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EMBEDDING THEOREMS FOR MÜNTZ SPACES

by Isabelle CHALENDAR,
Emmanuel FRICAIN & Dan TIMOTIN

Abstract. — We discuss boundedness and compactness properties of the em-
bedding M1

Λ ⊂ L1(µ), where M1
Λ is the closed linear span of the monomials xλn in

L1([0, 1]) and µ is a finite positive Borel measure on the interval [0, 1]. In partic-
ular, we introduce a class of “sublinear” measures and provide a rather complete
solution of the embedding problem for the class of quasilacunary sequences Λ. Fi-
nally, we show how one can recapture some of Al Alam’s results on boundedness
and the essential norm of weighted composition operators from M1

Λ to L1([0, 1]).

Résumé. — Nous étudions la continuité et la compacité du plongement M1
Λ ⊂

L1(µ), où M1
Λ est l’enveloppe linéaire fermée des monômes xλn dans L1([0, 1])

et où µ est une mesure borélienne positive et finie sur [0, 1]. En particulier, nous
introduisons une classe de mesures “sous-linéaires” et nous donnons une solution
complète au problème de plongement pour une classe de suites quasilacunaires Λ.
Finalement nous montrons comment retrouver des résultats de Al Alam concernant
la continuité et la norme essentielle des opérateurs de composition à poids de M1

Λ
dans L1([0, 1]).

1. Introduction

A classical result due to Müntz says that, if 0=λ0<λ1< · · ·<λn< · · · is
an increasing sequence of nonnegative real numbers, then the linear span of
xλn is dense in C([0, 1]) if and only if

∑∞
n=1

1
λn

=∞. When
∑∞
n=1

1
λn

<∞,
the closed linear span of the monomials xλn in different Banach spaces that
contain them is usually not equal to the whole space; it is therefore inter-
esting to study the new spaces thus obtained. In particular, if 1 6 p < +∞
and

∑∞
n=1

1
λn

< ∞, then Mp
Λ  Lp([0, 1]), where Mp

Λ is the closed linear
span of the monomial xλn , n > 0, in Lp([0, 1]). The literature concerning

Keywords: Müntz space, embedding measure, weighted composition operator, compact
operator, essential norm.
Math. classification: 46E15, 47A30, 47B33.
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this class of spaces of functions defined on [0, 1], called Müntz spaces, is not
very extensive. We may refer principally to the two monographs [3] and [4]
and the references within, as well as to the recent papers [2, 6].
The starting point of our research is formed by some recent results of

Ihab Al Alam, either published in [2] or contained in his thesis [1]. They
deal with properties of weighted composition operators on Müntz spaces,
and it is noted therein that the properties of these operators are connected
to embedding of the spaces into Lebesgue spaces.

In the present paper we have pursued this line of approach systematically.
More precisely, we discuss boundedness and compactness properties of the
embedding M1

Λ ⊂ L1(µ), where µ is a finite positive Borel measure on the
interval [0, 1]. In general the embedding properties are critically dependent
on the nature of the sequence Λ = (λn).
The plan of the paper is the following. Section 2 contains preliminar-

ies as well as general results concerning boundedness of the embedding,
while Section 3 discusses compactness of the embedding. In Section 4 we
introduce an important class of measures that we call sublinear, and which
bear a certain resemblance to Carleson measures defined in the unit disc
or half-plane. These allow in Section 5 a rather complete solution of the
embedding problem for the class of quasilacunary sequences Λ. Section 6
discusses through some examples the problems that may appear in the
general case, while Section 7 investigates the important sequence λn = n2.
Finally, in Section 8 we show how one can recapture in this context some
of Al Alam’s results on weighted composition operators.

2. Embedding measures

The basic reference for Müntz spaces is [4]; occasionally we will use also
some results from [3].

We denote by m the Lebesgue measure on [0, 1] and by Λ = (λn)n>1
an increasing sequence of positive real numbers with

∑
n>1

1
λn

< ∞. The
norm in Lp(m) will be denoted simply by ‖ · ‖p (for 1 6 p 6 ∞). The
closed linear span in L1(m) of the functions xλn is the Müntz space M1

Λ.
The functions in M1

Λ are continuous in [0, 1) and real analytic in (0, 1).
Note that sometimes Müntz spaces are defined by including the value

λ0 = 0 in the family of monomials; but the statements are simpler if we
start with λ1 > 0. This is a matter of convenience only: all boundedness
and compactness results below remain true if we add the one-dimensional
space formed by the constants.

ANNALES DE L’INSTITUT FOURIER



EMBEDDING THEOREMS FOR MÜNTZ SPACES 2293

Definition 2.1. — A positive measure µ on [0, 1] is called Λ-embedding
if there is a constant C > 0 such that

(2.1) ‖p‖L1(µ) 6 C‖p‖1,

for all polynomials p in M1
Λ.

It is immediate (by applying the condition to the functions xλn) that
if µ is Λ-embedding, then µ({1}) = 0, so we will suppose this condition
satisfied for all measures appearing in this paper. If 0 < ε < 1, then the
interval [1− ε, 1] will be denoted by Jε.
The next lemma is a useful technical tool.

Lemma 2.2. — Suppose ρ : R+ → R+ is an increasing, C1 function with
ρ(0) = 0 such that µ(Jε) 6 ρ(ε) for all ε ∈ (0, 1]. Then for any continuous,
positive, increasing function g we have∫

[0,1]
g dµ 6

∫ 1

0
g(x)ρ′(1− x) dx.

