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ON THE S-FUNDAMENTAL GROUP SCHEME

by Adrian LANGER (*)

Abstract. — We introduce a new fundamental group scheme for varieties de-
fined over an algebraically closed (or just perfect) field of positive characteristic and
we use it to study generalization of C. Simpson’s results to positive characteristic.
We also study the properties of this group and we prove Lefschetz type theorems.
Résumé. — Nous introduisons un nouveau schéma en groupes fondamental

pour les variétés définies sur un corps algébriquement clos (ou simplement par-
fait) de caractéristique positive. Nous utilisons ce schéma en groupes pour étudier
des généralisations en caractéristique positive des résultats de C. Simpson. Nous
étudions également quelques propriétés de ce schéma en groupes fondamental, en
particulier nous obtenons des résultats de type “Lefschetz”.

Introduction

A. Grothendieck as a substitute of a topological fundamental group in-
troduced the étale fundamental group, which in the complex case is just a
profinite completion of the topological fundamental group. The definition
uses all finite étale covers and in positive characteristic it does not take into
account inseparable covers. To remedy the situation M. Nori introduced the
fundamental group scheme which takes into account all principal bundles
with finite group scheme structure group. In characteristic zero this recov-
ers the étale fundamental group but in general it carries more information
about the topology of the manifold. Obviously, over complex numbers the
topological fundamental group carries much more information than the
étale fundamental group. To improve this situation C. Simpson introduced
in [38] the universal complex pro-algebraic group (or an algebraic envelope

Keywords: Fundamental group, positive characteristic, numerically flat bundles, Lef-
schetz type theorems.
Math. classification: 14J60, 14F05, 14F35, 14L15.
(*) The author was partially supported by a Polish MNi SW grant (contract number
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2078 Adrian LANGER

of the topological fundamental group in the language of [8, 10.24]). This
group carries all the information about finite dimensional representations
of the topological fundamental group. On this group Simpson introduced
a non-abelian Hodge structure which gives rise to a non-abelian Hodge
theory.
The main aim of this paper is to generalize some of his results to positive

characteristic. As a first step to this kind of non-abelian Hodge theory we
study the quotient of the universal complex pro-algebraic group which, in
the complex case, corresponds to the Tannakian category of holomorphic
flat bundles that are extensions of unitary flat bundles. Via the well known
correspondence started with the work of M. S. Narasimhan and C. S. Se-
shadri, objects in this category correspond to semistable vector bundles
with vanishing Chern classes.

In positive characteristic we take this as a starting point of our theory. In
particular, in analogy to [38, Theorem 2] we prove that strongly semistable
sheaves with vanishing Chern classes are locally free. We use this to prove
that such sheaves are numerically flat (ie., such nef locally free sheaves
whose dual is also nef). We also prove the converse: all numerically flat
sheaves are strongly semistable and they have vanishing Chern classes (in
complex case this equivalence follows from [12, Theorem 1.18]).
This motivates our definition of the S-fundamental group scheme (see

Definition 6.1). Namely, we define the S-fundamental group scheme as Tan-
naka dual to the neutral Tannaka category of numerically flat sheaves. Note
that in this definition we do not need neither smoothness nor projectivity
of the variety for which we define the S-fundamental group scheme.

However, considering reflexive sheaves with vanishing Chern classes on
smooth projective varieties is sometimes much more useful. For example,
notion of strong stability can be used to formulate some interesting re-
striction theorems (see Section 4) that are used in proofs of Lefschetz type
theorems. It is also of crucial importance in several other proofs.

The S-fundamental group scheme always allows us to recover Nori’s fun-
damental group scheme. In fact, Nori in [32] considered a closely related
category of degree 0 vector bundles whose pull-backs by birational maps
from smooth curves are semistable. Recently, the S-fundamental scheme
group was defined in the curve case in [4, Definition 5.1] (in this case there
are no problems caused, eg., by non-locally free sheaves).
If the cotangent sheaf of the variety does not contain any subsheaves

of non-negative slope (with respect to some fixed polarization) then in
the complex case the S-fundamental group scheme is equal to Simpson’s
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universal complex pro-algebraic group (note that the corresponding non-
abelian Hodge structure is in this case trivial). In positive characteristic,
under the same assumption, we prove that the S-fundamental group scheme
allows us to recover all known fundamental groups like Deligne-Shiho’s pro-
unipotent completion of the fundamental group or dos Santos’ fundamental
group scheme obtained by using all OX -coherent DX -modules (or strati-
fied sheaves). Note that in this case we also get projective (!) moduli space
structure on the non-abelian cohomology set H1(πS1 (X,x),GLk(n)), corre-
sponding to the Dolbeaut moduli space (this follows from Theorem 4.1).
A large part of the paper is devoted to study the properties of the S-

fundamental group scheme. It satisfies the same properties as Nori’s fun-
damental group scheme. Many of the properties are quite easy to prove but
some as in the case of Nori’s fundamental group scheme are quite difficult.
For example, the behavior under tensor products for Nori’s fundamental
group scheme was studied only in [31]. The corresponding result for the
S-fundamental group scheme uses completely different techniques and it is
subject of the second part of this paper.

One of the main results of this paper are Lefschetz type theorems for the
S-fundamental group scheme. As a corollary get the corresponding results
for Nori’s (and étale) fundamental groups. This corollary was proved in
[3] in a much more cumbersome way using Grothendieck’s Lefschetz the-
orems for the étale fundamental group. Our proofs are quite quick and
they depend on some vanishing of cohomology proven using the techniques
described by Szpiro in [39].

Our proof of the Lefschetz type theorems for the S-fundamental group
scheme is quite delicate as we need to extend vector bundles from ample
divisors and this usually involves vanishing of cohomology that even in
characteristic zero we cannot hope for (see the last part of Section 11). A
similar problem occurred in Grothendieck’s proof of Lefschetz theorems for
Picard groups. In this case the Picard scheme of a smooth surface in P3 is
not isomorphic to Z (for example for a cubic surface) and Lefschetz theorem
for complete intersection surfaces says that the component of the numer-
ically trivial divisors in the Picard scheme is trivial (see [11, Exposé XI,
Théorème 1.8]). Our theorem gives information about the Picard scheme
not only in case of hypersurfaces in projective spaces but for ample divisors
in arbitrary projective varieties (also if the Picard scheme of the ambient
variety is non-reduced). One just needs to notice that the component of
the numerically trivial divisors in the Picard scheme is equal to the group
of characters of the S-fundamental group scheme.
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2080 Adrian LANGER

In the higher rank case there also appears another problem: extension of
a vector bundle on a divisor need not be a vector bundle. This is taken care
of by Theorem 4.1 (which partially explains why we bother with semistable
sheaves and not just numerically flat vector bundles).

In the last section we use the lemma of Deligne and Illusie to give a quick
proof of Lefschetz type theorems for the S-fundamental group scheme for
varieties which admit a lifting modulo p2.
We should note that a strong version of boundedness of semistable shea-

ves (see [24] and [26]) is frequently used in proofs in this paper (although
we could do without it in many but not all places).

To prevent the paper to grow out of a reasonable size we decided to
skip many interesting topics. In future we plan to treat the (full) universal
pro-algebraic fundamental group and a tame version of this group for non-
proper varieties. We also plan to add some applications to the study of
varieties with nef tangent bundle (for this purpose the results of this paper
are already sufficient).

The structure of the paper is as follows. In Section 1 we recall a few
well known results. In particular, Subsection 1.3 motivates the results of
Section 4. In Section 2 we recall some boundedness results used in later
proofs. We also use them to prove some results on deep Frobenius descent
generalizing H. Brenner’s and A. Kaid’s results [20]. These results are of
independent interest and they are not used later in the paper. In Section 3
we prove a restriction theorem for strongly stable sheaves with vanishing
discriminant. The results of this section are used in Sections 4, 5 and 10. In
Section 4 we prove the analogue of Simpson’s theorem in positive character-
istic. In Section 5 we prove that reflexive strongly semistable sheaves with
vanishing Chern classes are numerically flat locally free sheaves. In Sec-
tion 6 we finally define the S-fundamental group scheme and we compare
it to other fundamental group schemes. In Section 7 we study numerically
flat principal bundles and we state some results generalizing the results on
the monodromy group proved in [4]. In Section 8 we study basic properties
of the S-fundamental group scheme. In Section 9 we prove some vanishing
theorems for the first and second cohomology groups of sheaves associated
to twists of numerically flat sheaves. Finally, in Section 10 and 11 we prove
Lefschetz type theorems for the S-fundamental group scheme.

After this paper was written, there appeared preprint [1] of V. Balaji
and A.J. Parameswaran. In this paper the authors introduce another graded
Tannaka category of vector bundles with filtrations whose quotients are de-
gree 0 stable, strongly semistable vector bundles. The zeroth graded piece
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of their construction corresponds to our S-fundamental group scheme. How-
ever, unlike our group scheme their group scheme depends on the choice of
polarization.
After the author send this paper to V. B. Mehta, he obtained in re-

turn another preprint [28]. In this paper Mehta also introduces the S-
fundamental group scheme (using numerically flat bundles and calling it the
“big fundamental group scheme”). He proves that if G is semisimple then
principal G-bundles whose pull backs to all curves are semistable come from
a representation of the S-fundamental group scheme (see [Theorem 5.8,
loc. cit.]). He also shows that for a smooth projective variety defined over
an algebraic closure of a finite field the S-fundamental group scheme is iso-
morphic to Nori’s fundamental group scheme (see [Remark 5.11, loc. cit.]).

0.1. Notation and conventions

For simplicity all varieties in the paper are defined over an algebraically
closed field k. We could also assume that k is just a perfect field but in this
case our fundamental group, similarly to Nori’s fundamental group, is not a
direct generalization of Grothendieck’s fundamental group as it ignores the
arithmetic part of the group. Let us also recall that if a variety is defined
over a non-algebraically closed field k, then the notions of stability and
semistability can be defined using subsheaves defined over k. In case of
semistability this is equivalent to geometric semistability (ie., we can pass
to the algebraic closure and obtain the same notion), but this is no longer
the case for stability (see [20, Corollary 1.3.8 and Example 1.3.9]).
We will not need to distinguish between absolute and geometric Frobe-

nius morphisms.
Let E be a rank r torsion free sheaf on a smooth n-dimensional projective

variety X with an ample line bundle L. Then one can define the slope of
E by µ(E) = c1E · c1Ln−1/r. The discriminant of E is defined by ∆(E) =
2rc2(E)− (r − 1)c21(E).

One can also define a generalized slope for pure sheaves for singular
varieties but the notation becomes more cumbersome and for simplicity of
notation we restrict only to the smooth case.

Semistability will always mean slope semistability with respect to the
considered ample line bundle (or a collection of ample line bundles). The
slope of a maximal destabilizing subsheaf of E is denoted by µmax(E) and
that of minimal destabilizing quotient by µmin(E).

TOME 61 (2011), FASCICULE 5



2082 Adrian LANGER

In the following we identify locally free sheaves and corresponding vector
bundles.

Let us recall that an affine k-scheme SpecA is called algebraic if A is
finitely generated as a k-algebra.

In this paper all representations of groups are continuous. In other words,
all groups in the paper are pro-algebraic so we have a structure of a group
scheme and the homomorphism defining the representation is required to
be a homomorphism of group schemes.

1. Preliminaries

In this section we gather a few auxiliary results.

1.1. Numerical equivalence

Let X be a smooth complete d-dimensional variety defined over an alge-
braically closed field k. Then an e-cycle α on X is numerically equivalent to
zero if and only if

∫
X
αβ = 0 for all (d− e)-cycles β on X. Let Num∗X be

the subgroup of the group of cycles Z∗X generated by cycles numerically
equivalent to 0. Then N∗X = Z∗X/Num∗X is a finitely generated free
abelian group (see [14, Examples 19.1.4 and 19.1.5]).
In this paper, Chern classes of sheaves will be considered only as elements

of N∗X.
Similarly as above one defines the numerical Grothendieck group

K(X)num as the Grothendieck group (ring)K(X) of coherent sheaves mod-
ulo numerical equivalence, ie., modulo the radical of the quadratic form
given by the Euler characteristic (a, b) → χ(a · b) =

∫
X

ch(a) ch(b) td(X).
Here ch : K(X)num ⊗ Q → N∗(X) ⊗ Q is the map given by the Chern
character. By chi we denote the degree i part of this map.
The following result is well known but the author was not able to provide

a reference to its proof and hence we give it below:

Lemma 1.1. — If a family of isomorphism classes of sheaves on X is
bounded then the set of Chern classes of corresponding sheaves is finite.

