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ON ANALYTIC VECTORS
FOR UNITARY REPRESENTATIONS

OF INFINITE DIMENSIONAL LIE GROUPS

by Karl-H. NEEB (*)

Abstract. — Let G be a connected and simply connected Banach–Lie group.
On the complex enveloping algebra of its Lie algebra g we define the concept of an
analytic functional and show that every positive analytic functional λ is integrable
in the sense that it is of the form λ(D) = 〈dπ(D)v, v〉 for an analytic vector v of
a unitary representation of G. On the way to this result we derive criteria for the
integrability of ∗-representations of infinite dimensional Lie algebras of unbounded
operators to unitary group representations.

For the matrix coefficient πv,v(g) = 〈π(g)v, v〉 of a vector v in a unitary repre-
sentation of an analytic Fréchet–Lie group G we show that v is an analytic vector
if and only if πv,v is analytic in an identity neighborhood. Combining this insight
with the results on positive analytic functionals, we derive that every local posi-
tive definite analytic function on a simply connected Fréchet–BCH–Lie group G
extends to a global analytic function.
Résumé. — Soit G un groupe de Lie–Banach connexe et simplement connexe.

Sur l’algèbre enveloppante complexe de son algèbre de Lie g nous définissons la
notion de fonctionnelle analytique et montrons que chaque fonctionnelle analytique
positive λ est integrable au sens où elle est de la forme λ(D) = 〈dπ(D)v, v〉 pour
un vecteur analytique v d’une représentation unitaire de G. Dans la preuve de ce
résultat nous obtenons des critères pour l’integrabilité des ∗-representations des
algèbres de Lie en représentations de groupe unitaires.

Pour le coefficient matriciel πv,v(g) = 〈π(g)v, v〉 d’un vecteur v d’une représen-
tation unitaire d’un groupe de Lie–Fréchet analytique G nous montrons que v est
un vecteur analytique si et seulement si πv,v est analytique dans un voisinage de
l’identité. En combinant ce résultat à ceux sur les fonctionnelles analytiques posi-
tives nous obtenons que chaque fonction analytique de type positive locale sur un
group de Lie–Fréchet–BCH simplement connexe s’étend en une fonction analytique
globale.

Keywords: Infinite dimensional Lie group, unitary representation, positive definite func-
tion, analytic vector, integrability of Lie algebra representations.
Math. classification: 22E65, 22E45.
(*) Supported by DFG-grant NE 413/7-1, Schwerpunktprogramm “Darstellungstheorie”.
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1. Introduction

Let G be an analytic Lie group modeled on a locally convex space and
(π,H) be a unitary representation of G.(1) We call a vector v ∈ H smooth,
resp., analytic if its orbit map πv : G → H, g 7→ π(g)v is smooth, resp.,
analytic. We writeH∞, resp.,Hω for the subspace of smooth, resp., analytic
vectors. Analytic vectors for unitary representations of finite dimensional
Lie groups play an important role in the translation process between the
representation π of a connected Lie group G and the derived representation
dπ : g→ End(H∞) of its Lie algebra g. In particular, for a subspace E ⊆ H
consisting of smooth vectors and invariant under g, we can only conclude
its invariance under G if the set of analytic vectors in E is dense ([49,
Cor. 4.4.5.5]). The key point in the argument is the Taylor expansion of
an analytic function f : G → E with values in a Banach space E near the
identity:

f(expX) =
∞∑
n=0

1
n! (X

nf)(1),

where the element X ∈ g acts as a left invariant differential operator on
C∞(G,E). The summands in this expansion define a linear map
T (f) : U(g) → E,D 7→ (Df)(1). Our motivation for this paper was to
understand which functionals on U(g) correspond in this sense to a ma-
trix coefficient πv,v(g) = 〈π(g)v, v〉 of an analytic vector v for a unitary
representation (π,H) of G.
As we shall see below, all this concerns only representations (π,H) for

which Hω is dense. For finite dimensional Lie groups, this is always the case
for continuous unitary representations on Hilbert spaces. Building on pre-
vious work of Harish–Chandra on semisimple groups, Cartier and Dixmier
prove in [10] the density of Hω for unitary representations and continuous
Banach representations which are bounded on a certain discrete central
subgroup. The general case was obtained by Nelson ([36, Thm. 4]) and
Gårding ([15]) by convolution with heat kernels (cf. [49, Sect. 4.4.5]). For
generalizations of these density results to representations on locally convex
spaces, we refer to [31].
For infinite dimensional Lie groups a continuous unitary representation

need not possess any differentiable vector. Refining a construction from [3],
we have shown in [35] that the continuous unitary representation of the
abelian Banach–Lie group G = (Lp([0, 1],R),+), p > 1, on the Hilbert
space H = L2([0, 1],C) by π(g)f = eigf satisfies H∞ = {0}. For p = 1, we

(1)Cf. [34] for a survey on locally convex Lie theory and Section 2 for basic definitions.
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thus obtain a continuous representation with no non-zero C1-vector, and
for p = 2k, the space of Ck-vectors is non-zero, but there is no non-zero
Ck+1-vector.
As a consequence of these examples, one cannot expect analytic vectors

to form a dense subspace for infinite dimensional Lie groups, and not even
for Banach–Lie groups. Up to now, only a few classes of groups are known
for which Hω is dense for every continuous unitary representation. If G is
the additive group of a nuclear locally convex space, this follows from the
Bochner–Minlos Theorem and the regularity of the corresponding measures
(cf. [20, Thm. 2.11] and [44, Sect. 2.5] for the special case of the countably
dimensional vector group G = R(N)). One also has a corresponding result
for Heisenberg groups: Let V be a locally convex space, endowed with a con-
tinuous positive definite scalar product. Then we define the corresponding
Heisenberg group by

Heis(V ) = R× V × V,

(z, v, w)(z′, v′, w′) := (z + z′ + 1
2 (〈v, w′〉 − 〈v′, w〉), v + v′, w + w′).

In [20] Hegerfeldt shows that, if V is separable, barrelled and nuclear, for
any continuous unitary representation (π,H) of Heis(V ), the space Hω is
dense. He even proves the existence of a dense subspace D ⊆ Hω with the
property that for every v ∈ D the orbit map πv(g) = π(g)v extends to a
holomorphic map Heis(V )C → H (see also [41] for the special case V = R(N)

and certain Banach completions). Further results for direct limits of finite
dimensional matrix groups can be found in [44, Sect. 6.4].
In this paper we are concerned with two aspects of analytic vectors for

representations of a 1-connected Lie group G with Lie algebra g:
(IR) The integrability problem for Lie algebra representations: Given a

∗-representation (ρ,D) of g on a pre-Hilbert space D, when is there
a continuous unitary representation (π,H) of G on the completion
H of D with D ⊆ H∞ and ρ(x) = dπ(x)|D for x ∈ g? The criteria
we discuss here are based on a rich supply of analytic vectors.

(IF) The integrability problem for functionals on U(g): Which linear
functionals λ : UC(g) := U(g)C → C are integrable in the sense that
there exists a continuous unitary representation (π,H) of G and a
smooth vector v ∈ H∞ with λ(D) = 〈dπ(D)v, v〉 for D ∈ U(g)?

As far as we know, the present knowledge on (IR) is limited to finite
dimensional Lie algebras and groups. It is based on Nelson’s Theorem, as-
serting that a symmetric operator A on a Hilbert space H is essentially
selfadjoint if it has a dense subspace of vectors v which are analytic in
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1842 Karl-H. NEEB

the sense that
∑
n
‖Anv‖tn

n! < ∞ holds for some t > 0. In view of Stone’s
Theorem, for such operators A, the selfadjoint closure A generates a uni-
tary one-parameter group eitA. The first generalization of this result to
finite dimensional Lie algebra g can be found in [14], where it is shown
that any representation ρ : g → End(D) by skew-symmetric operators on
a dense subspace D of a Hilbert space H can be integrated to a unitary
group representation if D consists of analytic vectors for the operators
ρ(x1), . . . , ρ(xn), where x1, . . . , xn is a basis of g. In [48] Simon generalizes
this result to the situation where x1, . . . , xn are only required to generate
g as a Lie algebra. These integrability criteria for representations of finite
dimensional Lie algebras by unbounded operators generalize to represen-
tations on Banach spaces (cf. [18], see also [22, Cor. A.4]). We recommend
Section 5 in [28] for a detailed discussion of analytic vectors and integrabil-
ity conditions for finite dimensional Lie algebras. One of our main results
is a solution of (IR) for Banach–Lie algebras asserting the integrability of
ρ if D consists of analytic vectors.

Problem (IF) is an infinite dimensional variant of the classical (non-
commutative) moment problem. Since smoothness of a vector v ∈ H is
equivalent to smoothness of the corresponding positive definite function
πv,v(g) = 〈π(g)v, v〉 ([35, Thm. 7.2]), the GNS construction implies that
(IF) is equivalent to the existence of a smooth positive definite function ϕ
with λ(D) = (Dϕ)(1) for D ∈ UC(g).
If g is finite dimensional and x1, . . . , xk is a basis of g, then every linear

functional λ ∈ UC(g)∗ defines a function

sλ : Nk0 → C, α 7→ λ(xα), xα := xα1
1 · · ·x

αk
k .

In view of the Poincaré–Birkhoff–Witt Theorem, the correspondence be-
tween linear functionals on UC(g) and functions on Nk0 is one-to-one. The
non-commutative moment problem is to decide for s : Nk0 → C when the
corresponding functional λs ∈ UC(g)∗ is integrable in the sense of (IF)
(cf. [44, Sect. 12.2]). For G = Rk this specializes to the classical moment
problem which, for (sα)α∈Nk0 , asks for a bounded positive measure µ on Rk
with

sα =
∫
Rk
xαdµ(x) for α ∈ Nk0 .