Proof. — If F (x) = µ([0, x)), then integration by parts yields∫
[0,1]

g dµ =
∫ 1

0
g(x) dF (x) = g(1)F (1)−

∫ 1

0
F (x) dg(x)

(remember F (0) = 0). Since µ(Jε) 6 ρ(ε) for all ε ∈ (0, 1] (and µ({1}) = 0),
it follows that F (1) − F (x) 6 ρ(1 − x), or −F (x) 6 ρ(1 − x) − F (1).
Plugging this into the previous equation, integrating again by parts, and
using ρ(0) = 0, we obtain∫

[0,1]
g dµ 6 g(1)F (1)− F (1)(g(1)− g(0)) +

∫ 1

0
ρ(1− x) dg(x)

= F (1)g(0) +
∫ 1

0
ρ(1− x) dg(x)

= F (1)g(0)− ρ(1)g(0)−
∫ 1

0
g(x) d(ρ(1− x))

= g(0)(F (1)− ρ(1)) +
∫ 1

0
g(x)ρ′(1− x) dx.

The proof is finished by noting that F (1) = µ([0, 1)) 6 ρ(1). �

We intend to investigate necessary and sufficient conditions for a mea-
sure µ to be Λ-embedding. These conditions depend in general on the se-
quence Λ; also, in most cases there is a gap between necessity and suffi-
ciency. The starting point for our approach is the following result from [3,
p. 185, E.8.a].

TOME 61 (2011), FASCICULE 6
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Lemma 2.3. — For all ε ∈ (0, 1] there exists a constant cε > 0 such that
for any function f ∈M1

Λ we have

(2.2) sup
06t61−ε

|f(t)| 6 cε
∫ 1

1−ε
|f(x)|dx.

In particular, the supremum in the left-hand side is majorized by cε‖f‖1.

Formally the inequality (2.2) is stated in [3] only for polynomials in M1
Λ,

but a standard argument shows that it can be extended to any function
f ∈M1

Λ.
Lemma 2.3 has some immediate consequences for the embedding prob-

lem.

Corollary 2.4.
(i) If, for some ε > 0, suppµ ⊂ [0, 1 − ε), then µ is Λ-embedding for

any Λ, and
‖f‖L1(µ) 6 cε‖µ‖‖f‖1

for all f ∈M1
Λ.

(ii) More generally, if for some ε > 0 the restriction of µ to the interval
[1 − ε, 1] is absolutely continuous with respect to m|[1−ε,1], with
essentially bounded density, then µ is Λ-embedding for any Λ.

Remark 2.5. — If µ is Λ-embedding, then M1
Λ ⊂ L1(µ) and ‖f‖L1(µ) 6

c‖f‖1 for all f ∈M1
Λ. Indeed if f ∈M1

Λ, then there exists a sequence (pn)n
of polynomials in M1

Λ such that ‖f −pn‖1 → 0, n→ +∞. By (2.1) (pn)n is
a Cauchy sequence in L1(µ), whence it converges to a function g in L1(µ).
In particular, there exists a subsequence (pnk)k which converges almost
everywhere (with respect to µ) to g. But according to Lemma 2.3, (pn)n
tends to f uniformly on every compact of [0, 1), so g(t) = f(t) for almost
every t ∈ [0, 1) with respect to µ; since µ({1}) = 0, we have g = f in L1(µ).
Therefore M1

Λ ⊂ L1(µ). Moreover, since (pn)n tends to f in L1(µ) and also
in L1(m), (2.1) implies that ‖f‖L1(µ) 6 c‖f‖1, which proves the claim.
Using standard arguments based on the closed graph theorem, it is easy

to see that it is sufficient to have the set inclusion M1
Λ ⊂ L1(µ) in order to

obtain that µ is Λ-embedding. For a Λ-embedding µ we denote by ιµ the
embedding operator ιµ : M1

Λ ⊂ L1(µ).

In order to obtain a more general sufficient condition, note that the
smallest constant that can appear in the right-hand side of (2.2) is a pos-
itive, decreasing function of ε, and thus admits decreasing and continuous
majorants. In the sequel we fix such a majorant, denoted by c(ε). Then
κ(t) := c(1− t) is positive, increasing and continuous on [0, 1). Using (2.2)

ANNALES DE L’INSTITUT FOURIER
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for any monomial xλi , we see that κ(t) → ∞ for t → 1, and the order of
increase is at least (1− t)−1.

Theorem 2.6. — If κ ∈ L1(µ), then µ is Λ-embedding and ‖ιµ‖ 6
‖κ‖L1(µ).

Proof. — For k,m > 1, define the set Em,k = {x ∈ [0, 1) : k−1
2m < κ(x) 6

k
2m }. Since κ is increasing and continuous, we have Em,k = (a(m)

k−1, a
(m)
k ] for

some a(m)
k ∈ [0, 1). If the functions κm are defined by

κm(x) =
∞∑
k=0

κ(a(m)
k )χEm,k(x),

then κm is a decreasing sequence of functions tending everywhere to κ. By
the monotone convergence theorem, it follows from the hypothesis that

(2.3)
∞∑
k=1

µ
(

(a(m)
k−1, a

(m)
k ]

)
κ(a(m)

k )→ ‖κ‖L1(µ) <∞.

On the other hand, from (2.2) it follows that, for any f ∈M1
Λ,

sup
a

(m)
k−1<x6a

(m)
k

|f(x)| 6 κ(a(m)
k )‖f‖1,

whence (taking into account that f(0) = 0 and µ({1}) = 0)∫
[0,1]
|f(x)| dµ(x) =

∞∑
k=1

∫
(a(m)
k−1,a

(m)
k

]
|f(x)| dµ(x)

6
∞∑
k=1

(
sup

a
(m)
k−1<t6a

(m)
k

|f(x)|
)
µ
(

(a(m)
k−1, a

(m)
k ]

)

6
∞∑
k=1

κ(a(m)
k )‖f‖1µ

(
(a(m)
k−1, a

(m)
k ]

)
.

Letting now m→∞ and using (2.3), it follows that µ is Λ-embedding and
‖ιµ‖ 6 ‖κ‖L1(µ). �

Since κ is continuous, increasing and κ(t)→ +∞ for t→ 1, the condition
κ ∈ L1(µ) is related to the asymptotics of µ in 1. The next corollary gives
a sufficient condition on µ expressed in terms of µ(Jε).

