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CONFORMALLY INVARIANT TRILINEAR FORMS ON
THE SPHERE

by Jean-Louis CLERC & Bent ØRSTED

Abstract. — To each complex number λ is associated a representation πλ
of the conformal group SO0(1, n) on C∞(Sn−1) (spherical principal series). For
three values λ1, λ2, λ3, we construct a trilinear form on C∞(Sn−1)×C∞(Sn−1)×
C∞(Sn−1), which is invariant by πλ1 ⊗πλ2 ⊗πλ3 . The trilinear form, first defined
for (λ1, λ2, λ3) in an open set of C3 is extended meromorphically, with simple poles
located in an explicit family of hyperplanes. For generic values of the parameters,
we prove uniqueness of trilinear invariant forms.
Résumé. — À chaque nombre complexe λ est associée une représentation πλ

du groupe conforme SO0(1, n) sur C∞(Sn−1) (série principale sphérique). Pour
chaque triplet (λ1, λ2, λ3), nous construisons une forme trilinéaire sur C∞(Sn−1)×
C∞(Sn−1)×C∞(Sn−1) qui est invariante par πλ1⊗πλ2⊗πλ3 . La forme trilinéaire,
d’abord définie dans un ouvert de C3 est étendue méromorphiquement, avec des
pôles simples en une famille explicite de plans de C3. Pour les valeurs génériques
des paramètres, nous démontrons l’unicité d’une telle forme trilinéaire invariante.

Introduction

The motivation for this article came from the paper [1] by J. Bernstein
and A. Reznikov. In order to estimate automorphic coefficients, they use tri-
linear invariant forms for G = PGL2(R). Their paper shows the importance
of three related questions of harmonic analysis on PGL2(R): Given three
representations (π1,H1), (π2,H2), (π3,H3) in the principal spherical(1) se-
ries of the group G,

(i) construct a trilinear invariant functional on H1 ×H2 ×H3
(ii) prove uniqueness (up to a scalar) of such a trilinear invariant func-

tional

Keywords: Trilinear invariant forms, conformal group, meromorphic continuation.
Math. classification: 22E45, 43A85.
(1)with respect to the maximal compact subgroup K = PO(2) of G.
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(iii) compute the value of the trilinear functional on the K fixed vectors
of H1,H2,H3 respectively.

The representations are realized on the unit circle, on which the group G
acts projectively, and indexed by a complex number. One possible gen-
eralization consists in replacing the unit circle by the n − 1 dimensional
sphere S, under the action of the conformal group G = SO0(1, n). For this
case, we present here a construction of an invariant trilinear form (item i)),
which uses an analytic continuation over three complex parameters and
discuss the uniqueness statement (item ii)) for generic values of the pa-
rameters. The computation of the normalization factor (item iii)), even for
more geometric situations, will be published elsewhere, (cf. [3]).
In Section 1, we recall elementary facts about conformal geometry of the

sphere (in particular we give a description of the orbits of G in S×S×S),
and introduce the representations which the paper is concerned with. In
Section 2, we define formally the trilinear invariant form, study the domain
of convergence of the corresponding integral and determine the analytic
continuation in the three complex parameters corresponding to the three
representations. In Section 3, we prove the uniqueness statement. The proof
relies on Bruhat’s theory, which we recall in an appendix at the end of the
paper. In Section 4, we give an alternative approach to the construction of
an invariant trilinear form, using a realization of the tensor product of two
of the representations involved, thus making connection with [12].
The present paper only deals with regular values of the parameters. The

residues at poles will yield new conformally invariant trilinear forms, sup-
ported by the singular orbits of G in S × S × S and involving differen-
tial operators akin the Yamabe operator on the sphere, worth of a fur-
ther study. Other geometric situations are potential domains for similar
results. Let P1, P2, P3 be three parabolic subgroups of a semi-simple Lie
group, such that G acts on G/P1 × G/P2 × G/P3 with a finite number
of orbits (see [9], [11]). Take three representations induced by characters
of P1, P2, P3. Invariant trilinear forms for these three representations can
plausibly be studied along the same lines as in the present paper. The case
of three copies of the Shilov boundary S of a bounded symmetric domain
of tube type is specially appealing (see [4] for a description of the orbits
of G in S × S × S).
Let us mention the paper by A. Deitmar [5], which has some overlap

with our results. Previous work on the subject also includes [13] and [10].
The first author thanks D. Barlet and L. Bérard Bergery for conversa-

tions on various aspects of this paper and the Mathematics Department of
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Aarhus University for welcoming him during the preparation of the present
work.

1. Conformal geometry of the sphere

Let

S = Sn−1 =
{
x = (x1, x2, . . . , xn), |x|2 = x2

1 + x2
2 + · · ·+ x2

n = 1
}

be the unit sphere in Rn. We usually (and tacitly) assume n > 3, as the
case n = 2 needs a few minor changes, which are occasionally mentioned
in the text. The group K = SO(n) operates on S. Let

1+ = (1, 0, . . . , 0), 1− = (−1, 0, . . . , 0).

The stabilizer of 1+ in K is the subgroup

M ' SO(n− 1) =
{(

1 0
0 u

)
, u ∈ SO(n− 1)

}
.

With this notation, S ' K/M is a compact Riemannian symmetric space.
Another realization of the sphere is useful. Let R1,n be the real vector

space Rn+1 with the quadratic form

(1.1) q(x) = [x, x] = x2
0 − (x2

1 + x2
2 + · · ·+ x2

n).

To x = (x1, x2, . . . , xn) in S associate x̃ = (1, x1, x2, . . . , xn) in R1,n. The
correspondance

x 7−→ Rx̃
associates to a point in S an isotropic line in R1,n. The correspondance is
easily seen to be bijective. The group G = SO0(1, n) acts naturally on the
set of isotropic lines, and hence on S. Explicitly, for x in S and g in G, g(x)
is the unique point in S such that

g̃(x) = (gx̃)0
−1

g x̃.

For x in S and g in G, set

(1.2) κ(g, x) = (gx̃)0
−1
.

Let x, y be in S. The following identity holds

(1.3) [x̃, ỹ] = 1− 〈x, y〉 = 1
2 |x− y|

2

so that for g in G,

(1.4) |g(x)− g(y)| = κ(g, x) 1
2 |x− y| κ(g, y) 1

2 .