Proof. — By definition a family is bounded if there exists a k-scheme
S of finite type and a coherent OS×X -module F such that {Fs×X}s∈S
contains all members of this family. Passing to the flattening stratification
of S for F (see, eg., [20, Theorem 2.15]) we can assume that F is S-flat. Let

ANNALES DE L’INSTITUT FOURIER



ON THE S-FUNDAMENTAL GROUP SCHEME 2083

q : S×X → X be the projection. For a flat family F the Euler characteristic
s → χ((F ⊗ q∗α)s) is locally constant for all classes α ∈ K(X). This
implies that there are only finitely many classes of [Fs] in K(X)num. Since
ch : K(X)num ⊗Q→ N∗(X)⊗Q is an isomorphism and N∗(X) is torsion
free we get the required assertion. �

1.2. Nefness

Let us recall that a locally free sheaf E on a complete k-scheme is called
nef if and only if OP(E)(1) is nef on the projectivization P(E) of E. We say
that E is numerically flat if both E and E∗ are nef.
A locally free sheaf E is nef if and only if for any finite morphism f :

C → X from a smooth projective curve C we have µmin(f∗E) > 0 (see,
eg., [2, Theorem 2.1 and p. 437]). Hence, quotients of a nef bundle are nef.
Let f : X → Y be a surjective morphism of complete k-varieties. Then

E on Y is nef if and only if f∗E is nef. Similarly, since pull back commutes
with dualization, E is numerically flat if and only if f∗E is numerically
flat.

1.3. Flatness and complex fundamental groups

Let us recall that a flat bundle on a complex manifold is a C∞ complex
vector bundle together with a flat connection. One can also look at it as a
complex representation of the topological fundamental group π1(X,x) or
a bundle associated to a local system of complex vector spaces. We say
that a flat bundle is unitary if it is associated to a representation that
factors through the unitary group. For unitary flat bundles (and exten-
sions of unitary flat bundles) the holomorphic structure is preserved in the
identification of flat bundles and Higgs bundles.
The following theorem was proven in the curve case by Narasimhan–

Seshadri, and then generalized by Donaldson, Uhlenbeck–Yau and Mehta–
Ramanathan to higher dimension:

Theorem 1.2 (see [30], Theorem 5.1). — Let X be a smooth d-dimen-
sional complex projective manifold with an ample divisor H. Let E be a
vector bundle on X with c1(E) = 0 and c2(E)Hd−2 = 0. Then E comes
from an irreducible unitary representation of π1(X,x) if and only if E is
slope H-stable.

TOME 61 (2011), FASCICULE 5



2084 Adrian LANGER

Later C. Simpson generalized this statement to correspondence between
flat bundles and semistable Higgs bundles. As a special case he obtained
the following result:

Theorem 1.3 ([38], Corollary 3.10 and the following remark). — There
exists an equivalence of categories between the category of holomorphic flat
bundles which are extensions of unitary flat bundles and the category of
H-semistable bundles with ch1 ·Hd−1 = ch2 ·Hd−2 = 0. In particular, the
latter category does not depend on the choice of ample divisor H.

Let us fix a point x ∈ X. Then the above category of H-semistable
bundles E with ch1(E)Hd−1 = ch2(E)Hd−2 = 0 can be given the structure
of a neutral Tannakian category (cf. [38, p. 70]) with a fibre functor defined
by sending bundle E to its fibre E(x).

Definition 1.4. — The affine group scheme over C corresponding to
the above Tannakian category is called the S-fundamental group scheme
and denoted by πS1 (X,x).

In [38, Section 5] Simpson defined the universal complex pro-algebraic
group πa1 (X,x) as the inverse limit of the directed system of representations
ρ : π1(X,x)→ G for complex algebraic groups G, such that the image of ρ
is Zariski dense in G (in the language of [8, 10.24] πa1 (X,x) is an algebraic
envelope of the topological fundamental group). This group is Tannaka
dual to the neutral Tannaka category of semistable Higgs bundles with
vanishing (rational) Chern classes (and with the obvious fibre functor of
evaluation at x). Therefore by [10, Proposition 2.21 (a)] we get the following
corollary which solves the problem posed in [4, Remark 5.2]:

Corollary 1.5. — We have a surjection πa1 (X,x) → πS1 (X,x) of pro-
algebraic groups (or, more precisely, a faithfully flat morphism of complex
group schemes).

In general, the surjection πa1 (X,x) → πS1 (X,x) is not an isomorphism.
For example, it is not an isomorphism for all curves of genus g > 2 because
OC⊕ωC with the Higgs field given by the identity on ωC is Higgs semistable
but not semistable (after twisting by an appropriate line bundle this gives
a representation of πa1 (X,x) not coming from πS1 (X,x)).
If µmax(ΩX) < 0 then πa1 (X,x) → πS1 (X,x) is an isomorphism. This

follows from the fact that if µmax(ΩX) < 0 then all (Higgs) semistable
Higgs bundles have vanishing Higgs field and they are semistable in the
usual sense. In fact, πa1 (X,x) and πS1 (X,x) are both zero by the following
lemma:
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Lemma 1.6. — If X is a complex manifold with µmax(ΩX) < 0 then
πa1 (X,x) = 0.

Proof. — By assumption hi(X,OX) = h0(X,ΩiX) = 0 for i > 0. There-
fore χ(X,OX) = 1. Let π : Y → X be an étale cover. Then µmax(ΩY ) < 0
(because ΩY = π∗ΩX) so χ(Y,OY ) = 1. But χ(Y,OY ) = deg π · χ(X,OX)
so π is an isomorphism. This implies that the étale fundamental group of
X is trivial. But by Malcev’s theorem a finitely generated linear group is
residually finite so any non-trivial representation π1(X,x)→ G in an alge-
braic complex affine group gives rise to some non-trivial representation in
a finite group. Therefore πa1 (X,x) is also trivial. �

Note that assumption immediately implies that H0(X,Ω⊗mX ) = 0 for
m > 0. There is a well-known Mumford’s conjecture (see, eg., [23, Chap-
ter IV, Conjecture 3.8.1]) saying that in this case X should be rationally
connected. Since rationally connected complex manifolds are simply con-
nected we expect that all varieties in the lemma are simply connected.

2. Deep Frobenius descent in higher dimensions

The aim of this section is to recall some boundedness results used later
in several proofs, and to generalize some results of H. Brenner and A. Kaid
[7] to higher dimensions.

Let f : X → S be a smooth projective morphism of relative dimension
d > 1 of schemes of finite type over a fixed noetherian ring R. Let OX/S(1)
be an f -very ample line bundle on X . Let TX/S(r, c1,∆;µmax) be the family
of isomorphism classes of sheaves E such that

(1) E is a rank r reflexive sheaf on a fibre Xs over some point s ∈ S.
(2) Let Hs be some divisor corresponding to the restriction of OX/S(1)

to Xs. Then c1(E)Hd−1
s = c1 and (∆(E)− (c1(E)−r/2KX)2)Hd−2

s

6 ∆.
(3) µmax(E) 6 µmax.
The following theorem is a special case of [26, Theorem 3.4]. The only

difference is that we allow mixed characteristic. The proof of the theorem
holds in this more general case because the dependence on the characteristic
is very simple (see the proof of [24, Theorem 4.4]).

Theorem 2.1. — The family TX/S(r, c1,∆;µmax) is bounded. In par-
ticular, the set of Hilbert polynomials of sheaves in TX/S(r, c1,∆;µmax) is
finite. Moreover, there exist polynomials PX/S , QX/S and RX/S such that
for any E ∈ TX/S(r, c1,∆;µmax) we have:

TOME 61 (2011), FASCICULE 5
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(1) E(m) is m-regular for m > PX/S(r, c1,∆, µmax),
(2) H1(X,E(−m)) = 0 for m > QX/S(r, c1,∆, µmax),
(3) h1(X,E(m)) 6 RX/S(r, c1,∆, µmax) for all m.

Example 2.2. — Let C be a smooth projective curve of genus g > 1.
Let p1, p2 denote projections of C × C on the corresponding factors. Let
us fix a point x ∈ C and put H = p∗1x + p∗2x. Let ∆ ⊂ C × C be the
diagonal. Finally, set Ln = OC×C(n(H − ∆)). Then c1(Ln)H = 0 and
∆(Ln) = 0 but the family {Ln}n∈Z is not bounded. This shows that in
the definition of the family T (r, c1,∆;µmax) we cannot replace the bound
on (∆(E)− (c1(E)− r/2KX)2)Hd−2 with the bound on ∆(E)Hn−2 as the
family need not be bounded.

The following corollary generalizes [7, Lemma 3.2]:

Corollary 2.3. — There exists some constant c=cX/S(r, c1,∆;µmax)
such that for any (possibly non-closed) point s ∈ S the number of reflex-
ive sheaves E of rank r with fixed c1(E)Hd−1 = c1, (∆(E) − (c1(E) −
r/2KX)2)Hd−2 6 ∆ and µmax(E) 6 µmax is bounded from above by
|k(s)|c.

Proof. — By the above theorem there are only finitely many possibilities
for the Hilbert polynomial of E, so we can fix it throughout the proof. Let
us take E as above on the fibre Xs over a point s ∈ S with finite k(s)
(if k(s) is infinite then our assertion is trivially satisfied). By the above
theorem if we take m = PX/S(r, c1,∆, µmax) + 1 then E(m) is globally
generated by a = P (E)(m) sections. Let us define E′ using the sequence

0→ E′ → OXs
(−mHs)a → E → 0.

Clearly, the Hilbert polynomial of E′ depends only on the Hilbert polyno-
mials of E and Hs. Since µmax(E′) 6 µ(OXs(−mHs)) = −mHd

s we can
again use the above theorem to find some explicit m′ such that E′(m′) is
globally generated by b = P (E′)(m′) = aχ(OXs((m′ −m)H))− P (E)(m′)
sections. Therefore E is a cokernel of some map

OXs
(−m′Hs)b → OXs

(−mHs)a.

Then we can conclude similarly as in the proof of [7, Lemma 3.2]. Namely,
we can assume that the dimension of H0(OXs

((m′ −m)Hs)) is computed
by the Hilbert polynomial of OXs (possibly we need to increase m′ but
only by some function depending on X/S: for example we can apply the
above theorem to the rank 1 case). Then the number of the sheaves that we
consider is bounded from the above by |k(s)|c, where c = abχ(OX((m′ −
m)H)). �
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Let R be a Z-domain of finite type containing Z. Let f : X → S = SpecR
be a smooth projective morphism of relative dimension d > 1 and let OX (1)
be an f -very ample line bundle.
Let K be the quotient field of R. Let X0 = X ×S SpecK be the generic

fibre of f . Let E be an S-flat family of rank r torsion free sheaves on the
fibres of f . Let us choose an embedding K ⊂ C. Then for the restriction
E0 of E to X0 we consider EC = E0 ⊗ C.

We say that (sn, en)n∈N, where sn ∈ S are closed points and en are pos-
itive integers, is a Frobenius descent sequence for E if there exist coherent
sheaves Fn on the fibres Xsn such that EXsn

' (F en)∗Fn.
The following theorem generalizes [7, Theorem 3.4] to higher dimensions

and relates the notion of flatness in positive characteristic to the one coming
from complex geometry:

Theorem 2.4. — Let us assume that there exists a Frobenius descent
sequence (sn, en)n∈N for E with (en − |k(sn)|c)n∈N → ∞, where c is the
constant from Corollary 2.3. Then the restriction E0 of E to the generic fibre
of f is an extension of stable (with respect to an arbitrary polarization)
locally free sheaves with vanishing Chern classes. Moreover, EC is also an
extension of slope stable locally free sheaves with vanishing Chern classes
(note that these stable sheaves need not be extensions of sheaves defined
over K). In particular, EC has structure of a holomorphic flat bundle on
XC which is an extension of unitary flat bundles.

