_x \tilde{f}(0, x_1) = kn_1 = \kappa \beta_0 \).

Claim: If \((f, \tilde{f})_0 < \kappa e_i - 1 \beta_i \), then \((f, \tilde{f})_0 = n_i \cdots n_g (x_i, \tilde{f})_0 \).

Indeed, we have that \(\frac{(f, \tilde{f})_0}{\text{ord}_y f(0, y)} < e_i - 1 \beta_i \beta_0 \), therefore by corollary 3.5 we have that
\[
o_f(\tilde{f}) < \frac{\beta_i}{\beta_0} = o_f(x_i).
\]
We will prove that \(o_f(\tilde{f}) = o_{x_i}(\tilde{f}) \). (It was pointed by the referee that this follows from [1]. For the convenience of the reader we give a detailed proof below.)

Let \(y(x^{\frac{1}{\beta_0}}), z(x^{\frac{1}{\beta_1}}) \) and \(u(x^{\frac{1}{\beta_0}}) \) be respectively Puiseux-roots of \(f, x_i \) and \(\tilde{f} \). There exist \(w, \lambda \in \mathbb{C} \) such that \(w^{\frac{1}{m-n_i}} = 1, \lambda^m(\tilde{f}) = 1 \) and
\[
o_f(\tilde{f}) = \text{ord}_x (u(\lambda x^{\frac{1}{m-n_i}}) - y(x^{\frac{1}{\beta_0}}))
\]
and
\[
o_f(x_i) = \text{ord}_x (y(x^{\frac{1}{\beta_0}}) - z(wx^{\frac{1}{m-n_i}})).
\]
Since \(o_f(\tilde{f}) < o_f(x_i) \), we have that
\[
o_f(\tilde{f}) = \text{ord}_x (u(\lambda x^{\frac{1}{m-n_i}}) - y(x^{\frac{1}{\beta_0}}) + y(x^{\frac{1}{\beta_0}}) - z(wx^{\frac{1}{m-n_i}}))
\]
\[
= \text{ord}_x (u(\lambda x^{\frac{1}{m-n_i}}) - z(wx^{\frac{1}{m-n_i}})) \leq o_f(x_i, \tilde{f}).
\]

On the other hand, there exist \(\lambda \) and \(\delta \in \mathbb{C} \), such that \(\lambda^m(\tilde{f}) = 1, \delta^\beta_0 = 1 \) and such that
\[
o_{x_i}(\tilde{f}) = \text{ord}_x (u(\lambda x^{\frac{1}{m-n_i}}) - z(x^{\frac{1}{m-n_i}}))
\]
and
\[
o_f(x_i) = \text{ord}_x (y(\delta x^{\frac{1}{\beta_0}}) - z(x^{\frac{1}{m-n_i}})).
\]
We have then that
\[o_{x_i}(\tilde{f}) = \text{ord}_x(u(\lambda x^{-\frac{1}{m(f)}}) - y(\delta x^{\frac{1}{\rho_0}}) + y(\delta x^{\frac{1}{\rho_0}}) - z(wx^{\frac{1}{n_1-n_i-1}})) \].

Now
\[\text{ord}_x(u(\lambda x^{-\frac{1}{m(f)}}) - y(\delta x^{\frac{1}{\rho_0}})) \leq o_f(\tilde{f}) \]
\[< o_f(x_i) = \text{ord}_x(y(\delta x^{\frac{1}{\rho_0}}) - z(wx^{\frac{1}{n_1-n_i-1}})). \]

So
\[o_{x_i}(\tilde{f}) = \text{ord}_x(u(\lambda x^{-\frac{1}{m(f)}}) - y(\delta x^{\frac{1}{\rho_0}})) \leq o_f(\tilde{f}). \]

We conclude that \(o_f(\tilde{f}) = o_{x_i}(\tilde{f}) \), and since the sequence of Puiseux exponents of \(C_i \) is \((\frac{\beta_0}{n_1\cdots n_g}, \cdots, \frac{\beta_i-1}{n_i\cdots n_g})\), applying proposition 3.4 to \(C \) and \(C_i \), we find that \((f, \tilde{f})_0 = n_i \cdots n_g(x_i, \tilde{f})_0\) and claim follows.

On the other hand by the corollary 3.5 applied to \(f \) and \(\tilde{f}, (f, \tilde{f})_0 \geq \kappa e_{i-1} \frac{\beta_i}{e_{j-1}} \) if and only if \(o_f(\tilde{f}) \geq \frac{\beta_i}{\beta_0} = o_{x_i}(f) = o_f(x_i) \) so \(o_f(\tilde{f}) \geq \frac{\beta_i}{\beta_0} \) if and only if \(o_{x_i}(\tilde{f}) \geq \frac{\beta_i}{\beta_0} \), therefore \((x_i, \tilde{f})_0 \geq \kappa \frac{\beta_i}{e_{j-1}} \). This proves the first assertion.

The second assertion is a direct consequence of lemma 5.1 in [5]. \(\square \)

To further analyse the \(C_m^k \)'s, we realize, as in section 3, \(C \) as a complete intersection in \(\mathbb{C}^{g+1} = \text{Spec} \mathbb{C}[x_0, \cdots, x_g] \) defined by the ideal \((f_1, \cdots, f_g)\) where
\[f_i = x_{i+1} - (x_i^{n_i} - c_i x_0^{b_{i0}} \cdots x_{i-1}^{b_{i(i-1)}} - \sum_{\gamma=(\gamma_0, \cdots, \gamma_i)} c_i, \gamma x_0^{\gamma_0} \cdots x_i^{\gamma_i}) \]
for \(1 \leq i \leq g \) and \(x_{g+1} = 0 \). This will let us see the \(C_m^k \)'s as fibrations over some reduced scheme that we understand well.