TOME 61 (2011), FASCICULE 5
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The infinitesimal version of (1.4) is

(1.5) |Dg(x) ξ| = κ(g, x)|ξ|

for ξ any tangent vector to S at x, where g is in G and Dg(x) stands for
the differential at x of the map x 7→ g(x). Hence the action of G on S is
conformal, and κ(g, x) is interpreted as the conformal factor of g at x.
We look atK as a subgroup of G. It is a maximal compact subgroup of G.

The stabilizer in G of the point 1+ is the parabolic subgroup P = MAN,
where

A =


at =


cosh t sinh t 0 · · · 0
sinh t cosh t 0 · · · 0

0 0 1
...

...
. . .

0 0 1

 , t ∈ R


and

N =


nξ =


1 + |ξ|2

2 − |ξ|
2

2 ξt

|ξ|2
2 1− |ξ|

2

2 ξt

1

ξ −ξ
. . .

1

 , ξ ∈ Rn−1


.

The element at (t ∈ R) acts on S by

at


x1
x2
· · ·
xn

 =


sinh t+x1 cosh t
cosh t+x1 sinh t

x2
cosh t+x1 sinh t

...
xn

cosh t+x1 sinh t

 .

Let N be the subgroup image of N by the standard Cartan involution
of G (g 7−→ (gt)−1):

N =


nξ =


1 + |ξ|2

2
|ξ|2
2 ξt

− |ξ|
2

2 1− |ξ|
2

2 −ξt
1

ξ ξ
. . .

1

 , ξ ∈ Rn−1


.

ANNALES DE L’INSTITUT FOURIER
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The map

c : ξ 7−→ nξ(1+) =


1−|ξ|2
1+|ξ|2

2
1+|ξ|2 ξ

 .

is a diffeomorphism from Rn−1 onto S r {1−}. Its inverse is the classical
stereographic projection from the source 1− onto the tangent space T1+S

to S at 1+. When using this chart on S, we refer to the noncompact picture.

Proposition 1.1. — The conformal factor κ(g, x) is a smooth function
of both g and x, which satisfies the following properties:

i) ∀g1, g2 ∈ G, x ∈ S,

(1.6) κ(g1g2, x) = κ(g1, g2(x))κ(g2, x)

ii) ∀g ∈ G, x ∈ S κ(g, g−1(x)) = κ(g−1, x)−1

iii) ∀x ∈ S, k ∈ K κ(k, x) = 1
iv) ∀x ∈ S, t ∈ R, κ(at, x) = (cosh t+ x1 sinh t)−1.

Let g in G. As the dimension of the tangent space TxS is n − 1, the
Jacobian of g at x is given by

(1.7) j(g, x) = κ(g, x)n−1.

The map c : Rn−1 −→ S r {−1} is also conformal. In fact, one has the
following relation, valid for any ξ, η ∈ Rn−1:

(1.8) |c(ξ)− c(η)| = 2|ξ − η|
(1 + |ξ|2) 1

2 (1 + |η|2) 1
2
,

and its infinitesimal version

(1.9) |dc(ξ) ζ| = 2
1 + |ξ|2 |ζ|

(ζ ∈ Rn−1). The corresponding integration formula reads

(1.10)
∫
S

f(x)dσ(x) =
∫
Rn−1

f(c(ξ)) 2n−1

(1 + |ξ|2)n−1 dξ.

Later, we will need a description of the orbits of G in S ×S ×S (for the
diagonal action of G). Recall first that the group G in its diagonal action
on S × S has two orbits:

S2
> =

{
(x, y) ∈ S × S, x 6= y}, ∆S = {(x, x), x ∈ S

}
.

As base-point in S2
>, choose (1+,1−). The stabilizer of (1+,1−) in G is

the subgroup MA.

TOME 61 (2011), FASCICULE 5
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Proposition 1.2. — Let n > 3. There are 5 orbits of G in S × S × S,
namely

O0 =
{

(x1, x2, x3), xi 6= xj for i 6= j
}

O1 =
{

(x1, x, x), x 6= x1
}

O2 =
{

(x, x2, x), x 6= x2
}

O3 =
{

(x, x, x3), x 6= x3
}

O4 =
{

(x, x, x)
}
.

Proof. — The five subsets of S ×S ×S are invariant under the diagonal
action of G. So it suffices to show that G is transitive on each of these sets.
• G is transitive on S, hence on O4. Choose (1+,1+,1+) as base-point.

The stabilizer of the base-point in G is the subgroup P = MAN.
• The stabilizer P of 1+ is transitive on S r {1+} (the action of N is

already transitive on Sr{1+}), so thatG is transitive onOj , for j = 1, 2, 3.
As base-point in O3 (similar choices can be made for O1 and O2) choose
(1+,1+,1−). The stabilizer of (1+,1+,1−) is the subgroup MA.
• Let x1, x2, x3 be in O0. We may assume w.l.o.g. that x1 = 1+, x2 = 1−

and x3 6= 1±. The stabilizer of (1+,1−) in G is MA. The orthogonal
projection of x3 on the hyperplane orthogonal to (1+,1−) is not 0 and can
be mapped by M to ce2, with 0 < c < 1, so that there exists t ∈ R such
that x3 is conjugate underM to the point (tanh t, 1

cosh t , 0, . . . , 0) = at(e2).
Hence any triplet in O0 is conjugate under G to the triplet (1+,1−, e2). Its
stabilizer inG is the compact subgroup {k ∈M,ke2 = e2} ' SO(n−2). �

When n = 2 (S is the unit circle), then there are two open orbits in
S × S × S under the action of SO0(1, 2), each characterized by the value
of the orientation index of the three points in S. It is possible to remedy
to this fact by using the slightly larger (no longer connected) group O(1, 2)
instead of SO0(1, 2).
Let dσ be the Lebesgue measure on S and let ωn−1 =

∫
S
dσ(x). Also set

ρ = n−1
2 . Under the action of G, the measure is dσ is transformed according

to

(1.11)
∫
S

f
(
g−1(x)

)
dσ(x) =

∫
S

f(y)κ(g, y)2ρdσ(y)

Let λ be in C. For f in C∞(S), the formula

(1.12) πλ(g)f(x) = κ(g−1, x)ρ+λ f(g−1(x))

ANNALES DE L’INSTITUT FOURIER
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defines a representation of the group G, which will be denoted by πλ. It is a
continous representation when the space C∞(S) is equipped with its natural
Fréchet topology (see [15] for a systematic study of these representations).
The representations πλ and π−λ are dual in the sense that, for all ϕ,ψ ∈

C∞(S)

(1.13)
∫
S

π−λ(g)ϕ(s)πλ(g)ψ(s) ds =
∫
S

ϕ(s)ψ(s) ds

as can be deduced from the change of variable formula (1.11). For λ pure
imaginary, the representation πλ can be extended continuously to L2(S) to
yield a unitary representation of G (this is the reason for using ρ+λ in the
definition of πλ). Observe that the action of K is independant of λ and the
constant fonction IS (equal to 1 evereywhere) is fixed by the action of K.