Corollary 2.7. — Suppose ρ : R+ → R+ is an increasing, C1 function
with ρ(0) = 0 such that

∫ 1
0 κ(x)ρ′(1 − x) dx < ∞. If µ(Jε) 6 ρ(ε) for all

ε ∈ (0, 1], then µ is Λ-embedding.

TOME 61 (2011), FASCICULE 6
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Proof. — The proof follows by applying Lemma 2.2 to the case g = κ.
�

In general κ has no explicit formula in terms of the sequence Λ. We
would like to obtain more tractable formulas; this will be done below for
some special classes of Λ.

3. Compactness and essential norm

A related problem is that of the compactness of the embedding ιµ. Here,
the starting point is a result stated as Lemma 4.2.5 in [1]; we will sketch a
proof for completeness.

Lemma 3.1. — If (fm)m ⊂ M1
Λ, ‖fm‖1 6 1 for all m, then there exists

a subsequence (fmk)k which converges uniformly on every compact subset
of [0, 1).

Proof. — For any ε ∈ (0, 1] the restrictions of fm to [0, 1−ε] are uniformly
bounded by Lemma 2.3. To prove the result, it is enough to consider only
functions fm in the linear span of xλn with λn > 1; it follows then from a
Bernstein-type inequality proven in [3, p. 178, E.3.d] that the restrictions of
f ′m to [0, 1−2ε] are uniformly bounded. By the Arzela–Ascoli theorem, the
sequence fn|[0,1−2ε] contains a subsequence which is uniformly convergent
on [0, 1 − 2ε]. Applying this to ε = 1/N for all positive integer N and
using a diagonal procedure, one obtains a subsequence fmj that converges
uniformly on all compact of [0, 1) to a function f . �

We may now improve Corollary 2.4.

Proposition 3.2. — If suppµ ⊂ [0, 1− ε], then ιµ is compact.

Proof. — The proof is an immediate consequence of Lemma 3.1: if we
take a sequence (fn)n in the unit ball ofM1

Λ, then the subsequence obtained
therein converges uniformly in [0, 1− ε], and therefore also in L1(µ). �

The following notation will be useful: if µ is a positive measure on [0, 1],
we will denote µm the measure equal to µ on [0, 1 − 1

m ) and 0 elsewhere,
and µ′m = µ− µm (so µ′m is the measure that coincides with µ on J 1

m
and

is 0 elsewhere).
Next comes a general abstract compactness result, related to Corol-

lary 2.7.

Proposition 3.3. — Let M1
Λ be a Müntz space, and suppose that ρ :

R+ → R+ is an increasing continuous function, with ρ(0) = 0, such that any

ANNALES DE L’INSTITUT FOURIER
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measure µ with µ(Jε) 6 Cρ(ε) is Λ-embedding, with embedding constant
at most C. Then, for any measure µ that satisfies limε→0

µ(Jε)
ρ(ε) = 0 the

embedding ιµ is compact.

Proof. — Suppose that ιµm are the embeddings M1
Λ ⊂ L1(µm). We may

regard L1(µm) as a subspace of L1(µ), and the operators ιµm as taking
values in L1(µ). The hypothesis implies that µ′m = µ−µm is Λ-embedding,
with embedding constant tending to 0. Therefore ‖ιµ − ιµm‖ → 0. Since
each ιµm is compact, by Proposition 3.2, the result follows. �

For a general bounded embedding, one can use the measures µ′m to obtain
a formula for the essential norm of ιµ. We start with an abstract simple
lemma that will be used also in Section 8.

Lemma 3.4. — Let X be a Banach space, (E, ν) a measurable space,
T : X → L1(ν) a bounded operator, (Em)m a decreasing sequence of
measurable subsets of E such that ν(

⋂
mEm) = 0. Suppose that (T−PmT )

is compact for allm, where Pm denotes the natural projection of L1(ν) onto
L1(Em, ν). Then the essential norm of T is given by

‖T‖e = lim
m→∞

‖PmT‖.

Proof. — Note that the sequence (‖PmT‖)m is decreasing, so the limit
exists. Since T − PmT is compact for each m, it is obvious that ‖T‖e 6
limm→∞ ‖PmT‖. To prove the reverse inequality, let ε > 0 and K : X →
L1(ν) be a compact operator. Take a sequence (xm)m ⊂ X such that
‖xm‖ = 1 and ‖PmTxm‖L1(Em,ν) > ‖PmT‖ − ε. Then (Kxm)m contains a
convergent subsequence, say Kxmj → g ∈ L1(ν). We have

‖(T −K)xmj‖L1(ν) > ‖Txmj − g‖L1(ν) − ‖Kxmj − g‖L1(ν),

whence

(3.1) lim sup
j
‖(T −K)xmj‖L1(ν) > lim sup

j
‖Txmj − g‖L1(ν).

Since g ∈ L1(ν) and ν(
⋂
mEm) = 0, there exists a positive integer N such

that
∫
Em
|g| dν 6 ε for all m > N . Then, if mj > N , we have

‖Txmj − g‖L1(ν) =
∫
E

|Txmj − g| dν >
∫
Emj

|Txmj − g| dν

>
∫
Emj

|Txmj |dν − ε = ‖PmjTxmj‖L1(Emj ,ν) − ε

> ‖PmjT‖ − 2ε.

TOME 61 (2011), FASCICULE 6
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From (3.1) it follows then that

‖T −K‖ > lim
m
‖PmT‖ − 2ε.

Since this is true for any compact K, we have

‖T‖e > lim
m
‖PmT‖ − 2ε.

Letting ε→ 0 yields the desired inequality. �

Theorem 3.5. — Let M1
Λ be a Müntz space, and suppose that µ is an

embedding measure. Then

(3.2) ‖ιµ‖e = lim
n→∞

‖ιµ′n‖.