We keep the notations above and let \(I_{m}^0 \) be the radical of the ideal defining \(C_m^0 \) in \(\mathbb{C}^{g+1} \) and let \(I_{m}^{0k} \) be the ideal defining
\[C_m^k = (V(I_{m}^0, x_0^{(k)}, \cdots, x_0^{(kn_1-1)}) \cap D(x_0^{(kn_1)}))_{\text{red}} \text{ in } D(x_0^{(kn_1)}). \]

Lemma 4.6. — Let \(k \neq 0, j \), and \(\kappa \) as above. For \(1 \leq i < j \leq g \) (resp. \(1 \leq i < j = 1 = g \)) and for \(\kappa n_i \cdots n_{j-1} \beta_i \leq m < \kappa n_i+1 \cdots n_{j-1} \beta_i+1 \), we have
\[
I_{m}^{0k} = (x_0^{(\frac{n_0}{n_j-n_g}-1)}, x_0^{(\frac{n_1}{n_j-n_g}-1)}), \]
\[x_0^{(\frac{n_i}{n_j-n_g}-1)}, \cdots, x_0^{(\frac{n_j}{n_j-n_g}-1)}, F_{l}^{(\frac{m}{n_j-n_g})}, \cdots, F_{l}^{(m)}, 1 \leq l \leq i, \]
\[x_0^{(0)}, \cdots, x_0^{(\frac{m}{n_j-n_g})}, x_{i+1}^{(\frac{m}{n_j-n_g})}, \]
\[F_{l}^{(0)}, \cdots, F_{l}^{(m)}, i + 1 \leq l \leq g - 1. \]
Moreover for \(1 \leq l \leq i\),
\[
F_l^{(\{n_j \beta_j\}_{j \neq g})} \equiv - (x_l \{(n_j \beta_j\}_{j \neq g})^{b_l} - c_l x_0^{\{n_j \beta_j\}_{j \neq g}} \ldots x_{l-1}\}
\]
mod \((x_l^{(0)}, \ldots, x_{l-1}^{(0)})_{0 \leq l \leq i}, x_{l+1}^{(0)}, \ldots, x_{m+1}^{(0)}\),
for \(1 \leq l < i\) and \(\kappa \frac{n_j \beta_j}{n_j \cdots n_g} < \kappa \frac{n_{j+1} \beta_j}{n_j \cdots n_g}\) (resp. \(l = i\) and \(\kappa \frac{n_j \beta_j}{n_j \cdots n_g} < \kappa \frac{n_{j+1} \beta_j}{n_j \cdots n_g}\)),
\[
F_l^{(n)} \equiv -(n_l x_l^{(0)}, \ldots, x_{l-1}^{(0)})_{0 \leq l \leq i}, x_{l+1}^{(0)}, \ldots, x_{m+1}^{(0)}\)
\]
mod \((x_l^{(0)}, \ldots, x_{m+1}^{(0)})_{0 \leq l \leq i}, x_{l+1}^{(0)}, \ldots, x_{m+1}^{(0)}\),
for \(1 \leq l < i\) and \(\kappa \frac{n_j \beta_j}{n_j \cdots n_g} < \kappa \frac{n_{j+1} \beta_j}{n_j \cdots n_g}\) (resp. \(l = i\) and \(\kappa \frac{n_j \beta_j}{n_j \cdots n_g} < \kappa \frac{n_{j+1} \beta_j}{n_j \cdots n_g}\)),
or \(i + 1 \leq l \leq g - 1\) and \(0 \leq n \leq m\),
\[
F_l^{(n)} = x_{l+1}^{(n)} + H_l(x_0^{(0)}, \ldots, x_0^{(n)}, \ldots, x_l^{(0)}, \ldots, x_l^{(n)}).
\]
For \(i = j - 1 = g\) and \(m \geq \kappa n_g \beta_g\),
\[
F_l^{(0)} = (x_0^{(0)}, \ldots, x_0^{(\kappa \beta_0 - 1)}),
\]
\[
x_l^{(0)}, \ldots, x_l^{(\kappa \beta_l - 1)}, F_l^{(\kappa n_g \beta_g)}, \ldots, F_l^{(m)}), 1 \leq l \leq g,
\]
where for \(1 \leq l < g\) and \(\kappa n_g \beta_g \leq n \leq m\), the above formula for \(F_l^{(n)}\) remains valid,
\[
F_l^{(\kappa n_g \beta_g)} \equiv - (x_g^{(\kappa \beta_g)} g \ldots c_g x_0^{(\kappa \beta_0)} g_0 \ldots x_{g-1}^{(\kappa \beta_{g-1})} g_{g-1})
\]
mod \((x_l^{(0)}, \ldots, x_l^{(\kappa \beta_l - 1)})_{0 \leq l \leq g}\)
and for \(\kappa n_g \beta_g < n \leq m\),
\[
F_l^{(n)} \equiv -(n_g x_g^{(\kappa \beta_g)} \ldots c_g x_0^{(\kappa \beta_0)} g \ldots x_{g-1}^{(\kappa \beta_{g-1})} g_{g-1})
\]
\[
\sum_{0 \leq h \leq g-1} b_h x_0^{(\kappa \beta_0)} g \ldots x_h^{(\kappa \beta_h)} g_h \ldots x_{g-1}^{(\kappa \beta_{g-1})} g_{g-1}
\]
mod \((x_l^{(0)}, \ldots, x_l^{(\kappa \beta_l - 1)})_{0 \leq l \leq g}\)
Proof. — First assume that $\kappa n_i \cdots n_{j-1} \beta_i \leq m < \kappa n_i+1 \cdots n_{j-1} \beta_{i+1}$ for $1 \leq i < j \leq g$ (resp. $1 \leq i < j-1 = g$). By proposition 4.5, we have that $C_m^k = \tilde{\pi}_{m,1\cdots n_g}^{-1}(C_{i+1,1\cdots n_g}^k)$ where $\pi_{m,1\cdots n_g}^{-1} : \mathbb{C}_m^{2} \to \mathbb{C}_m^{2}$ is the canonical map. Now $\mathbb{C}^2 = \text{Spec} \mathbb{C}[x_0, x_1]$ (resp. $C_1^+ = V(x_{j+1})$) is realized as the complete intersection in $\mathbb{C}^{g+1} = \text{Spec} \mathbb{C}[x_0, \cdots, x_g]$ defined by the ideal (f_1, \cdots, f_{g-1}) (resp. $(f_1, \cdots, f_{g-1}, x_{j+1})$). So since $m \geq \kappa n_i \beta_i$, I_m^{ok} is the radical of the ideal $I_m^{ok} =$