Here we use Bochner’s Theorem which says that the Fourier transform
µ 7→ µ̂ defines a bijection between bounded positive Borel measures on Rk
and continuous positive definite functions on Rk (see [2] for more on the
classical moment problem). For results concerning moment problems for
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nuclear spaces, we refer to [46, Thm. 12.5.2] and the original papers [7],
[21].
An obvious necessary condition for the solvability of (IF) is that λ

must be a positive functional on the ∗-algebra UC(g) in the sense that
λ(D∗D) > 0 forD ∈ UC(g), but in general this condition is not sufficient for
integrability. ForG = Rk, a necessary and sufficient condition for integrabil-
ity is non-negativity of λ on positive polynomials in U(g) ∼= R[x1, . . . , xk],
which is stronger than positivity because, for k > 2, not every non-negative
polynomial is a sum of squares ([46, Ex. 2.6.11], [4, Sects. 6.1/2]). In the
light of these results, it is quite remarkable that, for G = Rk, positiv-
ity of λ plus estimates on the sα which ensure convergence of the series∑
α

1
α!x

αsα in a zero-neighborhood of Rk imply unique solvability of (IF)
([44, Lemma 12.2.1], [47, Thm. II.12.7]). A non-commutative variant of this
result for Heisenberg groups can be found in [44, Thm. 12.2.3].
For the solvability of (IF) for a connected Lie group G, Schmüdgen shows

in [45, Thm. 5.1] that λ ∈ UC(L(G))∗ is integrable if and only if it is
strongly positive in the sense that λ(D) > 0 whenever dπ(D) > 0 holds for
all unitary representations (π,H) of G. He also shows in [45, Thm. 4.1] that
for G 6∼= R there exist positive functionals which are not strongly positive.
With respect to (IR) for finite dimensional groups, one has a necessary
and sufficient criterion in terms of so-called complete positivity ([45], [46,
Thm. 11.4.2], [40, Thm. 4.5]). Here we are only concerned with the unique
solvability of (IF) for positive functionals which are “analytic” in the sense
that they satisfy certain estimates.
The plan of this paper is as follows. After recalling the basic concepts

concerning infinite dimensional Lie groups and analytic functions in Sec-
tion 2, we introduce in Section 3 the concept of an analytic linear map
β : UC(g) → E to a Banach space E. These are linear maps for which the
series

∑∞
n=0

β(xn)
n! converges on a 0-neighborhood of g. The main result of

Section 3 is Theorem 3.6 which asserts that, for any continuous seminorm
p on g which is submultiplicative in the sense that p([x, y]) 6 p(x)p(y) for
x, y ∈ g, the space of those analytic linear maps for which

∑
n
β(xn)
n! con-

verges uniformly on the r-ball with respect to p is invariant under the left
and right regular representation of U(g) on Hom(U(g), E).

In Section 4 we turn to representations ρ : g→ End(V ) of a Lie algebra
g on a normed space V . We call such a representation strongly continu-
ous if the orbit maps ρv : g → V, x 7→ ρ(x)v are continuous and say that
v ∈ V is analytic if

∑
n
‖ρ(x)nv‖

n! converges on some 0-neighborhood of g.

TOME 61 (2011), FASCICULE 5



1844 Karl-H. NEEB

If g is a Baire space, v is analytic if and only if it is an analytic vec-
tor for all operators ρ(x) separately (Proposition 4.10). In Section 5 we
eventually turn to unitary representations of an analytic Lie group G with
Lie algebra g by showing that v ∈ H is analytic if and only if the ma-
trix coefficient πv,v(g) = 〈π(g)v, v〉 is analytic in some 1-neighborhood.
This reduces the analyticity condition for v to a local requirement on a
scalar-valued function. In Section 6 we proceed to the infinitesimal pic-
ture with the observation that for a ∗-representation of g on a pre-Hilbert
space D, an element v ∈ D is an analytic vector if and only if the lin-
ear functional ρv,v(D) := 〈ρ(D)v, v〉 on U(g) is analytic. The main results
of Section 6 are integrability results for ∗-representations on pre-Hilbert
spaces. Theorem 6.8 asserts that for a 1-connected Banach–Lie group G a
∗-representation (ρ,D) of g is integrable if D consists of analytic vectors.
Refining this result for the larger class of BCH–Lie groups, we derive in par-
ticular, that every positive analytic functional λ on the ∗-algebra UC(g) is
integrable in the sense of (IF). We conclude Section 6 with a variant of the
integrability theorem on Lie algebra representations that does not require
an a priori given Lie group G. The interest in this refinement lies in the fact
that not every Banach–Lie algebra is the Lie algebra of some Banach–Lie
group ([12]). The class of BCH–Lie groups is substantially larger than the
class of Banach–Lie groups. It contains in particular all (projective limits
of) nilpotent Lie groups and groups of smooth maps on compact manifolds
with values in Banach–Lie groups (see [17] for more details). In particular,
all Heisenberg groups are BCH.
From the integrability of positive analytic functionals on UC(g), we fur-

ther derive in Section 7 that any germ of an analytic positive definite func-
tion ϕ on a 1-connected BCH–Lie group extends uniquely to a global ana-
lytic positive definite function (Theorem 7.3).

An interesting issue that deserves to be pursued in the future is that the
concept of an analytic vector makes sense for any representation (ρ, V ) of
a locally convex Lie algebra g on a normed space V , even when there is no
analytic Lie group G with Lie algebra g. This may open a door to appli-
cations for large classes of non-analytic Lie groups such as diffeomorphism
groups of compact smooth manifolds.
In his recent paper [29], S. Merigon generalizes our Integrability Theo-

rem 5.2 for simply connected Banach–Lie groups in the sense that he only
requires the existence of a direct sum decomposition g = g1 ⊕ · · · ⊕ gn
into closed subspaces, such that all vectors are analytic for every x ∈ gj ,
j = 1, . . . , n. We expect the results in this paper and [29] to be the key tools
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to generalize the theory of analytic extension of unitary group representa-
tions ([27], [23, 24], [37, 38], [33]) to the context of Banach–Lie groups.

2. Locally convex Lie groups

In this section we briefly recall the basic concepts related to infinite
dimensional Lie groups and calculus on locally convex spaces.

Definition 2.1. — (a) Let E and F be locally convex spaces, U ⊆ E

open and f : U → F a map. Then the derivative of f at x in the direction
h is defined as

df(x)(h) := (∂hf)(x) := d

dt t=0
f(x+ th) = lim

t→0

1
t
(f(x+ th)− f(x))

whenever it exists. The function f is called differentiable at x if df(x)(h)
exists for all h ∈ E. It is called continuously differentiable, if it is differen-
tiable at all points of U and

df : U × E → F, (x, h) 7→ df(x)(h)

is a continuous map. Note that this implies that the maps df(x) are linear
(cf. [17, Lemma 2.2.14]). The map f is called a Ck-map, k ∈ N∪{∞}, if it
is continuous, the iterated directional derivatives

djf(x)(h1, . . . , hj) := (∂hj · · · ∂h1f)(x)

exist for all integers j 6 k, x ∈ U and h1, . . . , hj ∈ E, and all maps
djf : U × Ej → F are continuous. As usual, C∞-maps are called smooth.
(b) If E and F are complex locally convex spaces, then f is called complex

analytic if it is continuous and for each x ∈ U there exists a 0-neighborhood
V with x + V ⊆ U and continuous homogeneous polynomials βk : E → F

of degree k such that for each h ∈ V we have

f(x+ h) =
∞∑
k=0

βk(h),

as a pointwise limit ([5]). The map f is called holomorphic if it is C1 and
for each x ∈ U the map df(x) : E → F is complex linear (cf. [30, p. 1027]).
If F is sequentially complete, then f is holomorphic if and only if it is
complex analytic ([5, Ths. 3.1, 6.4]).
(c) If E and F are real locally convex spaces, then we call a map f : U →

F , U ⊆ E open, real analytic or a Cω-map, if for each point x ∈ U there
exists an open neighborhood V ⊆ EC and a holomorphic map fC : V → FC
with fC|U∩V = f |U∩V (cf. [30]). The advantage of this definition, which

TOME 61 (2011), FASCICULE 5



1846 Karl-H. NEEB

differs from the one in [5], is that it also works nicely for non-complete
spaces. Any analytic map is smooth, and the corresponding chain rule holds
without any condition on the underlying spaces, which is the key to the
definition of analytic manifolds (see [16] for details).

Once the concept of a smooth function between open subsets of locally
convex spaces is established (cf. [34], [30], [17]), it is clear how to define a
locally convex smooth manifold. A (locally convex) Lie group G is a group
equipped with a smooth manifold structure modeled on a locally convex
space for which the group multiplication and the inversion are smooth
maps. We write 1 ∈ G for the identity element and λg(x) = gx, resp.,
ρg(x) = xg for the left, resp., right multiplication on G. Then each x ∈
T1(G) corresponds to a unique left invariant vector field xl with xl(g) :=
T1(λg)x, g ∈ G. The space of left invariant vector fields is closed under
the Lie bracket of vector fields, hence inherits a Lie algebra structure. In
this sense we obtain on g := T1(G) a continuous Lie bracket which is
uniquely determined by [x, y]l = [xl, yl] for x, y ∈ g. We shall also use
the functorial notation L(G) := (g, [·, ·]) for the Lie algebra of G and,
accordingly, L(ϕ) = T1(ϕ) : L(G1)→ L(G2) for the Lie algebra morphism
associated to a morphism ϕ : G1 → G2 of Lie groups. Then L defines a
functor from the category of locally convex Lie groups to the category
of locally convex Lie algebras, i.e., locally convex spaces, endowed with
continuous Lie brackets. The adjoint action of G on L(G) is defined by
Ad(g) := L(cg), where cg(x) = gxg−1 is the conjugation map. The adjoint
action is smooth and each Ad(g) is a topological isomorphism of g. If g
is a Fréchet, resp., a Banach space, then G is called a Fréchet-, resp., a
Banach–Lie group.