Proof. — We may apply Lemma 3.4 to the case X = M1
Λ, (E, ν) =

([0, 1], µ), T = ιµ, and Em = J 1
m
. The compactness condition on (T−PmT )

follows from Proposition 3.2. �

The formula given in Theorem 3.5 can be made explicit in particular
cases. We state an example that will be used in Section 8.

Corollary 3.6. — LetM1
Λ be a Müntz space, and suppose there exists

δ > 0 such that dµ|Jδ = h dm|Jδ for some bounded measurable function h
with limt→1 h(t) = a. Then ιµ is bounded and ‖ιµ‖e = a.

Proof. — The boundedness of ιµ is a consequence of Corollary 2.4 (ii).
To obtain the essential norm, according to Theorem 3.5, we have to prove
that limm→∞ ‖ιµ′m‖ = a. First, for any ε > 0, if m is sufficiently large, then
dµ′m 6 (a+ ε)dm on J 1

m
, which implies ‖ιµ′m‖ 6 a+ ε; therefore

lim
m→∞

‖ιµ′m‖ 6 a.

On the other hand, fix again ε > 0. If m is sufficiently large, then dµ′m >
(a−ε)dm on J 1

m
. Take the function gn(x) = (λn+1)xλn . We have gn ∈M1

Λ,
‖gn‖M1

Λ
= 1, while

‖ιµ′mgn‖ =
∫
J 1
m

gn dµ > (a− ε)
∫ 1

1− 1
m

gn(x) dx = (a− ε)
[
1−
(
1− 1

m

)λn+1
]
,

and the last quantity tends to a − ε for n → ∞. Therefore ‖ιµ′m‖ > a − ε
for all ε > 0. Letting now ε→ 0 yields the desired reverse inequality. �

ANNALES DE L’INSTITUT FOURIER
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4. Sublinear measures

We start with the following simple observation.

Lemma 4.1. — If µ is Λ-embedding, then for any n we have µ(J 1
λn

) 6
C 1
λn

. In particular, lim infε→0
µ(Jε)
ε <∞.

Proof. — Since limn→∞

(
1− 1

λn

)λn
= 1

e , there exists a positive integer

N such that, for all n > N and for all x ∈
[
1− 1

λn
, 1
]
, we have xλn > 1

3 .
It follows that for all n > N

1
3µ(J1/λn) 6

∫
J1/λn

xλndµ 6
∫ 1

0
xλndµ 6 ‖ιµ‖

∫ 1

0
xλndx = ‖ιµ‖

λn + 1 .

Therefore, for all n > N , we have

µ(J1/λn) 6 3‖ιµ‖
λn

.

It is now obvious that there exists C > 0 such that µ(J1/λn) 6 C
λn

for
all n. �

This suggests the following definition.

Definition 4.2. — A measure µ is called sublinear if there is a constant
C > 0 such that for any 0 < ε < 1 we have µ(Jε) 6 Cε; the smallest such
C will be denoted by ‖µ‖S . The measure µ is called vanishing sublinear if
limε→0

µ(Jε)
ε = 0.

We can then obtain a necessary condition for Λ-embedding for a class of
sequences Λ.

Proposition 4.3. — Suppose that there existsM > 0 such that λn+1
λn
6

M . Then any Λ-embedding measure is sublinear.

Proof. — Obviously it is sufficient to check the condition of sublinearity
for ε sufficiently small. Since 1/λn is a decreasing sequence tending to 0,
we may assume that for some n we have 1

λn+1
6 ε 6 1

λn
. Then, applying

Lemma 4.1,
µ(Jε) 6 µ(J 1

λn
) 6 C

λn
6

CM

λn+1
6 CMε. �

It is interesting that sublinearity is also a sufficient condition for Λ-
embedding for the class of quasilacunary sequences Λ. This will be proved
in the next section; now we continue with some elementary facts about
sublinear measures.
The next lemma is a consequence of Lemma 2.2, in case ρ(x) = x.

TOME 61 (2011), FASCICULE 6
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Lemma 4.4. — Suppose that ‖µ‖S < ∞. If g is continuous, positive,
and increasing, we have

(4.1)
∫

[0,1]
g dµ 6 ‖µ‖S

∫
[0,1]

g dm.

Corollary 4.5.
(i) If µ is sublinear, then

sup
λ
‖(λ+ 1)xλ‖L1(µ) 6 ‖µ‖S .

(ii) If µ is vanishing sublinear, then

lim
λ→∞

‖λxλ‖L1(µ) = 0.

Proof.
For (i), we apply Lemma 4.4 to the case g = xλ .
For (ii), fix ε > 0. By the definition of vanishing sublinear, there is δ > 0

such that µ(Jδ′) 6 εδ′ for all δ′ 6 δ. If λ is large enough, then λxλ 6 ε for
all x 6 1− δ, and we have∫

[0,1]
λxλ dµ(x) =

∫
[0,1−δ)

λxλ dµ(x) +
∫

[1−δ,1)
λxλ dµ(x)

6 ε‖µ‖+
∫

[1−δ,1)
λxλ dµ(x).

Let µδ be the measure which is equal to µ on Jδ and is 0 elsewhere. Then
applying again Lemma 4.4 to the measure µδ and to the function g(x) =
λxλ , we get that the second term is also bounded by ε. �

5. Quasilacunary sequences

A sequence Λ is lacunary if for some q > 1 we have λn+1/λn > q,
n > 1. More generally a sequence Λ is quasilacunary if for some increasing
sequence (nk) of integers and some q > 1 we have λnk+1/λnk > q and
N := supk(nk+1 − nk) < ∞. (The first condition of quasilacunarity is
sometimes stated as λnk+1/λnk > q; it is easy to see that the two are
equivalent, of course with a different q.) The sequence Λ will be fixed in
this section. We need a few results from [4].