$$(x_0^{(0)}, \cdots, x_0^{(k_1-1)}, x_1^{(0)}, \cdots, x_1^{(k_1-1)}, F_1^{(0)}, \cdots, F_1^{(m)},$

$$\cdots, F_{g-1}^{(0)}, \cdots, F_{g-1}^{(m)}, x_{i+1}^{(0)}, \cdots, x_{i+1}^{(\lceil \frac{m}{n_{i+1} \cdots n_g} \rceil)}).$$

We first observe that $F_1^{(n)} \equiv x_2^{(n)} \mod (x_0^{(0)}, \cdots, x_0^{(k_1-1)}, x_1^{(0)}, \cdots, x_1^{(k_1-1)})$ for $0 \leq n < \kappa n_1 \beta_1$. Now since $\frac{m}{n_{2 \cdots n_g}} \geq \frac{m}{n_{2 \cdots n_g}} \geq \kappa n_1 m_1$, we have

$$F_1^{(k_1 m_1)} \equiv -x_1^{(k_1 m_1)} - c_1 x_0^{(k_1 m_1)} \mod (x_0^{(0)}, \cdots, x_0^{(k_1-1)}, x_1^{(0)}, \cdots, x_1^{(k_1-1)}, x_0^{(0)}, \cdots, x_2^{(\lceil \frac{m}{n_{i+1} \cdots n_g} \rceil)})$$

and

$$F_1^{(n)} \equiv -n_1 x_1^{(k_1 m_1 - 1)} x_1^{(k_1 m_1 - n - k_1 m_1)} - c_1 x_0^{(k_1 m_1 - 1)} x_0^{(k_1 m_1 - n - k_1 m_1)} + H(x_0^{(0)}, \cdots, x_0^{(k_1 m_1 - 1)}, x_1^{(0)}, \cdots, x_1^{(k_1 m_1 - 1)}$$

$$\mod (x_0^{(0)}, \cdots, x_0^{(k_1 m_1 - 1)}, x_1^{(0)}, \cdots, x_1^{(k_1 m_1 - 1)}, x_0^{(0)}, \cdots, x_2^{(\lceil \frac{m}{n_{i+1} \cdots n_g} \rceil)})$$

for $k n_1 \beta_1 < n \leq \frac{m}{n_{2 \cdots n_g}}$. Finally, for $l = 1$ and $\frac{m}{n_{2 \cdots n_g}} < n \leq m$, or $2 \leq l \leq g - 1$ and $0 \leq n \leq m$, we have

$$F_l^{(n)} = x_{l+1}^{(n)} + H_l(x_0^{(0)}, \cdots, x_0^{(n)}), \cdots, x_l^{(0)}, \cdots, x_l^{(n)}).$$

As a consequence for $i = 1$, the subscheme of $\mathbb{C}^{g+1} \cap D(x_0^{(k_1)})$ defined by I_m^{ok} is isomorphic to the product of \mathbb{C}^* by an affine space, so it is reduced and irreducible and $I_m^{ok} = I_m^{ok}$ is a prime ideal in $\mathbb{C}[x_0^{(0)}, \cdots, x_0^{(m)}, \cdots, x_g^{(0)}, \cdots, x_g^{(m)}]_{x_0^{(k_1)}}$, generated by a regular sequence, i.e the proposition holds for $i = 1$.

Assume that it holds for $i < j - 1 < g$ (resp. $i < j - 1 = g - 1$). For $\kappa n_{i+1} \cdots n_{j-2} \beta_{i+1} \leq m < \kappa n_{i+2} \cdots n_j \beta_{i+2}$, the ideal in $\mathbb{C}[x_0^{(0)}, \cdots, x_0^{(m)}, \cdots, x_g^{(0)}, \cdots, x_g^{(m)}]_{x_0^{(k_1)}}$ generated by I_m^{ok} is contained in I_m^{ok}. By the inductive hypothesis, $x_l^{(0)}, \cdots, x_l^{(n_{j-2} \cdots n_g - 1)} \in$
$I_{\kappa n_{i+1} \cdots n_{j-1} \bar{\beta}_{i+1}}$ for \(l = 1, \ldots, i + 1 \). So I_{κ} is the radical of

\[
I_{\kappa} \cap (x_{0}^{(0)}, \ldots, x_{0}^{(\frac{\kappa \bar{\beta}_{0}}{n_{j-n_{g}}}-1)}, x_{1}^{(0)}, \ldots, x_{l}^{(\frac{\kappa \bar{\beta}_{l}}{n_{j-n_{g}}}-1)}, F_{l}^{(0)}, \ldots, F_{l}^{(m)}, 1 \leq l \leq i + 1,
\]

\[
x_{i+2}^{(0)}, \ldots, x_{i+2}^{(\frac{m}{n_{i+2 \cdots n_{g}}})}, F_{i+2}^{(0)}, \ldots, F_{l}^{(m)}, i + 2 \leq l \leq g - 1.
\]

