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COMPATIBLE COMPLEX STRUCTURES ON TWISTOR
SPACE

by Guillaume DESCHAMPS (*)

Abstract. — Let M be a Riemannian 4-manifold. The associated twistor space
is a bundle whose total space Z admits a natural metric. The aim of this article
is to study properties of complex structures on Z which are compatible with the
fibration and the metric. The results obtained enable us to translate some metric
properties on M (scalar flat, scalar-flat Kähler...) in terms of complex properties
of its twistor space Z.
Résumé. — Soit M une 4-variété riemannienne. L’espace de twisteur associé

est un fibré qui admet une métrique naturelle. Le but de cet article est d’étudier les
structures complexes sur Z qui sont compatibles avec la fibration et la métrique.
Les résultats obtenu permettent d’exprimer des propriétés métriques sur M (cour-
bure scalaire nulle, Kähler à courbure scalaire nulle...) en termes de propriétés des
structures complexes de l’espace de twisteur Z.

Let (M, g) be a Riemannian 4-manifold. The twistor space Z → M is
a CP 1-bundle whose total space Z admits a natural metric g̃. The aim of
this article is to study properties of complex structures on (Z, g̃) which are
compatible with the CP 1-fibration and the metric g̃. The results obtained
enable us to translate some metric properties on M in terms of complex
properties on its twistor space Z.

Introduction

Let (M, g) be an oriented 4-dimensional Riemannian manifold (not neces-
sarily compact). Due to the Hodge-star operator ?, we have a decomposition

Keywords: twistor space, complex structure, scalar-flat, scalar-flat Kähler, locally con-
formally Kähler, quaternionic Kähler.
Math. classification: 53C28, 52C26.
(*) I would like to warmly thank V. Apostolov, A. Fujiki and M. Pontecorvo for helpful
suggestions and remarks. I thank T. Levasseur for precious advice which helped improve
the clarity of the exposition.
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of the bivector bundle
∧2

TM =
∧+⊕

∧−. Here
∧± is the eigen-subbundle

for the eigenvalue ±1 of ?. The metric g onM induces a metric, denoted by
< , >, on the bundle

∧2
TM . Let π : Z = S

(∧+) −→ M be the sphere
bundle; the fiber over a point m ∈M parameterizes the complex structures
on the tangent space TmM compatible with the orientation and the met-
ric g. It is the twistor space of the manifold (M, g). Since the structural
group of Z is SO(3) ⊂ Aut(CP 1), we can thus put the complex structure
of CP 1 on each fiber. On the other hand, the Levi-Civita connection on
(M, g) induces a splitting of the tangent bundle TZ into the direct sum
of the horizontal and vertical distributions: TZ = H ⊕ V . Therefore, the
twistor space Z admits a natural metric g̃ defined by its restrictions to H
and V : we endow V with the Fubini-Study metric and H ' π?TM with
the pullback of the metric g.

In this article we study some aspects of almost complex structures on
(Z, g̃) which are Hermitian and extend the complex structure of the fibers.
These structures will be called compatible almost complex structures on
(Z, g̃). In particular, the integrability of two such structures means that
the metric g̃ is bihermitian [33], [4].

To each morphism respecting the twistor fibration

Z

π

��11111111
f // Z

π

��

M

we associate a compatible almost complex structure Jf on (Z, g̃) in the fol-
lowing way. Let z ∈ Z with π(z) = m ∈M , and write TzZ = Hz⊕Vz. Here,
Vz is the tangent space to the fiber π−1(m) ' CP 1 and is therefore equipped
with a complex structure. On the other hand, we endow Hz ' TmM with
the complex structure associated to the point f(z). Conversely, any com-
patible almost complex structure J on (Z, g̃) defines a unique morphism
f : Z −→ Z respecting the fibration such that Jf = J.
The almost complex structure JId associated to the identity is the canon-

ical twistor almost complex structure [6]. If σ is the morphism of Z whose
restriction to each fiber of π is the antipodal map of S2, we denote by
Jσ the almost complex structure associated to σ. That is the opposite of
the almost complex structure J2 defined in [17] which is know to be never
integrable. Now, an almost complex manifold (M, g, JM ) such that JM
is compatible with the orientation and the metric g defines a tautologi-
cal section of Z −→ M . This section can be taken as the infinity section

ANNALES DE L’INSTITUT FOURIER
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and we can therefore consider the constant morphism f = ∞. The asso-
ciated almost complex structure will be denoted by J∞. Let λ ∈ C? and
consider the morphism f = λId acting as λId in each fiber minus infin-
ity (i.e. CP 1 − {∞} ' C) and preserving infinity. We denote by JλId the
corresponding almost complex structure on Z.

The integrability of the structures JId, J∞, JλId are related to the cur-
vature of the metric g on M . Let R :

∧2
TM −→

∧2
TM be the curvature

operator. The decomposition
∧2

TM =
∧+⊕

∧− allows us to write R in
block matrix form as follows

R =
(
A tB

B C

)
,

where A = W+ + s
12Id, C = W− + s

12Id, W
+ (resp. W−) is the selfdual

(resp. anti-selfdual) Weyl tensor, s is the scalar curvature and B the trace-
free Ricci curvature [11].
The main result of this article is the following:

Theorem 1. — Let (M, g) be an oriented Riemannian 4-manifold.
A) The complex structure JId is integrable if, and only if, g anti-selfdual

(i.e. A is a homothety) [6].
B) Let JM be an almost complex structure on M compatible with the

metric g and the orientation. The complex structure J∞ is inte-
grable if, and only if:
i) JM is integrable;
ii) the kernel of A contains the plane J⊥M ⊂

∧+ orthogonal to the
line generated by JM .

C) Let (M, g, JM ) be a Kählerian surface. If λ /∈ {0, 1}, the complex
structure JλId is integrable if, and only if, (M, g, JM ) is scalar-flat
Kähler (i.e. A=0).

D) Let (M, g) be an anti-selfdual Riemannian manifold. Its scalar cur-
vature is zero if, and only if, any m ∈M has an open neighborhood
U such that, over U , (Z, g̃) admits a compatible complex structure
different from JId.

The conditions i) & ii) of part B in the previous theorem are satisfied
as soon as (M, g, JM ) is Kähler. We show in section B that this Kählerian
property is equivalent to the integrability of J∞ in the compact case. For a
scalar-flat Kähler surface (M, g, JM ), the complex structures JId [19], J∞
and JλId are integrable and compatible with the metric g̃ on Z. This gives
us a huge family of real 6-dimensional manifolds admitting a bihermitian
metric.
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Recall that the Penrose correspondence gives a dictionary between holo-
morphic properties of the twistor space Z and properties of the Riemannian
manifold (M, g). The above result can be viewed as a new paragraph of that
dictionary. In particular, we deduce from it some new characterizations of
Kähler metrics, anti-selfdual scalar-flat metrics and scalar-flat Kähler met-
rics, in terms of twistor spaces.
The proof of Theorem 1 is split into four theorems, Theorem A,. . . , D,

the proof of each being given in the corresponding labelled section.
In section E we study more precisely the set of all compatible complex

structures on the twistor space of a locally conformally Kähler surfaces.
Whereas on section F we will study the case of bielliptic surfaces.

We conclude the paper by giving a generalisation of this theorem to
quaternionic Kähler manifolds of dimension 4n for n > 1.

Notation

We will use Einstein summation convention over repeated indices. The
fiber of π : Z −→ M over m ∈ M will be freely identified with S2, CP 1

or SO(4)/U(2), the set of all complex structure on TmM . The bundle
of bivectors

∧2
TM will be identified with the bundle of skew-symmetric

endomorphisms of TM , or to the bundle of 2-forms.
Let (θ1, θ2, θ3, θ4) be an oriented g-orthonormal frame defined over an

open set U of (M, g). Define three linear operators I, J,K ∈ End(TM),
over U , by their matrix in the basis (θ1, . . . , θ4):

I =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 J =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 K =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 .
Then, (I, J,K) gives an oriented orthonormal basis over U of

∧+ and there-
fore defines a trivialization of the twistor space π : Z −→M over U :

π−1(U) ' U × SO(4)/U(2).