Lemma 5.1 ([4, Corollary 6.1.3]). — There exists a constant d > 0
(depending only on Λ) such that, if f(x) =

∑m
n=1 αnx

λn , then, for all
x ∈ [0, 1],

|f(x)| 6 dxλ1‖f‖∞.

ANNALES DE L’INSTITUT FOURIER
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Lemma 5.2 ([4, Proposition 8.2.2]). — There is a constant K > 0 (de-
pending only on Λ) such that, if f(x) =

∑m
n=1 αnx

λn , then

‖f ′‖∞ 6 K

(
m∑
n=1

λn

)
‖f‖∞.

Lemma 5.3 ([4, Theorem 9.3.3]). — If Λ is quasilacunary and if Fk is
the (closed) linear vector space generated by {xλnk+1 , . . . , xλnk+1}, then
there is d1 > 0 such that for any sequence of functions fk ∈ Fk we have

d1
∑
k

‖fk‖1 6 ‖
∑
k

fk‖1 6
∑
k

‖fk‖1.

In particular, if Λ is lacunary, then there is d1 > 0 such that

(5.1) d1
∑
n

|an|
λn
6 ‖p‖1 6

∑
n

|an|
λn

,

for every polynomial p(x) =
∑
n anx

λn in M1
Λ.

Let us also note that, in the proof of [4, Theorem 9.3.3], it is shown that
any quasilacunary sequence may be enlarged to one that is still quasilacu-
nary and satisfies λn+1/λn 6 q2 for all n. We will suppose this holds in the
sequel; it follows then that we can assume

(5.2) q 6
λnk+1

λnk+1
6 q2(N−1).

Finally, we will use also the following elementary lemma.

Lemma 5.4. — If f : [0, 1]→ R is a nonconstant differentiable function,
then

‖f‖1 > min
{
‖f‖2∞

2‖f ′‖∞
,
‖f‖∞

4

}
.

Proof. — Let x0 ∈ [0, 1] such that |f(x0)| = M , where M := ‖f‖∞ > 0.
Replacing f by −f we may assume that f(x0) = M . Obviously one of the
intervals [x0 − 1/2, x0] or [x0, x0 + 1/2] is in [0, 1]. Suppose that the first
interval lies in [0, 1].
If ‖f‖∞4 6 ‖f‖2∞

2‖f ′‖∞ , i.e. if ‖f ′‖∞ 6 2M , for all x ∈ [x0 − 1/2, x0],

f(x) > 2M(x− x0) +M.

It follows that ‖f‖1 >
∫ x0
x0−1/2 f(x)dx > M

4 .
If ‖f ′‖∞ > 2M then x0 − M

‖f ′‖∞ ∈ [x0 − 1/2, x0] and for all x ∈ [x0 −
M/‖f ′‖∞, x0],

f(x) > ‖f ′‖∞(x− x0) +M.

It follows that ‖f‖1 >
∫ x0
x0−M/‖f ′‖∞ f(x)dx > M2

2‖f ′‖∞ .
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The proof in the case where [x0, x0 + 1/2] lies in [0, 1] follows the same
lines. �

We are ready now for the promised extension.

Theorem 5.5. — If Λ is quasilacunary, then any sublinear measure µ
is Λ-embedding.

Proof. — By Lemma 5.3, it is enough to show that there is a constant
C > 0 such that for any k and any f ∈ Fk we have ‖f‖L1(µ) 6 C‖f‖1. Let
us then fix k and f ∈ Fk. Applying Lemma 5.1 and Corollary 4.5, we have

‖f‖L1(µ) =
∫ 1

0
|f(x)| dµ(x) 6 d‖f‖∞

∫ 1

0
xλnk+1 dµ(x)(5.3)

6
d‖µ‖S‖f‖∞
λnk+1

.(5.4)

We apply now Lemma 5.4; there are two possible cases. If the minimum
in Lemma 5.4 is ‖f‖∞/4, then ‖f‖∞ 6 4‖f‖1, and it follows immediately
from (5.3) that

‖f‖L1(µ) 6
4d‖µ‖S‖f‖1

λnk+1
.

We obtain thus the desired inequality and the theorem is proved in this
case.
If the minimum in Lemma 5.4 is given by the other term, we use Lem-

ma 5.2, which yields

(5.5) ‖f ′‖∞ 6 K

(
nk+1∑

n=nk+1
λn

)
‖f‖∞ 6 KNλnk+1‖f‖∞.

Then, by Lemma 5.4,

‖f‖2∞ 6 2‖f‖1‖f ′‖∞ 6 2KNλnk+1‖f‖1‖f‖∞.

Plugging the resulting inequality into (5.3) and with the aid of (5.2), one
obtains

‖f‖L1(µ) 6
2KNdλnk+1‖µ‖S‖f‖1

λnk+1
6 2KNdq2(N−1)‖µ‖S‖f‖1,

which finishes the proof. �

Combining Theorem 5.5 with Proposition 4.3, we obtain a class of Λ’s for
which sublinearity is a necessary and sufficient condition for Λ-embedding.

Corollary 5.6. — Suppose that, for some increasing sequence (nk) of
integers with supk(nk+1 − nk) <∞, we have

1 < inf
k

λnk+1

λnk
6 sup

k

λnk+1

λnk
<∞.

ANNALES DE L’INSTITUT FOURIER



EMBEDDING THEOREMS FOR MÜNTZ SPACES 2303

Then a measure µ is Λ-embedding if and only if it is sublinear.

The next corollary follows from Proposition 3.3 and Theorem 5.5.

Corollary 5.7. — If Λ is quasilacunary, then for any vanishing sub-
linear measure the embedding ιµ is compact.

6. Some examples

In general the property of being Λ-embedding depends on the sequence Λ,
as shown by the next example.