Now for \(0 \leq n < \frac{\kappa n_{j} \bar{\beta}_{l}}{n_{j \cdots n_{g}}} \), we have

\[
F_{l}^{(n)} \equiv x_{l+1}^{(n)} \mod (x_{0}^{(0)}, \ldots, x_{l}^{(\frac{\kappa \bar{\beta}_{0}}{n_{j-n_{g}}}-1)}, x_{l}^{(0)}, \ldots, x_{l}^{(\frac{\kappa \bar{\beta}_{l}}{n_{j-n_{g}}}-1)}, 1 \leq l \leq i + 1).
\]

Here since \(\bar{\beta}_{i+1} > n_{i} \bar{\beta}_{l} \), for \(1 \leq l \leq i \) and \(\frac{m}{n_{i+2 \cdots n_{g}}} \geq \frac{[\frac{m}{n_{i+2 \cdots n_{g}}}]}{\frac{\kappa n_{i+1} \bar{\beta}_{i+1}}{n_{j \cdots n_{g}}}} \), we can delete \(F_{l}^{(n)} \), \(1 \leq l \leq i + 1, 0 \leq n < \frac{\kappa n_{j} \bar{\beta}_{l}}{n_{j \cdots n_{g}}} \) from the above generators of \(I_{\kappa}^{*} \). The identities relative to the \(F_{l}^{(n)} \) for \(1 \leq l \leq i + 1, \frac{\kappa n_{j} \bar{\beta}_{l}}{n_{j \cdots n_{g}}} \leq n < \frac{\kappa n_{j} \bar{\beta}_{l}}{n_{j \cdots n_{g}}} \) or \(i + 2 \leq l \leq g - 1 \) and \(0 \leq n \leq m \) follow immediately from \((\phi)\). Hence the subscheme of \(\mathbb{C}^{n+1} \cap D(x_{0}^{(k_{n_{1}})}) \) defined by \(I_{\kappa}^{*} \) is isomorphic to the product of \(\mathbb{C}^{n} \) by an affine space, so it is reduced and irreducible and \(I_{\kappa} = I_{\kappa}^{*} \) is a prime ideal in \(\mathbb{C}[x_{0}^{(0)}, \ldots, x_{0}^{(m)}, \ldots, x_{g}^{(0)}, \ldots, x_{g}^{(m)}]_{x_{0}^{(k_{n_{1}})}} \), generated by a regular sequence, i.e the proposition holds for \(i + 1 \).

The case \(i = j - 1 = g \) and \(m \geq \kappa n_{g} \bar{\beta}_{l} \) follows by similar arguments. \(\square \)

As an immediate consequence we get

Proposition 4.7. — Let \(C \) be a plane branch with \(g \) Puiseux exponents. Let \(k \neq 0, j \) and \(\kappa \) as above. For \(m \geq \kappa n_{1} \bar{\beta}_{1} \), let \(\pi_{m,k_{n_{1}} \bar{\beta}_{1}} : C_{m} \rightarrow C_{\kappa n_{1} \bar{\beta}_{1}} \) be the canonical projection and let \(C_{m}^{k} := \pi_{m,k_{n_{1}} \bar{\beta}_{1}}^{-1}(D(x_{0}(k_{n_{1}})) \cap V(x_{0}(0), \ldots, x_{0}(k_{n_{1}})))_{\text{red}} \). Then for \(1 \leq i < j \leq g \) (resp.\(1 \leq i < j - 1 = g \)) and \(\kappa n_{i} \cdots n_{j-1} \bar{\beta}_{i} \leq m < \kappa n_{i+1} \cdots n_{j-1} \bar{\beta}_{i+1} \), \(C_{m}^{k} \) is irreducible of codimension

\[
\frac{\kappa}{n_{j} \cdots n_{g}}(\bar{\beta}_{0} + \bar{\beta}_{1} + \sum_{l=1}^{i-1}(\bar{\beta}_{l+1} - n_{i} \bar{\beta}_{l})) + ([\frac{m}{n_{i+1} \cdots n_{g}}] - \frac{\kappa n_{i} \bar{\beta}_{i}}{n_{j} \cdots n_{g}}) + 1
\]

in \(\mathbb{C}_{m}^{n} \). (We suppose that the sum in the formula is equal to 0 when \(i = 1 \).) For \(j \leq g \) and \(m \geq \kappa \bar{\beta}_{j} \) (resp.\(j = g + 1 \) and \(m \geq \kappa n_{g} \bar{\beta}_{g} \)),

\[C_{m}^{k} = \emptyset \]
(resp. \(C_m^k \) is of codimension
\[
\kappa(\bar{\beta}_0 + \bar{\beta}_1 + \sum_{l=1}^{g-1} (\bar{\beta}_{l+1} - n_l \bar{\beta}_l)) + m - \kappa n g \bar{\beta}_g + 1
\]
in \(C_m^2 \).

The referee kindly pointed out that for \(m \in \mathbb{N} \) such that \(\kappa n_i \cdots n_{j-1} \bar{\beta}_i \leq m < \kappa n_{i+1} \cdots n_{j-1} \bar{\beta}_{i+1} \), the codimension of \(C_m^k \) can also be written as:
\[
\frac{\kappa}{e_{j-1}} (\bar{\beta}_0 + \bar{\beta}_{i+1} - \bar{\beta}_{i+1}) + \frac{m}{e_i} + 1.
\]

For \(k' \geq k \) and \(m \geq k' n_1 \bar{\beta}_1 \), we now compare \(\text{codim}(C_m^k, C_m^2) \) and \(\text{codim}(C_m^{k'}, C_m^2) \).