For α in C, let kα be the kernel on S × S defined by

kα(x, y) = |x− y|−ρ+α.

It satisfies the following transformation property under the action of an
element g of G:

(1.14) kα(g(x), g(y)) = κ(g, x)−
ρ
2 +α

2 kα(x, y) κ(g, y)−
ρ
2 +α

2

for all x, y in S.

2. Construction of an invariant trilinear form

2.1. Formal construction

Let λ1, λ2, λ3 be three complex numbers. Let T be a continuous trilinear
form from C∞(S)×C∞(S)×C∞(S) into C. The functional T is said to be
invariant w.r.t. πλ1 , πλ2 , πλ3 if, for every f1, f2, f3 in C∞(S), and every g
in G,

(2.1) T (πλ1(g)f1, πλ2(g)f2, πλ3(g)f3) = T (f1, f2, f3).

By Schwartz’s kernel theorem, there exists a unique distribution T on
S × S × S, such that

(2.2) T (f1, f2, f3) = T (f1 ⊗ f2 ⊗ f3)

where, as usual, f1 ⊗ f2 ⊗ f3 is the function on S × S × S defined by

(f1 ⊗ f2 ⊗ f3)(x1, x2, x3) = f1(x1)f2(x2)f3(x3).

TOME 61 (2011), FASCICULE 5
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Let α1, α2, α3 be complex numbers, and set α = (α1, α2, α3). Let Kα

be the kernel on S × S × S defined by

(2.3) Kα(x1, x2, x3) = kα1(x2, x3) kα2(x3, x1) kα3(x1, x2)

For f1, f2, f3 three functions in C∞(S), define the trilinear functional Kα

by

(2.4) Kα(f1, f2, f3) =
∫
S×S×S

Kα(x1, x2, x3)f1(x1)f2(x2)f3(x3)
× dσ(x1) dσ(x2) dσ(x3)

whenever it makes sense.

Theorem 2.1. — Let λ = (λ1, λ2, λ3) ∈ C3. Define α = (α1, α2, α3) by
the relations

α1 = −λ1 + λ2 + λ3

α2 = −λ2 + λ3 + λ1

α3 = −λ3 + λ1 + λ2.

(2.5)

Then

(2.6) Kα(πλ1(g)f1, πλ2(g)f2, πλ3(g)f3) = Kα(f1, f2, f3),

whenever the integral on the right handside is defined.

The proof is obtained by the change of variables yj = g−1(xj) (j =
1, 2, 3) in the integral defining the left hand-side, using (1.14) and (1.11).
Observe that the right-handside integral converges if, for i 6= j, the supports
of fi and fj are disjoint, or if∫

S×S×S
|Kα(x1, x2, x3)| dσ(x1)dσ(x2)dσ(x3) < +∞.

The version of the trilinear functional in the noncompact picture will be
useful. Let α = (α1, α2, α3) ∈ C3 and set for y1, y2, y3 ∈ Rn−1

(2.7) Jα(y1, y2, y3) = |y1 − y2|−ρ+α3 |y2 − y3|−ρ+α1 |y3 − y1|−ρ+α2

and, whenever it makes sense, let Jα be the associated distribution on
Rn−1 × Rn−1 × Rn−1 given by

(2.8) Jα(ϕ) =
∫
Jα(y1, y2, y3)ϕ(y1, y2, y3) dy1 dy2 dy3,

ANNALES DE L’INSTITUT FOURIER
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(ϕ ∈ C∞(Rn−1×Rn−1×Rn−1)). Moreover, let Ψα be the function defined
on Rn−1 × Rn−1 × Rn−1 by

Ψα(y1, y2, y3) = (1 + |y1|2)−ρ−
α2
2 −

α3
2 (1 + |y2|2)−ρ−

α3
2 −

α1
2

× (1 + |y3|2)−ρ−
α1
2 −

α2
2 .

Proposition 2.2. — Let f ∈ C∞(S × S × S). Then

(2.9) Kα(f) = 23(n−1)Jα

(
(f ◦ c)Ψα

)
whenever the left hand side is defined.

This is merely the change of variable (1.10) in the integral (2.4).

2.2. Integrability of the kernel Kα

Theorem 2.3. — The kernel Kα is integrable on S×S×S if and only if

(2.10) <αj > −ρ, j = 1, 2, 3

(2.11) <α1 + <α2 + <α3 > −ρ.

Proof. — It is enough to study the integral when the α’s are real, in
which case the kernel Kα is positive. Let U be a (small) neighborhood of
(1+,1+,1+) in S × S × S. Let g be in G. As x varies in S, j(g, x) re-
mains bounded from below and from above. Thanks to the transformation
property of the kernel kα (1.14), the integrals of Kα over U and over g(U)
are of the same nature. As U meets all G-orbits, a partition of unity argu-
ment shows that the integrability over S of the kernel Kα is equivalent to
its integrability over U . Now use the stereographic projection to see that
the integrability of Kα over U is equivalent to the integrability of Jα over
c−1(U), which is a (small) neighborhood of (0, 0, 0) in Rn−1×Rn−1×Rn−1.
Hence, we are reduced to study the convergence of the integral

I1 =
∫
|ξ1|<δ
|ξ2|<δ
|ξ3|<δ

|ξ1 − ξ2|α3−ρ|ξ2 − ξ3|α1−ρ|ξ3 − ξ1|α2−ρ dξ1 dξ2 dξ3,

where δ is a small positive number. Set

y1 = ξ1, y2 = ξ1 − ξ2, y3 = −ξ2 + ξ3.