Example 6.1. — We intend to construct a measure µ and two lacunary
sequences Λ = (λn)n and Λ′ = (λ′n)n such that µ is Λ-embedding but not
Λ′-embedding.
For 0 < a < 1, consider the function λ 7→ λaλ. It attains its maximum

in xa = − 1
ln a , and the maximum value is xa/e; also, the limit for λ → ∞

is 0. Since, for a close to 1, − ln a is of the same order as 1 − a, it follows
that xa is of the same order as (1− a)−1.
Take then µ =

∑
k ckδak , where δx defines the Dirac measure at x, ak ↑ 1

and ck > 0,
∑
k ck <∞. The values ck, ak, λk will be defined by induction.

We start with c0 = λ0 = 1 and a0 = 0. Suppose that they have been defined
for k 6 n. We choose then λn+1 large enough such that λn+1 > 2λn and
λn+1a

λn+1
k 6 1 for all k 6 n. Note that Λ = (λn) is lacunary. Then we take

an+1 close enough to 1 such that
(i) 1− an+1 6

1−an
2 ;

(ii) (n+ 1)(1− an+1) 6 1
λn+1

;
(iii) xan+1 > 2xan .

Finally, we define cn+1 = (n+ 1)(1− an+1).
Note first that (i) implies 1 − an 6 2−n and therefore c :=

∑
k ck 6∑

k k2−k < ∞. Moreover, using (i), we have also cn+1 6 (2/3)cn for all
n > 3. Now, since

∫
xλ dµ =

∑
k cka

λ
k , it follows that, for all n > 3∫

λnx
λn dµ =

∑
k

ckλna
λn
k =

∑
k<n

ckλna
λn
k +

∑
k>n

ckλna
λn
k

6
∑
k<n

ck +
∑
k>n

ckλn 6 c+
∑
k>n

(2/3)n−kcnλn = c+ 3cnλn.

Since (ii) implies that cnλn 6 1, it follows that, for all n > 3∫
λnx

λn dµ 6 c+ 3,
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and therefore, for all n, there exists a positive constant C > 0 such that∫
λnx

λn dµ 6 C.

Now, if we take an arbitrary function f of the form
∑
n bnλnx

λn ∈M1
Λ, we

obtain

‖f‖L1(µ) 6
∑
n

|bn| ‖λnxλn‖L1(µ) 6 C
∑
n

|bn| 6 C ′‖f‖1,

(the last inequality follows from (5.1)). Therefore µ is Λ-embedding.
As for Λ′, we define λ′n = xan . Then Λ′ is also lacunary by condition (iii)

above, and ∫
λ′nx

λ′n dµ =
∑
k

ckλ
′
na

λ′n
k > cnλ

′
na

λ′n
n .

Since the maximum value of λ→ λaλ is xa/e, and since xan is of the same
order as 1

1−an when n tends to ∞, there exists a positive constant C1 such
that ∫

λ′nx
λ′n dµ > C1

cn
1− an

.

Then, by definition of cn, it follows that∫
λ′nx

λ′n dµ > C1n.

Since ‖λ′nxλ
′
n‖L1(m) 6 1, µ is not Λ′-embedding.

For sequences that are not quasilacunary, the sublinearity condition on
the measure µ is generally not sufficient for Λ-embedding, as shown by the
next example.

Example 6.2. — Note first that if δt is the Dirac measure at t ∈ [0, 1),
then ‖δt‖S = 1

1−t ; therefore δ
′
t = (1 − t)δt is a sublinear measure of unit

(sublinear) norm.
Let us consider, for all positive integers p, q, the function hp,q(x) = xp(1−

x)q. We are interested in some estimates related to this function when
p, q →∞ and q/p→ 0.

First, note that the maximum of (1 − x)hp,q(x) is attained at tp,q =
p

p+q+1 , and is equal to pp(q+1)q+1

(p+q+1)p+q+1 .
In order to estimate ‖hp,q‖1, note that it is equal to B(p + 1, q + 1)

(Euler’s beta function), and thus (by standard estimates for B) we have

‖hp,q‖1 ∼
(p+ 1)p+ 1

2 (q + 1)q+ 1
2

(p+ q + 2)p+q+ 3
2

.
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After some simple computations using the definition of e, it follows that

(6.1)
∫
|hp,q|dδ′tp,q
‖hp,q‖1

∼ (q + 1) 1
2 .

Define then the sequence Λ by adding the terms inside blocks of consec-
utive integers from k7 to k7 + k5, for all k > 1. Then

∑
n

1
λn

=
∞∑
k=1

k5∑
j=0

1
k7 + j

6
∞∑
k=1

k5 + 1
k7 <∞.

Since hp,q is a polynomial involving xp, xp+1, . . . , xp+q, we have hk7,k5 ∈M1
Λ

for all k > 1. Define the measure µ =
∑
k>1

1
k2 δ
′
tk7,k5 . Then µ is sublinear,

with ‖µ‖S 6 π2

6 .
On the other hand, by (6.1) we have∫

|hk7,k5 |dµ > 1
k2

∫
|hk7,k5 |dδ′tk7,k5 >

1
k2 (k5 + 1) 1

2 ‖hk7,k5‖1,

and therefore

sup
k

∫
|hk7,k5 |dµ
‖hk7,k5‖1

→∞.

Thus µ is not Λ-embedding.

7. The sequence λn = n2

In order to give an example of what can happen, going beyond quasila-
cunary sequences, we give in this section a more precise estimate for the
function κ associated with the sequence λn = n2. This will be done in sev-
eral steps, which essentially make explicit the calculations that are involved
in the general results, as found, for instance, in [3, 4.2]. The sequence n2 is a
main example of a standard sequence, that is, one for which λn+1/λn → 1;
it is a test for several unsolved questions in the theory of Müntz spaces
(see [4]). For the rest of this section, we will denote Λ = (n2)n>1 and
Λ̃ = (n2 + 1)n>1.