Corollary 4.8. — For \(k' \geq k \geq 1 \) and \(m \geq k' n_1 \bar{\beta}_1 \), if \(C_m^k \) and \(C_m^{k'} \) are nonempty, we have
\[
\text{codim}(C_m^{k'}, C_m^2) \leq \text{codim}(C_m^k, C_m^2).
\]

Proof. — Let \(\gamma^k : [kn_1 \bar{\beta}_1, \infty[\to [k(n_1 + m_1), \infty[\) be the piecewise linear function given by
\[
\gamma^k(m) = \frac{k}{e_1} (\bar{\beta}_0 + \bar{\beta}_1 + \sum_{l=1}^{i-1} (\bar{\beta}_{l+1} - n_l \bar{\beta}_l)) + \left(\frac{m}{e_i} - \frac{kn_i \bar{\beta}_i}{e_1} \right) + 1
\]
for \(1 \leq i \leq g \) and \(\frac{k \bar{\beta}_1}{n_2 \cdots n_{i-1}} \leq m < \frac{k \bar{\beta}_{i+1}}{n_2 \cdots n_i} \). (Recall that by convention \(\bar{\beta}_{g+1} = \infty \)).

In view of proposition 4.7, we have that \(\text{codim}(C_m^k, C_m^2) = [\gamma^k(m)] \) for \(k \equiv 0 \mod n_2 \cdots n_{j-1} \) and \(k \not\equiv 0 \mod n_2 \cdots n_j \) with \(2 \leq j \leq g \) and any integer \(m \in [kn_1 \bar{\beta}_1, \frac{k \bar{\beta}_{i+1}}{n_2 \cdots n_{j-1}}] \) or for \(k \equiv 0 \mod n_2 \cdots n_g \) and any integer \(m \geq kn_1 \bar{\beta}_1 \). Similarly we define \(\gamma^{k'} : [k'n_1 \bar{\beta}_1, \infty[\to [k'(n_1 + m_1), \infty[\) by changing \(k \) to \(k' \).

Let \(\Gamma^k (\text{resp.} \Gamma^{k'}) \) be the graph of \(\gamma^k (\text{resp.} \gamma^{k'}) \) in \(\mathbb{R}^2 \). Now let \(\tau : \mathbb{R}^2 \to \mathbb{R}^2 \) be defined by \(\tau(a, b) = (a, b - 1) \) and let \(\lambda^{k'/k} : \mathbb{R}^2 \to \mathbb{R}^2 \) be defined by \(\lambda^{k'/k}(a, b) = \frac{k'}{k} (a, b) \). We note that \(\tau(\Gamma^{k'}) = \lambda^{k'/k}(\tau(\Gamma^k)) \); we also note that the endpoints of \(\tau(\Gamma^k) \) and \(\tau(\Gamma^{k'}) \) lie on the line through 0 with slope \(\frac{\beta_0 + \beta_1}{e_1 n_1 \bar{\beta}_1} = \frac{1}{e_1} \frac{n_1 + m_1}{n_1 m_1} < \frac{1}{e_1} \). Since \(\frac{k'}{k} \geq 1 \), the image of \(\tau(\Gamma^k) \) by \(\lambda^{k'/k} \) lies in the interior subset of \(\mathbb{R}^2_{\geq 0} \) whith boundary the union of \(\tau(\Gamma^k) \), of the segment joining its endpoint \([kn_1 \bar{\beta}_1, \frac{k}{k} (\bar{\beta}_0 + \bar{\beta}_1)]\) to \([kn_1 \bar{\beta}_1, 0)\) and of \([kn_1 \bar{\beta}_1, \infty[\times 0 \). This implies that \(\gamma^{k'}(m) \leq \gamma^k(m) \) for \(m \geq k' n_1 \bar{\beta}_1 \), hence \([\gamma^{k'}(m)] \leq [\gamma^k(m)] \) and the claim. \(\square \)
Theorem 4.9. — Let C be a plane branch with $g \geq 2$ Puiseux exponents. Let $m \in \mathbb{N}$. For $1 \leq m < n_1 \beta_1 + e_1, C_m^0 = \text{Cont}^{>0}(x_0)_m$ is irreducible. For $qn_1 \beta_1 + e_1 \leq m < (q + 1)n_1 \beta_1 + e_1$, with $q \geq 1$ in \mathbb{N}, the irreducible components of C_m^0 are:

$$C_{m\kappa} = \overline{\text{Cont}^{\kappa\beta_0}(x_0)_m}$$

for $1 \leq \kappa$ and $\kappa\beta_0 \beta_1 + e_1 \leq m$,

$$C^{j}_{m\kappa v} = \overline{\text{Cont}^{\kappa\beta_0}(x_0)_m}$$

for $j = 2, \ldots, g$, $1 \leq \kappa$ and $\kappa \not\equiv 0 \mod n_j$ and such that $\kappa n_1 \cdots n_{j-1} \beta_1 + e_1 \leq m < \kappa \beta_j$,

$$B_m = \text{Cont}^{>n_1 q}(x_0)_m.$$

Proof. — We first observe that for any integer $k \neq 0$ and any $m \geq kn_1 \beta_1$,

$$(C^0_m)^{\text{red}} = \bigcup_{1 \leq h \leq \kappa} C^h_m \cup \text{Cont}^{>kn_1}(x_0)_m$$

where $C^h_m := \text{Cont}^{hn_1}(x_0)_m$. Indeed, for $k = 1$, we have that $(C^0_m)^{\text{red}} \subseteq V(x_0^{(0)}, \ldots, x_0^{(n_1 - 1)})$ by proposition 4.1. Arguing by induction on k, we may assume that the claim holds for $m \geq (k - 1)n_1 \beta_1$. Now by corollary 4.2, we know that for $m \geq kn_1 \beta_1$, $\text{Cont}^{(k-1)n_1}(x_0)_m \subseteq V(x_0^{(0)}, \ldots, x_0^{(kn_1 - 1)})$, hence the claim for $m \geq kn_1 \beta_1$.