Let (θ∗1 , . . . , θ∗4) be the local coframe dual to (θ1, . . . , θ4). Locally, the co-
variant derivative ∇ (on M) defined by the Levi-Civita connection of the
metric g writes ∇θj = Γkijθ∗i ⊗ θk. The Γkij are the Christoffel symbols of
the connection ∇; they satisfy Γkij = −Γjik.
Let z ' (m,Q) ∈ π−1(U) be a point of Z and write the tangent space as

the direct sum of the horizontal and vertical tangent spaces: TzZ = Vz⊕Hz.

ANNALES DE L’INSTITUT FOURIER
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Denote by θ̂ ∈ Hz ' TmM the horizontal lift of θ ∈ TmM . We then have
[8]:  Vz =

{
X ∂
∂Q | X ∈ End(TmM), tX = −X et QX = −XQ

}
Hz = Vect

(
θ̂1(z), . . . , θ̂4(z)

)
with

{
θ̂i(z) = θi(m)− [Γ�

i�(m), Q] ∂∂Q
[Γ�
i�(m), Q] ∂∂Q =

(
Γ�
i�(m)Q−QΓ�

i�(m)
)
∂
∂Q ∈ Vz.

Remark. — The complex structure of rational curves on the fiber
π−1(m) ' S2 at a point z = (m,Q) is given by the application [8]:

Vz ' TQS2 −→ Vz ' TQS2

X ∂
∂Q 7−→ QX ∂

∂Q .

For all A ∈ so(4) = {A ∈ End(TM) | tA = −A} we can define the vertical
vector field Ã = [A,Q] ∂∂Q . These vector fields will be called basic.

General results

In this section (M, g) will be an oriented Riemannian 4-manifold. Re-
sults – and proofs – given here in dimension 4, can be easily adapted to
quaternionic Kähler 4n-manifolds and will be used in the last section of the
paper.
To study the integrability of the almost complex structure Jf we need

to compute the Nijenhuis tensor N of Jf [28]:

N(X,Y ) = [JfX, JfY ]−Jf [JfX,Y ]−Jf [X, JfY ]−[X,Y ] ∀(X,Y ) ∈ TzZ.

The first necessary condition for the integrability of Jf appears in the next
proposition.

Proposition 1. — For any morphism f we have:
i) N(X,Y ) = 0 for all X,Y ∈ Vz;
ii) let X, θ ∈ Vz ×Hz, then

• the vertical component of N(X, θ) is zero
• the horizontal component of N(X, θ) is zero if and only if the
restriction of f to each fiber is holomorphic.

As σ is an anti-holomorphic involution on fibers we easily recover the result
from [17]:

Corollary 1. — The almost complex structure Jσ is never integrable.

TOME 61 (2011), FASCICULE 6
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Proof of Proposition 1. For any morphism f , each fiber of π : Z −→ M

has the structure of CP 1. It follows immediately from [28] thatN(X,Y ) = 0
for all X,Y ∈ Vz.

Let X̃ be a basic vertical vector field and π−1(m) be a fixed fiber. The
restriction to that fiber of the application f is:

f |π−1(m) : S2 ' π−1(m) −→ S2 ' π−1(m)
Q 7−→ f(Q)

Observe that [X̃, θ̂i] is vertical when X̃ is. Since the action of the complex
structure Jf on the fiber is equal to the rational curve structure, it does
not depend on the fiber. We then have: [Jf X̃, θ̂i] = [QX̃, θ̂i] = Q[X̃, θ̂i] =
Jf [X̃, θ̂i]. This implies that, for i ∈ {1, . . . , 4}:

N(X̃, θ̂i) = [QX̃, f(Q)θ̂i]−Q[QX̃, θ̂i] + Jf [X̃, f(Q)θ̂i]− [X̃, θ̂i]
=
(

(QX̃).f(Q) − f(Q)(X̃.f(Q))
)
θ̂i

=
(
dQf(QX̃) − f(Q)dQf(X̃)

)
θ̂i

where dQf is the differential of f at Q ∈ S2. The horizontal component of
N(X, θ) vanishes for all (X, θ) ∈ Vz ×Hz if and only if the restrictions of
f to the fibers are holomorphic. �

In the trivialization of Z −→M over an open set U , the morphism f can
be written:

f |π−1(U) : U × S2 −→ U × S2

(x,Q) 7−→
(
x, f(x,Q)

)
.

In order to simplify the notation we set P = f(x,Q) and [P ji ] denotes the
matrix, in the basis (θ1, . . . , θ4), of the operator P viewed as an endomor-
phism of TM .

Proposition 2. — Let f be any morphism and (m,Q) ∈ Z. Then, for
all i, j ∈ {1, . . . , 4} one has:

i) the horizontal component of N(θ̂i, θ̂j) can be written as ̂E(θi, θj) +
Fij

ii) the vertical component of N(θ̂i, θ̂j) can be written as G(θi, θj) ∂
∂Q ,

ANNALES DE L’INSTITUT FOURIER
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where

E(θi, θj) is the Nijenhuis tensor of the almost complex structure P0
on TM defined by f(�, Q) over the open set U (where Q is fixed);

Fij = −P ri [Γ�
r�, Q] ∂∂QP

r
j θ̂r + P rj [Γ�

r�, Q] ∂∂QP
l
i θ̂l

−P
(

[Γ�
j�, Q] ∂∂QP

l
i θ̂l − [Γ�

i�, Q] ∂∂QP
r
j θ̂r

)
;

G(θi, θj) =
[
R
(
θi ∧ θj − Pθi ∧ Pθj

)
+QR

(
Pθi ∧ θj + θi ∧ Pθj

)
, Q
]
.

Proof. — The curvature tensor is

R(θi, θj) = ∇θi∇θj −∇θj∇θi −∇[θi,θj ] = Rlkijθ
?
k ⊗ θl,

with Rlkij = g
(
R(θi, θj)θk, θl

)
. Hence,

R(θi, θj)θk = ∇θi(Γmjkθm)−∇θj (Γmikθm)−∇(Γm
ij
−Γm

ji
)θmθk

yields
Rlijk = θi(Γljk)− θj(Γlik) + [Γ�

i�,Γ�
j�]lk − (Γ�

ij − Γ�
ji)Γl�k.

To finish the proof of the proposition we need the following lemma.

Lemma 1. — The Lie bracket of θ̂i with θ̂j satisfies:

[θ̂i, θ̂j ] = [̂θi, θj ]−
[
R�

�ij , Q
] ∂

∂Q
.

Proof of Lemma 1. From θ̂i = θi − [Γ�
i�, Q] ∂∂Q we can deduce that:

[θ̂i, θ̂j ] =
[
θi − [Γ�

i�, Q] ∂∂Q , θj − [Γ�
j�, Q] ∂∂Q

]
= [θi, θj ]− [θi(Γ�

j�), Q] ∂∂Q + [θj(Γ�
i�), Q] ∂∂Q −

[
[Γ�
i�,Γ�

j�], Q
]
∂
∂Q

=
(

Γmij − Γmji
)
θm −

[
[θi(Γ�

j�)− θj(Γ�
i�) + [Γ�

i�,Γ�
j�], Q

]
∂
∂Q

=
(

Γmij − Γmji
)
θm −

([
R�

�ij , Q
]

+ (Γmij − Γmji)[Γ�
m�, Q]

)
∂
∂Q

= (Γmij − Γmji)θ̂m −
[
R�

�ij , Q
]
∂
∂Q

= [̂θi, θj ]−
[
R�

�ij , Q
]
∂
∂Q .

�

We can now complete the proof of Proposition 1. The Nijenhuis tensor is
given by

N(θ̂i, θ̂j) = [Jf θ̂i, Jf θ̂j ]− Jf
(

[Jf θ̂i, θ̂j ] + [θ̂i, Jf θ̂j ]
)
− [θ̂i, θ̂j ],

TOME 61 (2011), FASCICULE 6
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where:

[Jf θ̂i, Jf θ̂j ] = [P li θ̂l, P rj θ̂r]
= P̂ θi.(P rj ) θ̂r − P̂ θj .(P li ) θ̂l + P liP

r
j [θ̂l, θ̂r]

[Jf θ̂i, θ̂j ] + [θ̂i, Jf θ̂j ] = [P li θ̂l, θ̂j ] + [θ̂i, P rj θ̂r]
= −θ̂j .(P li ) θ̂l + P li [θ̂l, θ̂j ] + θ̂i.(P rj ) θ̂r + P rj [θ̂i, θ̂r].