Then, after integrating with respect to y1, the integral I1 is seen to be of
the same nature as the integral

I2 =
∫
|y2|<δ
|y3|<δ

|y2|α3−ρ|y3|α2−ρ|y2 − y3|α1−ρ dy2 dy3.

TOME 61 (2011), FASCICULE 5
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Let Σ be the unit ball in R(n−1) × R(n−1), and let dσ be the Lebesgue
measure on Σ. Use polar coordinates (r, (σ2, σ3)) defined by

y2 = rσ2, y3 = rσ3, r2 = |y2|2 + |y3|2, |σ1|2 + |σ3|2 = 1

to obtain that I2 is of the same nature as

I3 =
∫ δ

0
rα1+α2+α3−3ρ+2(n−1)−1dr ×

∫
Σ
|σ2|α3−ρ|σ3|α2−ρ|σ2 − σ3|α1−ρdσ.

The first factor converges if and only if condition (2.11) is satisfied. It
remains to discuss the convergence of

I4 =
∫

Σ
|σ2|α3−ρ|σ3|α2−ρ|σ2 − σ3|α1−ρdσ.

Let δ > 0 and consider the following open subsets of Σ:

Σ2 =
{

(σ2, σ3), |σ2| < δ
}
,

Σ3 =
{

(σ2, σ3), |σ3| < δ
}
,

Σ1 =
{

(σ2, σ3), |σ2 − σ3| < δ
}
.

For δ small enough, these sets are disjoint (recall that |σ2|2 + |σ3|2 = 1).
On Σr(Σ1∪Σ2∪Σ3) the function to be integrated is bounded from below.
Hence the integral I4 is convergent if and only the integrals

Kj =
∫

Σj
|σ2|α3−ρ|σ3|α2−ρ|σ2 − σ3|α1−ρdσ

are convergent for j = 1, 2, 3. Let j = 2. On Σ2, both |σ3| and |σ2 − σ3|
are bounded from below, so that it is equivalent to study the convergence
of the integral ∫

Σ2

|σ2|α3−ρdσ.

We are reduced to a classical situation and K2 converges if and only if
α3 − ρ > −(n− 1). A similar study applies to K1 and K3. This completes
the proof of Theorem 2.3. �

Corollary 2.4. — Let λ1, λ2, λ3 be three complex numbers satisfying
the condition

0 6 <(λj) < ρ.

Define α by the relations (2.5). Then the kernel Kα is integrable, and the
corresponding trilinear form is invariant for πλ1 , πλ2 , πλ3 .

Proof. — The conditions on λ = (λ1, λ2, λ3) imply that <(αj) > −ρ
for j = 1, 2, 3 and <(α1 + α2 + α3) > 0. Hence α is in the domain of
integrability of Kα. �

ANNALES DE L’INSTITUT FOURIER



TRILINEAR INVARIANT FORM 1817

The corollary covers all interesting cases for spherical unitary series, pro-
vided one excludes the trivial representation. In fact, the parameter λ for
such a representation can be chosen either as pure imaginary (principal
series) or satisfying 0 < λ < ρ (complementary series, excluding the trivial
representation).

2.3. Analytic continuation of Kα

The main result of this section concerns the analytic continuation of Kα

beyond its domain of integrability.

Theorem 2.5. — The map α 7−→ Kα, originally defined for α in in the
domain described by the conditions (2.10) and (2.11), valued in D′(S×S×
S) can be extended meromorphically with at most simple poles along the
family of hyperplanes in C× C× C defined by the equations

(2.12) αj = −ρ− 2k, j = 1, 2, 3, k ∈ N

(2.13) α1 + α2 + α3 = −ρ− 2k, k ∈ N.

Proof. — Let f be in C∞(S × S × S) and consider the integral∫
S×S×S

Kα(x1, x2, x3)f(x1, x2, x3)dσ(x1)dσ(x2)dσ(x3).

to be meromorphically continued. Repeating the argument given supra
during the discussion of the integrability of the kernel Kα, we may as-
sume that f has its support contained in a small neigborhood of the
point (1+,1+,1+). Further, transfer the integral to the noncompact picture
(cf. (2.9)), and study the analytic continuation of

α 7−→ Jα

(
(f ◦ c)Ψα

)
Now ϕ = f ◦ c is in C∞c (Rn−1 × Rn−1 × Rn−1), and both α 7−→ Ψα and
α 7−→ Ψα

−1 are entire fonctions on C3, so that it is equivalent to study the
meromorphic continuation of Jα as a distribution on Rn−1×Rn−1×Rn−1.
The kernel Jα is invariant by translations by “diagonal vectors”. To take

advantage of this remark, make the change of variables

z1 = y1, z2 = y1 − y3, z3 = y1 − y2

in the integral

Jα(ϕ) =
∫
|y1 − y2|−ρ+α3 |y2 − y3|−ρ+α1 |y3 − y1|−ρ+α2

× ϕ(y1, y2, y3) dy1 dy2 dy3
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to obtain

Jα(ϕ) =
∫
Rn−1×Rn−1

|z2|−ρ+α2 |z3|−ρ+α3 |z2 − z3|−ρ+α1ψ(z2, z3) dz2 dz3

where we have set

ψ(z2, z3) =
∫
Rn−1

ϕ(z1, z1 − z3, z1 − z2)dz1.

Now observe that ψ is in C∞c (Rn−1 × Rn−1). Hence we are reduced to
studying the analytic continuation of the distribution Iα on Rn−1 × Rn−1

defined by

(2.14) Iα(ψ) =
∫
Rn−1×Rn−1

Iα(z2, z3)ψ(z2, z3) dz2 dz3

for ψ in C∞c (Rn−1 × Rn−1), where we set

(2.15) Iα(z2, z3) = |z2|−ρ+α2 |z3|−ρ+α3 |z2 − z3|−ρ+α1 .