We thus get that for $qn_1 \beta_1 + e_1 \leq m < (q + 1)n_1 \beta_1 + e_1$,

$$(C^0_m)^{\text{red}} = \bigcup_{1 \leq k \leq q} C^k_m \cup \text{Cont}^{>qn_1}(x_0)_m.$$

By proposition 4.7, for $1 \leq k \leq q, C^k_m$ is either irreducible or empty. We first note that if $C^k_m \neq 0$, then $C^{k'}_m \not\subseteq \text{Cont}^{>qn_1}(x_0)_m$ Similarly, if $1 \leq k < k'$ and if C^k_m and $C^{k'}_m$ are nonempty, then $C^k_m \not\subseteq C^{k'}_m$. On the other hand by corollary 4.8, we have that $\text{codim}(C^{k'}_m, C^2_m) \leq \text{codim}(C^k_m, C^2_m)$. So $\overline{C^k_m} \not\subseteq \overline{C^2_m}$. Finally we will show that $\text{Cont}^{>qn_1}(x_0)_m \not\subseteq \overline{C^k_m}$ if $C^k_m \neq \emptyset$ for $1 \leq k \leq q$. To do so, it is enough to check that $\text{codim}(C^k_m, C^2_m) \geq \text{codim}(\text{Cont}^{>qn_1}(x_0)_m, C^2_m)$. For $m \in[qn_1 \beta_1 + e_1, (q + 1)n_1 \beta_1]$, we have

$$\delta'(m) := \text{codim}(\text{Cont}^{>qn_1}(x_0)_m, C^2_m)$$

$$= 2 + q(n_1 + m_1) + \left[\frac{m - qn_1 \beta_1}{\beta_0}\right] + \left[\frac{m - qn_1 \beta_1}{\beta_1}\right]$$
by corollary 4.2. Let \(\lambda^q : [qn_1 \beta_1 + e_1] \rightarrow [q(n_1 + m_1), \infty] \) be the function given by \(\lambda^q(m) = q(n_1 + m_1) + \frac{q_1 \beta_1}{e_1} + 1 \). For simplicity, set \(i = m - qn_1 \beta_1 \).

For any integer \(i \) such that \(e_1 \leq n_1 \beta_1 = n_1 m_1 e_1 \), we have \(1 + \left[\frac{i}{n_1 e_1} \right] + \left[\frac{i}{m_1 e_1} \right] \leq \left[\frac{i}{e_1} \right] \). Indeed this is true for \(i = e_1 \) and it follows by induction on \(i \) from the fact that for any pair of integers \((b, a)\), we have \([\frac{b+1}{a}] = [\frac{b}{a}]\) if and only if \(b + 1 \equiv 0 \) mod \(a \) and \([\frac{b+1}{a}] = [\frac{b}{a}] + 1\) otherwise, since \(i < n_1 m_1 e_1 \). So \(\delta^q(m) \leq [\lambda^q(m)] \).

But in the proof of corollary 4.8, we have checked that if \(C^k_m \neq \emptyset \), then \(\text{codim}(C^k_m, C^2_m) = [\gamma^k(m)] \). We have also checked that for \(q \geq k \) and \(m \geq qn_1 \beta_1 \), \(\gamma^k(m) \geq \gamma^q(m) \).

Finally in view of the definitions of \(\gamma^q \) and \(\lambda^q \), we have \(\gamma^q(m) \geq \lambda^q(m) \), so \([\gamma^q(m)] \geq [\lambda^q(m)] \geq \delta^q(m) \).

For \(m = (q + 1)n_1 \beta_1 \), we have \(\delta^q(m) = (q + 1)(n_1 + m_1) + 1 \) by corollary 4.2. For \(m \in [(q + 1)n_1 \beta_1, (q + 1)n_1 \beta_1 + e_1] \), we have

\[
\text{Cont}^{q(n_1)}(x_0)_m = C^{q+1}_m \cup \text{Cont}^{(q+1)n_1}(x_0)_m
\]

and

\[
\text{Cont}^{(q+1)n_1}(x_0)_m = V(x_0^{(0)}, \ldots, x_0^{(q+1)n_1}, x_1^{(0)}, \ldots, x_1^{((q+1)m_1)})
\]

again by corollary 4.2. If in addition we have \(m < (q + 1)\beta_2 \), then by proposition 4.5 \(C^{q+1}_m = V(x_0^{(0)}, \ldots, x_0^{((q+1)n_1-1)}, x_1^{((q+1)n_1-1)} - c_1 x_0^{((q+1)n_1)} \cap D(x_0^{(q+1)n_1}) \), thus we have \(\text{Cont}^{q(n_1)}(x_0)_m = C^{q+1}_m \) and \(\delta^q(m) = (q + 1)(n_1 + m_1) + 1 \). We have \((q + 1)n_1 \beta_1 + e_1 \leq (q + 1)\beta_2\) if \(q + 1 \geq n_2 \), because \(\beta_2 - n_1 \beta_1 \equiv 0 \) mod \((e_2)\). If not, we may have \((q + 1)\beta_2 < (q + 1)n_1 \beta_1 + e_1\), so for \((q + 1)\beta_2 \leq m < (q + 1)n_1 \beta_1 + e_1\), we have \(C^{q+1}_m = \emptyset \), \(\text{Cont}^{q(n_1)}(x_0)_m = \text{Cont}^{(q+1)n_1}(x_0)_m \) and \(\delta^q(m) = (q + 1)(n_1 + m_1) + 2 \).