A smooth map expG : g → G is called an exponential function if each
curve γx(t) := expG(tx) is a one-parameter group with γ′x(0) = x. Not every
infinite dimensional Lie group has an exponential function ([34, Ex. II.5.5]),
but exponential functions are unique whenever they exist. A Lie group G
is said to be locally exponential if it has an exponential function for which
there is an open 0-neighborhood U in L(G) mapped diffeomorphically by
expG onto an open subset of G. If, in addition, G is analytic and the
exponential function is an analytic local diffeomorphism in 0, then G is
called a BCH–Lie group. Then the Lie algebra L(G) is a BCH–Lie algebra
(for Baker–Campbell–Hausdorff), i.e., there exists an open 0-neighborhood
U ⊆ g such that for x, y ∈ U the BCH series

x ∗ y = x+ y + 1
2[x, y] + · · ·

ANNALES DE L’INSTITUT FOURIER
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converges and defines an analytic function U × U → g, (x, y) 7→ x ∗ y. The
class of BCH–Lie groups contains in particular all Banach–Lie groups ([34,
Prop. IV.1.2]).
If π : G → GL(V ) is a representation of G on a locally convex space

V , the exponential function permits us to associate to each element x of
the Lie algebra a one-parameter group πx(t) := π(expG tx). We therefore
assume in the following that G has an exponential function.

3. Analytic functionals

In the following g denotes a real locally convex Lie algebra and U(g) its
enveloping algebra. The continuity of the Lie bracket on g means that, for
every continuous seminorm p on g, there exists a continuous seminorm p̃

on g satisfying

(3.1) p([x, y]) 6 p̃(x)p̃(y) for x, y ∈ g.

If this relation holds with p̃ = p, then we call p is submultiplicative. If g is a
Banach–Lie algebra, then we assume that the norm on g is submultiplicative

(3.2) ‖[x, y]‖ 6 ‖x‖ · ‖y‖ for x, y ∈ g,

which can always be achieved by replacing it by a suitable multiple.
In this section we introduce for each continuous submultiplicative semi-

norm p on g the concept of a p-analytic linear map β on the enveloping
algebra U(g) with values in a Banach space E and define its radius of con-
vergence Rβ,p. The main result of this section is Theorem 3.6, asserting
that the subspace of elements β with Rβ,p > r is invariant under the left
and right regular action of U(g). This applies in particular to the norm
p(x) = ‖x‖ of a Banach–Lie algebra.

Definition 3.1. — Let V be a locally convex space andW be a normed
space. We write Multn(V,W ) for the space of continuousW -valued n-linear
maps on V n and Symn(V,W ) for the subspace of symmetric n-linear maps.
We also write P(V ) for the set of continuous seminorms on V .

(a) For an n-linear map β : V n →W and p ∈ P(V ), we define

‖β‖p := sup{‖β(v1, . . . , vn)‖ : v1, . . . , vn ∈ V, p(vi) 6 1} ∈ [0,∞].

Then β is continuous with respect to the topology on V defined by p if and
only if ‖β‖p <∞, and we have

‖β(v1, . . . , vn)‖ 6 ‖β‖pp(v1) · · · p(vn) for vi ∈ V.

TOME 61 (2011), FASCICULE 5
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If V and W are Banach spaces and p(v) = ‖v‖, then we thus obtain on
Multn(V,W ) the structure of a Banach space. In this case we simply write
‖β‖ for the norm of β with respect to p.
(b) For β ∈ Multn(V,W ), we write βs for the symmetrization of β:

βs(x1, . . . , xn) := 1
n!
∑
σ∈Sn

β(xσ(1), . . . , xσ(n))

and observe that ‖βs‖p 6 ‖β‖p for every p ∈ P(V ).
(c) A map f : V →W is called homogeneous of degree n if there exists a

f̃ ∈ Symn(V,W ) with

f(x) = f̃(x, x, . . . , x) for x ∈ V.

Any such f is smooth and f̃ can be recovered from f by

f̃(v1, . . . , vn) = 1
n! (∂v1 · · · ∂vnf)(0).

For p ∈ P(V ), we define

‖f‖p := sup{‖f(x)‖ : p(x) 6 1}.

Then we clearly have ‖f‖p 6 ‖f̃‖p, and, in view of [6, Prop. 1.1], we also
have

(3.3) ‖f̃‖p 6
(2n)n

n! ‖f‖p.

Definition 3.2. — Let E be a Banach space.
(a) We call a linear map β : U(g) → E continuous if, for each n ∈ N0,

the n-linear map

βn : gn → E, (x1, . . . , xn) 7→ β(x1 · · ·xn)

is continuous and write Hom(U(g), E)c for the set of all continuous lin-
ear maps. If g is Banach–Lie algebra, we have on this space a family of
seminorms

pn : Hom(U(g), E)c → R, β 7→ ‖βn‖.

(b) We call β ∈ Hom(U(g), E)c analytic if the series
∑∞
n=0

β(xn)
n! con-

verges on a 0-neighborhood of g. The set of analytic elements is denoted
Hom(U(g), E)ω, and for E = C the elements of Hom(U(g),C)ω are called
analytic functionals.

Lemma 3.3. — ([32, Lemma 2.3]) If g is a Banach–Lie algebra, then
the sequence (pn)n∈N0 of seminorms turns the space Hom(U(g), E)c into
a Fréchet space for which all evaluation maps evD : Hom(U(g), E)c →
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E, β 7→ β(D) are continuous. The left regular representation of U(g) on
this space defined by

g×Hom(U(g), E)c → Hom(U(g), E)c, (x, β) 7→ −β ◦ λx, λx(D) = xD,

and the right regular representation

g×Hom(U(g), E)c → Hom(U(g), E)c, (x, β) 7→ β ◦ ρx, ρx(D) = Dx,

are continuous bilinear maps.

Proposition 3.4. — If g is a Baire space, f.i., if it is Fréchet, then an
element β ∈ Hom(U(g), E)c is analytic if and only if there exists a p ∈ P(g)
with

(3.4)
∞∑
n=0

‖βsn‖p
n! <∞.

If g is Banach, this is equivalent to the existence of a t > 0 with

(3.5)
∞∑
n=0

‖βsn‖tn

n! <∞.

Proof. — From (3.4) we obtain for p(x) < 1 the estimate
∞∑
n=0

‖β(xn)‖
n! =

∞∑
n=0

‖βsn(x, . . . , x)‖
n! 6

∞∑
n=0

‖βsn‖pp(x)n

n! 6
∞∑
n=0

‖βsn‖p
n! <∞.

Therefore (3.4) implies the uniform convergence of the series
∑
n
β(xn)
n! for

p(x) < 1, hence in particular the analyticity of β. If g is Banach, we obtain
from (3.5) the uniform convergence for ‖x‖ < t.
Suppose, conversely, that β is analytic. Then the functions fn(x) := β(xn)

n!
on g are continuous and homogeneous of degree n. In view of [5, Prop. 5.2],
the convergence of the sequence

∑
n fn(x) on some 0-neighborhood of g

implies the existence of some q ∈ P(g) for which the series converges uni-
formly for q(x) 6 1. In particular, there exists a C > 0 with ‖β(xn)‖ 6 Cn!
for q(x) 6 1. We thus obtain with (3.3) the relation

‖βsn‖q 6
(2n)n

n! ‖n!fn‖q 6 nn2n‖fn‖q 6 nn2nC.

Stierling’s Formula

(3.6) n! ≈
√

2πn
(n
e

)n
,

leads to nn

n! ≈
en√
2πn , so that we find with some C ′ > 0

∞∑
n=0

‖βsn‖qtn

n! 6 C ′
∞∑
n=0

en√
n

(2t)n = C ′
∞∑
n=0

(2et)n√
n

.
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This series converges for t < 1
2e , so that the assertion follows for any such

t with p := t−1q. �

Definition 3.5. — If β ∈ Hom(U(g), E)c is analytic and∑∞
n=0

‖βsn‖pt
n

n! <∞ for some t > 0, then

∞∑
n=0

‖β(xn)‖
n! 6

∞∑
n=0

‖βsn‖pp(x)n

n! <∞

holds for p(x) < t and

Rβ,p := sup
{
t > 0:

∞∑
n=0

‖βsn‖ptn

n! <∞
}
∈]0,∞]

is called the p-radius of convergence of β. If Rβ,p <∞, we say that β is p-
analytic, or, analytic with respect to p. According to Hadamard’s Formula,
we have

R−1
β,p = lim sup n

√
‖βsn‖p
n! .

Note that, for each r > 0, the set Hom(U(g), E)ω,p,r of analytic maps β
with Rβ,p > r is a linear subspace. We write Hom(U(g), E)ω,p for the union
of all these spaces, which also is a linear subspace.

We now come to the main result of this section.

Theorem 3.6. — If p ∈ P(g) is submultiplicative and r > 0, then
Hom(U(g), E)ω,p,r is invariant under the left and right regular action of g.
In particular, the space Hom(U(g), E)ω,p of analytic elements is invariant.

Proof. — For β ∈ Hom(U(g), E)ω,p,r, y ∈ g, n ∈ N0, and 1 6 k 6 n+ 1,
we define

(ikyβ)n ∈ Multn(g, E), (ikyβ)n(x1, . . . , xn) := β(x1 · · ·xk−1yxk · · ·xn).

For n ∈ N0 and y ∈ g we put

cn := inf{C > 0: (∀y ∈ g)(∀k 6 n+ 1) ‖(ikyβ)sn‖p 6 Cp(y)}.

Now let y ∈ g. Our first goal is an estimate for the numbers cn. For n = 0
we have k = 1 and i1yβ = β(y), so that

c0 = ‖β1‖p = ‖βs1‖p.
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Our strategy is to compare the two symmetric n-linear maps (ikyβ)sn and
iy(βsn+1) = βsn+1(y, · · · ):

(ikyβ)sn(x1, . . . , xn)− βsn+1(y, x1, . . . , xn)

= 1
n!