First, if f(x) = aγx
γ +

∑m
n=1 anx

γn , then by standard euclidian space
arguments we have

(7.1) |aγ | 6 d−1‖f‖2,
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where d is the distance in L2[0, 1] from xγ to the span of the functions
xγ1 , . . . , xγm . A calculation involving biorthogonal bases and Cauchy de-
terminants that can be found in [3, pp. 176–177] shows that

d = 1√
2γ + 1

m∏
n=1

∣∣∣∣ γ − γn
γ + γn + 1

∣∣∣∣ .
We intend now to apply (7.1) to the case of the Müntz spaceM1

Λ̃. Suppose
f(x) =

∑
n>1 ãnx

n2+1. According to (7.1), we have

(7.2) |ãm| 6
√

2m2 + 3
∞∏
n=1
n 6=m

∣∣∣∣m2 + n2 + 3
m2 − n2

∣∣∣∣ ‖f‖2.
We break in three parts the infinite product in the right-hand side. The
first two are estimated simply:

(7.3)
m−1∏
n=1

∣∣∣∣m2 + n2 + 3
m2 − n2

∣∣∣∣ 6 m−1∏
n=1

(m+ n)2

m2 − n2 = (2m− 1)!
m!(m− 1)! .

(7.4)
2m∏

n=m+1

∣∣∣∣m2 + n2 + 3
m2 − n2

∣∣∣∣ 6 2m∏
n=m+1

(m+ n)2

n2 −m2 = (3m)!
(2m)!m! .

As for the third, we have
∞∏

n=2m+1

∣∣∣∣m2 + n2 + 3
m2 − n2

∣∣∣∣ =
∞∏

n=2m+1

(
1 + 2m2 + 3

n2 −m2

)
.

Using the inequality log(1 + x) 6 x, we obtain

log
( ∞∏
n=2m+1

(
1 + 2m2 + 3

n2 −m2

))
=

∞∑
n=2m+1

log
(

1 + 2m2 + 3
n2 −m2

)

6 (2m2 + 3)
∞∑

n=2m+1

1
n2 −m2

6
(log 3)(2m2 + 3)

2m ,

and thus

(7.5)
∞∏

n=2m+1

∣∣∣∣m2 + n2 + 1
m2 − n2

∣∣∣∣ 6 3
2m2+3

2m .

Remembering now Stirling’s formula:
√

2πN
(
N

e

)N
e

1
12N+1 6 N ! 6

√
2πN

(
N

e

)N
e

1
12N
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we obtain from (7.3), (7.4), and (7.5), after some majorizations,

|ãm| 6 m3
8m2+3

2m ‖f‖2.

Consider now a polynomial p(x) =
∑
m amx

m2∈M1
Λ. If p̃(x) =

∫ x
0 p(t) dt,

then p̃(x) =
∑
m

am
m2+1x

m2+1 ∈ M1
Λ̃, and we may apply the previous esti-

mate to p̃, obtaining

|am| 6 m(m2 + 1)3
8m2+3

2m ‖p̃‖2 6 m(m2 + 1)3
8m2+3

2m ‖p̃‖∞ 6 100m‖p‖1.

Take ε > 0. For any x ∈ [0, 1− ε), we have

|p(x)| 6
∑
m

|am|(1− ε)m
2
6
∑
m

100m(1− ε)m
2
‖p‖1 6 C1e

C
ε ‖p‖1.

The last estimate is obtained from the fact [5, p. 57] that, for a > 1,∑
m>1

amxm
2
∼ e−

(log a)2
4 log x

when x↗ 1.
In conclusion, for the sequence Λ = (i2)i>1 we can use in Theorem 2.6

and Corollary 2.7 the function

κ(t) = C1e
C

1−t

in order to obtain sufficient conditions for a Λ-embedding measure µ. There
is a big gap between these conditions and the necessary sublinearity given
by Proposition 4.3.

8. Applications: weighted composition operators

A starting point for this paper was Section 4.2 from [1], which studies
certain weighted composition operators on M1

Λ. We show below how the
main results therein fit in our general frame. In this section Λ is an arbitrary
fixed sequence.
Let φ, ψ be two Borel functions on [0, 1], such that φ([0, 1]) ⊂ [0, 1]. For

any Borel function f one can define

Cφ(f) = f ◦ φ, Tψ(f) = ψf.

At this level of generality, Cφ and Tψ are linear mappings on the vector
space of Borel functions. We are interested in conditions under which the
weighted composition operator Tψ ◦ Cφ maps M1

Λ boundedly into L1; in
case this happens, we may want to compute the essential norm.
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This can be viewed is a standard way as an embedding problem. Recall
that the pullback of a measure ν by φ is the measure φ∗ν on [0, 1] defined
by

φ∗ν(E) = ν(φ−1(E))
for any Borel set E. Then the formula

(8.1)
∫ 1

0
|ψ(x)f(φ(x))|dx =

∫
[0,1]
|f |d(φ∗(|ψ|dm))

is easily checked on characteristic functions, whence it extends to all Borel
functions on [0, 1].

Lemma 8.1. — Define the measure µ = φ∗(|ψ|dm). Then
(i) Tψ ◦Cφ is bounded fromM1

Λ to L1 if and only if µ is a Λ-embedding
measure.

(ii) Tψ ◦ Cφ is compact from M1
Λ to L1 if and only if ιµ is compact.

(iii) Suppose that m(φ−1({1})) = 0. If µ′n = µ|[1− 1
n ,1], then

‖Tψ ◦ Cφ‖e = ‖ιµ‖e = lim
n→∞

‖ιµ′n‖.