By Lemma 1 the horizontal component of the Nijenhuis tensor is:

HN(θ̂i, θ̂j) = P̂ θi.(P rj ) θ̂r − P̂ θj .(P li ) θ̂l + P liP
r
j [̂θl, θr]

−P
(
− θ̂j .(P li ) θ̂l + P li [̂θl, θj ] + θ̂i.(P rj ) θ̂r + P rj [̂θr, θi]

)
− ̂[θi, θj ].

Fix Q and denote by P0 the almost complex structure on TM , over U ,
defined by P0(m) = f(m,Q). Then:

HN(θ̂i, θ̂j) = ̂[P0θi, P0θj ]− P0

(
̂[P0θi, θj ] + ̂[θi, P0θj ]

)
− [̂θi, θj ]

−P ri [Γ�
r�, Q] ∂∂QP

r
j θ̂r + P rj [Γ�

r�, Q] ∂∂QP
l
i θ̂l

−P
(

[Γ�
j�, Q] ∂∂QP

l
i θ̂l − [Γ�

i�, Q] ∂∂QP
r
j θ̂r

)
= ̂E(θi, θj) + Fij .

The vertical component of the Nijenhuis tensor is:

V N(θ̂i, θ̂j) =
(

[R�
�ij , Q]− P liP rj [R�

�lr, Q]−Q
(
− P li [R�

�lj , Q]− P rj [R�
�ir, Q]

))
∂
∂Q

=
[
R
(
θi ∧ θj − Pθi ∧ Pθj

)
+QR

(
Pθi ∧ θj + θi ∧ Pθj

)
, Q
]

∂
∂Q

= G(θi, θj) ∂
∂Q .

�

In order to prove Theorem 1 we need to study the tensor G and we set:{
G1(θi, θj , P ) = θi ∧ θj − Pθi ∧ Pθj
G2(θi, θj , P ) = Pθi ∧ θj + θi ∧ Pθj .

An easy computation gives the following lemma.

Lemma 2. — Let (θ1, . . . , θ4) be an oriented orthonormal frame over an
open set U and (I, J,K) be the associated basis of

∧+. Then we have:

I = G1(θ1, θ2, J) = G1(θ1, θ2,K)
J = G1(θ1, θ3, I) = G1(θ1, θ3,K)
K = G1(θ1, θ4, I) = G1(θ1, θ4, J)
0 = G1(θ1, θ2, I) = G1(θ1, θ3, J) = G1(θ1, θ4,K)
G1(θ1, θ2, aI + bJ + cK) = (1− a2)I − abJ − acK
G2(θi, θj , P ) = PG1(θi, θj , P ).

ANNALES DE L’INSTITUT FOURIER
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A) The case where f is the identity

In this section we give a proof of (the well known) part A of Theorem 1:

Theorem A [6]. — The complex structure JId is integrable if and only
if A is a homothety.

The fact that A is a homothety is equivalent to saying that the selfdual
Weyl tensor W+ is zero. In that case the metric is said to be anti-selfdual.

Proof. — In the local trivialization π−1(U) ' U × CP 1 of the previous
section the morphism f = Id when restricted to fibers is a holomorphic
map, which only depends on the second variable. By Proposition 1 we
know that it is sufficient to study N(θ̂i, θ̂j). We have:

Fij = −Qri [Γ�
r�, Q] ∂∂QQ

r
j θ̂r +Qrj [Γ�

r�, Q] ∂∂QQ
l
i θ̂l

−Q
(

[Γ�
j�, Q] ∂∂QQ

l
i θ̂l − [Γ�

i�, Q] ∂∂QQ
r
j θ̂r

)
= −Qri [Γ�

r�, Q]θ̂j +Qrj [Γ�
r�, Q]θ̂i −Q

(
[Γ�
j�, Q]θ̂i − [Γ�

i�, Q]θ̂j
)
.

Using [Γ�
i�, Q] = [∇θi �, Q] one gets:

dπ(Fij) = −[∇Qθi �, Q]θj + [∇Qθj �, Q]θi −Q
(

[∇θj �, Q]θi − [∇θi �Q]θj
)

= −∇Qθi Qθj +Q∇Qθi θj +∇Qθj Qθi −Q∇Qθj θi
−Q∇θj Qθi −∇θjθi +Q∇θi Qθj +∇θiθj

= −E(θi, θj).

The horizontal component of N(θ̂i, θ̂j) is then zero. The vertical component
is:

G(θi, θj) =
[
R
(
θi ∧ θj −Qθi ∧Qθj

)
+QR

(
θi ∧Qθj +Qθi ∧ θj

)
, Q
]
.

But Q preserves the orientation, hence:{
θi ∧ θj −Qθi ∧Qθj ∈

∧+
TmM

θi ∧Qθj +Qθi ∧ θj ∈
∧+

TmM.

Recall that the matrix of the curvature operator R has the following split-
ting:

R =
(
A tB

B C

)
Since the elements of

∧+ of
∧− commute [6], the component A in the

matrix R is the only one which matters in the computation of G(θi, θj). By
Lemma 2, one has the equality:(

θi ∧ θj −Qθi ∧Qθj
)

+Q
(
θi ∧Qθj +Qθi ∧ θj

)
= 0, ∀θi, θj ∈ TmM.

TOME 61 (2011), FASCICULE 6
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Therefore, if the matrix A is a homothety the Nijenhuis tensor of JId is
zero.
Conversely, assume that JId is integrable. We have noticed that the or-

thonormal frame (θ1, . . . , θ4) over U defines an oriented orthonormal basis
(I, J,K) of

∧+ over U . Since G(θi, θj) = 0 for all i, j ∈ {1, . . . , 4}, Lemma 2
implies:

at the point (m, I), G(θ1, θ3) = [A(J) + IA(K), I] = 0
at the point (m,J), G(θ1, θ2) = [A(I) + JA(−K), J ] = 0
at the point (m,K), G(θ1, θ2) = [A(I) +KA(J),K] = 0.

Since (I, J,K) is an oriented orthonormal basis, it follows from IJ = −JI =
K that relations of the following type hold:

[A(J), I] = 2 < A(J),K > J − 2 < A(J), J > K.

From the previous system we then deduce the following one:

< A(J), J > = − < IA(K), J > = < A(K),K >

< A(J),K > = − < IA(K),K > = − < A(K), J >
< A(I), I > = − < JA(−K), I > = < A(K),K >

< A(I),K > = − < JA(−K),K > = − < A(K), I >
< A(I), I > = − < KA(J), I > = < A(J), J >
< A(I), J > = − < KA(J), J > = − < A(J), I >

But the matrix A in the basis (I, J,K) is symmetric, thus A is a homothety.
�

B) The case where f is constant

Integrability theorem

In this section we give a proof of part B of Theorem 1.

Theorem B. — Let (M, g, JM ) be an almost complex manifold such
that JM is compatible with the orientation and the metric. The complex
structure J∞ is integrable if and only if:

i) JM is integrable;
ii) the kernel of A contains the subspace J⊥M ⊂

∧+ orthogonal to the
line generated by JM (i.e. J⊥M ⊂ ker(A)).
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Notice that the integrability condition is not conformal on g. Moreover,
when J∞ is integrable, it gives to the twistor projection π : (Z, J∞) −→
(M,JM ) the structure of a holomorphic CP 1-bundle.