( ∑
σ∈Sn

β(xσ(1) · · ·xσ(k−1)yxσ(k) · · ·xσ(n))

− 1
n+ 1

n+1∑
j=1

∑
σ∈Sn

β(xσ(1) · · ·xσ(j−1)yxσ(j) · · ·xσ(n))
)

= 1
(n+ 1)!

n+1∑
j=1

∑
σ∈Sn(

β(xσ(1) · · ·xσ(k−1)yxσ(k) · · ·xσ(n))−β(xσ(1) · · ·xσ(j−1)yxσ(j) · · ·xσ(n))
)
.

With the relation [y, x1 · · ·xa] =
∑a
j=1 x1 · · ·xj−1[y, xj ]xj+1 · · ·xa we ob-

tain for k < j

β(xσ(1) · · ·xσ(k−1)yxσ(k) · · ·xσ(n))− β(xσ(1) · · ·xσ(j−1)yxσ(j) · · ·xσ(n))
= β(xσ(1) · · ·xσ(k−1)[y, xσ(k) · · ·xσ(j−1)]xσ(j) · · ·xσ(n))

=
j−1∑
`=k

β(xσ(1) · · ·xσ(`−1)[y, xσ(`)]xσ(`+1) · · ·xσ(n)).

Next we observe that∑
σ∈Sn

β(xσ(1) · · ·xσ(`−1)[y, xσ(`)]xσ(`+1) · · ·xσ(n))

= (n− 1)!
n∑

m=1
(i`[y,xm]β)sn−1(x1, . . . , x̂m, . . . , xn),

where x̂m denotes omission of xm. The norm of this sum can be estimated
by

(n− 1)!
n∑

m=1
cn−1p([y, xm])p(x1) · · · p(x̂m) · · · p(xn)

6 (n− 1)!
n∑

m=1
cn−1p(y)p(x1) · · · p(xn) = n!cn−1p(y)p(x1) · · · p(xn).
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For k > j we likewise obtain

β(xσ(1) · · ·xσ(k−1)yxσ(k) · · ·xσ(n))− β(xσ(1) · · ·xσ(j−1)yxσ(j) · · ·xσ(n))
= β(xσ(1) · · ·xσ(j−1)[xσ(j) · · ·xσ(k−1), y]xσ(k) · · ·xσ(n))

=
k−1∑
`=j

β(xσ(1) · · ·xσ(`−1)[xσ(`), y]xσ(`+1) · · ·xσ(n))

which can be estimated in the same way. This leads to the estimate

‖(ikyβ)sn(x1, . . . , xn)− βsn+1(y, x1, . . . , xn)‖

6
1

(n+ 1)!

(∑
j>k

j−1∑
`=k

n!cn−1p(y)p(x1) · · · p(xn)

+
∑
j<k

k−1∑
`=j

n!cn−1p(y)p(x1) · · · p(xn)
)

6
1

n+ 1
∑
j 6=k
|k − j|cn−1p(y)p(x1) · · · p(xn) 6 n2

n+ 1cn−1p(y)p(x1) · · · p(xn)

6 ncn−1p(y)p(x1) · · · p(xn).

We conclude that

‖(ikyβ)sn(x1, . . . , xn)‖
6 ‖βsn+1‖pp(y)p(x1) · · · p(xn) + ncn−1p(y)p(x1) · · · p(xn),

i.e.,

(3.7) cn 6 ‖βsn+1‖p + ncn−1.

Iterating this estimate leads to

cn 6 ‖βsn+1‖p + n‖βsn‖p + n(n− 1)‖βsn−1‖p
+ · · ·+ n(n− 1) · · · 2 · ‖βs2‖p + n!‖βs1‖p.

For 0 < t < min(1, Rβ,p), there exists a C > 0 with

‖βsn‖p 6 Cn!t−n for n ∈ N.

We thus obtain

cn 6 C
(
(n+ 1)!t−n−1 + n!nt−n + · · ·+ n · · · 2 · 2!t−2 + n!t−1)

6 C(n+ 1) · (n+ 1)!t−n−1 6 C(n+ 2)!t−n−1.
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This implies that∑
n

cns
n

n! 6 C
∑
n

(n+ 2)(n+ 1)t−1(s/t)n,

which converges for s < t.
Finally we observe that (β ◦ ρy)sn = (in+1

y β)sn, so that

‖(β ◦ ρy)sn‖p = ‖(in+1
y β)sn‖p 6 cnp(y)

shows that β ◦ ρy is analytic with Rβ◦ρy,p > Rβ,p. Similarly (β ◦ λy)sn =
(i1yβ)sn implies that β ◦ λy is analytic with Rβ◦λy,p > Rβ,p. �

Remark 3.7. — It is an interesting question whether (for Banach–Lie
algebras) the condition

∑∞
n=0

‖βsn‖t
n

n! <∞ characterizing analytic elements
in Hom(U(g), E)c also implies the stronger condition

∑∞
n=0

‖βn‖tn
n! <∞ on

the non-symmetrized maps βn. A natural way to verify this would be to
compare the norms of βn and βsn. For x1, . . . , xn ∈ g we have

(βn − βsn)(x1, . . . , xn) = 1
n!
∑
σ∈Sn

β(x1 · · ·xn)− β(xσ(1) · · ·xσ(n)).

Writing a permutation in terms of transpositions sj exchanging j and j+1
and using that the corresponding word length satisfies `(σ) 6 n(n−1)

2 , we
obtain as in the proof of Theorem 3.6 an estimate of the form

‖βn − βsn‖ 6
n(n− 1)

2 ‖βn−1‖,

which leads to the recursive estimate

‖βn‖ 6 ‖βsn‖+ n(n− 1)
2 ‖βn−1‖.

Iteration now yields

‖βn‖

6 ‖βsn‖+ n(n− 1)
2 ‖βsn−1‖+ n(n− 1)2(n− 2)

22 ‖βsn−2‖

+ · · ·+ n(n− 1)2 · · · 22 · 1)
2n−1 ‖β1‖

6
n−1∑
k=0

(n!)2

((n− k)!)22k ‖β
s
n−k‖.

TOME 61 (2011), FASCICULE 5



1854 Karl-H. NEEB

From the estimate ‖βsn‖ 6 Cn!t−n, we thus obtain

∑
n

‖βn‖tn

n! 6 C
∑
n

tn

n!

n−1∑
k=0

(n!)2

((n− k)!)22k t
k−n(n− k)!

6 C
∑
n

n−1∑
k=0

n!
(n− k)! (t/2)k = C

∑
k

(t/2)k
∑
n>k

n!
(n− k)! =∞.

Apparently this estimate does not lead to the desired convergence, and we
do not know if the series

∑
n
‖βn‖tn
n! converges for some t > 0.

For finite dimensional Lie algebras, analytic vectors are usually defined
by a condition equivalent to the convergence of the series

∑
n
‖βn‖tn
n! for

some t > 0 (cf. [46, Sect. 10.4]). At first sight this is stronger than the
present one (cf. [46, Lemma 10.49]), but according to [36, Lemma 7.1,
Thm. 2] it is equivalent. We do not know if this is also true for Banach–Lie
algebras.

Remark 3.8. — (a) If the topology on g is defined by a set of submulti-
plicative seminorms, then Theorem 3.6 implies the invariance of the space
Hom(U(g), E)ω of analytic elements under the left and right regular action.

(b) We do not know if this is true for general locally convex Lie algebras.
Here the critical point is that, if cpn denotes the constant cn, defined with
respect to the seminorm p, and p([x, y]) 6 q(x)q(y) for some q ∈ P(g)
with q > p, then the argument in the proof of Theorem 3.6 only yields an
estimate of the form

cqn 6 ‖βsn+1‖p + ncpn−1.

We do not see how to use this estimate to conclude the invariance of
Hom(U(g), E)ω.

4. Analytic vectors and continuity of Lie algebra
representations

In this section K ∈ {R,C} and all vector spaces are K-vector spaces.
Before we turn to the connection between analytic functionals and unitary
representations of Lie groups, we have to clarify some continuity require-
ments for representations of topological Lie algebras on topological vector
spaces.
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Continuity of Lie algebra representations

Definition 4.1. — Let (ρ, V ) be a representation of the topological Lie
algebra g on the topological vector space V .

(a) We say that ρ is strongly continuous if for every v ∈ V the map

βv : g→ V, x 7→ ρ(x)v

is continuous. For a finite dimensional Lie algebra g, this condition is always
satisfied.
(b) If E ⊆ V ′ is a subspace separating the points of the completion V̂ of

V , then ρ is called weakly continuous with respect to E if, for α ∈ E and
v ∈ V , the linear functional x 7→ α(ρ(x)v) is continuous. (2)

(c) If V is a complex pre-Hilbert space, then we call ρ
(i): weakly continuous if, for any two vectors v, w ∈ V , the map g →

C, x 7→ 〈ρ(x)v, w〉 is continuous, i.e., if ρ is weakly continuous with
respect to E = {〈·, v〉 : v ∈ V }.

(ii): a ∗-representation if

〈ρ(x)v, w〉 = −〈v, ρ(x)w〉 for x ∈ g, v, w ∈ V.

Lemma 4.2. — If g is a Fréchet space and V is a metrizable locally
convex space, then every weakly continuous representation is strongly con-
tinuous.

Proof. — We claim that the graph of βv, considered as a linear map into
the Fréchet completion V̂ of V , is closed. Since every continuous linear
functional on V extends uniquely to a continuous linear functional on the
completion V̂ , we identify the two spaces V̂ ′ and V ′.