Proof. — Formula (8.1) implies that the map J defined by J(f) = ψ(f ◦
φ) is an isometry from L1(µ) into L1. Since we have

(8.2) Tψ ◦ Cφ = J ◦ ιµ,

(i) and (ii) follow immediately.
As for (iii), we will apply Lemma 3.4 to the case X = M1

Λ, (E, ν) =
([0, 1],m), T = Tψ ◦ Cφ, and En = φ−1([1 − 1

n , 1]). The hypothesis on φ

implies that

m

(⋂
n

φ−1([1− 1
n
, 1])

)
= 0;

on the other hand, since Pn is the natural projection onto L1(φ−1([1 −
1
n , 1])), one verifies easily that

(I − Pn)T = J ◦ (ιµ − ιµ′n),

whence (I − Pn)T is compact by Proposition 3.2. It follows then from
Lemma 3.4 that

‖Tψ ◦ Cφ‖e = lim
n
‖J ◦ ιµ′n‖ = lim

n
‖ιµ′n‖. �

One can now recover some of the results in [1], where some regularity
on φ, ψ is assumed; in this case we can describe more precisely the mea-
sure φ∗(|ψ|dm), as shown by the following lemma, whose proof is a simple
computation.
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Lemma 8.2. — Suppose [a, b] ⊂ [0, 1] and φ−1([a, b]) is the union of p
intervals [xi, yi], which have at most an end point in common, and, for each
i = 1, . . . , p, φi := φ|[xi,yi] belongs to C1([xi, yi]), with φ′i(x) 6= 0. Then the
restriction of φ∗(|ψ|dm) to [a, b] is absolutely continuous, with density

(8.3) ρ(x) =
p∑
i=1

|ψ(φ−1
i (x))|

|φ′i(φ
−1
i (x))|

.

The next proposition is Lemma 4.2.8 in [1].

Proposition 8.3. — Suppose that φ ∈ C1. Then Cφ is bounded from
M1

Λ to L1 if and only if one of the following conditions is satisfied:
(1) φ([0, 1]) ⊂ [0, 1);
(2) φ−1({1}) ⊂ {0, 1} and φ(x0) = 1 =⇒ φ′(x0) 6= 0.

Proof. — If φ([0, 1]) ⊂ [0, a] with a < 1, then φ∗dm is supported in [0, a]
and thus Λ-embedding by Corollary 2.4. By Lemma 8.1, we conclude that
Cφ is bounded from M1

Λ to L1.
Suppose now that x0 ∈ [0, 1] satisfies φ(x0) = 1 and φ′(x0) = 0. If δ > 0,

let ε > 0 be such that |φ′(x)| 6 δ for |x− x0| < ε. Then φ(x) > 1− δε for
|x − x0| < ε, whence (φ∗m)(Jδε) > ε. Therefore (φ∗m)(Jδε)

δε > δ−1, which
implies by Lemma 4.1 that φ∗m is not Λ-embedding and therefore Cφ is
not bounded from M1

Λ to L1.
Thus, if Cφ is bounded fromM1

Λ to L1, then φ(x0) = 1 implies φ′(x0) 6= 0.
This already proves the necessity part of the proposition, since if x0 ∈ (0, 1)
and φ(x0) = 1 then x0 is a local maximum for φ and thus φ′(x0) = 0.
Finally, let us suppose that φ−1({1}) = {0, 1}, φ′(0) 6= 0, φ′(1) 6= 0 (the

other cases are simpler). Then there is δ > 0 such that φ−1([1 − δ, 1]) is
the union of two intervals [0, a1] and [a2, 1] on which φ′ is not zero. We
may apply Lemma 8.2 to conclude that φ∗m restricted to Jδ is absolutely
continuous with respect to Lebesgue measure, with bounded density; it
follows then by Corollary 2.4 (ii) that φ∗m is Λ-embedding, that is, Cφ is
bounded. �

The following definition appears in [1]: the measurable function φ :
[0, 1]→ [0, 1] satisfies condition (α) if

(a) φ−1(1) = {x1, . . . , xp} is finite;
(b) there exists ε > 0 such that, for each i = 1, . . . , p, φ ∈ C1([xi− ε, xi])

and φ ∈ C1([xi, xi + ε]);
(c) φ′−(xi) > 0 and φ′+(xi) < 0 for all i, where φ′−(xi) (respectively

φ′+(xi)) is the left (respectively right) derivative of φ at xi;
(d) there exists α < 1 such that, if x 6∈

⋃p
i=1(xi−ε, xi+ε), then φ(x) 6 α.
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The next result combines Theorems 4.2.11 and 4.2.15 from [1].

Proposition 8.4. — Suppose φ : [0, 1] → [0, 1] satisfies the condition
(α), while ψ : [0, 1]→ C is continuous. Then Tψ ◦ Cφ is bounded, and

‖Tψ ◦ Cφ‖e =
p∑
i=1
|ψ(xi)|L(xi),

where

L(xi) =


1

φ′−(xi) + 1
|φ′+(xi)| if xi ∈ (0, 1),

1
φ′−(xi) if xi = 1,

1
|φ′+(xi)| if xi = 0.

Proof. — If we define µ = φ∗(|ψ|dm), then condition (α) implies that,
for some δ > 0, φ−1([1− δ, 1]) is the union of 2p intervals [xi − ηi, xi] and
[xi, xi + η′i], i = 1, . . . , p, with φ(xi − ηi) = φ(xi + η′i) = 1 − δ, and on
each of these intervals φ′ is not zero. Thus the interval [1 − δ, 1] satisfies
the hypothesis of Lemma 8.2. We may then apply Corollary 3.6 to µ, and
formula (8.3) gives a =

∑p
i=1 |ψ(xi)|L(xi). Therefore ιµ is bounded and its

essential norm is
∑p
i=1 |ψ(xi)|L(xi). Part (iii) of Lemma 8.1 then finishes

the proof. �

One should note that both Propositions 8.3 and 8.4 are valid for any Λ.
This is a consequence of rather strong hypotheses on φ and ψ (correspond-
ingly, on the measure µ).
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After the paper was accepted, the authors noted that the application
of Corollary 6.1.3 of [4] in the proof of Theorem 5.5 does not lead to the
desired result. However, the proof can be corrected using Corollary 8.1.2
of [4] instead. The constant d in Formula (5.3) should be replaced by 2N2.
The end of the proof remains unchanged.
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