Proof. — Note that we can assume that S is connected. Then by S-
flatness of E the numbers ci = ci(Es) · c1(OXs

(1))d−i are independent of
s ∈ S. Since

ci(Esn
) · c1(OXsn

(1))d−i = (char k(sn))enci(Fn) · c1(OXsn
(1))d−i

and en → ∞ we see that ci = 0. The rest of the proof is the same as the
proof of [7, Theorem 3.4] using Corollary 2.3 instead of [7, Lemma 3.2]. The
final part of the theorem follows from [38, Theorem 2] and [38, Lemma 3.5].
Alternatively, we can use Theorem 4.1 as for large n the sheaves Esn are

strongly semistable as follows from the proof. Hence by Theorem 4.1 Esn

are locally free for large n which implies that E0 is locally free by openness
of local freeness. Then one can consider the Jordan–Hölder filtration of E0,
extend it to some filtration over nearby fibres and use induction on the
rank as in the proof of Theorem 4.1. �
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3. Restriction theorem for strongly stable sheaves
with vanishing discriminant

In this section we prove the restriction theorem for strongly stable shea-
ves. It is used in the next section and it also plays an important role in
proofs of the Lefschetz type theorems for the S-fundamental group (see,
eg., proof of Theorem 10.2).
Let us consider P2 over an algebraically closed field of characteristic

p > 0. In [6] H. Brenner showed that the restriction of ΩP2 to a curve
xd + yd + zd = 0, where pe < d < 3/2pe for some integer e, is not strongly
stable. Hence the restriction of a strongly stable sheaf to a smooth hyper-
surface of large degree need not be strongly stable. But by [24, Theorem 5.2]
restriction of a strongly stable sheaf with trivial discriminant to a hyper-
surface of large degree is still strongly stable (the bound on the degree
of this hypersurface depends on the rank of the sheaf). However, in this
case we have the following stronger version of restriction theorem (valid in
arbitrary characteristic):

Theorem 3.1. — Let D1, . . . , Dd−1 be a collection of ample divisors
on X of dimension d > 2. Let E be a rank r > 2 torsion free sheaf with
∆(E)D2 . . . Dd−2 = 0. Assume that E is strongly (D1, . . . , Dd−1)-stable.
Let D ∈ |D1| be any normal effective divisor such that ED has no torsion.
Then ED is strongly (D2, . . . , Dd−1)D-stable.

Proof. — For simplicity of notation we proof the result in case when all
the divisors D1, . . . , Dd−1 are equal to one ample divisor denoted by H.
The general proof is exactly the same.
Let ∆(E)Hd−2 = 0 and assume that E is strongly H-stable. Let D ∈ |H|

be any normal effective divisor such that ED has no torsion. We need to
prove that ED is strongly HD-stable. Suppose that there exists a non-
negative integer k0 such that the restriction of Ẽ = (F k0)∗E to D is not
stable. Let S be a rank ρ saturated destabilizing subsheaf of ẼD. Set T =
(ẼD)/S. Let G be the kernel of the composition Ẽ → ẼD → T . From the
definition of G we get a short exact sequence:

0→ G→ Ẽ → T → 0.
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Applying the snake lemma to the diagram

0 //

��

0 //

��

S

��
0 // Ẽ(−D) //

��

Ẽ

��

// ẼD

��

// 0

0 // G // Ẽ // T // 0

we also get the following exact sequence:

0→ Ẽ(−D)→ G→ S → 0.

Computing ∆(G) we get

∆(G)Hd−2 = −ρ(r − ρ)Hd + 2(rc1(T )− (r − ρ)Dc1(Ẽ))Hd−2.

By assumption (rc1(T )− (r − ρ)Dc1(Ẽ))Hd−2 6 0, so

∆(G)Hd−2 6 −ρ(r − ρ)Hd.

By [24, Theorem 2.7], for large l we have µmax((F l)∗G) = Lmax((F l)∗G)
and similarly for µmin. Using strong H-stability of Ẽ and Ẽ(−D) we get
for large integers l

Lmax((F l)∗G)− µ((F l)∗G) = µmax((F l)∗G)− µ((F l)∗Ẽ) + r − ρ
r

plHd

6
r − ρ
r

plHd − 1
r(r − 1)

and

µ((F l)∗G)− Lmin((F l)∗G) = µ((F l)∗Ẽ(−D))− µmin((F l)∗G) + ρ

r
plHd

6
ρ

r
plHd − 1

r(r − 1) .

Hence, applying [24, Theorem 5.1] to (F l)∗G gives

0 6 Hd ·∆((F l)∗G)Hd−2 + r2(Lmax((F l)∗G)− µ(F l)∗G))(µ((F l)∗G)

− Lmin((F l)∗G))

6 −ρ(r − ρ)p2l(Hd)2+r2
(
r − ρ
r

plHd − 1
r(r − 1)

)(
ρ

r
plHd − 1

r(r − 1)

)
.

Therefore
r

r − 1p
lHd 6

1
(r − 1)2 ,

which gives a contradiction. �
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Later we show a much stronger restriction theorem for semistability (see
Corollary 5.3) but we need this weaker result to establish Theorem 4.1 used
in the proof of this stronger result.

4. Strongly semistable sheaves
with vanishing Chern classes

In this section we show that strongly semistable torsion free sheaves
with vanishing Chern classes are locally free and that they are strongly
semistable with respect to all polarizations.

The following theorem is an analogue of [38, Theorem 2] in positive
characteristic. However, we need a different proof as Simpson’s proof uses
Lefschetz hyperplane theorem for topological fundamental groups and the
correspondence between flat (complex) bundles and semistable Higgs bun-
dles with vanishing Chern classes (see [38, Lemma 3.5]). We reverse his
ideas and we use this result to prove Lefschetz type theorems for étale,
Nori and S-fundamental groups.

Theorem 4.1. — Let X be a smooth d-dimensional projective variety
over an algebraically closed field k of characteristic p > 0 and let H be an
ample divisor on X. Let E be a strongly H-semistable torsion free sheaf on
X with ch1(E) ·Hd−1 = 0 and ch2(E) ·Hd−2 = 0. Assume that either E
is reflexive or the reduced Hilbert polynomial of E is equal to the Hilbert
polynomial of OX . Then E is an extension of stable and strongly semistable
locally free sheaves with vanishing Chern classes. Moreover, there exists n
such that (Fn)∗E is an extension of strongly stable locally free sheaves
with vanishing Chern classes.

Proof. — Before starting the proof of the theorem let us prove the fol-
lowing lemma:

Lemma 4.2. — Let E be a stronglyH-semistable torsion free sheaf onX
with ch1(E)·Hd−1 = 0 and ch2(E)·Hd−2 = 0. Then the 1-cycle c1(E)Hd−2

is numerically trivial and ∆(E)Hd−2 = 0.

Proof. — By [24, Theorem 3.2] we have ∆(E)Hd−2 > 0. Therefore by
the Hodge index theorem

0 = 2r(ch2(E)Hd−2) = (c1(E)2 −∆(E))Hd−2 6 c1(E)2Hd−2

6
(c1(E)Hd−1)2

Hd
= 0,

which implies the required assertions. �
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In case of curves the theorem follows from the existence of the Jordan–
Hölder filtration. The proof is by induction on the dimension starting with
dimension 2.

If X is a surface then we prove that a strongly semistable torsion free
sheaf E on X with ch1(E) ·H = 0 and ch2(E) = 0 is an extension of stable
and strongly semistable locally free sheaves with vanishing Chern classes.
This part of the proof is well known and analogous to the proof of [38,
Theorem 2]. Namely, the reflexivization E∗∗ is locally free and strongly
semistable. Hence by [24, Theorem 3.2] ∆(E∗∗) > 0. Since ∆(E∗∗) 6 ∆(E)
and by the above lemma ∆(E) = 0, we have c2(E∗∗/E) = 0. This implies
that E∗∗/E is trivial and E is locally free. The required assertion follows
easily from this fact (it will also follow from the proof below).
Now fix d > 3 and assume that the theorem holds in dimensions less

than d. Let E be a strongly stable reflexive sheaf on d-dimensional X with
ch1(E) · Hd−1 = 0 and ch2(E) · Hd−2 = 0. Then by the above lemma all
the sheaves {(Fn)∗E}n∈N are in the family TX/k(r, 0, 0; 0). This family is
bounded by Theorem 2.1. Therefore, since by Lemma 1.1 there are only
finitely many classes among ci((Fn)∗E) = pnci(E), we see that the Chern
classes of E vanish. In particular, for any smooth divisor D on X the
reduced Hilbert polynomial of ED is equal to the Hilbert polynomial of OD.
Let us also remark that ED is torsion free (see, eg., [20, Corollary 1.1.14]).

Let us first assume that E is strongly stable. By Theorem 3.1 the restric-
tion ED is also strongly stable for all smooth divisors D ∈ |mH| and all
m > 1. In particular, ED is locally free by the induction assumption. Note
that if x ∈ D then E ⊗ k(x) ' ED ⊗ k(x) is an r-dimensional vector space
over k(x) ' k. Therefore by Nakayama’s lemma E is locally free at x. By
Bertini’s theorem (see, eg., [13, Theorem 3.1]) for any closed point x ∈ X
there exists for large m a smooth hypersurface D ∈ |mH| containing x.
Therefore E is locally free at every point of X, ie., it is locally free.

Now let us consider the general case. Let us choose m such that all quo-
tients in a Jordan-Hölder filtration of (Fm)∗E are strongly stable (clearly
such m exists). Then we can prove the result by induction on the rank r.
Namely, if

0 = E0 ⊂ E1 ⊂ · · · ⊂ El = (Fm)∗E

is the Jordan-Hölder filtration then E1 is reflexive with c1(E1)Hd−1 = 0
and ∆(E1)Hd−2 = 0. The last equality follows from Bogomolov’s inequal-
ity for strongly semistable sheaves (see [24, Theorem 3.2]) and from the in-
equality ∆(E1)Hd−2 6 ∆(E)Hd−2 obtained from the Hodge index theorem
(see, eg., [20, Corollary 7.3.2]). So by the above we know that E1 is locally
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free with vanishing Chern classes. Note that {(Fn)∗(((Fm)∗E)/E1)}n∈N
are semistable torsion free quotients of the sheaves from a bounded family.
Therefore by Grothendieck’s lemma (see [20, Lemma 1.7.9]) they also form
a bounded family and by the previous argument they have vanishing Chern
classes. Hence the reduced Hilbert polynomial of ((Fm)∗E)/E1 is equal to
the Hilbert polynomial of OX and we can apply the induction assumption
to conclude that ((Fm)∗E)/E1 is locally free. This implies that all the
quotients in the Jordan-Hölder filtration of (Fm)∗E are locally free, which
proves the last assertion of the theorem. Then the first assertion follows
just by taking any Jordan-Hölder filtration of E.
Now we assume that the reduced Hilbert polynomial of E is equal to

the Hilbert polynomial of OX but we do not assume that E is reflexive.
Then the reflexivization E∗∗ of E satisfies the previous assumptions and
hence it is locally free with vanishing Chern classes. Therefore the reduced
Hilbert polynomial of E∗∗ is also equal to the Hilbert polynomial of OX .
In particular, the Hilbert polynomial of the quotient T = E∗∗/E is trivial
and hence T = 0 and E is reflexive. So we reduced the assertion to the
previous case (without changing the rank which is important because of
the induction step). �

Note that the theorem fails if d > 3 and we do not make any additional
assumptions on the Hilbert polynomial or reflexivity of E. For example
one can take the ideal sheaf of a codimension > 3 subscheme. This sheaf is
strongly stable and torsion free with ch1(E)·Hd−1 =0 and ch2(E)·Hd−2 =0
but it is not locally free.

Corollary 4.3. — Let E be a locally free sheaf with ch1(E)·Hd−1 = 0
and ch2(E) ·Hd−2 = 0. Let D ∈ |H| be any normal effective divisor. If E
is strongly semistable then ED is strongly semistable.

Proof. — By the above theorem we can choose m such that all quotients
in a Jordan-Hölder filtration of (Fm)∗E are locally free and strongly stable.
Then by Theorem 3.1 the restriction of each quotient is strongly stable
which proves the corollary. �

Remark 4.4. — Let us remark that in general a strongly semistable
locally free sheaf on a smooth projective variety does not restrict to a
semistable sheaf on a general smooth hypersurface of large degree passing
through a fixed point (not even in characteristic 0).