Suppose that xn → x in g and βv(xn) → w ∈ V̂ and let E ⊆ V̂ ′

be a subspace separating the points of V̂ such that all linear functionals
g → K, x 7→ α(ρ(x)v), α ∈ E, v ∈ V , are continuous. Then α(ρ(xn)v) →
α(ρ(x)v) and α(ρ(xn)v) → α(w) implies w = ρ(x)v. Therefore the graph
of βv is closed, so that the Closed Graph Theorem ([9, Ch. 1, §3, Cor. 5])
implies that βv is continuous. �

The following proposition is classical for k = 2, but here we need a more
general version.

(2) If V is a normed space which is not complete and v̂ ∈ V̂ \ V , then its annihilator
E := v̂⊥ ⊆ V ′ ∼= V̂ ′ is a hyperplane with E⊥∩V = Kv̂∩V = {0}. Therefore E separates
the points of V but not of V̂ .
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Proposition 4.3. — If F1, . . . , Fk are Fréchet spaces, V a topological
vector space, and β : F1× · · · ×Fk → V a k-linear map which is separately
continuous, then β is continuous.

Proof. — We argue by induction over k. The case k = 1 is trivial, so that
we may assume that k > 1. Let F := F1×· · ·×Fk−1 and consider the map

Ω: F × Fk → V, (x, y) = ((x1, . . . , xk−1), y) 7→ β(x1, . . . , xk−1, y).

For y ∈ Fk, our induction hypothesis implies that the (k − 1)-linear map
Ω(·, y) : F → V is continuous, so that the continuity of Ω follows from [35,
Prop. 5.1]. �

Lemma 4.4. — If the representation (ρ, V ) is strongly continuous, then,
for each n ∈ N and every v ∈ V , the n-linear map

βnv : gn → V, (x1, . . . , xn) 7→ ρ(x1) · · · ρ(xn)v

is separately continuous. If, in addition, g is Fréchet, then each βnv is con-
tinuous.

Proof. — We argue by induction. By definition, the assertion holds for
n = 1. We assume that each map βn−1

w is continuous in each argument.
For j < n, the continuity of βnv in xj then follows from the continuity of
βn−1
ρ(xn)v in each argument. Next we observe that

βnv (x1, . . . , xn)=βnv (x1, . . . , xn−2, xn, xn−1)+ρ(x1) · · · ρ(xn−2)ρ([xn−1, xn])v

=βnv (x1, . . . , xn−2, xn, xn−1)+βn−1
v (x1, . . . , xn−2, [xn−1, xn]).

From the continuity of the Lie bracket on g it now follows that both terms
on the right are continuous in xn. This proves the continuity of βnv in xn.

Now βnv : g → V is a separately continuous multilinear map, hence con-
tinuous if g is a Fréchet space (Proposition 4.3). �

Lemma 4.5. — Suppose that V is a pre-Hilbert space. Then a
∗-representation (ρ, V ) of the Fréchet–Lie algebra g on V is strongly con-
tinuous if and only if for each v ∈ V the quadratic map qv : g → R, x 7→
〈ρ(x)2v, v〉 is continuous.

Proof. — If each map qv is continuous, then ‖ρ(x)v‖2 = −qv(x) implies
that ρ is strongly continuous.
If, conversely, ρ is strongly continuous, then Lemma 4.4 implies that the

bilinear maps β2
v : g2 → V, (x, y) 7→ ρ(x)ρ(y)v are continuous, and this

implies the continuity of the maps qv. �
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Proposition 4.6. — If (π, V ) is a continuous representation of the Lie
group G on V , then the derived representation dπ of g on the space V∞ of
smooth vectors is strongly continuous with respect to the subspace topology
induced from V .

Proof. — If v is a smooth vector and πv : G→ V, g 7→ π(g)v, its smooth
orbit map, then x 7→ dπ(x)v = T(1,0)(πv)(x, 0) is a continuous linear map.

�

In [35, Thm. 8.2] we show that the preceding observation can even be
sharpened if G and V are Banach. If Dg ⊆ V denotes the common domain
of the generators dπ(x) of the one-parameter groups t 7→ π(exp tx), x ∈ g,
then, for each v ∈ Dg, the map βv : g → V is continuous and linear. In
this sense the continuity requirement is satisfied for any representation of
a Banach–Lie algebra that comes from a continuous Lie group action on a
Banach space.

Analytic vectors

We are now ready to turn to the central concept of this article.

Definition 4.7. — Let A be an operator with domain D(A) on the
Banach space E. An element in the space D∞(A) :=

⋂∞
n=1D(An) is called

a smooth vector for A, and a smooth vector is said to be analytic if there
exists a t > 0 with

∞∑
n=0

‖Anv‖tn

n! <∞.

We write Dω(A) for the space of analytic vectors for A.

An important application of the concept of an analytic vector is that it
provides the following criterion for essential selfadjointness:

Theorem 4.8. — (Nelson’s Theorem; [36]; [42, Thm. X.39]) A symmet-
ric operator A on a Hilbert space H for which the space Dω(A) of analytic
vectors is dense is essentially selfadjoint.

Definition 4.9. — Let (ρ, V ) be a strongly continuous representation
of g on the normed space V . Then an element v ∈ V is called an analytic
vector if

∑∞
n=0

‖ρ(x)nv‖
n! converges for every x in a 0-neighborhood of g.

Proposition 4.10. — (Automatic simultaneous analyticity) Let (ρ, V )
be a strongly continuous representation of the Lie algebra g on the normed
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space V . If g is a Baire space (which is in particular the case if g is Fréchet),
then every v ∈ V which is an analytic vector for all the operators ρ(x),
x ∈ g, is an analytic vector.

Proof. — In view of Lemma 4.4, the functions fn(x) := ρ(x)nv
n! are con-

tinuous and homogeneous of degree n. The assumption that v is analytic
for every operator ρ(x) implies that the set S of all elements x ∈ g for which
the series

∑
n fn(x) converges in the completion V̂ of V is absorbing, i.e.,⋃

n∈N n · S = g. Now [5, Prop. 5.2(1)] implies the uniform convergence of
this series on a 0-neighborhood of g, i.e., v is an analytic vector. �

5. Analytic vectors of unitary representations

The main result of this section asserts that a vector v in a Hilbert spaceH
is analytic with respect to a continuous unitary representation (π,H) of an
analytic Lie groupG if and only if the matrix coefficient πv,v(g) = 〈π(g)v, v〉
is analytic in a 1-neighborhood. This will be a direct consequence of the
following theorem characterizing analyticity of H-valued maps in terms of
analyticity of the corresponding kernel. The case of this theorem, where M
is one-dimensional, can already be found in [26, p. 81].

Theorem 5.1. — Let M be an analytic Fréchet manifold and H be a
Hilbert space. Then a function γ : M → H is analytic if and only if the
kernel K(x, y) := 〈γ(x), γ(y)〉 is analytic on an open neighborhood of the
diagonal in M ×M .

Proof. — Step 1:We assume w.l.o.g. thatH is a real Hilbert space. Since
compositions of analytic maps are analytic ([16, Prop. 2.8]), the analyticity
of γ implies the analyticity of the kernel K. Suppose, conversely, that K is
analytic. As our assertion is local, we may assume thatM is an open subset
of a locally convex space V containing 0, that K is analytic onM×M , and
that we have to show the analyticity of γ in a 0-neighborhood. To this end,
we may further assume that U is a convex symmetric 0-neighborhood for
which K extends to a holomorphic function onW := (U+iU)×(U+iU) ⊆
VC × VC. Shrinking W if necessary, we may further assume that

C := sup{|K(z, w)| : (z, w) ∈W} <∞.

[35, Thm 7.1] implies that γ is smooth.
Step 2: Next we consider the special case V = R. Since K is analytic,

it is in particular smooth, so that γ is a smooth curve in H, and

‖γ(n)(t)‖2 = dn

dtn
dn

dsn
〈γ(t), γ(s)〉|t=s = (∂n1 ∂n2K)(t, t).
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For any t ∈ U and r > 0 for which

Wr(t) := {z ∈ C2 : |z1 − t|, |z2 − t| 6 r} ⊆W

we have the Cauchy estimates

|(∂n1 ∂m2 K)(t, t)| 6 Cn!m!r−n−m.

We conclude that

(5.1) ‖γ(n)(t)‖ 6
√
Cn!r−n.

Step 3: For a general V , we consider for x ∈ U and h ∈ V the curves

γx,h(t) := γ(x+ th)

which are analytic in a neighborhood of t = 0 by Step 2. To prove the
convergence of the Taylor series of γ in a 0-neighborhood, we observe that

γ
(n)
x,h(0) = (dnγ)(x)(h, . . . , h),

so that (5.1) implies that

‖(dnγ)(x)(h, . . . , h)‖ = ‖γ(n)
x,h(0)‖ 6 n!2−n

√
C

whenever (x+ z1h, x+ z2h) ∈ W holds for |zi| 6 2. We conclude that the
Taylor series

∞∑
n=0

1
n! (d

nγ)(x)(h, . . . , h)

of γ in x converges uniformly for all pairs (x, h) in an open neighborhood
of (0, 0). Since the remainder term in the Taylor expansion satisfies

‖γ(x+ h)−
n∑
k=0

1
n! (d

nγ)(x)(h, . . . , h)‖

6
1

(n+ 1)!

∫ 1

0
‖(dn+1γ)(x+ th)(h, . . . , h)‖ dt 6 2−n−1

√
C → 0,

the Taylor series actually converges to γ(x+h) for x, h close to 0. In view of
[5, Thm. 7.2], this implies that γ is analytic in the sense defined above. �
The following theorem is an analytic version of [35, Thm. 7.2], which is

concerned with smooth vectors (cf. [19, Prop. 4.1] for the case G = R).