For a complex manifold (M, g, JM ) we have a decomposition C⊗ TM =
T 1,0 ⊕ T 0,1 into ±i eigenspaces of JM . We then obtain:{

C⊗
∧+ = CJM ⊕⊥ (

∧2,0⊕
∧2,0)

C⊗
∧− = {ψ ∈

∧1,1 |< ψ, JM >= 0}
where

{ ∧2,0 = T 1,0 ∧ T 1,0∧1,1 = T 1,0 ∧ T 0,1

Condition ii) says that (
∧2,0⊕

∧2,0) ⊂ ker(A). For a Kählerian manifold
the curvature R may be viewed as a symmetric endomorphism of

∧1,1,
so in some orthonormal basis compatible with these decompositions we

have A =

 s
4 0 0
0 0 0
0 0 0

 and W+ =

 s
6 0 0
0 − s

12 0
0 0 − s

12

. We then have the

following result:

Proposition 3. — For any Kählerian surface (M, g, JM ) the complex
structure J∞ on (Z, g̃) is integrable. Furthermore, if (M, g, JM ) is Kähler
and the scalar curvature of g is never zero, then J∞ and J−∞ (the compati-
ble complex structure on (Z, g̃) associated to −JM ) are the only compatible
complex structures on (Z, g̃).

In other terms, for a Kählerian manifold whose scalar curvature is non
zero there are, even locally, only two compatible complex structures on its
twistor space.
Proof. — The first part being a consequence of Theorem B, we only need

to prove the second part of the proposition. Let Jf be a compatible complex
structure on (Z, g̃) and assume that the scalar curvature of (M, g, JM ) is
never zero. One can build an orthonormal basis (I, J,K) of

∧+ over an open
set U as follows. Setting I = JM , pick any unitary vector J orthonormal
to I and define K = IJ . For any m ∈ U , there exists (a, b, c) ∈ S2 such
that f(m,J) = aI + bJ + cK. But, as (M, g, JM ) is Kähler, in this basis

we have A =

 s
4 0 0
0 0 0
0 0 0

. Let θ1 be a unitary vector field defined over

U ; set θ2 = Iθ1. As Jf is integrable, G(θ1, θ2) is identically zero on U . In
particular, at the point (m,J) we obtain:

G(θ1, θ2) = 0
= [A

(
(1− a2)I − abJ − acK

)
+ JA(cJ − bK), J ] = 0

= [(1− a2) s4I, J ] = (1− a2) s2K.
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Therefore a = ±1, that is f(m,J) = ±I for all J orthonormal to I. Since
f must be holomorphic in the fibers we get that f is constant, equal to I
or −I. �

Proof of Theorem B. — By Proposition 1, it is sufficient to check that
N(θ̂i, θ̂j) = 0. As f is constant on fibers we always have Fij = 0. Therefore:
J∞ integrable ⇐⇒ E(θi, θj) = G(θi, θj) = 0 ⇐⇒ {JM integrable and
G(θi, θj) = 0}. But for all θi, θj ∈ TM we have{

θi ∧ θj − JMθi ∧ JMθj ∈ J⊥M
JMθi ∧ θj + θi ∧ JMθi ∈ J⊥M

.

Consequently, if J⊥M ⊂ ker(A) we obtain G(θi, θj) = 0 for all θi, θj ∈ TM .
Conversely, suppose that J∞ is integrable. Set J0 = JM . Locally over

an open set U one can complete {J0} to get an oriented orthonormal basis
(I0, J0,K0) of

∧+. Let θ1 be a unitary vector field defined over U ; set
θ2 = I0θ1. If G = 0, then, for all m ∈ U and Q ∈ π−1(m), Lemma 2 implies
that at the point (m,Q):

G(θ1, θ2) = [A(I0) +QA(−K0), Q] = 0.

In particular, for Q = A(K0), we have [A(I0), A(K0)] = 0 and it follows
that A(K0) = cA(I0) for some constant c. The former equation yields:

∀Q ∈ π−1(m), 0 = [A(I0) +QA(−K0), Q]
= (Id− cQ) [A(I0), Q] =⇒ A(I0) = 0.

Therefore J⊥0 = Vect(I0,K0) ⊂ ker A. �

Recall that we have a characterization of an integrable almost complex
structure JM on M in terms of the twistor space and one of the Kählerian
complex structures.

Proposition (see, for example, [37, 15]). — Let JM be a Hermitian
almost complex structure on (M, g). Then:

• JM is integrable if and only if the associated section of the twistor
space, s : (M,JM ) −→ (Z, JId), is almost holomorphic, that is: the
differential ds satisfies ds ◦ JM = JId ◦ ds;

• JM is Kähler if and only if s is an horizontal section, that is to say:
the tangent space of the submanifold s(M) ⊂ Z is included in the
horizontal distribution.

It is well known that the existence of a Kähler metric on a compact complex
surface (M,JM ) is equivalent for the first Betti number b1 to be even [27, 39,
25]. Theorem B gives a new characterization of compact Kählerian surfaces
in terms of compatible complex structures on the associated twistor spaces.
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Proposition 4. — A compact almost Hermitian 4-dimensional mani-
fold (M, g, JM ) is Kähler if and only if J∞ is integrable.

In section D we will deduce from that proposition a characterisation of com-
pact scalar-flat Kähler manifolds in terms of compatible complex structures
on (Z, g̃) (cf. Proposition 8).
Proof. — Let θ be the Lee form of (M, g, JM ) defined by dJM = −2θ ∧

JM , where J ∈
∧+ is viewed as a 2-form. Denote by κ the conformal

scalar curvature, which is related to the scalar curvature s by κ = s +
6(δθ − |θ|2). The condition J⊥M ⊂ kerA is equivalent to the following: the
selfdual Weyl tensor W+ is degenerate (meaning that, in every point, two
of the eigenvalues coincident) and the scalar curvature of (M, g) is equal
to the conformal scalar curvature [3]. This is also equivalent to δθ = |θ|2.
Integrating this expression over M gives θ = 0 by the Brochner-Grenn
theorem. But (M, g, JM ) is Kähler if and only if θ vanishes identically. �

Corollary 2. — Assume that a compact 4-dimensional manifold
(M, g) admits two almost complex structures J1 6= ±J2 compatible with
the metric and the orientation. Then the associated compatible almost
complex structures J∞1, J∞2 on (Z, g̃) are integrable if and only if {J1, J2}
spans a hyperkähler structure on (M, g).

Proof. — By Proposition 4, J∞1 and J∞2 are integrable if and only if J1
and J2 are Kähler. As J1 6= ±J2, then J1 is different from ±J2 everywhere.
The holonomy of g reduces to U(2) by J1 and further to SU(2) by J2. This
says that g is hyperkähler. �

Study of the manifold (Z, J∞)

Any scalar-flat Kähler surfaces (M, g, JM ) is automatically anti-selfdual
[19]. For such a manifold we can put two natural complex structures on its
twistor space: JId and J∞. The next proposition shows that these complex
structures are never deformation of each other.

Proposition 5. — If (M, g, JM ) is a scalar-flat Kähler surface, the com-
plex structure J∞ on Z is never a deformation of the complex structure
JId.

Proof. — It is sufficient to show that (Z, JId) and (Z, J∞) do not have the
same Chern classes. Let h be the generator of the second cohomology group
H2(CP 1,Z) ' Z. By Leray-Hirsch theorem’s [12] the cohomology ring of Z
is a H?(M,R)-module generated by h with relation 4h2 = 3τ + 2χ, where
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τ and χ are the signature and the Euler characteristic of M . Denote by
c1(JM ) the first Chern class of the manifold (M,JM ). Under this notation
we have :

c(JId) = 1 + 4h+ 3τ + 3χ+ 2hχ [22]
c(J∞) = (1 + 2h)(1 + c1(JM ) + χ)

= 1 + 2h+ c1(JM ) + 2hc1(JM ) + χ+ 2hχ.

If the complex structures were deformations of each other, they would have
the same Chern numbers: c1(JId)3 = 16(3τ+2χ)h = c(J∞)3 = 8(3τ+2χ)h.
This forces 3τ + 2χ = 0. Let µg be the volume form on M associated to
the metric g; by the Gauss-Bonnet formula [2], [20]:

3τ + 2χ = 1
4π2

∫
M

2‖W+‖+ 1
24s

2 − 2‖B‖2µg = − 1
2π2

∫
M

‖B‖2µg.