For δ > 0, consider the following open subsets of Rn−1 × Rn−1

U0 =
{

(z2, z3), |z2| < δ, |z3| < δ, |z2 − z3| < δ
}

U1 =
{

(z2, z3), |z2| >
δ

2 , |z3| >
δ

2 , |z2 − z3| <
δ

2

}
U2 =

{
(z2, z3), |z2| <

δ

2 , |z3| >
δ

2 , |z3 − z2| >
δ

2

}
U3 =

{
(z2, z3), |z2| >

δ

2 , |z3| <
δ

2 , |z2 − z3| >
δ

2

}
U∞ =

{
(z2, z3), |z2| >

δ

2 , |z3| >
δ

2 , |z2 − z3| >
δ

2

}
.

The family of these five open sets form a covering of Rn−1×Rn−1. Let study
the restriction of the distribution Iα to each of these five open subsets.
If Supp(ψ) ⊂ U∞, then the Iα(ψ) extends as an entire function, because

Iα has no singularity on U∞. Next assume that Supp(ψ) ⊂ U2. Set

φα(z2) =
∫
Rn−1

|z3|−ρ+α3 |z2 − z3|−ρ+α1ψ(z2, z3)dz3,

so that

(2.16) Iα(ψ) =
∫
Rn−1

|z2|−ρ+α2φα(z2)dz2.

As |z3| and |z2 − z3| are bounded from below on U2, the function φα is
in C∞c (Rn−1) and α 7−→ φα is an entire function on C3 . On Rn−1, the
distribution-valued function s 7−→ |z2|s extends meromorphically on C,
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with simple poles at s = −(n − 1) − 2k, k ∈ N (see [6]), so that the in-
tegral (2.16) extends meromorphically to C3 with simple poles along the
hyperplanes α2 = −ρ− 2k. A similar analysis can be done over U1 and U3.
To sum up what we have already proved, introduce the family M of

meromorphic functions on C3 having at most simple poles along the hy-
perplanes {αj = −ρ − 2k}, j = 1, 2, 3, k ∈ N. Notice that they are the
hyperplanes corresponding to the conditions (2.12).

Proposition 2.6. — Let ψ be in C∞c (Rn−1 × Rn−1) and assume that
Supp(ψ) 63 (0, 0) . Then the function α 7→ Iα(ψ) belongs to the classM.

Proof. — In fact, choose δ small enough so that Supp(ψ) ∩ U0 = ∅. Use
a partition of unity to write ψ as

ψ = ψ1 + ψ2 + ψ3 + ψ∞

where ψj ∈ C∞c (Rn−1 × Rn−1) and Supp(ψj) ⊂ Uj , j = 1, 2, 3, ∞. The
previous analysis shows that α 7−→ Iα(ψj) extends meromorphically on
C3 with at most simple poles along the hyperplanes αj = −ρ− 2k, k ∈ N
for j = 1, 2, 3, whereas Iα(ψ∞) is an entire function of α. �

Now we use a priori the existence of the meromorphic continuation of
such integrals (see [14]). Moreover, the poles are located on a locally fi-
nite family of affine hyperplanes (of a rather specific type, but we won’t
need this result). Let H be such an hyperplane (to be determined), but
not included in the family of hyperplanes given by conditions (2.12). Let
α0 = (α0

1, α
0
2, α

0
3) be a regular point in H, (i.e. not contained in any other

hyperplane of poles). The Laurent coefficients at α0 are distributions on
Rn−1 × Rn−1, and, by Lemma 2.6, their supports have to be contained
in {0, 0}, hence they are derivatives of the Dirac measure δ(0,0). So, if Iα

does have a pole at α0, there exists a smooth function ρ on Rn−1 × Rn−1

with compact support and identically equal to 1 in a neigbourhood of
(0, 0), and a polynomial P on Rn−1 × Rn−1, homogeneous of degree k
such that Iα(ρP ) does not extend holomorphically at α0. For t ∈ R∗, let
ρt(z2, z3) = ρ(tz2, tz3). Use the change of variables (z2 7→ tz2, z3 7→ tz3) to
get (2) , for α 6= α0

Iα(ρtP ) =
∫
Rn−1×Rn−1

|z2|−ρ+α3 |z3|−ρ+α2 |z2 − z3|−ρ+α1

× ρ(tz2, tz3)P (z2, z3) dz2 dz3

= |t|−α3−α2−α1−ρ t−k Iα(ρP ).

(2)Following a traditional way, we write Iα(ϕ) as an integral. What is really used here
is merely the homogeneity of Iα.
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Hence

(2.17) (1− |t|−α3−α2−α1−ρt−k)Iα(ρP ) = Iα

(
(ρ− ρt)P

)
.

Now observe that the support of (ρ − ρt)P does not contain (0, 0), and
hence, α 7−→ Iα

(
(ρ − ρt)P

)
belongs to M. The assumption that Iα(ρP )

does have a pole at α0 forces the condition

∀t ∈ R∗, 1− |t|−α
0
3−α

0
2−α

0
1−ρt−k = 0.

In turn, this condition amounts to

k ∈ 2N, α0
1 + α0

2 + α0
3 = −ρ− k.

Moreover, (2.17) shows that Iα has at most a simple pole along the corre-
sponding hyperplane. This achieves the proof of Theorem 2.5. �

As the invariance condition remains true by analytic continuation, Theo-
rem 2.5 can be reformulated for trilinear invariant functionals (cf. Theo-
rem 2.1).

Theorem 2.7. — Let λ = (λ1, λ2, λ3) in C3. Assume that
−λ1 + λ2 + λ3 /∈ −ρ− 2N
λ1 − λ2 + λ3 /∈ −ρ− 2N
λ1 + λ2 − λ3 /∈ −ρ− 2N
λ1 + λ2 + λ3 /∈ −ρ− 2N.

(2.18)

Set α = (α1, α2, α3) where (cf. (2.5))
α1 = −λ1 + λ2 + λ3

α2 = −λ2 + λ3 + λ1

α3 = −λ3 + λ1 + λ2.

Then (f1, f2, f3) 7−→ Tλ(f1, f2, f3) = Kα(f1⊗ f2⊗ f3) is a well defined non
trivial trilinear invariant functional w.r.t. the representations (πλ1 , πλ2 ,
πλ3).