Theorem 5.2. — If (π,H) is a unitary representation of an analytic
Fréchet–Lie group G, then v ∈ H is an analytic vector if and only if the
corresponding matrix coefficient πv,v(g) := 〈π(g)v, v〉 is analytic on a 1-
neighborhood in G.
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Proof. — (cf. [35, Thm. 7.2] for smooth vectors) Clearly, πv,v is analytic
for v ∈ Hω. Suppose, conversely, that πv,v is analytic in a 1-neighborhood
U ⊆ G and that U ′ is a 1-neighborhood with h−1g ∈ U for g, h ∈ U ′. In
view of Theorem 5.1, the analyticity of πv(g) = π(g)v on xU ′, x ∈ G, is
equivalent to the analyticity of the function

(g, h) 7→ 〈π(xg)v, π(xh)v〉 = πv,v(h−1g)

on U ′ × U ′, which follows from the analyticity of πv,v on U . �

In view of the GNS construction, we obtain an analog of [35, Cor. 7.4]
for analytic functions:

Corollary 5.3. — If ϕ is a positive definite function on a Lie group
G which is analytic in a 1-neighborhood, then ϕ is analytic.

Problem 5.4. — Suppose that (π, V ) is a smooth representation of the
Banach–Lie group G on the Banach space V . Is the space V ω of analytic
vectors dense? This is true if dimG < ∞ for any continuous Banach rep-
resentation ([36, Thm. 4], [15]), but the proof is based on the integrated
representation to L1(G) and mollifying with the heat kernel. All these tech-
niques are not available for general infinite dimensional groups. However,
some Lie groups carry so-called heat kernel measures which behave in many
respects like Haar measure with a heat kernel density (cf. [11]).

6. Positive analytic functionals

In this section we turn to the ∗-aspects of analytic functionals on U(g).
Throughout UC(g) := U(gC) ∼= U(g)C denotes the enveloping algebra of
the complexified Lie algebra gC. It coincides with the complexification of
the real algebra U(g) and we have HomR(U(g), E) ∼= HomC(UC(g), E) for
every complex vector space E.

Definition 6.1. — We write ∗ for the unique antilinear antiautomor-
phism of UC(g) with x∗ = −x for x ∈ g. Then (UC(g), ∗) is an involutive
algebra and a linear functional λ ∈ UC(g)∗ is called positive if λ(D∗D) > 0
for D ∈ UC(g).

Typical examples of positive functional arise from ∗-representations
(ρ,D) on pre-Hilbert spaces (see Definition 4.1(b)(ii)) as λ(D) = 〈ρ(D)v, v〉,
and a suitable variant of the GNS construction implies that every positive
functional on UC(g) is of this from ([39, Thm. 6.3], [46, Thm. 8.6.2]).
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Definition 6.2. — A positive linear functional λ ∈ UC(g)∗ is said to
be integrable if there exists a smooth positive definite function ϕ : G → C
with

λ(D) = (Dϕ)(1) for D ∈ UC(g).

If (π,H) is a continuous unitary representation and v ∈ H with ϕ(g) =
〈π(g)v, v〉 (the existence follows from the GNS construction), then [35,
Thm. 7.2] implies that v is a smooth vector. Therefore the integrability
of λ is equivalent to the existence of a unitary representation (π,H) and a
smooth vector v ∈ H∞ with

λ(D) = 〈dπ(D)v, v〉 for D ∈ UC(g).

The following proposition builds a bridge between analytic vectors and
analytic functionals.

Proposition 6.3. — Let (ρ,D) be a strongly continuous ∗-represen-
tation of g on the pre-Hilbert space D and ρ : UC(g)→ End(D) its canonical
extension. For v ∈ D, the positive functional β(D) := 〈ρ(D)v, v〉 is analytic
if and only if v is an analytic vector. This implies that v is an analytic
vector for every operator ρ(x), x ∈ g, and that

∑∞
n=0

‖ρ(x)nv‖
n! < ∞ for

p(x) < Rβ,p/2.

Proof. — First we observe that, for x ∈ g, we have

(6.1) ‖ρ(x)nv‖2 = 〈ρ(x)nv, ρ(x)nv〉 = (−1)nβ(x2n).

If β is analytic, then Proposition 3.4 provides an estimate of the form
‖βsn‖p 6 Cn!t−n for every t < Rβ,p. This leads to

‖ρ(x)nv‖
n! 6

√
C

√
(2n)!
n! p(x)nt−n.

Therefore
√

(2n+2)(2n+1)
n+1 → 2 implies that

∑∞
n=0

‖ρ(x)nv‖
n! converges for

p(x) < t/2, hence for p(x) < Rβ,p/2.
Suppose, conversely, that

∑∞
n=0

‖ρ(x)nv‖
n! converges for every x in a 0-

neighborhood U of g. Then the series〈 ∞∑
n=0

ρ(x)nv
n! , v

〉
=
∞∑
n=0

〈ρ(x)nv, v〉
n! =

∞∑
n=0

β(xn)
n!

converges for every x ∈ U .
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To see that v is an analytic vector for ρ(x), pick t > 0 such that tx ∈ U
and observe that the series

∞∑
n=0

‖ρ(x)nv‖tn

n! =
∞∑
n=0

‖ρ(tx)nv‖
n!

converges. �

Definition 6.4. — Let (ρ,D) be a ∗-representation of UC(g) on the
pre-Hilbert space D. We call a subset E ⊆ D equianalytic if there exists a
0-neighborhood U ⊆ g such that

∞∑
n=0

‖ρ(x)nv‖
n! <∞ for v ∈ E, x ∈ U.

This implies in particular that each v ∈ E is an analytic vector for every
ρ(x), x ∈ g.

Definition 6.5. — (cf. [33, Thm. III.1.3], [39, Thm. 6.3], [46,
Thm. 8.6.2]) Let λ ∈ UC(g)∗ be a positive analytic functional. On the
dual space UC(g)∗ we consider the right regular representation of UC(g)
by Dβ := β ◦ ρD. Then there exists a unique Hilbert space Hλ ⊆ UC(g)∗
containing λ for which the subspace

Dλ := UC(g)λ

is dense and on which the scalar product satisfies

(6.2) β(D) = 〈β,D∗λ〉 for β ∈ Hλ, D ∈ UC(g).

In particular, we have

〈D1λ,D2λ〉 = λ(D∗2D1).

Now ρλ(D)β := Dβ := β ◦ ρD defines a ∗-representation of UC(g) on Dλ
by unbounded operators, and for each x ∈ g, the operator ρλ(x) on Dλ is
skew-hermitian.

Proposition 6.6. — If λ is a positive analytic functional on UC(g),
then the following assertions hold:

(a): λ ∈ Dλ is an analytic vector for every ρλ(x), x ∈ g.
(b): If λ is p-analytic for a submultiplicative continuous seminorm p

on g, then Dλ = ρλ(UC(g))λ is equianalytic. More precisely, the
series

∑∞
n=0

ρλ(x)nv
n! converges for p(x) < Rλ,p/2 and v ∈ Dλ.

Proof. — (a) In view of Proposition 6.3, this follows from λ(D) =
〈ρλ(D)λ, λ〉 for the representation (ρλ,Dλ). That this representation is
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strongly continuous follows from the continuity of the quadratic maps
x 7→ 〈ρλ(x)2ρλ(D)λ, ρλ(D)λ〉 = λ(D∗x2D) (Lemma 4.5).
(b) Let v := ρλ(D)λ for some D ∈ UC(g) and define

β(D′) := 〈ρλ(D′)v, v〉 = λ(D∗D′D) for D′ ∈ UC(g).

Then Theorem 3.6 implies that β is an analytic functional whose radius of
convergence satisfies Rβ,p > r := Rλ,p. Therefore Proposition 6.3 implies
that v is an analytic vector for every operator ρλ(x), x ∈ g, and the corre-
sponding exponential series converges for p(x) < Rλ,p/2 6 Rβ,p/2. �

Lemma 6.7. — Let (ρ,D) be a ∗-representation of the BCH–Lie algebra
g on the dense equianalytic subspace D of H. Then the closures ρ(x), x ∈ g,
generate unitary one-parameter groups and there exists a 0-neighborhood
U ⊆ g on which the BCH product ∗ is defined, and the map ρ̃ : g →
U(H), x 7→ eρ(x) satisfies

(6.3) ρ̃(x ∗ y) = ρ̃(x)ρ̃(y) for x, y ∈ U.

Proof. — Nelson’s Theorem 4.8 implies that the operators ρ(x) are essen-
tially skew-adjoint, so that their closures generate unitary one-parameter
groups and ρ̃ is defined.
Let U1 ⊆ g be an open balanced 0-neighborhood with the property that

the function

U1 → H, x 7→ ρ̃(x) =
∞∑
n=0

ρ(x)n

n!

is analytic for every v ∈ D (Definition 6.4). Let U2 ⊆ U1 be a smaller convex
0-neighborhood for which the BCH-multiplication defines an analytic map

U2 × U2 → U1, (x, y) 7→ x+ y + 1
2[x, y] + · · · .

Then we have for v ∈ D two analytic functions

F1/2 : U2×U2 → C, F1(x, y) = 〈ρ̃(y)v, ρ̃(−x)v〉, F2(x, y) = 〈ρ̃(x∗y)v, v〉.

To show that they coincide, it suffices to verify that their Taylor polynomi-
als in (0, 0) agree. Let β(D) := 〈ρ(D)v, v〉. Then, for F1, the homogeneous
term of degree (m,n) is given by

Tm,n(F1)(x, y) = 1
m!n! 〈ρλ(y)nv, ρλ(−x)mv〉 = 1

m!n! 〈ρλ(xmyn)v, v〉

= β
(xmyn
m!n!

)
.
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For F2 the homogeneous term of degree (m,n) has the form∑
k6n+m

1
k!Tm,n(〈ρλ(x ∗ y)kv, v〉) = β

( ∑
k6n+m

1
k!Tm,n((x ∗ y)k)

)
.