In both cases, for \(m \in [(q + 1)n_1 \beta_1, (q + 1)n_1 \beta_1 + e_1] \), we have \(\delta^q(m) \leq (q + 1)(n_1 + m_1 + 1) \). Since \([\lambda^q(m)] = q(n_1 + m_1) + n_1 m_1 + 1\), we conclude that \([\lambda^q(m)] = \delta^q(m)\), so for \(1 \leq k \leq q \), if \(C^k_m \neq \emptyset \), we have \([\gamma^k(m)] = \delta^q(m)\). This proves that the irreducible components of \(C^0_m \) are the \(C^k_m \) for \(1 \leq k \leq q \) and \(C^k_m \neq \emptyset \), and \(\text{Cont}^{q(n_1)}(x_0)_m \), hence the claim in view of the characterization of the nonempty \(C^k_m \)'s given in proposition 4.5. $$\square$$

Corollary 4.10. — Under the assumption of theorem 4.9, let \(q_0 + 1 = \min\{\alpha \in \mathbb{N}; \alpha(\beta_2 - n_1 \beta_1) \geq e_1\} \). Then \(0 \leq q_0 < n_2 \). For \(1 \leq m < (q_0 + 1)n_1 \beta_1 + e_1 \), \(C^0_m \) is irreducible and we have \(\text{codim}(C^0_m, C^2_m) = 2 + [\frac{m}{\beta_0}] + [\frac{m}{\beta_1}] \) for \(0 \leq q < q_0 \) and \(qn_1 \beta_1 + e_1 \leq m < (q + 1)n_1 \beta_1 \) or \(0 \leq q < q_0 \) and \((q + 1)\beta_2 \leq m < (q + 1)n_1 \beta_1 + e_1\).
$$1 + \left[\frac{m}{\beta_0}\right] + \left[\frac{m}{\beta_1}\right] \text{ for } 0 \leq q < q_0 \text{ and } (q+1)n_1\beta_1 \leq m < (q+1)\beta_2$$

or \((q_0+1)n_1\beta_1 \leq m < (q_0+1)n_1\beta_1 + e_1 \).

For \(q \geq q_0 + 1 \) in \(\mathbb{N} \) and \(qn_1\beta_1 + e_1 \leq m < (q+1)n_1\beta_1 + e_1 \), the number of irreducible components of \(C^0_m \) is:

$$N(m) = q + 1 - \sum_{j=2}^{g} \left(\left\lfloor \frac{m}{\beta_j} \right\rfloor - \left\lfloor \frac{m}{n_j\beta_j} \right\rfloor \right)$$

and \(\text{codim}(C^0_m, C^2_m) = 2 + \left[\frac{m}{\beta_0}\right] + \left[\frac{m}{\beta_1}\right] \text{ for } qn_1\beta_1 + e_1 \leq m < (q+1)n_1\beta_1 \).

$$1 + \left[\frac{m}{\beta_0}\right] + \left[\frac{m}{\beta_1}\right] \text{ for } (q+1)n_1\beta_1 \leq m < (q+1)n_1\beta_1 + e_1.$$
Finally, assume that $qn_1\beta_1 + e_1 \leq m < (q+1)n_1\beta_1 + e_1$ with $q \geq 1$ and $q \leq q_0$. Since $q_0 < n_2$, for $1 \leq k \leq q$ we have $k \equiv 0 \mod(n_2)$ and $m \geq qn_1\beta_1 + e_1 > q\beta_2$, hence for $1 \leq k \leq q$, $C_m^k = \emptyset$ and $C_m^0 = \text{Cont}^{qn_1}(x_0)m$ is irreducible. (The case $q = q_0$ was already known). So for $n_1\beta_1 \leq m < (q_0+1)n_1\beta_1 + e_1$, C_m^0 is irreducible. (Recall that for $1 \leq m < q_0n_1\beta_1 + e_1$, the irreducibility of C_m^0 is already known). It only remains to check the codimensions of C_m^0 for $1 \leq m \leq q_0n_1\beta_1 + e_1$. Here again we have seen in the proof of Theorem 4.9 that $\text{codim}(C_m^0, C_m^2) = \text{codim}(\text{Cont}^{qn_1}(x_0)m, C_m^2) =: \delta^q(m)$ for any $q \geq 1$ and $qn_1\beta_1 + e_1 \leq m < (q+1)n_1\beta_1$ and that

$$
\delta^q(m) = 2 + \left[\frac{m}{\beta_0} \right] + \left[\frac{m}{\beta_1} \right] \text{ for any } q \geq 1 \text{ and } qn_1\beta_1 + e_1 \leq m < (q+1)n_1\beta_1
$$

$$(q+1)(n_1 + m_1) + 1 =
1 + \left[\frac{m}{\beta_0} \right] + \left[\frac{m}{\beta_1} \right] \text{ for } q < q_0 \text{ and } (q+1)n_1\beta_1 \leq m < (q+1)\beta_2
$$

$$(q+1)(n_1 + m_1) + 2 =
2 + \left[\frac{m}{\beta_0} \right] + \left[\frac{m}{\beta_1} \right] \text{ for } q < q_0 \text{ and } (q+1)\beta_2 \leq m < (q+1)n_1\beta_1 + e_1.
$$

This completes the proof.

In [6], Igusa has shown that the log-canonical threshold of the pair $((\mathbb{C}^2, 0), (C, 0))$ is $\frac{1}{\beta_0} + \frac{1}{\beta_1}$. Here $((\mathbb{C}^2, 0), (C, 0))$ is the formal neighborhood of \mathbb{C}^2 (resp. C) at 0. Corollary 4.10 allows to recover Corollary B of [2] in this special case.