The next result was obtained some time ago by the present authors, and
has been generalized to other geometric situations in a collaboration with
T. Kobayashi and M. Pevzner (see [3]). To state the result, consider the
evaluation of the functional Kα against the function IS ⊗ IS ⊗ IS , where IS
is the function which is identically 1 on S. Let

I(λ) = K(α) =
∫
S

∫
S

∫
S

kα1(x2, x3)kα2(x3, x1)kα3(x1, x2)

× dσ(x1) dσ(x2) dσ(x3)
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where α and λ are related by the relations (2.5).

Proposition 2.8. — Let λ = (λ1, λ2, λ3) in C3 and assume that the
conditions (2.18) are satisfied. Then

(2.19) I(λ) =
(√π

2

)3(n−1)
2λ1+λ2+λ3

· · ·
Γ
(
λ1+λ2+λ3+ρ

2
)
Γ
(−λ1+λ2+λ3+ρ

2
)
Γ
(
λ1−λ2+λ3+ρ

2
)
Γ
(
λ1+λ2−λ3+ρ

2
)

Γ(ρ+ λ1)Γ(ρ+ λ2)Γ(ρ+ λ3) .

Remark. — Both sides of the formula are meromorphic functions on
C3, and they are equal where defined. Notice that I(λ) = K(α) has simple
poles exactly as prescribed by Theorem 2.5.

This result allows to strengthen the previous theorem. Define

K̃α = Kα

Γ
(
λ1+λ2+λ3+ρ

2
)
Γ
(−λ1+λ2+λ3+ρ

2
)
Γ
(
λ1−λ2+λ3+ρ

2
)
Γ
(
λ1+λ2−λ3+ρ

2
) .

Theorem 2.9. — The distribution-valued function α 7→ K̃α extends as
an entire holomorphic function on C3. The trilinear functional T̃λ defined by

T̃λ(f1, f2, f3) = K̃α(f1 ⊗ f2 ⊗ f3)

on C∞(S) × C∞(S) × C∞(S)) is invariant with respect to (πλ1 , πλ2 , πλ3),
where (λ1, λ2, λ3) are related to (α1, α2, α3) by the relations (2.5). The
trilinear form T̃λ is not identically 0 provided the two following conditions
are not simultaneously realized
• ∃j, 1 6 j 6 3, λj ∈ −ρ− N
• (at least) one of the conditions (2.18) is satisfied .

Proof. — The function α 7−→ K̃α extends holomorphically near any reg-
ular point of the hyperplanes defined by conditions (2.12) and (2.13), so is
holmomorphic outside of the set where ar least two hyperplanes of poles
meet. But this set is of codimension 2 and hence α 7−→ K̃α extends as
a holomorphic function to all of C3. If none of the conditions (2.18) is
satisfied, then K̃α is a multiple (6= 0) of Kα which is different from 0 on
Ω. If λj /∈ −ρ + N for j = 1, 2, 3, then I(λ) 6= 0 and hence Kα is not
identically 0. �

3. Uniqueness of the invariant trilinear form

3.1. Induced representations and line bundles

For this part, it is useful to realize the representation πλ as acting on
smooth sections of a line bundle over S.
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Recall that the stabilizer of 1+ in G is the parabolic subgroup P = MAN.
The left invariant Haar measure on P is

(3.1)
∫
P

f(p)dp =
∫
M

∫
A

∫
N

f(man) dmda dn.

For λ ∈ C, denot by χλ the character of P defined by

χλ(matn) = etλ.

The modular function of P is given by δP (man) = e−2ρ(log a) = χ−2ρ(p)
(see e.g. [18] Lemma 5.5.1.1), so that, for any q in P

(3.2)
∫
P

f(pq) dp = χ2ρ(q)
∫
P

f(p) dp.

Let Eλ be the space of functions f in C∞(G) which, for all g in G, p in
P satisfy

(3.3) f(gp) = χ−(ρ+λ)(p)f(g).

Then G acts on Eλ by

(3.4) Πλ(g)f(γ) = f(g−1γ).

To any function f in Eλ, associate the function f∼ defined on S by the
formula

(3.5) f∼(s) = f(k)

where k is any element in K satisfying k1+ = s. As f(km) = f(m) for any
m in M , the right handside of (3.5) does not depend on m, but merely on
k1+ = s.
Now, let g be in G, let s be in S, and let k be inK such that k1+ = s ∈ S.

Let
g−1k = k(g−1k) a(g−1k)n

be the Iwasawa decomposition of g−1k. Then

k(g−1k)1+ = (g−1k)(1+) = g−1(s)

and
κ(g−1, s) = κ(g−1k,1+) = χ−1(a(g−1k)).

Hence, (
Πλ(g)f

)∼(s) = f(g−1k) = f(k(g−1k) a(g−1k)n)

= κ(g−1, s)ρ+λ f∼(g−1(s))

so that f 7→ f∼ is an intertwining operator for Πλ and πλ.
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Let χ be a character of A. Denote by Cχ the representation of P on C
given by

man ·z = χ(a)z.
Form the line bundle L = Lχ = G ×P Cχ over S, and let L = L∞χ be the
space of C∞ sections of L. Then G acts naturally on L by left translations.
As sections of L can be identified with functions on G transforming by χ−1

under the right action of P , the representation of G on L is equivalent to
πλ if χ = χρ+λ.
Now take three characters χ1 = χρ+λ1 , χ2 = χρ+λ2 , χ3 = χρ+λ3 of A, set

λ = (λ1, λ2, λ3) and form the “exterior” product bundle Lλ = Lχ1 �Lχ2 �
Lχ3 as a line bundle over S × S × S. Let Lλ be the space of C∞ sections
of this bundle. Let the group G acts naturally on this space by diagonal
action. Then a trilinear invariant functional on C∞(S) × C∞(S) × C∞(S)
for πλ1 , πλ2 , πλ3 corresponds to an invariant linear form on Lλ.
In turn, such an invariant linear functional on Lλ can be viewed as an

invariant distribution density for the dual bundle L∗λ (see Appendix).
The main tool to study these invariant distributions is Bruhat’s theory,

which is presented in the Appendix. We use heavily the description of orbits
of G in S × S × S (cf. Proposition 1.2).

Theorem 3.1. — Let λ = (λ1, λ2, λ3) be three complex numbers, let
α = (α1, α2, α3) be defined as in (2.5) and assume that they satisfy the
following generic conditions

i) αj /∈ −ρ− 2N for j = 1, 2, 3
ii) α1 + α2 + α3 /∈ −ρ− 2N.