From the identity exey = ex∗y in the completed free associative algebra A
with two generators x and y we derive that

xmyn

m!n! =
∑

k6n+m

1
k!Tm,n((x ∗ y)k)

holds in A, and this implies the corresponding relation in U(g) ([8, Ch. 2,
§6]). We conclude that

〈ρ̃(x)ρ̃(y)v, v〉 = 〈ρ̃(x ∗ y)v, v〉 for x, y ∈ U2, v ∈ D.

Now polarization leads to

〈ρ̃(x)ρ̃(y)v, w〉 = 〈ρ̃(x ∗ y)v, w〉 for v, w ∈ D.

Since D is dense in H, we obtain (6.3) for U := U2. �

The following theorem is our first main result on integrability of Lie
algebra representations based on a sufficient supply of analytic vectors.

Theorem 6.8. — (Integrability Theorem) Let G be a 1-connected
BCH–Lie group with Lie algebra g and (ρ,D) be a ∗-representation of
g on the dense subspace D of H. Assume that either

(a): G is Banach and D consists of analytic vectors, or
(b): D is equianalytic.

Then there exists a unique unitary representation (π,H) of G on the cor-
responding Hilbert space H with dπ(x)|D = ρ(x) for x ∈ g.

Proof. — With Nelson’s Theorem 4.8 we see that the operators ρ(x),
x ∈ g, are essentially skew-adjoint, so that their closures generate unitary
one-parameter groups. This leads to a map ρ̃ : g → U(H), x 7→ eρ(x). We
claim that

(6.4) ρ̃(x ∗ y) = ρ̃(x)ρ̃(y)

holds for x, y in some open 0-neighborhood U ⊆ g. It suffices to show that

(6.5) ρ̃(x ∗ y)v = ρ̃(x)ρ̃(y)v for every v ∈ D.

(a) Suppose that G is Banach. Let H0
v := ρ(UC(g))v and Hv be the

closure of this subspace inH. Then λ(D) := 〈ρ(D)v, v〉 is a positive analytic
functional on UC(g) and the map

Γ: H0
v → UC(g)∗, Γ(w)(D) := 〈ρ(D)w, v〉
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is equivariant with respect to the right regular representation on UC(g)∗
and satisfies Γ(H0

v) = ρλ(UC(g))λ = Dλ. From 〈D1v,D2v〉 = λ(D∗2D1) we
further derive that Γ is isometric. Therefore Proposition 6.6(b) implies that
H0
v is equianalytic. It therefore suffices to consider case (b) to prove (6.5).
(b) If D is equianalytic, then Lemma 6.7 applies and provides an open

0-neighborhood U ⊆ g with (6.4). Now we derive from [8, Ch. 3, §6, Lemma
1.1] (for Banach–Lie groups) and from [17] (for BCH–Lie groups) that there
exists a unique homomorphism π : G→ U(H) such that π(expG x) = ρ̃(x)
holds for all elements x in some 0-neighborhood of g. This relation implies in
particular that, for each x ∈ g, the unitary one-parameter group π(exp tx)
is generated by the closure of the operator ρ(x), so that π is uniquely
determined by the representation ρ of g on D. �

Lemma 6.9. — If λ is a positive analytic functional and U ⊆ g a 0-
neighborhood, then ρ̃λ(U)λ is total in Hλ.

Proof. — Let K denote the closure of the subspace generated by ρ̃(U)λ.
From

ρ̃λ(x)λ =
∞∑
n=0

1
n!ρλ(x)nλ

for x sufficiently close to 0 we derive that ρλ(x)nλ = d
dtn

∣∣∣
t=0

ρ̃λ(tx)λ ∈
K. Now the assertion follows from the fact that UC(g) is spanned by the
elements of the form xn, x ∈ g, n ∈ N0. �

If (π,H) is a unitary representation of the analytic Lie group G and
v ∈ Hω an analytic vector, then the corresponding functional πv,v(D) :=
〈dπ(D)v, v〉 on UC(g) is positive and analytic. The following theorem pro-
vides a converse which is known for finite dimensional groups (cf. [19,
Prop. 2.3]). Its strength lies in the fact that the information about the
whole representation (πλ,Hλ) is encoded completely on the infinitesimal
level in the analytic functional λ.

Theorem 6.10. — (Integrability Theorem for analytic functionals) Let
G be a 1-connected BCH–Lie group with Lie algebra g and λ ∈ UC(g)∗
be a positive analytic functional. Suppose that U(g)λ ⊆ Hom(U(g),C)ω,p,r
for some p ∈ P(g) and r > 0, which is automatically satisfied if λ ∈
Hom(U(g),C)ω,p for some submultiplicative p. Then there exists a unique
unitary representation (πλ,Hλ) of G for which the dense subspace Dλ con-
sists of analytic vectors and

dπλ(x)|Dλ = ρλ(x) for x ∈ g.

TOME 61 (2011), FASCICULE 5



1866 Karl-H. NEEB

Proof. — If λ ∈ Hom(U(g),C)ω,p for a submultiplicative seminorm p,
then Theorem 3.6 implies that Dλ = UC(g)λ ⊆ Hom(U(g),C)ω,p,r for some
r > 0. We assume that this condition is satisfied. Then

U1 := {x ∈ g : p(x) < r/2}

is an open convex 0-neighborhood on which the series
∑∞
n=0

1
n!ρλ(x)nv

converges (Proposition 6.3). In particular, Dλ is equianalytic and Theo-
rem 6.8(b) applies. �

Specializing to Banach–Lie groups, the preceding theorem simplifies to:

Corollary 6.11. — Let G be a 1-connected Banach–Lie group with
Lie algebra g and λ ∈ UC(g)∗ be a positive analytic functional. Then there
exists a unique unitary representation (πλ,Hλ) of G for which the dense
subspace Dλ consists of analytic vectors and

dπλ(x)|Dλ = ρλ(x) for x ∈ g.

Integrability without a given group

Since not every Banach–Lie algebra is the Lie algebra of a Lie group
([12]), it is natural to ask to which extent the assumption of the existence
of G in Theorem 6.8 is needed to integrate the Lie algebra representation.
The following theorem provides a corresponding variant, where no a priori
given group is needed (cf. [1] for a non-linear variant of this theorem).

Theorem 6.12. — (Second Integrability Theorem) Let g be a BCH–Lie
algebra and (ρ,D) be a faithful strongly continuous ∗-representation of g on
the pre-Hilbert space D by skew-adjoint operators. Assume that D consists
of analytic vectors, so that the closure of each operator ρ(x) generates a
unitary one-parameter group on the completion H of D. Assume that the
subgroup

Γ := {z ∈ z(g) : eρ(z) = 1}
of the center z(g) of g is discrete. Then there exists a connected Lie group G
and a continuous unitary representation (π,H) of G on the corresponding
Hilbert space H with dπ(x)|D = ρ(x) for x ∈ g.

Proof. — With the same argument as in the proof of Theorem 6.8, we
obtain a map ρ̃ : g → U(H) satisfying ρ̃(x ∗ y) = ρ̃(x)ρ̃(y) for x, y in some
open balanced 0-neighborhood U ⊆ g. Shrinking U , we may even assume
that

ρ̃(x ∗ y ∗ z) = ρ̃(x)ρ̃(y)ρ̃(z) for x, y, z ∈ U.
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For z = −x this leads to

ρ̃(ead xy) = ρ̃(x ∗ y ∗ (−x)) = ρ̃(x)ρ̃(y)ρ̃(−x) = ρ̃(x)ρ̃(y)ρ̃(x)−1,

and by passing to the infinitesimal generators, we obtain

ρ(ead xy) = ρ̃(x)ρ(y)ρ̃(x)−1.

We consider the subgroup G := 〈ρ̃(g)〉 ⊆ U(H) generated by ρ̃(g). If
x ∈ U satisfies ρ̃(x) = 1, then the preceding argument, together with the
injectivity of ρ implies that ead x = idg. Since z(g) is open in {x ∈ g : ead x =
idg} (cf. the Adjoint Integrability Theorem in [17]), we may shrink U in
such a way that, for x ∈ U , the relation ead x = idg implies x ∈ z(g). In
view of the discreteness of Γ, we may further shrink U so that

ρ̃−1(1) ∩ U = {0}.

If V ⊆ U is an open balanced 0-neighborhood with V ∗ V ⊆ U , then ρ̃|V
is injective. In fact, if ρ̃(x) = ρ̃(y) for x, y ∈ V , then

ρ̃((−x) ∗ y) = ρ̃(−x)ρ̃(y) = ρ̃(x)−1ρ̃(y) = 1

leads to (−x) ∗ y ∈ ρ̃−1(1) ∩ U = {0}, We conclude that

x = x ∗ 0 = x ∗ ((−x) ∗ y) = (x ∗ (−x)) ∗ y = 0 ∗ y = y

and hence that ρ̃|V is injective.
This means that ρ̃(V ) ⊆ G carries a manifold structure for which ρ̃|V

is a diffeomorphism, and that multiplication and inversion are smooth in
an identity neighborhood in V . Since G is generated by the image of every
0-neighborhood in V , it carries a unique Lie group structure for which ρ̃

defines a chart in a neighborhood of 0 ([17, Thm. 3.3.2, Rem. 3.3.3]).
The curves γx : R → G defined by γx(t) := ρ̃(tx) define smooth 1-

parameter groups with γ′x(0) = x, where we identify g via T0(ρ̃) with
T1(G). Therefore ρ̃ is an exponential function of G. In particular, G is
locally exponential.
For every vector v ∈ D, the map x 7→ ρ̃(x)v is analytic in a

0-neighborhood, and since ρ̃ is a local diffeomorphism, the vector v has
a smooth orbit map. For the unitary representation (π,H) of G given by
the inclusion map π : G→ U(H), this means that it is smooth, hence in par-
ticular continuous. From the construction it follows that, for every x ∈ g,
the generator dπ(x) of the unitary one-parameter group t 7→ π(expG(tx))
restricts to ρ(x) on D. �

Remark 6.13. — For a strongly continuous representation (ρ, V ) of a
Banach–Lie algebra g, the kernel is a closed ideal, so that g/ ker ρ also is
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a Banach–Lie algebra. In the situation of Theorem 6.12, we may thus pass
to an injective Lie algebra representation for which the theorem can be
applied.