Corollary 4.11. — If the plane curve C has a branch at 0, with multiplicity β_0, and first Puiseux exponent β_1, then

$$
\min_m \frac{\text{codim}(C_m^0, C_m^2)}{m + 1} = \frac{1}{\beta_0} + \frac{1}{\beta_1}.
$$

Proof. — For any $m, p \neq 0$ in \mathbb{N}, we have $m - p \left[\frac{m}{p} \right] \leq p - 1$ and $m - p \left[\frac{m}{p} \right] = p - 1$ if and only if $m + 1 \equiv 0 \mod(p)$; so for any $m \in \mathbb{N}$, $2 + \left[\frac{m}{\beta_0} \right] + \left[\frac{m}{\beta_1} \right] \geq (m + 1)(\frac{1}{\beta_0} + \frac{1}{\beta_1})$ and we have equality if and only if $m + 1 \equiv 0 \mod(\beta_0)$ and mod β_1 or equivalently $m + 1 \equiv 0 \mod(n_1\beta_1)$ since $n_1\beta_1$ is the least common multiple of β_0 and β_1. If not we have $1 + \left[\frac{m}{\beta_0} \right] + \left[\frac{m}{\beta_1} \right] \geq (m + 1)(\frac{1}{\beta_0} + \frac{1}{\beta_1})$. Now if $(q+1)n_1\beta_1 \leq m < (q+1)n_1\beta_1 + e_1$ with $q \in \mathbb{N}$, we have $(q+1)n_1\beta_1 < m + 1 \leq (q+1)n_1\beta_1 + e_1 < (q+2)n_1\beta_1$, so $m + 1 \neq 0 \mod(n_1\beta_1)$. If $(q+1)n_1\beta_1 \leq m < (q+1)\beta_2$ with $q \in \mathbb{N}$ and $q < q_0$, then $(q+1)n_1\beta_1 < m + 1 \leq (q+1)n_1\beta_1 + e_1 < (q+2)n_1\beta_1$, so $m + 1 \neq 0 \mod
(n_1 \bar{\beta}_1). So in both cases, we have 1 + \left[\frac{m}{\beta_0} \right] + \left[\frac{m}{\beta_1} \right] \geq (m + 1)(\frac{1}{\beta_0} + \frac{1}{\beta_1}). The claim follows from corollary 4.10. \hfill \Box

It also follows immediately from corollary 4.10.

Corollary 4.12. — Let \(q_0 \in \mathbb{N} \) as in corollary 4.10. There exists \(n_1 \bar{\beta}_1 \) linear functions, \(L_0, \cdots, L_{n_1 \bar{\beta}_1 - 1} \) such that \(\dim(C^0_m) = L_i(m) \) for any \(m \equiv i \mod (n_1 \bar{\beta}_1) \) such that \(m \geq q_0 n_1 \bar{\beta}_1 + e_1 \).

The canonical projections \(\pi_{m+1,m} : C^0_{m+1} \to C^0_m \), \(m \geq 1 \), induce infinite inverse systems

\[\cdots B_{m+1} \to B_m \cdots \to B_1 \]

\[\cdots C_{m+1,\kappa I} \to C_{m\kappa I} \cdots \to C_{(\kappa \bar{\beta}_0 \bar{\beta}_1 + e_1) \kappa I} \to B_{\kappa \bar{\beta}_0 \bar{\beta}_1 + e_1 - 1} \]

and finite inverse systems

\[C_j^{(\kappa \bar{\beta}_1 - 1) \kappa v} \to C_{m\kappa I} \cdots \to C_j^{(\kappa n - n_j - 1 \bar{\beta}_1 + e_1) \kappa v} \to B_{\kappa n - n_j - 1 \bar{\beta}_1 + e_1 - 1} \]

for \(2 \leq j \leq g \), and \(\kappa \neq 0 \mod (n_j) \).

We get a tree \(T_{C,0} \) by representing each irreducible component of \(C^0_m \), \(m \geq 1 \), by a vertex \(v_{i,m}, 1 \leq i \leq N(m) \), and by joining the vertices \(v_{i,m+1} \) and \(v_{i,0,m} \) if \(\pi_{m+1,m} \) induces one of the above maps between the corresponding irreducible components.

This tree only depends on the semigroup \(\Gamma \).

Conversely, we recover \(\bar{\beta}_0, \cdots, \bar{\beta}_g \) from this tree and \(\max\{m, \text{codim}(B_m, C^2_m) = 2\} = \bar{\beta}_0 - 1 \). Indeed the number of edges joining two vertices from which an infinite branch of the tree starts is \(\beta_0 \bar{\beta}_1 \). We thus recover \(\bar{\beta}_1 \) and \(e_1 \). We recover \(\bar{\beta}_2 - n_1 \bar{\beta}_1, \cdots, \bar{\beta}_j - n_1 \cdots n_{j-1} \bar{\beta}_1, \cdots, \bar{\beta}_g - n_1 \cdots n_{g-1} \bar{\beta}_1 \), hence \(\bar{\beta}_2, \cdots, \bar{\beta}_g \) from the number of edges in the finite branches.

Corollary 4.13. — Let \(C \) be a plane branch with \(g \geq 1 \) Puiseux exponents. The tree \(T_{C,0} \) described above and \(\max\{m, \text{dim } C^0_m = 2m\} \) determines the sequence \(\bar{\beta}_0, \cdots, \bar{\beta}_g \) or equivalently the equisingularity class of \(C \) and conversely.

We represent below the tree for the branch defined by

\[f(x,y) = (y^2 - x^3)^2 - 4x^6y - x^9 = 0, \]

whose semigroup is \(< \bar{\beta}_0 = 4, \bar{\beta}_1 = 6, \bar{\beta}_2 = 15 > \), and for which we have \(e_1 = 2, e_2 = 1 \) and \(n_1 = n_2 = 2 \).
BIBLIOGRAPHY

Manuscrit reçu le 7 mai 2010,
accepté le 26 novembre 2010.

Hussein MOURTADA
Université de Versailles Saint-Quentin
Laboratoire de Mathématiques de Versailles
45 avenue des États-Unis
78035 Versailles CEDEX (France)
mourtada@math.uvsq.fr