Thus, 3τ + 2χ = 0 implies B = 0. As the scalar curvature of (M, g) is
supposed to be zero, the manifold (M, g, JM ) would be Ricci-flat, hence
c1(JM ) = 0. Therefore the first Chern classes of (Z, JId) and of (Z, J∞) are
different and these two manifolds are never deformations of each other. �
When (M, g, JM ) is a complex spin surface, Hitchin has shown that there

exists a holomorphic line bundle L −→ M such that L ⊗ L = KM is the
canonical line bundle [21]. Then, the twistor space Z can be identified, in a
C∞-way, to the projectivization bundle P(L⊕L?) [36]. By this construction
we see that the manifold Z ' P(L⊕L?) admits a natural complex structure
denoted by I. When (M, g, JM ) is not spin, but only complex, the bundle
L⊕L? exists only locally. Nevertheless, the projectivization P(L⊕L?) still
exists globally, due to the fact that the transition functions on L⊕ L? are
well defined holomorphic maps up to sign. In general I is not a compatible
complex structure on (Z, g̃).
Now, if (M, g, JM ) satisfies the conditions of Theorem B, we can put

another complex structure on its twistor space, namely J∞. The ques-
tion is then to determine the relationship between the manifolds (Z, I)
and (Z, J∞). In that direction we have the following result.

Proposition 6. — Let (M, g, JM ) be a manifold satisfying conditions
of Theorem B (i.e. J∞ integrable). The complex structures I and J∞ on
Z are deformations of each other: there exists on Z a path of integrable
complex structures Jt, t ∈ [0, 1], connecting I to J∞.

By combining this result and [41, Theorem 4.1] we obtain another proof of
Proposition 5.
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Proof. — In an appropriate local trivialization of the bundle Z −→ M ,
the almost complex structure I on U×S2 can be identified with the product
structure JM × JCP 1 . Let (θ1, θ2, θ3, θ4) be an oriented orthonormal frame
defined over U providing this trivialization. Set θ̂i,t = θi − t[Γ�

i�, Q] ∂∂Q for
t ∈ [0, 1]. The subspace Ht = Vect(θ̂1,t, . . . , θ̂4,t) is in direct sum with the
vertical distribution Vz and can be glued into a global distribution over
Z. Define the almost complex structure Jt on π−1U as follows: endow Vz
with the complex structure of the fibers (complex projective lines) and pull
back on Ht ' TmM the complex structure JM . Then, Jt is a path of almost
complex structures from I to J∞. The integrability of Jt is shown in the
same way as that of J∞. �

C) The case where f is a homothety

Integrability theorem

In this section we prove part C of Theorem 1.

Theorem C. — Let (M, g, JM ) be a Kähler surface. For all complex
λ /∈ {0, 1} the almost complex structure JλId is integrable if and only if the
scalar curvature of g is zero.

The condition A = 0 is equivalent to saying that the metric g is Hermitian
scalar-flat and anti-selfdual. These metrics are called optimal by LeBrun
because they are absolute minimizers of the functional K(g) =

∫
M
|R|2dvol

[26]. Let (M, g, JM ) be a compact scalar-flat Kähler surface and c1(M)
be the real first Chern class of (M,JM ). Two possibilities may occur [24].
Either c1(M) = 0 and (M, g, JM ) is then finitely covered by a hyperkähler
surface, i.e. a flat torus or a K3-surface with Ricci-flat Kähler metric [13],
[29]. Or c1(M) < 0, in which case (M, g) is obtained by blowing up a ruled
surface [23], i.e. (M, g) is obtained by blowing upm points on a CP 1-bundle
over a Riemann surface of genus γ. The condition c1(M) < 0 gives a lower
bound on the number of points m to be blown up: namely m > 9 when
γ = 0, m > 1 when γ = 1 and there is no restriction for γ > 1. Conversely
we have:

Theorem [23]. — A ruled surfaceM has a blow-up M̃ which is a scalar-
flat Kähler surface. Moreover, any further blow up of M̃ admits a scalar-flat
Kähler metric.

For simply connected manifold we have the following result:
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Theorem [34]. — A smooth compact simply connected 4-manifold M
admits a scalar-flat Kähler structure if, and only if, M is diffeomorphic to
a K3-surface or to the connected sum CP 2]kCP 2 for some k > 10.

Proof of Theorem C. — By Propositions 1 & 2, if A = 0 it is enough to
show that ̂E(θi, θj) +Fij = 0 to get the integrability of JλId. Let (m,Q) be
a point of Z. There exists an orthonormal basis (θ1, . . . , θ4) over an open
set U such that I = JM and Q ' aI + bJ , for some (a, b) ∈ S1. As JM is
Kähler, we know that Γ�

i� = ∇θi � belongs to the commutator of I, for all i.
Hence, [Γ�

i�, Q] ∂∂Q = [∇θi �, bJ ] ∂∂Q is in the subspace of TQS2 generated by
K. Viewing S2 as a subset of R×C, with coordinates (a, z), the application
f = λId has the following form:

f : U × S2 −→ U × S2(
m,
(
a, z
))

7−→
(
m,
(
f1(a), f2(a)λz

))
Where f1, f2 only depend on |λ|. Thus df(K) = f2(a)λ K. According to
these notations we have at the point (m,Q):

dπ(Fij) = −df([∇Pθi �, Q]) θj + df([∇Pθj �, Q]) θi − P
(
df([∇θj �, Q]) θi−

df([∇θi �, Q]) θj
)

= f2(a)λ
(
− [∇Pθi �, bJ ] θj + [∇Pθj �, bJ ] θi − P

(
[∇θj �, bJ ] θi−

[∇θi �, bJ ] θj
))

= −[∇Pθi �, f2(a)λbJ ] θj + [∇Pθj �, f2(a)λbJ ] θi − P
(

[∇θj �, f2(a)λbJ ] θi−

[∇θi �, f2(a)λbJ ] θj
)

= −[∇Pθi �, P ] θj + [∇Pθj �, P ] θi − P
(

[∇θj �, P ] θi − [∇θi �, P ] θj
)
.

One can conclude as in section A that dπ(Fij) = −E(θi, θj) and JλId is
integrable.
Conversely, assume that JλId is integrable. Proposition 3 implies that

the scalar curvature is zero, hence A = 0. �

Study of the manifold (Z, JλId)

When (M, g, JM ) is Kähler, the tangent bundle admits a C-action which
commutes with the holonomy group of the metric g. The action of any
λ ∈ S1 lifts naturally to a smooth action on the total space Z inducing the
identity on the base manifold M . This lift coincides with the homothety
λ2Id. Therefore, (Z, JλId) is isomorphic to (Z, JId) for each λ ∈ S1. Using
Theorem A&C we recover the result from [19]: for any Kählerian surfaces
(M, g, JM ), the metric g is anti-selfdual if, and only if, g is scalar-flat.
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At least two cases may occur.
– Firstly, all the (Z, JλId) are biholomorphic to JId. Thus there exists a 1-
dimensional family of biholomorphisms of (Z, JId). We will see in section F
that this is the case for any bi-elliptic surface (quotient of a flat torus).
– Secondly, there is no one complex-parameter family of automorphims of
(Z, JId). Then, we have a 1-dimensional family of non isomorphic complex
structures on Z. For example, if one blows-up at least 10 points in CP 2, one
gets CP 2]kCP 2 for some k > 10. This manifold admits a scalar-flat Kähler
metric g [34] but there is no non trivial conformal map from (CP 2]kCP 2, g)
to itself. Thus, on its twistor space, there does not exist any 1-dimensional
family of biholomorphisms. Therefore, the structures (Z, JλId), λ ∈ C?, give
a 1-dimensional family of non isomorphic complex structures.

D) Metric properties on M in terms of compatible complex
structures on (Z, g̃)

We can use the almost complex structures Jf to characterize some prop-
erties of the metric g on M . Indeed, by (the well known) Theorem A we
have that g is anti-selfdual if and only if JId is integrable. We showed that
a compact almost Hermitian manifold (M, g, JM ) is Kähler if and only if
J∞ is integrable; furthermore the integrability of JId and J∞ is equivalent
to (M, g, JM ) scalar-flat Kähler (cf. Proposition 8).
When limiting to the case where (M, g) is anti-selfdual, we can give

a characterization of metrics which are scalar-flat in terms of compatible
complex structures on (Z, g̃). According to the terminology of LeBrun these
provide examples of optimal metrics, in compact case [26].