For example one can take a non-trivial extension E of mx by OP2 for
some x ∈ P2. Then E is a strongly semistable locally free sheaf but the
restriction of E to any curve passing through x is not semistable.
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This shows that one cannot generalize the proof of Mehta–Ramanathan’s
theorem to prove stability of the restriction of a stable sheaf to a general
hyperplane passing through some fixed points (the proof for restriction of
stable sheaves uses restriction of semistable sheaves).

The following theorem says that strong semistability for locally free
sheaves with vanishing Chern classes does not depend on the choice of
polarization:

Proposition 4.5. — Let D1, . . . , Dd−1 be ample divisors on X. Let E
be a strongly (D1, . . . , Dd−1)-semistable reflexive sheaf on X with ch1(E) ·
D1 . . . Dd−1 = 0 and ch2(E) ·D2 . . . Dd−1 = 0. Then it is locally free with
vanishing Chern classes and it is strongly semistable with respect to an
arbitrary collection of ample divisors.

Proof. — The first assertion can be proven as in the above theorem. So
it is sufficient to prove that for any ample divisor A the sheaf E is strongly
(A,D2, . . . , Dd−1)-semistable. We can assume that D2, . . . Dd−1 are very
ample. Taking a general complete intersection of divisors in |D2|, . . . , |Dd−1|
and using Theorem 3.1 we see that it is sufficient to prove the assertion in
the surface case. In the following we assume that d = 2 and set H = D1.
Taking the Jordan–Hölder filtration of some Frobenius pull-back of E we
can also assume that E is in fact strongly H-stable.
Let us consider the family F of all sheaves E′ such that µA(E′) > 0

and there exists a non-negative integer n such that E′ ⊂ (Fn)∗E and
the quotient (Fn)∗E/E′ is torsion free. Let us set Ht = (1 − t)H + tA

for t ∈ [0, 1]. Since the family {(Fn)∗E}n is bounded, the family F is
also bounded by Grothendieck’s lemma [20, Lemma 1.7.9]. Therefore there
exists the largest rational number 0 < t < 1 such that for all sheaves E′ ∈ F
we have µHt(E′) 6 0 (note that by assumption µH(E′) < 0). Then there
exists a sheaf E′ ∈ F such that µHt

(E′) = 0.
If E′ is not strongly Ht-semistable then there exist an integer l and a

saturated subsheaf E′1 ⊂ (F l)∗E′ such that µHt
(E′1) > µHt

((F l)∗E′) = 0.
But E′1 ∈ F so we have a contradiction with our choice of t. Therefore E′
is strongly Ht-semistable.
Let us take integer n0 such that E′ ⊂ (Fn0)∗E. Similarly as above we

can prove that the quotient E′′ = (Fn0)∗E/E′ is strongly Ht-semistable.
Namely, if E′′ is not stronglyHt-semistable then there exist an integer l and
a quotient sheaf (F l)∗E′′ → E′′1 such that µHt(E′′1 ) < µHt((F l)∗E′′) = 0.
But then the kernel of (F l+n0)∗E → E′′1 is in F and it has positive slope
with respect to Ht which contradicts our choice of t.
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Therefore all the sheaves in the following exact sequence

0→ E′ → (Fn0)∗E → E′′ → 0

are strongly Ht-semistable with Ht-slope equal to 0. Now let us recall that
by the Hodge index theorem we have

0 = ∆((Fn0)∗E)
r

= ∆(E′)
r′

+ ∆(E′′)
r′′

− r′r′′

r

(
c1E

′

r′
− c1E

′′

r′′

)2

>
∆(E′)
r′

+ ∆(E′′)
r′′

− r′r′′

rH2
t

(µHt(E′)− µHt(E′′)).

But by [24, Theorem 3.2] we have ∆(E′) > 0, ∆(E′′) > 0. Since µHt
(E′) =

µHt
(E′′) = 0 we see that both ∆(E′) and ∆(E′′) are equal to 0. There-

fore by Theorem 4.1 both E′ and E′′ have vanishing Chern classes which
contradicts strong H-stability of E. �

Remark 4.6. — Note that nefness of D1 is not sufficient to get the asser-
tion of the theorem. For example, if X is a surface and D1 is a numerically
non-trivial nef divisor with D2

1 = 0 (eg., a fibre of a morphism of X onto a
curve) then the family {OX(nD1)⊕OX(−nD1)}n is not bounded although
it consists of strongly D1-semistable locally free sheaves with ch1 ·D1 = 0
and ch2 = 0.

5. Comparison with numerically flat bundles

In this section we compare strongly semistable vector bundles with van-
ishing Chern classes with numerically flat vector bundles and we show that
they can be used to define a Tannaka category.

Let Vects
0(X) denotes the full subcategory of the category of coherent

sheaves on X, having as objects all strongly H-semistable reflexive sheaves
with ch1(E)·Hd−1 = 0 and ch2(E)·Hd−2 = 0. By Proposition 4.5, Vects

0(X)
does not depend on the choice of H so we do not include it into notation.
Let us mention that in the complex case the above category can be iden-

tified with the category of numerically flat vector bundles (see Theorem 1.3
and [12, Theorem 1.18]). The author does not know a direct purely alge-
braic proof of this equivalence (over C). A similar characterization holds
also in positive characteristic:

Proposition 5.1. — Let X be a smooth projective k-variety. Let E be
a coherent sheaf on X. Then the following conditions are equivalent:
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1. E ∈ Vects
0(X),

2. E is numerically flat (in particular, it is locally free),
3. E is nef of degree 0 with respect to some ample divisor (in partic-

ular, it is locally free).

Proof. — First we prove that 1 implies 2. If E ∈ Vects
0(X) then the family

{(Fn)∗E}n is bounded, so there exists an ample line bundle L on X such
that (Fn)∗E ⊗ L is globally generated for n = 0, 1, . . . Therefore for any
smooth projective curve C and a finite morphism f : C → X the bundles
f∗((Fn)∗E ⊗ L) are globally generated. In particular, µmin(f∗((Fn)∗E ⊗
L)) > 0. Therefore for all n > 0

−deg f∗L 6 µmin(f∗((Fn)∗E)) 6 pnµmin(f∗E).

Dividing by pn and passing with n to infinity we get µmin(f∗E) > 0.
Therefore E is nef. Since E∗ ∈ Vects

0(X), E∗ is also nef.
To prove that 2 implies 3 we take E such that both E and E∗ are nef. Let

us fix some ample divisor H on X. Let us remark that if some polynomial
in Chern classes of ample vector bundle is positive (see [15, p. 35] for the
definition) then it is also non-negative for nef vector bundles. Therefore by
[15, Theorem I] c1 ·Hd−1, c2 ·Hd−2, (c21− c2) ·Hd−2 are non-negative for all
nef vector bundles. In particular, from c1(E)Hd−1 > 0 and c1(E∗)Hd−1 > 0
we get c1(E)Hd−1 = 0.
To prove that 3 implies 1 note that E is strongly semistable with respect

to all polarizations. By assumption and the Hodge index theorem we have

0 6 c21(E)Hd−2 ·Hd 6 (c1(E)Hd−1)2 = 0.

Hence from non-negativity of c2·Hd−2,(c21−c2)·Hd−2 we see that c2(E)Hd−2

is equal to 0. Therefore by definition E ∈ Vects
0(X). �

Remark 5.2. — Note that the condition that a locally free sheaf E is
numerically flat is equivalent to the condition that for all smooth curves
C and all maps f : C → X the pull back f∗E is semistable of degree
0. In this case one sometimes says that E is Nori semistable (see, eg.,
[28]). Obviously, this is completely fair as Nori made huge contributions in
the subject but it should be noted that in [32] Nori considered a slightly
different condition. Namely, he considered locally free sheaves E such that
for all smooth curves C and all birational maps f : C → X onto its image,
the pull back f∗E is semistable of degree 0 (see [32, p. 81, Definition]). In
positive characteristic such sheaves do not form a tensor category.

Note that the proof of the above proposition gives another proof of
Proposition 4.5. As in the proof of Proposition 4.5 we can restrict to the
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surface case so that we deal with only one ample divisor when the above
proof shows the assertion (in general however, there are technical problems
with boundedness with respect to collection of polarizations).
Proposition 5.1 allows us to define Vects

0(X) for complete k-schemes.
Then Vects

0(X) denotes the full subcategory of the category of coherent
sheaves on X, which as objects contains all numerically flat locally free
sheaves. If X is smooth and projective then by Proposition 5.1 this gives
the same category as before.
The following corollary is a generalization of Theorem 3.1:

Corollary 5.3. — [Very strong restriction theorem] Let X be a com-
plete k-scheme and let E ∈ Vects

0(X). Then for any closed subscheme
Y ⊂ X the restriction EY is in Vects

0(Y).

Clearly, E ∈ Vects
0(X) if and only if the restriction of E to every curve

C belongs to the category Vects
0(C). This gives relation with the category

considered by Nori in [32].
By [2, Proposition 3.5] tensor product of two nef sheaves is nef. Therefore

we have the following corollary:

Corollary 5.4. — LetX be a complete k-scheme. If E1, E2 ∈ Vects
0(X)

then E1 ⊗ E2 ∈ Vects
0(X).

Proposition 5.5. — LetX be a complete connected reduced k-scheme.
Then Vects

0(X) is a rigid k-linear abelian tensor category.

Proof. — By the above corollary Vects
0(X) is a tensor category. To check

that it is abelian, it is sufficient to check that for any homomorphism ϕ :
E1 → E2 between objects E1 and E2 of Vects

0(X) its kernel and cokernel is
still in the same category. Restricting to curves it is easy to see that kerϕ,
imϕ and cokerϕ are locally free (see, eg., [32, proof of Lemma 3.6]). Since
quotients of nef bundles are nef and since we have surjections E1 → imϕ

and E∗2 → (imϕ)∗, imϕ is numerically flat. This implies that kerϕ and
cokerϕ are also numerically flat. �

For definitions and basic properties of rigid, tensor and Tannakian cate-
gories we refer the reader to [10].

6. Fundamental groups in positive characteristic

In this section we generalize the notion of S-fundamental group scheme,
defined in the curve case by Biswas, Parameswaran and Subramanian in
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[4, Section 5], and we compare it with other known fundamental group
schemes.
Let X be a complete connected reduced k-scheme and let x ∈ X be a

k-point. Let us define the fibre functor Tx : Vects
0(X)→ k−mod by sending

E to its fibre E(x). Then (Vects
0(X),⊗,Tx,OX) is a neutral Tannaka cat-

egory (see Proposition 5.5). Therefore by [10, Theorem 2.11] the following
definition makes sense:

Definition 6.1. — The affine k-group scheme Tannaka dual to this
neutral Tannaka category is denoted by πS1 (X,x) and it is called the S-
fundamental group scheme of X with base point x.

By definition, there exists an equivalence of categories Vects
0(X) →

πS1 (X,x) − mod such that Tx becomes a forgetful functor for πS1 (X,x)-
modules. Inverse of this equivalence defines a principal πS1 (X,x)-bundle
X̃S → X, called the S-universal covering, which to a πS1 (X,x)-module
associates a numerically flat vector bundle.
Let πN1 (X,x) and πEt1 (X,x) denote Nori and étale fundamental group

schemes, respectively. Using [10, Proposition 2.21 (a)] it is easy to see that
the following lemma holds:

Lemma 6.2. — There exist natural faithfully flat homomorphisms
πS1 (X,x)→ πN1 (X,x)→ πEt1 (X,x) of affine group schemes.

Since on curves there exist strongly stable vector bundles of degree zero
and rank r > 1 (such vector bundles are numerically flat but not essen-
tially finite), πS1 (X,x)→ πN1 (X,x) is usually not an isomorphism. In fact,
already non-torsion line bundles of degree 0 show that the S-fundamental
group scheme is usually much larger that Nori or étale fundamental group
schemes.
By definition and [10, Corollary 2.7] πS1 (X,x) is isomorphic to the inverse

limit of the directed system of representations ρ : πS1 (X,x)→ G in algebraic
k-group schemes G, such that the image of ρ is Zariski dense in G. If we
restrict to representations of πS1 (X,x) in finite group schemes or in étale
finite group schemes then we obtain πN1 (X,x) and πEt1 (X,x), respectively.
We can summarize this using the following obvious lemma. The formulation
for the étale fundamental group is left to the reader.