Then any trilinear invariant form for πλ1 , πλ2 , πλ3 is proportional to the
form Tλ.

Proof. — Denote by T = Tλ the distribution density on S×S×S for the
bundle L∗λ corresponding to an invariant trilinear form for πλ1 , πλ2 , πλ3 .

Step 1: Contribution of O0

We use freely of the notation presented in the appendix. Consider the
restriction T ′ of T to the open orbit O0. Then O0 is a homogeneous space
under G, the stabilizer H of the base point (1+,1−, e2) is compact. There
is an invariant measure on G/H, the group H acts trivially on the fiber
of L∗λ, so there exists exactly one (up to constant) invariant distribution
given by a smooth density. But we already know that Kα has the right
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transformation property. Hence on O0, after multiplication by a constant,
we may assume that T ′ coincides with the restriction of Kα to O0. But
the assumptions on λ guarantee that Kα can be extended (by analytic
continuation) as an invariant distribution on S ×S ×S. Hence, in order to
prove that T is a multiple of Kα, (i.e. to prove the uniqueness statement)
we need only to prove that an invariant distribution which vanishes on O0
is identically 0. In other words, we may (and hence do) assume that

Supp(T ) ⊂ ∪16j64Oj .

and proceed further to prove that T = 0.
Let us mention that the argument given here should be modified for the

case of the circle (i.e. as n = 2), because there are two orbits for SO0(1, 2)
in S × S × S. To restore uniqueness, one can also consider the full group
O(1, 2) instead. The rest of the proof is unchanged.

Step 2: Contribution of O1, O2, O3

We now show that
Supp(T ) ∩ O3 = ∅.

Observe that for 1 6 j 6 3

Oj = Oj ∪ O4

so that (O1 ∪ O2 ∪ O4) is a closed subset of S × S × S. Let

X = S × S × S r (O1 ∪ O2 ∪ O4).

Then X is an open submanifold of S × S × S, acted by G, and O3 is
a closed orbit of G in X. Let T ′′ be the restriction of T to X, so that
Supp(T ′′) ⊂ O3. Now apply Bruhat’s theory.
The normal space at the base point (1+,1+,1−) is identified (via the

Riemannian metric on S × S × S) with

No =
{

(ξ,−ξ, 0), ξ ∈ T1S
}
' Rn−1.

The stabilizer of the base point is H = AM , and there is an invariant
measure on O3, so that χ0 ≡ 1. The group M acts on N0 by its natural
action. As M modules, N0 and its dual are equivalent, so that the spaces
Sk(N0) and Pk(N0) are equivalent M -modules. The space of M -invariants
in Pk(N0) is 0 if k is odd (and one-dimensional, generated by |ξ|k if k is
even, but we won’t need this fact). On the other hand, an element at of A
acts on N0 by dilation by e−t, so that it acts on Sk(N0) by multiplication
by e−kt. The element at acts on the fiber L0 of Lχ1,χ2,χ3 at (1+,1+,1−)
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by e(ρ+λ1+ρ+λ2−ρ−λ3)t. Hence the element at acts on Sk(N0)⊗L∗0 by mul-
tiplication by

e(−k−ρ−(λ1+λ2−λ3))t.

The assumptions on λ (more precisely α3 = λ1 + λ2 − λ3 /∈ −ρ − 2N)
guarantee that (

Sk(N0)⊗ L∗0 ⊗ Cχ−1
0

)H
= 0

for any k ∈ N. Hence, by Corollary A.4, there is no non-trivial invariant
distribution supported in O3.

Repeating the argument for O2 and O1, we may (and hence do) assume
now that

Supp(T ) ⊂ O4.

Third step: Contribution of O4

Here we take X = S × S × S, as O4 is closed. The stabilizer of the
base-point (1+,1+,1+) is P = MAN. The character χ0 is given by

χ0(matn) = e−2ρt.

The normal space at (1+,1+,1+) can be identified with

N0 = {(ξ1, ξ2, ξ3), ξj ∈ T1S, ξ1 + ξ2 + ξ3 = 0} ' Rn−1 ⊕ Rn−1.

The group M acts on N0 by its natural action on each factor. Again, as M
modules, the space Sk(N0) is isomorphic to Pk(N0). The algebra of SO(n−
1) invariant polynomials on Rn−1 ⊕ Rn−1 is generated (as an algebra) by
|ξ|2, |η|2, 〈ξ, η〉. Hence Sk(N0)M = {0} if k is odd. On the other hand, an
element at of A acts on N0 by multiplication by e−t, hence on Sk(N0) by
multiplication by e−kt. It acts on the fiber L0 by e(ρ+λ1+ρ+λ2+ρ+λ3)t. Hence
at acts on Sk(N0)⊗ L∗0 ⊗ Cχ−1

o
by

e(−k−ρ−(λ1λ2+λ3))t.

The assumptions on λ (namely λ1 + λ2 + λ3 /∈ −ρ− 2N) guarantee that(
Sk(N0)⊗ L∗0 ⊗ Cχ−1

0

)H
= {0}

for any k ∈ N. Hence, by Corollary A.4, there is no non-trivial invariant
distribution supported in O4. The uniqueness statement follows. �
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4. Another construction of a trilinear invariant form

In this section we present a different construction of the invariant trilinear
form Tλ. Trilinear forms are connected with tensor products of representa-
tions. Roughly speaking, a trilinear form on H1 ×H2 ×H3 can be realized
as an invariant bilinear pairing between H1 ⊗ H2 and H3. Although this
point of view breaks the (sort of) symmetry between the three factors,
it produces interesting relations with questions about tensor products of
representations (cf. [12], which was the main source of inspiration for this
section). Our presentation of the construction is formal and we don’t work
out the estimates and analytical aspects of the construction, which would
follow along similar lines as in previous sections.

4.1. The space S2
> as a symmetric space

Recall that S2
> = {(x, y) ∈ S × S, x 6= y} is the orbit of (1+,1−) under

G. The stabilizer in G of (1+,1−) is the subgroup H = MA.

Let J =


−1 0 0 ··· 0
0 −1 0 ··· 0
0 0 1 0
...

...
. . .