Theorem D. — Let (M, g) be an anti-selfdual Riemannian manifold.
The following are equivalent:

• the scalar curvature of g is flat;
• every m ∈ M has an open neighborhood U such that Z admits,

over U , an integrable compatible complex structure Jf for at least
one (and then infinitely many) morphism(s) f 6= Id.

In other words, if (M, g) is an anti-selfdual metric with non zero scalar cur-
vature then, even locally on Z, the only integrable almost complex struc-
ture among the Jf ’s is JId. This result should be compared to the following
result of Salamon:
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Proposition [38] (see also [33]). — A metric g on M is anti-selfdual if,
and only if, locally around each point m ∈ M there exist infinitely many
compatible complex structures on (M, g).

In a similar direction, Pontecorvo gives a conformal characterization of
scalar-flat Kähler surfaces among anti-selfdual Hermitian surfaces. Indeed,
let (M, g, JM ) be an anti-selfdual complex Hermitian manifold. The com-
plex structure JM on M defines a section s : Z −→ M [15], whose image
will be noted Σ = s(M). Similarly, the hypersurface Σ = σ(Σ) of Z cor-
responds to the conjugate complex structure −JM . Let X be the divisor
Σ + Σ in Z and consider the holomorphic line bundle [X]. Denote by KZ

the canonical line bundle of (Z, JId).

Proposition [30]. — Let (M, g, JM ) be a Hermitian anti-selfdual man-
ifold. The line bundles [X] and − 1

2KZ are isomorphic if and only if g is
conformal to a scalar-flat Kähler metric.

Notice that Theorem 1 and Proposition 3&4 give a non conformal charac-
terization of compact scalar-flat Kähler surfaces.

Proposition 8. — Let (M, g, JM ) be a compact almost Hermitian man-
ifold. The following are equivalent:

• the metric g is scalar-flat Kähler;
• the compatible complex structures JId and J∞ on (Z, g̃) are inte-
grable;

• the compatible complex structures JλId and J∞ on (Z, g̃) are inte-
grable.

Proof. — A Kählerian surface (M, g, JM ) is scalar-flat if and only if g
is anti-selfdual [19]. Then, it follows from Proposition 3&4 and Theorem 1
that: {J∞ and JλId are integrable} ⇐⇒ {g is scalar-flat Kähler} ⇐⇒
{(M, g, JM ) is anti-selfdual Kähler} ⇐⇒ {J∞ and JId are integrable}. �
Proof of Theorem D. — Let (M, g) be a scalar-flat anti-selfdual man-

ifold, its twistor space is complex and (M, g) admits, locally, at least one
complex structure JM [38]. Then Theorem B ensures that the locally de-
fined almost complex structure J∞ on Z is integrable. Actually, as soon as
(M, g) is anti-selfdual there are, locally, infinitely many integrable complex
structures JM on M and so, when g is also scalar-flat, there are infinitely
many integrable complex structures J∞ on Z.
Conversely, let (M, g) be a manifold with an anti-selfdual metric g having

non zero scalar curvature. Let f : Z −→ Z be a morphism such that Jf
is integrable over an open set U . Let (m,Q) be a point in π−1(U) and set
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f(m,Q) = P . According to our notations, if U is small enough we can
build an orthonormal basis (θ1, . . . , θ4) of vector fields on M such that
P = J = θ1 ∧ θ3 − θ2 ∧ θ4. Then there exists (a, b, c) ∈ S2 such that
Q = aI + bJ + cK.
As Jf is integrable, G(θ1, θ2) vanishes everywhere. In particular, at the

point (m,Q) one obtains:

G(θ1, θ2) = 0
= s

12 [I −QK,Q]
= 2s

12

(
acI − c(1− b)J +

(
b(1− b)− a2)K) =⇒


ac = 0
c(1− b) = 0
b = a2 + b2

Therefore we have Q = J = P for every (m,Q) ∈ π−1(U), that is to say
f = Id. �

E) Compatible complex structure on locally conformally Kähler
surfaces

The aim of this section is to give a local description of the set I of inte-
grable compatible complex structures on the twistor space (Z, g̃) of a com-
pact locally conformally Kähler (abbreviated in l.c.k.) surface (M, g, JM ).
This condition is equivalent to W+ being degenerate, which means that at
each point of M at least two eigenvalues of W+ coincide.

We start by recalling the main results about the l.c.k. surfaces.
A result by Tricerri, generalizing the analogous result in the Kähler case,

shows that it is enough to understand minimal complex surfaces.

Proposition [40]. — A complex surfaces (M, g, JM ) is l.c.k if and only
if the blow-up of M at a point is l.c.k.

When the first Betti number b1 is even, a l.c.k. surface is globally Kähler.

Proposition [42]. — Every l.c.k. metric on a compact surface (M,JM )
with even first Betti number is globally conformally Kähler.

When the first Betti number is odd and the Euler characteristic is zero, we
have a classification due to Belgun, Gauduchon-Ornea, Tricerri, Vaisman.

Proposition [9]. — The complete list of compact minimal l.c.k. sur-
faces with odd first Betti number and zero Euler characteristic is:

i) the properly elliptic surfaces (i.e. surfaces with Kod(M) = 1 and b1
odd);

ii) the Kodaira surfaces (i.e. surfaces with Kod(M) = 0 and b1 odd);

TOME 61 (2011), FASCICULE 6



2238 Guillaume DESCHAMPS

iii) the Hopf surfaces;
iv) the Inoue-Bombieri surfaces different from S−n,u with u /∈ R [40].

When the first Betti number is odd and the Euler characteristic is non zero,
the only other possible case is that of surfaces of class V II with 0 < χ = b2
[7], for which there is (yet) no classification. (For some existence results see
[18].)
Let J be a compatible almost complex structure on (Z, g̃). We say that J

is semi-integrable if the vertical component of the Nijenhuis tensor is zero.
Denote by I 1

2
(resp. I) the set of semi-integrable (resp. integrable) com-

patible complex structures on (Z, g̃). Propositions 1 and 2 give a necessary
and sufficient condition for J to be semi-integrable, or integrable. The set
I on a l.c.k. manifold (M, g, J) depends on the spectrum of the operator
A = W+ + s

12 . Let κ be the conformal curvature defined in the proof of
proposition 4. Then on an adapted basis we have:

A = W++ s

12Id =

 2κ
12 0 0
0 −κ

12 0
0 0 −κ

12

+

 s
12 0 0
0 s

12 0
0 0 s

12

 =

 x 0 0
0 y 0
0 0 y

 .
Moreover JM is actually an eigenvector of W+ for the simple eigenvalue κ

6 .

Theorem 2. — Let (M, g, JM ) be a compact surface l.c.k., if we don’t
have x = y = 0 we note x

y ∈ R ∪ {∞}. On an open set U of M :
A) We have x = y = 0 if, and only if, on U one of the following

equivalent conditions hold:
i) (M, g, JM ) is scalar-flat Kähler.
ii) g anti-selfdual scalar-flat.
iii) The compatible complex structures JId, J∞ and JλId are inte-

grable.
iv) The cardinal of I is infiny.
This is the case globally if, and only if, (M, g, JM ) is a flat torus (or
a quotient), a K3-surface with a Calabi-Yau metric (or a quotient),
a CP 1-bundle over a Riemann surface Σγ of genus γ > 1 with
the conformally flat Kähler metric which locally is a product of the
(+1)-curvature metric on CP 1 and (-1)-curvature metric on Σγ [14],
[31].

B) We have x
y =∞ if, and only if, on U one of the following equivalent

conditions hold:
i) (M, g, JM ) is Kähler with s 6= 0.
ii) I = I 1

2
= {J−∞, J∞}.
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This is the case globally on M if (M, g, JM ) is Kähler-Einstein not
Ricci-flat (that is a Fano manifolds or a manifold where the canon-
ical line bundle is ample).