Lemma 6.3. — πN1 (X,x) is characterized by the following universal
property: for any representation ρ : πS1 (X,x) → G in a finite k-group
scheme G, there is a unique extension to ρ : πN1 (X,x) → G such that the
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diagram

πS1 (X,x)
ρ //

��

G

πN1 (X,x)
ρ

;;wwwwwwwww

is commutative.

In [36] dos Santos used [17] to introduce another fundamental group
scheme, which we denote by πF1 (X,x). It is defined as the group scheme
Tannaka dual to the Tannakian category of OX -coherent DX -modules (cor-
responding to the so called flat or stratified bundles; see [17]).
Let us recall that there exist OX -coherent DX -modules (E,∇) for which

E is not semistable (see [16, proof of Theorem 1]). Similarly, not every nu-
merically flat bundle descends infinitely many times under the Frobenius
morphism. Therefore, in general, we cannot expect any natural homomor-
phism between πS1 (X,x) and πF1 (X,x). But as expected from the complex
case (see Corollary 1.5), if µmax(ΩX) < 0 then the S-fundamental group
scheme carries all the algebraic information about the fundamental group.
So in this case we can obtain πF1 (X,x) from this group scheme:

Proposition 6.4. — Let X be a smooth projective k-variety. If µmax
(ΩX) < 0 then there exist a natural faithfully flat homomorphism πS1 (X,x)
→ πF1 (X,x).

Proof. — We will need the following lemma:

Lemma 6.5. — If µmax(ΩX) < 0 then for any semistable locally free
sheaf E of degree zero the canonical map H0(X,E) → H0(X,F ∗E) is an
isomorphism.

Proof. — To prove the lemma we use the exact sequence

0→ OX → F∗OX → F∗ΩX .

Tensoring it with E and taking sections we get

0→ H0(X,E)→ H0(X,F∗(F ∗E))→ H0(X,F∗(F ∗E ⊗ ΩX)).

Note that

H0(X,F∗(F ∗E ⊗ ΩX)) = H0(X,F ∗E ⊗ ΩX) = Hom(F ∗(E∗),ΩX).

Now let us recall that if µmax(ΩX) < 0 then a semistable sheaf is strongly
semistable (this fact is due to Mehta and Ramanathan; see [25, Theorem
2.9]). In particular, F ∗(E∗) is semistable of degree larger than µmax(ΩX).
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Therefore there are no nontrivial OX -homomorphisms between F ∗(E∗)
and ΩX . Then the assertion follows from equality H0(X,F∗(F ∗E)) =
H0(X,F ∗E). �

Now we can begin the proof of the proposition. Let us recall that a flat
bundle {Ei, σi} (which is equivalent to an OX -coherent DX -module) is a se-
quence of locally free sheaves Ei and OX -isomorphisms σi : F ∗Ei+1 → Ei.
Since Ei is semistable for large i, by the above lemma E0 is also semistable.
Let us define the functor between the neutral Tannaka category of flat bun-
dles and numerically flat bundles by sending {Ei, σi} to E0. Let {Ei, σi}
and {E′i, σ′i} be flat bundles. Then by the above lemma applied to the sheaf
Hom(Ei+1, E

′
i+1) we get a canonical isomorphism

Hom(Ei+1, E
′
i+1) ' Hom(Ei, E′i)

for every i > 0. This shows that

Hom({Ei, σi}, {E′i, σ′i}) = Hom(E0, E
′
0).

Therefore by [10, Proposition 2.21 (a)] to finish the proof it is sufficient
to show that if E′ is a numerically flat subbundle of a bundle E0 coming
from the flat bundle {Ei, σi} then there exists the flat subbundle {E′i, σ′i}
with E′0 ' E′. Let us recall that E0 has a canonical connection ∇can :
E0 → E0 ⊗ ΩX . Since HomOX

(E′, (E0/E
′) ⊗ ΩX) = 0, as follows from

our assumption, the sheaf E′ is preserved by the above connection. Hence
by Cartier’s theorem E′ ⊂ F ∗E1 descends under the Frobenius morphism.
This way we constructed E′1 and we can proceed by induction to construct
the required flat bundle. �

In [8, 10.25 and Proposition 10.32] and [37, Definition 3.1.3] Deligne and
Shiho introduced a pro-unipotent completion of the fundamental group
(Shiho called this group the de Rham fundamental group scheme but it
takes care only of the unipotent part of such a hypothetical de Rham fun-
damental group). Let us call this group πU1 (X,x). In our case, it is defined
as Tannaka dual to the neutral Tannaka category D consisting of such
sheaves E with an integrable connection ∇ : E → E ⊗ ΩX , which have a
filtration

0 = E0 ⊂ (E1,∇1) ⊂ · · · ⊂ (En,∇n) = (E,∇)
such that we have short exact sequences

0→ (Ei−1,∇i−1)→ (Ei,∇i)→ (OX , d)→ 0.

Let us note that usually the connection is not uniquely determined by the
sheaf. For example, for any closed 1-form γ the pair (OX , d+γ) is an object
of D. Also, not every numerically flat bundle has a filtration with quotients
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isomorphic to OX (for example, no strongly stable numerically flat bundle
of rank r > 2 has such a filtration). So, in general, we cannot expect any
natural homomorphism between πU1 (X,x) and πS1 (X,x). However, as be-
fore, if µmax(ΩX) < 0 then we can obtain πU1 (X,x) from the S-fundamental
group scheme (as a pro-unipotent completion, although we will not try to
prove it as it is likely to be a trivial statement; see the remark at the end
of the section).

Proposition 6.6. — Let X be a smooth projective k-variety. If
µmax(ΩX) < 0 then there exist a natural faithfully flat homomorphism
πS1 (X,x)→ πU1 (X,x).

Proof. — Let us construct a functor Φ from D to the Tannaka category of
numerically flat bundles by associating to an object (E,∇) of D the sheaf
E. Clearly, E is numerically flat so this makes sense. Let (E1,∇1) and
(E2,∇2) be objects of D. Let us take an OX -homomorphism ϕ : E1 → E2
and consider the diagram

E1
∇1 //

ϕ

��

E1 ⊗ ΩX
ϕ⊗idΩX

��
E2

∇2 // E2 ⊗ ΩX
Then (ϕ ⊗ idΩX

) ◦ ∇1 − ∇2 ◦ ϕ ∈ HomOX
(E1, E2 ⊗ ΩX). But E1, E2 are

strongly semistable and µmax(ΩX) < 0, so HomOX
(E1, E2 ⊗ ΩX) = 0.

Therefore the above diagram is commutative which shows that the functor
Φ is fully faithful.
By [10, Proposition 2.21 (a)] to finish the proof we need to show that

if E′ is a numerically flat subbundle of a bundle E coming from (E,∇)
then ∇ induces an integrable connection on E′. Then, automatically, E′
has a filtration as in the definition of D, so it is a subobject of (E,∇).
Note that if ∇ does not preserve E′ then it induces a non-trivial OX -
homomorphism E′ → (E/E′) ⊗ ΩX . Again one can easily see that there
are no such homomorphisms, which proves the required assertion. �

Finally let us formulate the following easy lemma whose proof is left to
the reader:

Lemma 6.7. — LetX be a smooth projective k-variety. If µmax(ΩX) < 0
then every semistable locally free sheaf E of degree zero admits at most
one connection. If E admits a connection ∇ then it is integrable (ie., ∇2 =
0) and its p-curvature vanishes. In particular, there exists E′ such that
(E,∇) ' (F ∗E′,∇can).
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Let us note that if h1(X,OX) 6= 0 then πS1 (X,x) is non-trivial because
Pic0(X) 6= 0. Nevertheless, the author does not know any examples of
varieties in positive characteristic with µmax(ΩX) < 0 and a non-trivial
S-fundamental group scheme. One can show that there is no such example
in dimension 6 2.

7. Monodromy groups

In this section we recall a few results, mostly from [4], generalizing them
to higher dimension. Since the proofs, using our definitions, are either the
same as in [4] or simpler we usually skip them.

Let G be a connected reductive k-group and let EG → X be a principal
G-bundle on X.

Definition 7.1 ([5], Definition 2.2). — EG is called numerically flat if
for every parabolic subgroup P ⊂ G and every character χ : P → Gm
dominant with respect to some Borel subgroup of G contained in P , the
dual line bundle L(χ)∗ over EG/P is nef.

If X is a smooth projective curve then EG is numerically flat if and only
if it is a strongly semistable principal G-bundle of degree zero. Note that
if G is semisimple then a principal G-bundle has always degree zero.

Lemma 7.2. — The following conditions are equivalent:
1. EG is numerically flat,
2. for every representation G → GL(V ) the associated vector bundle
EG(V ) is numerically flat,

3. EG(g), associated to EG via the adjoint representation, is numeri-
cally flat.

Proof. — It is sufficient to prove the lemma when X is a smooth pro-
jective curve. Then 1 implies 2 because of [35, Theorem 3.23]. This needs
a small additional argument if G is not semisimple as the radical of G is
not necessarily mapped to the centre of GL(V ) (the only problem is with
degree of associated bundles but this is zero as EG is numerically flat).
Obviously, 2 implies 3 and 3 is equivalent to 1 by [25, Corollary 2.8]. �

Let EG be a numerically flat principal G-bundle. Let EG : G −mod →
Vects

0(X) be the functor corresponding to EG (see, eg., [32, Lemma 2.3 and
Proposition 2.4]). Let us set TG = Tx ◦ EG. Then (G−mod,⊗,TG, k) is a
neutral Tannakian category. The affine group scheme corresponding to this
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category is Ad(EG)x ' G. Therefore the functor (G − mod,⊗,TG, k) →
(Vects

0(X),⊗,Tx,OX) defines a homomorphism of groups

ρ(EG) : πS1 (X,x)→ Ad(EG)x.

The imageM of this homomorphism is called themonodromy group scheme
of EG. One can see that EG has a reduction of structure group to M and
it is the smallest such subgroup scheme (cf. [4, Proposition 4.9]).
Let us recall that a subgroup of a group is called irreducible if it is not

contained in any proper parabolic subgroup. By [4, Lemma 4.13] EG is
strongly stable if and only if the reduced monodromy group Mred is an
irreducible subgroup of Ad(EG)x ' G. It is well known that irreducible
subgroups of reductive groups are reductive, so if EG is strongly stable
then by [4, Lemma 4.12] for large m the monodromy group of (Fm)∗EG is
a reductive group (this is analogous to the complex case; see [4, Proposi-
tion 8.1]).
It follows that if EG is numerically flat then for large m there exists

a reduction E′P of (Fm)∗EG to a parabolic subgroup P ⊂ G such that
the monodromy group of the extension EL of EP to the Levi quotient
q : P → L = P/Ru(P ) is reduced and it is an irreducible subgroup of L.
In fact, the monodromy group M of EG is a reduced subgroup of P and
q(M) is the monodromy group of EL.

8. Basic properties of the S-fundamental group scheme

In this section we prove a few basic properties of the S-fundamental
group scheme: behavior under morphisms and field extension (in arbitrary
characteristic).

Let f : X → Y be a k-morphism of complete k-varieties. Since pull-
backs of nef bundles are nef for a k-point x ∈ X there exists an induced
map πS1 (X,x)→ πS1 (Y, y), where y = f(x).

Lemma 8.1. — Let f : X → Y be a surjective flat morphism of complete
k-varieties. If f∗OX = OY then πS1 (X,x) → πS1 (Y, y) is a faithfully flat
surjection.