Here is an instructive example, showing that the group Γ in Theorem 6.12
is not always discrete.

Example 6.14. — Let (X,S, µ) be a probability space. For a measurable
function f : X → C we define

‖f‖ := sup
{‖f‖n

n
√
n!

: n ∈ N
}

for ‖f‖n :=
(∫

X

|f |n dµ
)1/n

.

WritingM(X,µ) for the space of measurable functions f : X → C modulo
those vanishing on the complement of a zero set, we obtain a Banach space

V := {f ∈M(X,µ) : ‖f‖ <∞},

which can be viewed as a closed subspace of a weighted `∞-product of the
spaces Ln(X,µ), n ∈ N.
For ‖f‖ < 1

2 we have∑
n

‖fn‖2

n! =
∑
n

‖f‖n2n
n! 6

∑
n

√
(2n)!
n! ‖f‖n <∞

because
√

(2n+2)(2n+1)
n+1 → 2. Next we observe that for every measurable

subset E ⊆ X we have χE ∈ V because

‖χE‖ = sup
n

‖χE‖n
n
√
n!

= sup
n

n

√
µ(E)
n! <∞

follows from µ(E)/n!→ 0. From

(n!)n+1 = (n!)nn! 6 (n!)n(n+ 1)n = ((n+ 1)!)n

we derive that n
√
n! 6 n+1

√
(n+ 1)!, i.e., the sequence n

√
n! is increasing.

The formula for the radius of convergence of the exponential series now
yields n

√
n!→∞.

We claim that χEk → 0 in V if µ(Ek) → 0. Let ε > 0 and N ∈ N with
N
√
N ! > ε−1. Suppose that µ(Ek)1/n 6 ε for k > N0 and every n 6 N . The

relation
n

√
µ(Ek)
n! 6

1
n
√
n!

for k > N0, n > N

and
n

√
µ(Ek)
n! 6

ε
n
√
n!
< ε for k > N0, n 6 N
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then leads to

‖χEk‖ 6 sup
n

n

√
µ(Ek)
n! 6 ε for k > N0.

We conclude that χ(Ek)→ 0 in V . Therefore the closed subgroup

Γ := {f ∈ V : f(X) ⊆ 2πZ}

is not discrete.
The Banach space V acts by unbounded multiplication operators on

L2(X,µ):
ρ(f)ξ := ifξ.

The definition of the norm in V implies that each bounded function ξ ∈
L2(X,µ) is an analytic vector for V :∑

n

‖(if)nξ‖2

n! 6 ‖ξ‖∞
∑
n

‖fn‖2

n! <∞ for ‖f‖ < 1
2 .

Therefore we have a ∗-representation (L∞(X,µ), ρ) of V by unbounded
operators on the dense subspace L∞(X,µ) of the Hilbert space L2(X,µ),
for which the group

{f ∈ g : eρ(f) = id} = Γ
is not discrete.

Remark 6.15. — The preceding example shows in particular that there
exists an abelian Banach–Lie group G and a continuous unitary represen-
tation (π,H) for which Hω is dense but the closed subgroup kerπ is not
discrete and satisfies L(kerπ) = {0}.

7. Extension of local positive definite functions

Definition 7.1. — LetG be a group and U ⊆ G be a subset. A function
ϕ : UU−1 → C is said to be positive definite if the kernel K : U × U →
C, (x, y) 7→ ϕ(xy−1) is positive definite.

The main result of this section is Theorem 7.3 which asserts that any
positive definite analytic function defined in a 1-neighborhood of a simply
connected BCH–Lie group G extends to an analytic function on G which is
positive definite. This is a quite remarkable result which is far from being
true in the C∞-context. For a discussion of related extension problems for
smooth positive definite functions on finite dimensional Lie groups we refer
to [25] and the references given there. As we have seen in the introduction,
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for G = Rn, such extension problems are part of the classical theory of
moments. The corresponding version of Theorem 7.3 can be found in [13,
Prop. 3.10].
Before we turn to the extension theorem, we make the following obser-

vation on analytic functions on product spaces.

Lemma 7.2. — LetX,Y be locally convex spaces and Z a Banach space.
Let U ⊆ X × Y be an open neighborhood of (x0, y0) and f : U → Z be an
analytic map. Then there exists an open neighborhood Ux0 of x0 and an
open neighborhood Uy0 of y0 such that for every x ∈ Ux0 and h ∈ Uy0 − y0
we have

f(x, y0 + h) =
∞∑
n=0

1
n! (∂

n
(0,h)f)(x, y0).

Proof. — In view of [5, Thm. 5.1,Prop. 5.4], we may assume that f has a
complex analytic extension f : UC → ZC, where UC is an open neighborhood
of (x0, y0) in the complex locally convex space XC×YC. Let Vx0 , resp., Vy0

be an open balanced neighborhood of x0 in UC, resp., y0 in YC such that
Vx0 × Vy0 ⊆ UC. Then [5, Prop. 5.5] implies that

f(x, y0 + h) =
∞∑
n=0

1
n! (∂

n
(0,h)f)(x, y0) for x ∈ Vx0 , h ∈ Vy0 − y0.

Hence the assertion follows with Ux0 := Vx0 ∩X and Uy0 := Vy0 ∩ Y . �

Theorem 7.3. — (Extension of local positive definite analytic func-
tions) Let G be a simply connected Fréchet–BCH–Lie group, V ⊆ G an
open connected 1-neighborhood and ϕ : V V −1 → C an analytic positive
definite function. Then there exists a unique positive definite analytic func-
tion ϕ̃ : G→ C extending ϕ.

Proof. — The uniqueness of ϕ̃ follows from the connectedness of G and
the uniqueness of analytic continuation.
Step 1: To obtain its existence, we consider the reproducing kernel

Hilbert space HK ⊆ CV defined by the kernel K via f(g) = 〈f,Kg〉 for
g ∈ V and Kg(h) = K(h, g). Then the analyticity of the function

V × V → C, (g, h) 7→ 〈Kh,Kg〉 = K(g, h) = ϕ(gh−1)

implies that the map η : V → HK , g 7→ Kg is analytic (Theorem 5.1). Here
we use that G is assumed to be Fréchet. Hence all functions in HK are
analytic, and that we obtain for each x ∈ g an operator onH0

K := span η(V )
by

(ρ(x)f)(g) := d

dt t=0
f(g expG(tx))
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because d
dt |t=0Ky(g expG(tx)) exists for every g ∈ V and x ∈ g.

Step 2: That we thus obtain a representation ρ : g→ End(H0
K) follows

from the embedding H0
K ↪→ Cω(V,C) and the fact that g acts by a Lie

algebra of (left invariant) vector fields on this space. Next we observe that

〈ρ(x)Kg,Kh〉 = d

dt t=0
Kg(h expG(tx)) = d

dt t=0
K(h expG(tx), g)

= d

dt t=0
ϕ(h expG(tx)g−1) = d

dt t=0
K(h, g expG(−tx))

= d

dt t=0
Kh(g expG(−tx))

= −(ρ(x)Kh)(g) = −〈ρ(x)Kh,Kg〉 = −〈Kg, ρ(x)Kh〉.

Therefore ρ extends to a ∗-representation of UC(g) on H0
K .

Step 3: We claim that each η(g) = Kg, g ∈ V , is an analytic vector with

(7.1) η(g expG(−x)) =
∞∑
n=0

1
n!ρ(x)nη(g)

for x sufficiently close to 0. The function x 7→ η(g expG x) is analytic on a
0-neighborhood of g and

dn

dtn

∣∣∣
t=0

(
η(g expG(tx))

)
(y)

= dn

dtn

∣∣∣
t=0

Kg expG tx(y) = dn

dtn

∣∣∣
t=0

ϕ(y expG(−tx)g−1)

= dn

dtn

∣∣∣
t=0

Kg(y expG(−tx)) = (ρ(−x)nη(g))(y).

This leads to
dn

dtn

∣∣∣
t=0

η(g expG(−tx)) = ρ(x)nη(g),

and hence that (7.1) holds on a 0-neighborhood of g.
Step 4: Let WG ⊆ V be an open 1-neighborhood and Wg ⊆ g an open

balanced 0-neighborhood with WG expG(Wg) ⊆ V . Next we show that
η(WG) is equianalytic and spans a dense subspace of HK .
Since the map WG × Wg → HK , (g, x) 7→ η(g expG(x)) is analytic,

Lemma 7.2 shows that, after shrinking WG and Wg, we may assume that

η(g expG(−x)) =
∞∑
n=0

1
n!ρ(x)nη(g) for g ∈WG, x ∈Wg.

This means that η(WG) is equianalytic. To see that K := span(η(WG)) is
dense, we use the analyticity of η to see that η(V ) ⊆ K, which shows that
HK = K.
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Applying Theorem 6.8 with D = span(η(WG)), we now obtain a con-
tinuous unitary representation (π,HK) with π(expG(x)) = eρ(x) for every
x ∈ g. Then

ϕ̃(g) := 〈π(g)K1,K1〉 = 〈π(g)ϕ,ϕ〉
is an analytic positive definite function on G, and for x ∈Wg we have

ϕ̃(expG x) =
∞∑
n=0

〈ρ(x)nϕ,ϕ〉
n! = 〈η(expG(−x)), ϕ〉

= KexpG(−x)(1) = ϕ(expG x).

Therefore ϕ̃ coincides with ϕ in a 1-neighborhood, so that the analyticity
of ϕ and the connectedness of V lead to ϕ̃|V = ϕ. �
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