C) We have |xy | 6 1 if, and only if, on U : I 1
2

= {Je±iθId} where cos θ =
x
y .

D) We have ∞ 6= |xy | > 1 if, and only if, on U : I 1
2

= {Ju1Id, Ju2Id}
where u1 = 1+sin θ

cos θ , u2 = 1−sin θ
cos θ and cos θ = (xy )−1.

Remark. — We have x
y = 1 if, and only if, (M, g, JM ) is anti-selfdual

with s 6= 0. If it is the case globally then (M,JM ) must be in class VII [14].
We can find some global example of manifolds (M, g, JM ) with arbitrary x

y

in [5].

Proof of A. — The multiplicity of the eigenvalue 0 of A is equal to 3
⇐⇒ κ = s = 0 ⇐⇒ (M,JM , g) scalar-flat Kähler ⇐⇒ (M,JM , g) anti-
selfdual scalar-flat [14] ⇐⇒ JId, J∞ and JλId integrable by proposition 8.
The equivalence with condition iv) will be a consequence of (the rest of the
proof of) the theorem. �

Proof of B. — The multiplicity of the eigenvalue 0 of A is equal to 2
⇐⇒ κ = s 6= 0 ⇐⇒ (M,JM , g) Kähler with s 6= 0 ⇐⇒ I = I 1

2
=

{J∞, J−∞} by Proposition 3. �

Proof of C & D. — In those cases the matrix of A in a basis adapted

to the decompostion C ⊗
∧+ = CJM ⊕⊥ (

∧1,0⊕
∧0,1) is

 x 0 0
0 y 0
0 0 y


with y 6= 0. Let f such that Jf ∈ I 1

2
, (m,Q) be any point of Z and

(θ1, ..., θ4) be a local frame such that
{
JM = θ1 ∧ θ2 + θ3 ∧ θ4
Q ∈ V ect(I, J) . So there

exist (a, b), (α, β, γ) ∈ S2 such that Q = aI + bJ and P = f(Q) = αI +
βJ + γK. In that case at the point (m,Q) we have :

G(θ1, θ2) = 0
= [(1− α2)xI − αβyJ − αγyK +Q(γyJ − βyK), Q]
=

[(
(1− α2)x− bβy

)
I + (a− α)βyJ + (a− α)γyK,Q]

⇐⇒

{
(a− α)γya = 0
b
(

(1− α2)x− bβy
)

= a(a− α)βy

⇐⇒


γ = 0
βbx = y(1− aα)
α2 + β2 = 1

ou


α = a

β = x
y b

β2 + γ2 = b2
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The resolution of G(θ1, θ3) = 0 or G(θ1, θ4) = 0 gives the same system. Two
cases can happen first |xy | > 1 then the second system doesn’t have any
solution and the first one has two solutions. An easy computation enable
us to verify that they correspond to f1 = u1Id or f2 = u2Id.

On the other hand if |xy | < 1 then the second system gives two solutions
which correspond to f = e±iθId, whereas the first system doesn’t have any
solution:

1− α2 = β2 = y2

b2x2 (1− aα)2 > (1−aα)2

b2

=⇒ b2 − b2α2 > 1 + a2α2 − 2aα
=⇒ 0 > (α− a)2.

When |xy | = 1 both system give the same solutions. �

F) Example

Let T be a torus which is a quotient of C by the lattice Z ⊕ iZ. Define
(M, g, I) to be the quotient of the complex flat torus T2 = T × T by the
groupH = Z/2Z generated by an element h. If (z1, z2) = (x1+ix2, x3+ix4)
are the canonical coordinates on C× C, we have:

h(z1, z2) =
(
z1 + 1

2 ,−z2

)
.

The manifold (M, g, I) is a bi-elliptic surface which is scalar-flat Kähler;
denote by Z −→M its twistor space. In this section we will study in details
this example, especially the integrability of Jf . Thanks to Theorem 1, one
knows that JId, J∞ and JλId are integrable.
Let ( ∂

∂x1
, ∂
∂x2

, ∂
∂x3

, ∂
∂x4

) be the canonical basis of C2 identified with R4.
This furnishes a basis of vector fields on T2 and, consequently, a global
trivialisation of its twistor space Z0 ' T2 × S2. Define another basis (on
T2) by:

θ1 + iθ2 = ∂

∂x1
+ i

∂

∂x2
and θ3 + iθ4 = e2iπx1( ∂

∂x3
+ i

∂

∂x4
).

Then, (θ1, θ2, θ3, θ4) is a global basis on T2 which goes down to a basis
of M . This defines a new trivialisation of Z0, denoted by M̃ × S2. The
manifold Z is the quotient of M̃ × S2 by the group H̃ ' Z/2Z, generated
by h̃ acting as follows:

h̃ : M̃ × S2 −→ M̃ × S2(
m,Q

)
7−→

(
h(m), Q

)
.
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Viewing S2 as a subset of R× C with coordinates (a, z), the identity map
Ψ of Z0 has the following form in these trivialisations:

Ψ : Z0 ' T2 × S2 −→ Z0 ' M̃ × S2

ξ '
(
m, (a, z)

)
7−→ ξ '

(
m, (a, e−2iπx1z)

)
.

The matrix, in both basis ( ∂
∂x1

, ∂
∂x2

, ∂
∂x3

, ∂
∂x4

) and (θ1, θ2, θ3, θ4), of the nat-

ural complex structure I on T2 is equal to


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

. According
to our notation, this is the infinity section.
Endow Z0 with the complex structure of twistor space JId. As (T2, I) is
hyperkähler, the projection pr2 : Z0 ' T2 × S2 −→ CP 1 is a holomor-
phic submersion [14]. For n ∈ Z∗ and λ ∈ C∗, consider the application
fn : CP 1 −→ CP 1 equal to λzn. Then there exist two applications f1, f2
depending only on |λ| such that:

S2
fn // S2

(a, z)

��

//
(
f1(a), λf2(a)zn

)

��
C ∪ {∞}

fn // C ∪ {∞}

U = z
1−a // λUn

Introduce now the pull back Zn = f?nZ0:

Zn

��

// Z0

pr2

��
CP 1

fn // CP 1

Since the fibration Z0 −→ CP 1 is topologically trivial, this is also the case
for Zn −→ CP 1. Therefore one can identify the manifold Zn with T2 × S2

equipped with a complex structure denoted by Jn. If one considers the
morphism f̃n = Id× fn : T2×S2 −→ T2×S2, which respects the fibration,
one has Jn = Jf̃n .
We were wondering whether this complex structure goes down to Z,

i.e.: does it commute with the action of the group H̃? We need to study

TOME 61 (2011), FASCICULE 6



2242 Guillaume DESCHAMPS

Ψ ◦ f̃n ◦Ψ−1:(
T2 × S2, Jn

)
f̃n //

(
T2 × S2, JId

)
(
m, (a, e2iπx1z)

)
Ψ

��

//
(
m,
(
f1(a), λf2(a)(e2iπx1z)n

))
Ψ

��(
M̃ × S2, Jn

) Ψ◦f̃n◦Ψ−1
//

(
M̃ × S2, JId

)
(
m, (a, z)

)
//

(
m,
(
f1(a), λe2iπ(n−1)x1f2(a)zn

))
Thus, in the trivialisation of Z0 ' M̃ × S2 associated to (θ1, θ2, θ3, θ4), the
complex structure Jn is JΨ◦f̃n◦Ψ−1 = Jλe2iπ(n−1)x1zn . It commutes with H̃
if and only if n is odd. Moreover, for n=1, f̃1 is a biholomorphism. We have
proved the following:

Proposition 9. — For all λ ∈ C? the complex structures Jλz on Z

are biholomorphic. Furthermore, the compatible almost complex structures
Jλe2iπ(n−1)x1zn are integrable for odd n in Z?.