Proof. — By [10, Proposition 2.21 (a)] we need to show that:
(a) the functor Vects

0(Y, y)→ Vects
0(X, x) is fully faithful,

(b) if E′ ⊂ f∗E is a numerically flat subbundle for E ∈ Vects
0(Y) then

E′ is isomorphic to pull back of a numerically flat subbundle of E.
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(a) follows immediately from the projection formula:

HomY (E′, E′′) ' f∗HomX(f∗E′, f∗E′′)

by taking sections.
To prove (b) let us set E′′ = (f∗E)/E′ and denote by r, r′, r′′ the ranks

of E,E′, E′′ respectively and let Xy be the fibre over a k-point y ∈ Y . Then
E′y = E′Xy

is a numerically flat subbundle of the trivial bundle (f∗E)Xy
'

OrXy
. But (E′y)∗ is also globally generated. Since a section of such bundle

has no zeroes E′y is trivial. Similarly, E′′y is trivial. In particular, since E′
is Y -flat and h0(Xy, E

′
y) = r′ does not depend on y ∈ Y we see that f∗E′

is locally free of rank r′ by Grauert’s theorem. In the same way we prove
that f∗E′′ is locally free of rank r′′. Since the surjective map f∗E → E′′

factors through f∗f∗E
′′ → E′′ we see that f∗f∗E′′ → E′′ is a surjective

map of rank r′′ vector bundles and hence it is an isomorphism. Therefore
f∗f∗E

′ → E′ is also an isomorphism. Let us remind that if the pull back
of a bundle is nef then the bundle is nef. Therefore f∗E′ is numerically
flat. �

Proposition 8.2. — For any k-point x of Pnk we have πS1 (Pnk , x) = 0.

Proof. — For n = 1 the assertion is easy as every strongly semistable
vector bundle of degree 0 is trivial.
Let E be a stable vector bundle on P2. Then by a standard argument

Hom(E,E) = k, ext2(E,E) = hom(E,E(−3)) = 0 and

χ(E,E) = 1− ext1(E,E) = r2 −∆(E) 6 1.

Therefore if E has vanishing Chern classes then r = 1 and E ' OP2 .
Since extensions of trivial bundles on P2 are trivial, by Theorem 4.1 every
E ∈ Vects

0(P2) is trivial.
It is well known that a vector bundle on Pn splits if and only if its

restriction to some plane splits (see [33, Chapter I, Theorem 2.3.2]; the
proof given in [33] works in arbitrary characteristic). Therefore if E ∈
Vects

0(Pn) then by restriction theorem the restriction of E to a plane belongs
to Vects

0(P2), hence it is trivial, which proves that πS1 (Pnk , x) = 0. �

Lemma 8.3. — Let Y be a smooth complete k-variety and let f : X → Y

be the blow-up of Y along a smooth subvariety Z ⊂ Y . Then πS1 (X,x)→
πS1 (Y, y) is an isomorphism.

Proof. — Let E ∈ Vects
0(X). Then by Proposition 8.2 restriction of E

to each fibre of f is trivial. Then by [21, Theorem 1] (which can be easily
adapted to our setting) f∗E is locally free and E ' f∗f∗E. By [10, Propo-
sition 2.21 (b)] this shows that πS1 (X,x)→ πS1 (Y, y) is a closed immersion.
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Then the proof that it is faithfully flat is an easier version of the proof of
Lemma 8.1. �

The above lemma strongly suggests that the S-fundamental group scheme
is a birational invariant. This would follow from the above lemma and a
version of Włodarczyk’s result [40] in positive characteristic. (1) .

The proof of the following lemma was motivated by the proof of [31,
Proposition 3.1].

Lemma 8.4. — LetX be a complete variety defined over an algebraically
closed field k. Let k′ be an algebraically closed extension of k. Let x′ be
the k′-point of Xk′ = X ×k Spec k′ corresponding to a k-point of x of X.
Then πS1 (Xk′ , x′) → πS1 (X,x) ×k Spec k′ is faithfully flat (in particular, it
is surjective).

Proof. — Let us note that if E on Xk is numerically flat then E ⊗k k′
is also numerically flat. By definition it is sufficient to check this in case
of smooth projective curves. But in case of curves this follows immediately
from the fact that if E on Xk is stable (semistable or strongly semistable)
then E⊗k k′ is also stable (semistable or strongly semistable, respectively);
see [20, Corollary 1.3.8 and Corollary 1.5.11].

Let T be the Tannakian subcategory of C′ = (Vects
0(Xk′),⊗,Tx′ ,OXk′ )

whose objects are numerically flat vector bundles E′ on Xk′ such that there
exists E ∈ Vects

0(Xk) such that E′ ⊂ E ⊗k k′.
Let us set G = πS1 (X,x) and consider the category T ′ of finite dimen-

sional k′-representations of Gk′ = G ×k Spec k′. Let Gk′ → GL(V ′) be a
k′-representation. Then by [22, I 3.9 and 3.10] there exists an inclusion of
Gk′ -modules V ′ ⊂ k′[Gk′ ]⊕m = (k[G]⊕m) ⊗ k′. Therefore there exists a
k-vector subspace W ′ ⊂ k[G]⊕m such that V ′ ⊂ W ′ ⊗ k′. But there exists
a finite dimensional G-module W ⊂ k[G]⊕m containing W ′. Let X̃S

k′ be the
base change of the S-universal covering of X. Then the vector bundle E′
associated to V ′ via this principal G′-bundle is a vector subbundle of the
base change of the vector bundle E associated to W via the S-universal
covering of X.

This shows that we have a natural functor T ′ → T of neutral Tannakian
categories. It is easy to see that this functor is an equivalence of Tannakian
categories. Then by [10, Proposition 2.21 (a)] T ⊂ C′ defines the faithfully
flat homomorphism πS1 (Xk′ , x)→ πS1 (X,x)×k Spec k′. �

(1)Added in proof: Very recently, A. Hogadi and V. Mehta proved birational invariance
of the S-fundamental group scheme.
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As in [31, Proposition 3.1] one can easily see that if πS1 (Xk′ , x) →
πS1 (X,x) ×k Spec k′ is a closed immersion then every stable strongly semi-
stable vector bundle on Xk′ must be defined over k. Since this is not true
already for stable F -trivial bundles (see [34] for an example when X is a
smooth curve), the above homomorphism is usually not a closed immersion.
Let X and Y be complete k-varieties. Let us fix k-points x ∈ X and

y ∈ Y . Then we have a natural homomorphism

πS1 (X × Y, (x, y))→ πS1 (X,x)× πS1 (Y, y).

Using embeddings of X×{y} and Y ×{x} into X×Y and Lemma 8.1 one
can easily see that this homomorphism is faithfully flat. Unfortunately, it
is not clear if this is an isomorphism (2) .
Note that the question is non-trivial even at the level of characters of

S-fundamental groups. For example, it is true but a non-trivial fact that

Pic0(X)× Pic0(Y )→ Pic0(X × Y )

is an isomorphism on the level of k-points (ie., it is an isomorphism of the
corresponding reduced schemes). But this is not yet sufficient to conclude
that a line bundle on X×Y with a (numerically) trivial first Chern class is
of the form p∗XL⊗ p∗YM for some line bundles L on X and M on Y . Here
we should recall that a line bundle has vanishing first Chern class if and
only if certain tensor power of this line bundle is algebraically equivalent
to zero in PicX (see, eg., [14, Example 19.3.3]).

9. Some vanishing theorems for H1 and H2

In this section we prove a few basic vanishing theorems for the cohomol-
ogy groups of strongly semistable sheaves with vanishing Chern classes.

We assume that X is a smooth d-dimensional projective variety defined
over an algebraically closed field k and H is an ample divisor on X (we
consider slopes only with respect to this divisor).
If E ∈ Vects

0(X) then for any effective divisor D we have H0(X,E(−D))
= 0, as E(−D) is semistable with negative slope. In this section we will
find similar vanishing theorems for H1 and H2.

Theorem 9.1 (Vanishing theorem for H1). — Assume that X has di-
mension d > 2. Let E ∈ Vects

0(X) and let D be any ample divisor. If
DHd−1 > µmax(ΩX)

p then H1(X,E(−D)) = 0.

(2) In “On the S-fundamental group scheme II” we prove that this map is an isomorphism.
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Proof. — First let us prove the following

Lemma 9.2 (see [39] 2.1, Critère). — Let E be a torsion free sheaf on
X such that H0(X,F ∗E(−pD) ⊗ ΩX) = 0 and H1(X,F ∗E(−pD)) = 0.
Then H1(X,E(−D)) = 0.

Proof. — Let B1
X be the sheaf of exact 1-forms. By definition we have

an exact sequence

0→ OX → F∗OX → F∗B
1
X → 0.

By assumptions and the projection formula we have

H0(X,E(−D)⊗ F∗ΩX) = H0(X,F ∗E(−pD)⊗ ΩX) = 0.

But F∗B1
X is a subsheaf of F∗Ω1

X , so H0(X,E(−D)⊗ F∗B1
X) = 0.

Tensoring the above sequence with E(−D) and using the projection for-
mula we get the following exact sequence

0→ E(−D)→ F∗(F ∗E(−pD))→ E(−D)⊗ F∗B1
X → 0.

Since
H1(X,F∗(F ∗E(−pD))) = H1(X,F ∗E(−pD)) = 0

we get H1(X,E(−D)) = 0. �

The family of all strongly H-semistable locally free sheaves G of fixed
rank with vanishing Chern classes is bounded. Hence by Serre’s vanishing
theorem there exists such m0 that for all m > m0 and all such G we have
H1(X,G(−pmD)) = 0. Let us also remark that

H0(X,G(−pD)⊗ ΩX) = Hom(G∗,ΩX(−pD)) = 0,

since G∗ is semistable with slope 0 and by assumption µmax(ΩX(−pD)) <
0. Therefore applying Lemma 9.2 to E,F ∗E, (F 2)∗E, . . . we easily get van-
ishing of H1(X,E(−D)). �

Corollary 9.3. — Let α be a non-negative integer such that TX(αH)
is globally generated. Assume that X has dimension d > 2. Let E ∈
Vects

0(X) and let D be any divisor such that D − αH is ample. If

DHd−1 > max
(

(d+ 1)αHd −KXH
d−1,

(
1 + 1

p

)
αHd

)
then H1(X,E ⊗ ΩX(−D)) = 0.

Proof. — Since TX(αH) is globally generated there exists a torsion free
sheaf K and an integer N such that we have an exact sequence

0→ ΩX → OX(αH)N → K → 0.
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In particular, we have µmax(ΩX) 6 αHd and µmin(K) > µmin(OX(αH)N )
= αHd. Since K has rank (N − d) we also have

µmax(K) + (N − d− 1)µmin(K) 6 degK = NαHd −KXH
d−1.

Hence µmax(K) 6 (d+1)αHd−KXH
d−1 < DHd−1 = µH(E∗(D)). Because

E∗(D) is semistable we have

H0(X,E(−D)⊗K) = Hom(E∗(D),K) = 0.

Our assumptions imply that

µmax(ΩX)
p

<
αHd

p
6 (D − αH)Hd−1.

Therefore by Theorem 9.1 we get vanishing ofH1(X,E(αH−D)). Together
with the above this implies vanishing of H1(X,E(−D)⊗ ΩX). �

Theorem 9.4 (Vanishing theorem for H2). — Let α be a non-negative
integer such that TX(αH) is globally generated. Assume that X has dimen-
sion d > 3. Let E ∈ Vects

0(X). Let D be any divisor such that pD − αH is
ample. If

DHd−1 > max
(
αHd,

(d+ 1)αHd −KXH
d−1

p

)
then H2(X,E(−D)) = 0.

Proof. — First let us prove the following

Lemma 9.5 (cf. [26], Proposition 2.31). — Let E be a torsion free sheaf
on X such that H0(X,E(−D) ⊗ ΩX) = 0, H0(X,F ∗E(−pD) ⊗ Ω2

X) = 0,
H1(X,F ∗E(−pD)⊗ΩX) = 0 and H2(X,F ∗E(−pD)) = 0. Then H2(X,E
(−D)) = 0.

Proof. — Let B1
X and Z1

X be the sheaves of exact and closed 1-forms,
respectively. Then we have the following short exact sequence

0→ F∗B
1
X → F∗Z

1
X

C→ΩX → 0,

where C is the Cartier operator. Tensoring it with E(−D) and using the
projection formula we get the following short exact sequence

0→ E(−D)⊗ F∗B1
X → E(−D)⊗ F∗Z1

X → E(−D)⊗ ΩX → 0.

Using definition of Z1
X we also have an exact sequence

0→ F∗Z
1
X → F∗ΩX → F∗Ω2

X .
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Again tensoring it with E(−D) and using the projection formula we get
the following exact sequence

0→ E(−D)⊗ F∗Z1
X → F∗(F ∗E(−pD)⊗ ΩX)→ F∗(F ∗E(−pD)⊗ Ω2

X).

Using this sequence we see that vanishing of H0(X,F ∗E(−pD)⊗Ω2
X) and

H1(X,F ∗E(−pD) ⊗ ΩX) implies vanishing of H1(E(−D) ⊗ F∗Z1
X). Van-

ishing of this group together with vanishing of H0(X,E(−D)⊗ΩX) implies
vanishing of H1(X,E(−D) ⊗ F∗B1

X). But from the long cohomology ex-
act sequence this, together with vanishing of H2(X,F ∗E(−pD)) implies
vanishing of H2(X,E(−D)). �

As before the family of all strongly H-semistable locally free sheaves G of
fixed rank with vanishing Chern classes is bounded and by Serre’s vanishing
theorem there exists such m0 that for all m > m0 and all such G we have
H2(X,G(−pmD)) = 0.

Since DHd−1 > αHd > µmax(ΩX) we get vanishing of H0(X,G(−D)⊗
ΩX).
Now note that Ω2

X is a subsheaf of
∧2(OX(αH)N ) = OX(2αH)(

N
2 ). This

implies that

µmax(Ω2
X) 6 2αHd < pDHd−1 = µ(G∗(pD)).

Therefore

H0(X,G(−pD)⊗ Ω2
X) = Hom(G∗(pD),Ω2

X) = 0.

By assumption we have

pDHd−1 > max
(

(d+ 1)αHd −KXH
d−1,

(
1 + 1

p

)
αHd

)
.

Therefore by Corollary 9.3 we also have H1(X,G(−pD)⊗ ΩX) = 0.
Now we finish proof of the theorem by applying Lemma 9.5 to E,F ∗E,

(F 2)∗E, . . . �

10. Lefschetz type theorems
for the S-fundamental group scheme

In this section we prove Lefschetz type theorems for the S-fundamental
group scheme.

Let us recall the following example. It appeared essentially in [39, p.181]
and then it reappeared with the interpretation below in [3, Section 2].
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Example 10.1. — Let D be an ample effective divisor violating the Ko-
daira vanishing theorem in positive characteristic (ie., such that H1(OX
(−D)) 6= 0). Let us recall that a non-zero element c of H1(OX) gives rise
to a non-trivial extension E of OX by OX . If the class c of H1(OX) is in the
kernel of H1(OX) → H1(OD) then ED ' OD ⊕OD. By Serre’s vanishing
theorem, action of the Frobenius morphism on elements of the kernel of
H1(OX)→ H1(OD) is nilpotent. Therefore (Fm)∗E ' O2

X for large m.
This gives an example of a non-trivial representation of πS1 (X,x) which

is trivial on the image of πS1 (D,x) (obviously this holds already on the level
of Nori’s fundamental group scheme). In particular, πS1 (D,x) → πS1 (X,x)
is not surjective.
We can also interpret the above example in the following way which

explains connection with [39]. Let αpn denotes the group scheme on X

defined by
αpn(U) = {t ∈ Γ(U,OU ) : tp

n

= 0}.
Then we have the following exact sequence (only in fppf topology)

0→ αpn → Ga
Fn

→Ga → 0,

where the last map is given by t→ tp
n . Using this one can easily see that

H1
fl(X,αpn) = ker

(
H1(X,OX) F

n

→H1(X,OX)
)
.

But H1
fl(X,αpn) is the set of αpn -torsors on X and each such torsor gives

an element of Nori’s fundamental group. Therefore the example says that
there exists a nontrivial element of H1

fl(X,αpn) whose restriction to D

gives a trivial αpn -torsor. But we know that the action of the Frobenius on
H1(X,OX(−D)) is nilpotent so any non-zero element of H1(X,OX(−D))
gives such a torsor for some n > 1.

In this section X is a smooth d-dimensional projective variety defined
over an algebraically closed field k and H is an ample divisor on X.

Theorem 10.2. — Let D ⊂ X be any ample smooth effective divisor.
If d > 2 and

DHd−1 > µmax(ΩX)
then πS1 (D,x)→ πS1 (X,x) is a faithfully flat homomorphism.

Proof. — By [10, Proposition 2.21 (a)] we need to show that:
(a) the functor Vects

0(X, x)→ Vects
0(D, x) is fully faithful,

(b) every subbundle of degree 0 in the restriction ED of E ∈ Vects
0(X)

is isomorphic to the restriction of a subbundle of E.
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To show (a) we need to prove that for E′, E′′ ∈ Vects
0(X) the restriction

HomX(E′, E′′)→ HomD(E′D, E′′D)

is an isomorphism. But from the short exact sequence

0→ HomX(E′, E′′)⊗OX(−D)→ HomX(E′, E′′)→ HomD(E′D, E′′D)→ 0

we see that it is sufficient to show that Hi(X,HomX(E′, E′′)⊗OX(−D)) =
0 for i = 0, 1. Since HomX(E′, E′′) ∈ Vects

0(X), this follows from Theo-
rem 9.1 and the remark preceding it.
To prove (b) let us note that for every degree 0 subbundle of ED there

exists a Jordan–Hölder filtration 0 = E0 ⊂ E1 ⊂ · · · ⊂ Em = ED and some
index j such that this subbundle is equal to Ej . So it is sufficient to lift
this filtration to a filtration of E.
First we prove this for sheaves such that all quotients in any Jordan–

Hölder filtration of E are strongly stable. More precisely, let us consider
the following assertion: for all sheaves E ∈ Vects

0(X) of rank 6 r and such
that all quotients in any Jordan–Hölder filtration of E are strongly stable
if 0 = E0 ⊂ E1 ⊂ · · · ⊂ Em = ED is a Jordan–Hölder filtration of ED then
Ei lifts to a subsheaf of E. We prove it by induction on r. The case r = 1
is obvious. So assume that we know it for r− 1 and consider a rank r sheaf
E satisfying the above condition. Note that it is sufficient to lift the first
subsheaf E1 to a subsheaf E′ ⊂ E and use the induction assumption for
E/E′.

To lift E1 let us take an arbitrary Jordan–Hölder filtration 0 = E′0 ⊂
E′1 ⊂ · · · ⊂ E′n = E of E. By Theorem 4.1 each quotient Ej = E′j/E

′
j−1

is locally free and by Theorem 3.1 the restriction EjD is strongly stable. In
particular, we have n > 1 (unless m = 1, in which case E is the required
lift). Therefore there exists some j0 such that E1 is isomorphic to Ej0D (every
non-zero map from E1 to any of the sheaves EjD is an isomorphism). But
we already know by (a) that the restriction map

HomX(Ej0 , E)→ HomD(E1, ED)

is an isomorphism so we can lift the inclusion E1 ⊂ ED and it clearly lifts
to an inclusion.
Now let us consider the general case. Let us choose m such that all

quotients in any Jordan-Hölder filtration of Ẽ = (FmX )∗E are strongly
stable. The restriction ẼD ' (FmD )∗(ED) contains (FmD )∗(E1) which by the
above is isomorphic to the restriction Ẽ′D of some subsheaf Ẽ′ of Ẽ. We
claim that for every 0 6 i 6 m there exists a subsheaf E′i ⊂ (Fm−iX )∗E
such that Ẽ′ = (F i)∗E′i and (E′i)D ' (Fm−iD )∗(E1). In particular for i = m
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we get the subsheaf of E that we were looking for. We prove the above
assertion by induction on i. For i = 0 the claim is clear as we already
have E′0 = E′. Assume that we constructed E′i for some i < m. Let us
set E′′i = ((Fm−iX )∗E)/E′i. We only need to show that there exists E′i+1 ⊂
(Fm−i−1
X )∗E such that F ∗XE′i+1 ' E′i. If such a sheaf does not exist then the

OX -homomorphism E′i → E′′i ⊗ΩX , induced from the canonical connection
∇can : (Fm−iX )∗E → (Fm−iX )∗E ⊗ ΩX coming from Cartier’s descent, is
non-zero (see, eg., [24, Theorem 2.1]; see also [24, Lemma 2.3] for a similar
assertion). But we have a commutative diagram

E′i
//

��

E′′i ⊗ ΩX

��
(E′i)D

0 // (E′′i )D ⊗ ΩD
where the lower map is similarly induced from the canonical connection
and it is zero because (E′i)D descends to a subsheaf of (Fm−i−1

D )∗(ED) by
construction. Now using the exact sequence

0→ ΩX(−D)→ ΩX → ΩX |D → 0

we see that if E′i → E′′i ⊗ΩX⊗OD is zero, then E′i → E′′i ⊗ΩX induces a non-
zero map E′i → E′′i ⊗ΩX(−D) or equivalently a non-zero map E′i⊗(E′′i )∗ →
ΩX(−D) . But E′i and E′′i are strongly semistable of slope 0, so E′i⊗ (E′′i )∗
is also strongly semistable. Since by assumption µmax(ΩX(−D)) < 0 the
above map is zero, a contradiction. Therefore (E′i)D → (E′′i )D ⊗ ΩX |D is
non-zero. So using the exact sequences

0→ OD(−D)→ ΩX |D → ΩD → 0

we see that this map lifts to a non-zero map (E′i)D → (E′′i )D ⊗OD(−D).
But there are no non-zero maps between (E′i)D and (E′′i )D ⊗ OD(−D)
because both sheaves are semistable and the second one has smaller slope.
This finishes the proof the theorem. �

As a corollary of the above proof of (b) we get the following:

Corollary 10.3. — Let E ∈ Vects
0(X), d > 2. Let D be any ample

smooth effective divisor such that DHd−1 > µmax(ΩX). If E is stable then
ED is also stable.

Theorem 10.4. — Let us assume that d > 3 and TX(αH) is glob-
ally generated for some non-negative integer α. Let D ⊂ X be any ample
smooth effective divisor such that D − αH is ample. If

DHd−1 > max
(
pαHd, (d+ 1)αHd −KXH

d−1)
TOME 61 (2011), FASCICULE 5



2112 Adrian LANGER

then πS1 (D,x)→ πS1 (X,x) is an isomorphism.

Proof. — It is sufficient to show that for every strongly semistable locally
free sheaf E′ on D with ch1(E′) ·Hd−1 = 0 and ch2(E′) ·Hd−2 = 0 there
exists a locally free sheaf E on X such that E′ ' ED. Then E is also
strongly semistable and πS1 (D,x) → πS1 (X,x) is a closed immersion by
[10, Proposition 2.21 (b)]. Then the assertion follows from the previous
theorem.
Let Dn denote the scheme whose topological space is D and the struc-

ture sheaf is OX/InD (so Dn is just the divisor nD with a natural scheme
structure induced from X).

Lemma 10.5. — Let S be a k-scheme of finite type. Let S be a bounded
set of coherent sheaves on D. There exists n0 such that for all n > n0 the
following holds. Let F be an S-flat family of locally free sheaves on Dn0

such that F|D×{s} ∈ S for every s ∈ S. Then the set Sn ⊂ S of points
s ∈ S such that Fs can be extended to a locally free sheaf on Dn ⊂ X

is closed. Moreover, for large n, F|Dn0×Sn can be extended to an Sn-flat
family of locally free sheaves on the formal completion of X along D.

Proof. — Let p : D × S → S and q : D × S → D be the natural
projections. Let Extjp(E, ·) be the jth derived functor of Homp(E, ·) =
p∗ ◦ Hom(E, ·) (see, eg., [20, 10.1.7] for definition and basic properties of
these functors). Let us set

G = Ext2
p(F ,F ⊗ q∗OD(−nD)).

Let us take n0 such that for all n > n0, ExtiD(Fs,Fs⊗OD(−nD)) are for all
k-points s ∈ S equal to zero for i 6 1 and have the same dimension for i = 2
(existence of such n0 follows, eg., from [19, Chapter III, Proposition 6.9];
note that we use the fact that D has dimension > 2). Then G is locally
free and it commutes with base-change. In particular, applying the base
change for the map s : Spec k → S mapping the point (0) to s ∈ S we get
an isomorphism

Gs ' Ext2
D(Fs,Fs ⊗OD(−nD)).

Using induction, it is sufficient to prove the assertion from the lemma for
n = n0 + 1 (then in the same way one can prove it for n0 + 2 and so on).