This proposition can be generalised to other bi-elliptic surfaces. A compu-
tation similar to the one made in Proposition 5 enables us to say that, for
different integers n, these complex structures are not deformation of each
other. This is consequence of the fact that they do not have the same Chern
classes. Indeed, the first Chern class satisfies c1(Jλe2iπ(n−1)x1zn) = 2(n+1)h.
In [16], following an idea of LeBrun, we showed that for any hypercomplex
manifold M there exist infinitely many complex structures on its twistor
space Z 'M×S2 which are not deformation of each other. Recall that the
only compact hypercomplex surfaces are the torus, the K3-surfaces and
the quaternionic Hopf surfaces [14]. The previous proposition can therefore
be viewed as a generalisation of this result to bi-elliptic surfaces.

G) Higher dimension

The previous sections have focused on the 4-dimensional case. We now
briefly give a generalization of Theorem 1 in higher dimension. Let n > 1
and (M, g) be an oriented 4n-dimensional Riemannian manifold, not nec-
essarily compact. An almost hypercomplex structure on (M, g) is a triple
(I, J,K) of almost complex structures compatible with the orientation and
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the metric, such that IJ = −JI = K. When I, J,K are integrable one
speaks about a hypercomplex structure. When they are Kähler one says
that (M, g) is hyperkähler.
An almost quaternionic structure D on (M, g) is a rank 3 subbundle

D ⊂ End(TM) which is locally spanned by an almost hypercomplex struc-
ture H = (I, J,K); such a triple is called a local admissible basis. For
n > 1, one says that (M, g,D) is a quaternionic structure if there exists
a torsion free connection ∇ on TM preserving D. If one can choose ∇
to be the Levi-Civita connection, (M, g,D) is called quaternionic Kähler.
This is equivalent to saying that the holonomy group of g is contained in
Sp(1)Sp(n) [11].
A compatible almost complex structure on (M, g,D) is a section JM of

D −→M such that J2
M = −Id.

Let (M, g,D) be a Riemannian almost quaternionic 4n-manifold. One
can define a scalar product on D by saying that a local admissible basis of
D is orthonormal. One can then define the twistor space Z −→ M , which
is the unit sphere bundle of D. This is a locally trivial bundle over M with
fiber S2 and structure group SO(3). As in the introduction, one can define
a natural metric g̃ and look for the compatible almost complex structures
on (Z, g̃) which are integrable. When (M, g,D, JM ) is quaternionic Kähler
with a compatible almost complex structure JM , its twistor space (Z, g̃)
admits different compatible almost complex structures: Jσ, JId, J∞, JλId,
defined as previously. The main result of this section is the following, where
no hypothesis of compacity is made.

Theorem 3. — Let (M, g,D) be a quaternionic Kähler manifold.
A) The almost complex structure Jσ is never integrable.
B) The almost complex structure JId is always integrable [35].
C) If (M, g,D, JM ) is a compatible almost complex quaternionic Käh-

ler manifold the almost complex structure J∞ is integrable if, and
only if:
i) JM is integrable;
ii) g is scalar-flat.

D) If (M, g,D, JM ) is a quaternionic Kähler manifold with a compat-
ible Kählerian complex structure JM then, for all λ /∈ {0, 1}, the
complex structure JλId is integrable if, and only if, g is scalar-flat.

E) Let (M, g,D) be a quaternionic Kähler manifold. Then the scalar
curvature is flat if, and only if, one (and then any) m ∈ M has an
open neighborhood U such that (Z, g̃) admits over U an integrable
compatible complex structure different from JId.
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Any quaternionic Kähler manifold which is scalar-flat is locally hyperkäh-
ler [11]. Thus, part E of the previous theorem yields a characterization
of locally hyperkähler manifolds among quaternionic Kähler’s in terms of
twistor spaces.
It is possible to give a simpler version of that theorem in the compact

case because of the following result.

Proposition [32]. — In the compact case any compatible complex
structure JM on a quaternionic Kähler manifold (M, g,D) is automatically
scalar-flat Kähler.

In particular, in the compact case, Theorem 3 has the following corollary.

Corollary 3. — Let (M, g,D, JM ) be a compact quaternionic Kähler
manifold with a compatible almost complex structure. Then JM is inte-
grable if, and only if, J∞ is integrable. In this case JλId is integrable for all
λ ∈ C?.

Proof of Theorem 3. — Proposition 1 and Proposition 2 remain true in
dimension 4n. Since σ is an antiholomorphic involution when restricted to
the fibers, part A can be easily proved.
The proof of part B is the same as the one given in dimension 4. Notice

first that dπFij = −E(θi, θj) for all (i, j) ∈ {1, . . . , 4n}. It remains to show
that G(θi, θj) = 0 for all i, j ∈ {1, . . . , 4n}. To get that result we use the
following lemma.

Lemma 3 [11]. — Let r(., .) be the Ricci tensor. For all (X,Y ) ∈ TM
one has:

[R(X,Y ), I] = γ(X,Y )J − β(X,Y )K
[R(X,Y ), J ] = −γ(X,Y )I + α(X,Y )K
[R(X,Y ),K] = β(X,Y )I − α(X,Y )J

with


α(X,Y ) = 2

n+2r(IX,X)
β(X,Y ) = 2

n+2r(JX,X)
γ(X,Y ) = 2

n+2r(KX,X)

Let (m, I) ∈ Z and (I, J,K) be a local admissible basis. Then Lemma 3
yields:

G(θi, θj) =
[
R
(
θi ∧ θj − Iθi ∧ Iθj

)
+ IR

(
θi ∧ Iθj + Iθi ∧ θj

)
, I
]

= γ(θi, θj)J − β(θi, θj)K − γ(Iθi, Iθj)J + β(Iθi, Iθj)K
+γ(Iθi, θj)K + β(Iθi, θj)J + γ(θi, Iθj)K + β(θi, Iθj)J

ANNALES DE L’INSTITUT FOURIER



COMPATIBLE COMPLEX STRUCTURES ON TWISTOR SPACE 2245

But any quaternionic Kähler manifold is Einstein [10], hence r = s
4g, where

s is the scalar curvature of g. One then has, for all (θi, θj):

G(θi, θj) = 2s
4(n+2)

((
2g(Kθi, θj)− 2g(Kθi, θj)

)
J

+
(
2g(Jθi, θj)− 2g(Jθi, θj)

)
K
)

= 0.

To prove part C observe that, as in dimension 4: {J∞ integrable} ⇐⇒
{E(θi, θj) = G(θi, θj) = 0} ⇐⇒ {JM integrable and G(θi, θj) = 0}. Since
(M, g,Q) is Einstein, (M, g,Q) scalar-flat implies (M, g,Q) Ricci-flat and
G(θi, θj) = 0. The converse is a consequence of part E: if J∞ integrable
then s = 0.
To get part D we use the technique of dimension 4 to prove that dπ(Fij) =

−E(θi, θj). So JλId is integrable as soon as s=0. The converse is again a
consequence of part E.
Proof of E: suppose that the scalar curvature s of (M, g,D) is non zero.

Let f : Z −→ Z be a morphism such that Jf is integrable over an open
set U . Let (m,Q) be a point in π−1(U) and set f(m,Q) = P . If U is
small enough there exists an orthonormal basis (θ1, . . . , θ4n) and a local
admissible basis (I, J,K) such that P = J . Write Q = aI + bJ + cK with
(a, b, c) ∈ S2.
As Jf is integrable we have G(θ1, θ2) = 0 everywhere. In particular at

the point (m,Q) :

G(θ1, θ2) = 0
=

[
R(θ1 ∧ θ2 + θ3 ∧ θ4)−QR(θ1 ∧ θ4 + θ2 ∧ θ3), Q

]
= 2s

4(n+2) (−2cJ + 2bK)−Q
[
R(θ1 ∧ θ4 + θ2 ∧ θ3), Q

]
= s

n+2

(
− cJ + bK −Q(−bI + aJ)

)
= s

n+2

(
acI + c(b− 1)J + (b− 1)K

)
Hence Q = J = P for any (m,Q) ∈ π−1(U), that is f = Id.

The converse is the same as the one given in section D.

Indeed, a quaternionic Kähler manifolds (M, g,D) admits, locally, in-
finitly many compatible complex structures JM (for example [1]). �
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