Let ob′(F) ∈ Ext2
D×S(F ,F ⊗ q∗OD(−nD)) be an obstruction to extend

F from Dn0 × S to Dn × S. Let ob(F) be the image of ob′(F) under the
map

Ext2
D×S(F ,F ⊗ q∗OD(−nD))→ H0(S, Ext2

p(F ,F ⊗ q∗OD(−nD)))
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obtained from the global to local spectral sequence Hi(S, Extip)⇒ Exti+jD×S
(note that by our assumptions the beginning of the spectral sequence de-
generates and the above map is in fact an isomorphism). Then for every
k-point s ∈ S the germ ob(F)s = ob(Fs) ∈ Ext2

D(Fs,Fs ⊗ OD(−nD)) is
an obstruction to extend Fs from Dn0 to Dn. So Sn is just the zero set of
section ob(F) in S. �

Let us take a flat family F of sheaves on D parameterized by some k-
scheme S of finite type and such that it contains all sheaves {(FnD)∗E′}n.
Let sn ∈ S be such that Fsn ' (FnD)∗E′. Consider F as a sheaf on X × S
extending it by zero (this sheaf is no longer locally free on X × S). Taking
F ′ = (Fn0

X × idS)∗F we get a sheaf on X × S, whose restriction to D × S
is (Fn0

D × idS)∗F . But we can consider F ′ as an S-flat family of locally
free sheaves on Dn0 and hence we can apply the above lemma. Note that
F ′sm

' (Fm+n0
D )∗E′ can be extended to Dpm+n0 so sm belongs to Spm+n0 .

But the sequence · · · ⊂ Sn+1 ⊂ Sn ⊂ · · · ⊂ Sn0 = S stabilizes starting
with some n1: S′ = Sn1 = Sn1+1 = . . . of S. By the above there exists m0
such that for all m > m0 we have sm ∈ Sn1 = S′. Therefore for large m we
can extend (FmD )∗E′ to a locally free sheaf Êm on the formal completion
of X along D. By [18, Exposé X, Exemple 2.2] the pair (X,D) satisfies the
effective Lefschetz condition. In particular, there exists an open set U ⊃ D
and a locally free sheaf E′m on U such that the formal completion of E′m is
isomorphic to Êm. Now set Em = j∗E

′
m, where j : U ↪→ X denotes the open

embedding. This is a reflexive sheaf on X such that (FmD )∗E′ ' (Em)D.
Therefore Em is strongly semistable and by Theorem 4.1 it is also locally
free.

Let us take the smallest m > 0 such that (FmD )∗E′ can be extended to a
locally free sheaf Em on X. We need to prove that m = 0. Let us assume
that m > 1. Replacing E′ with (Fm−1

D )∗E′ we can assume that m = 1.
Then F ∗DE′ extends to a vector bundle E1 on X and it has the canonical
connection ∇can : F ∗DE′ → F ∗DE

′ ⊗ ΩD.
Let us recall that an obstruction to existence of a connection on a vector

bundle E on a smooth variety X is given by the Atiyah class A(E) ∈
Ext1

X(E,E ⊗ ΩX) = H1(X, EndE ⊗ ΩX).
In our case we have a sequence of maps

H1(X, EndE1⊗ΩX) α0−→H1(X, EndE1⊗ΩX |D) β0−→H1(D, End(E1)D⊗ΩD)

mapping A(E1) to A((E1)D) = A(F ∗DE′) = 0. Let us set G = EndE1.
Note that α0 is injective if H1(X,G ⊗ ΩX(−D)) = 0 and β0 is injective
if H1(D,GD(−D)) = 0. Since G is strongly semistable, vanishing of the
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first cohomology group follows from Corollary 9.3 and our assumptions on
DHd−1. To get vanishing of the second group we can use the sequence

0→ G(−2D)→ G(−D)→ GD(−D)→ 0

from which we see that it is sufficient to prove that H1(X,G(−D)) =
H2(X,G(−2D)) = 0. This follows from Theorem 9.1, Theorem 9.4 and
our assumptions on D and H. Therefore A(E1) = 0 and E1 has some
connection ∇1.
We need to show that E1 has a connection ∇ such that on D it induces

the connection ∇can of F ∗DE′D. Let ∇1
D denotes the connection induced

from ∇1 on D. As above we have a sequence of maps

H0(X,G⊗ ΩX) α1−→H0(X,G⊗ ΩX |D) β1−→H0(D,GD ⊗ ΩD).

Since H0(X,G ⊗ ΩX(−D)) = H1(X,G ⊗ ΩX(−D)) = 0, α1 is an isomor-
phism. Similarly, β1 is an isomorphism since H0(D,GD(−D)) = H1(D,GD
(−D)) = 0. Therefore ∇can−∇1

D ∈ H0(D,GD⊗ΩD) lifts to a unique class
γ ∈ H0(X,G⊗ ΩX). Then ∇ = ∇1 + γ is the required connection of E1.
Again we have a sequence of maps

H0(X,G⊗ F ∗XΩX) α2−→H0(D,GD ⊗ F ∗D(ΩX |D)) β2−→H0(D,GD ⊗ F ∗DΩD)

mapping the p-curvature of ∇ to the p-curvature of ∇can which is 0.
Let us recall that by assumption ΩX ↪→ OX(αH)N for some integer N .

Therefore G⊗(F ∗XΩX)(−D) ↪→ G(pαH−D)N and since (pαH−D)Hd−1 <

0 we have vanishing of H0(X,G ⊗ (F ∗XΩX)(−D)). Since F ∗D(ΩX |D)) =
(F ∗XΩX)D this implies that the map α2 is injective. Since

H0(D,G⊗ F ∗D(OD(−D))) = H0(D,G(−pD)) = 0,

the map β2 is injective. This proves that the p-curvature of ∇ is equal to
0 and hence by Cartier’s descent there exists a sheaf E on X such that
E1 = F ∗XE and ED ' E′. This contradicts our assumption. �

Remark 10.6. — Let us note that we do not really need Theorem 10.2
in the proof of Theorem 10.4. First as above we prove that for any E′ ∈
Vects

0(D) there exists E ∈ Vects
0(X) such that ED ' E′. Then we can go

back to the proof of Theorem 10.2. Point (a) is proven in the same way
as before but now point (b) is much easier. Namely, let E′ ⊂ ED be a
subbundle of degree 0 in the restriction ED of E ∈ Vects

0(X). Then we can
lift E′ to some bundle E′′ ∈ Vects

0(X). But by (a) the restriction map

HomX(E′′, E)→ HomD(E′, ED)
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is an isomorphism, so inclusion E′ ⊂ ED can be lifted to an inclusion
E′′ ⊂ E, which finishes the proof of (b).

The following corollary strengthens [3, Theorem 1.1]. Note that in their
paper Biswas and Holla used Grothendieck’s Lefschetz theorem to prove
this theorem. In our case the corollary follows immediately from Theo-
rems 10.2 and 10.4 and the universal property of the fundamental group
schemes (see Lemma 6.3).

Corollary 10.7 (Lefschetz theorem for Nori’s and étale fundamental
groups). — Let X be a smooth d-dimensional projective variety defined
over an algebraically closed field k and let H be an ample divisor on X.
Let D ⊂ X be any ample smooth effective divisor.

1. Let us assume that d > 2 and

DHd−1 > µmax(ΩX).

Then πN1 (D,x) → πN1 (X,x) and πEt1 (D,x) → πEt1 (X,x) are faith-
fully flat.

2. Let us assume that d > 3 and TX(αH) is globally generated for
some non-negative integer α. Let us also assume that D − αH is
ample and

DHd−1 > max
(
pαHd, (d+ 1)αHd −KXH

d−1) .
Then πN1 (D,x) → πN1 (X,x) and πEt1 (D,x) → πEt1 (X,x) are iso-
morphisms.

In case of the local fundamental group of Nori, the Grothendieck–Lef-
schetz type theorem was also proved in [28], but without the precise bounds
on the degrees of the hypersurfaces.

Corollary 10.8. — Let G be a reduced, connected linear algebraic
group and letX be a projective homogeneousG-space such that the scheme-
theoretic stabilizers of the action of G on X are reduced. Assume that X
has dimension > 3. Then for any smooth ample effective divisor D ⊂ X

and any k-point x ∈ D the group πS1 (D,x) is trivial. In particular, if D is
a smooth hypersurface in Pd, d > 3 then πS1 (D,x) = 0.

Proof. — We can take α = 0 in the above theorem so that we get an iso-
morphism πS1 (D,x) ' πS1 (X,x). But by [29, Theorem 1] the S-fundamental
group scheme of X is trivial, which proves the first assertion. The last as-
sertion also follows from Proposition 8.2. �
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11. Lefschetz type theorems in presence of lifting
modulo p2 and in characteristic zero

We fix the following notation. LetX be a smooth d-dimensional complete
variety defined over a perfect field k of characteristic p > 0. We assume
throughout that X has a lifting to W2(k). Under this assumption Deligne
and Illusie (and Raynaud) showed in [9] that the Kodaira vanishing theorem
is still valid in positive characteristic. We can use their method to give
stronger Lefschetz type theorems for varieties with lifting modulo p2.
Let us recall the following lemma which is a small variation of [9, Lemma

2.9] (to simplify exposition we avoid the log version):

Lemma 11.1. — For any locally free sheaf E and an integer l < p we
have ∑

i+j=l
hj(X,E ⊗ ΩiX) 6

∑
i+j=l

hj(X,F ∗E ⊗ ΩiX).

The above lemma allows us to obtain, in presence of lifting, strong van-
ishing theorems for numerically flat bundles:

Corollary 11.2. — For any ample divisor D and any E ∈ Vects
0(X)

we have
Hj(X,E(−D)⊗ ΩiX) = 0

if i+ j < min(p, d).

Proof. — Let us note that since the family {(F l)∗E} is bounded we have
for large l

Hj(X, (F l)∗E(−plD)⊗ ΩiX) = 0.
Therefore the assertion follows by induction from the lemma applied to the
sheaves (F l−1)∗E(−pl−1D), (F l−2)∗E(−pl−2D), . . . , E(−D). �

Theorem 11.3. — Let D be any smooth ample effective divisor on X.
1. If d > 2 then πS1 (D,x)→ πS1 (X,x) is faithfully flat.
2. If d > 3 and p > 3 then πS1 (D,x)→ πS1 (X,x) is an isomorphism.

Proof. — Using the above corollary one can follow the proofs of Theo-
rems 10.2 and 10.4 without changes (except for the fact that vanishing of
cohomology groups is much simpler). �

Clearly, we get the same result also for Nori and étale fundamental
groups.

Now let X be a complex projective manifold. Using Lefschetz theorems
for the topological fundamental group and the universal property of S-
fundamental group scheme we get the following theorem:
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Theorem 11.4. — Let D be any smooth ample effective divisor on X.
1. If d > 2 then πS1 (D,x)→ πS1 (X,x) is faithfully flat.
2. If d > 3 then πS1 (D,x)→ πS1 (X,x) is an isomorphism.

Let us note that a similar theorem holds also for the universal complex
pro-algebraic group πa1 (X,x). We sketch now an algebraic proof (in 2 we
assume that d > 4).
Proof. — Manivel’s vanishing theorem (see [27, Theorem A]) implies that

for any ample divisor D and any E ∈ Vects
0(X) we have

Hj(X,E(−D)⊗ ΩiX) = 0

if i + j < d (note that the proof by reducing to characteristic p and using
Corollary 11.2 does not quite work as we do not know if the reduction of
E modulo p is still in Vects

0(X) for some p). Therefore we can also give an
algebraic proof of the above Lefschetz type theorem following the proofs of
Theorems 10.2 and 10.4 (replacing the Frobenius morphism with identity).
In this case, in proof of Theorem 10.4, we cannot use the Frobenius mor-
phism to extend ED from the divisor D to X. But by the above vanishing
theorem we have

H2(D, EndED ⊗OD(−iD)) = 0

for i > 0. This allows us to extend ED to a vector bundle on the formal
completion of X along D and then we can go back to the proof. �

Note that the above proof works only if d > 4 (as with Grothendieck’s
proof of the Lefschetz theorem for the Picard group). If d = 3 then, as one
can see using Serre’s duality, the above obstruction space is never equal to
zero for large i. Nevertheless, in positive characteristic we could go around
this problem.
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