...
0 0 0 ··· 1

. Then J t = J−1 = J . The map g 7−→ JgJ is

an involutive automorphism of G. The set of fixed points of this involution
is the subgroup H̃ = H tH−,

H− =
{
h =

cosh t − sinh t 0
sinh t − cosh t 0

0 0 k

 , t ∈ R, k ∈ O(n− 1), det k = −1
}
.

So H is the neutral component of the fixed points of an involutive auto-
morphism of G. In other words, S2

> can be realized as the symmetric space
G/H via

G/H 3 g 7−→
(
g(1+), g(1−)

)
.

There exists a unique (up to a positive real number) G-invariant measure
on S2

>, namely

(4.1)
∫
G/H

f(x)dµ(x) =
∫
S

∫
S

f(s, t) ds dt

|s− t|2(n−1) .

Another description of G/H is as follows. Let X be the set of all 2-
dimensional oriented subspaces Π in R1,n such that the restriction of q
to Π is of signature (1, 1). The space X is an open set in the Grassman-
nian G(2, n + 1) of oriented 2-dimensional subspaces in R1,n. The group
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G operates transitively on X . To the couple (s, t) in S2
>, associate the 2-

dimensional space Π(s, t) = Rs̃ ⊕ Rt̃, with the orientation for which (s̃, t̃)
is a direct basis.

Proposition 4.1. — The mapping Π is a diffeomorphism from S2
>

onto X .

Proof. — Let s, t be in S2
>. Then Π(s, t) cannot be totally isotropic for q,

because the maximally isotropic subspaces are of dimension 1. As Π(s, t)
contains two independant isotropic vectors (s̃ and t̃), the signature of q on
Π(s, t) has to be (1, 1). Hence Π(s, t) belongs to X . On the other hand,
let Π be in X . Then the isotropic cone in Π decomposes as the union of
two distinct isotropic lines, say D ∪∆. The line D (resp. ∆) intersects the
hyperplane {x0 = 1} at a point s̃ (resp. t̃) with s (resp. t) in S. Permuting
D and ∆ if needed, we may assume that the basis (s̃, t̃) corresponds to the
orientation of Π. Then clearly Π(s, t) = Π. Thus Π is a 1−1 correspondance.
The fact that it is a diffeomorphism is standard and left to the reader. �

4.2. An equivariant realization of πσ ⊗ πτ

The group H is connected, isomorphic to R × SO(n − 1). For ζ any
complex number, the function νζ on H defined by

νζ

cosh t sinh t 0
sinh t cosh t 0

0 0 k

 = etζ

(t ∈ R, k ∈M) is a character of H.
Form the line bundle Lζ = G ×H Cζ over G/H. A section of Lζ can be

viewed as a C∞ function F : G −→ C which satisfies

(4.2) F (gh) = νζ(h)−1F (g).

Denote by Lζ the space of smooth sections of Lζ over G/H. The natural
action of G acts on Lζ by left translation is denoted by Iζ :(

Iζ(γ)F
)
(g) = F (γ−1g).

When ζ is pure imaginary, the character νζ is unitary. If F is in Lζ , then
|F (gh)| = |F (g)| for any h in H. Hence the expression

(4.3) |F |2 =
∫
G/H

|F (g)|2dµ(gH),
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is well-defined (maybe +∞) and is finite if (say) F has compact support
modulo H. The representation Iζ extends as a unitary representation for
this inner product.
Let σ, τ be two complex numbers, and consider the representations πσ

and πτ . As C∞(S) is a Fréchet space, the projective and inductive topolo-
gies on the tensor product C(S) ⊗ C(S) coincide, and the (completed)
tensor product is realized as C∞(S×S). Hence the tensor product πσ⊗πτ
is naturally realized on C∞(S × S). Explicitly,
(4.4)
πσ ⊗ πτ (g)f(x1, x2) = κ(g−1, x1)ρ+σκ(g−1, x2)ρ+τf(g−1(x1), g−1(x2))

for g ∈ G, f ∈ C∞(S × S), x1, x2 ∈ S.
For f in C∞(S × S), let Pσ,τf be the function on G defined by

(4.5)
(
Pσ,τf

)
(g) = κ(g,1+)ρ+σκ(g,1−)ρ+τf

(
g(1+), g(1−)

)
.

Proposition 4.2. — Pσ,τf satisfies the relation

(4.6)
(
Pσ,τf

)
(gh) = νσ−τ (h)−1(Pσ,τf)(g),

for g in G and h in H.

Proof. — Recall that the elements of H fix both 1+ and 1−. Moreover,

(4.7) κ(at,1±) = e∓t, t ∈ R.

Now (4.6) follows (1.6). �

The map Pσ,τ will be regarded as a map from C∞(S × S) into Lσ−τ .
Let σ and τ be pure imaginary. Observe that

|g(1+)− g(1−)| = 2κ(g,1+) 1
2κ(g,1−) 1

2 ,

so that

|Pσ,τf |2 = 2−2(n−1)
∫
S×S
|s− t|2(n−1)|f(s, t)|2 ds dt

|s− t|2(n−1) = 2−2(n−1)|f |2

and Pσ,τ extends as an isometry (up to a constant) from L2(S×S) onto the
space of square-integrable elements of Lσ−τ for the inner product associated
to (4.3).

Proposition 4.3. — Pσ,τ intertwines the representation πσ ⊗ πτ and
the representation Iσ−τ , i.e. for any g in G

(4.8) Pσ,τ ◦ (πσ ⊗ πτ )(g) = Iσ−τ (g) ◦ Pσ,τ
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Proof. — Let f be in C∞(S × S). For γ in G,

Pσ,τ
(
(πσ ⊗ πτ )(γ)f

)
(g) = κ(g,1+)ρ+σκ(g,1−)ρ+τκ(γ−1, g(1+))ρ+σ

· · ·κ(γ−1, g(1−))ρ+τf
(
γ−1(g(1+), g(1−))

)
.

On the other hand,

Iσ−τ (γ)Pσ,τf(g) = κ(γ−1g,1+)ρ+σκ(γ−1g,1−)ρ+τ

· · · f
(
γ−1(g(1+), g−1(1−))

)
.

The two expressions are easily seen to be equal by using (1.6). �

4.3. Construction of a (H, νζ) covariant function for πλ

The next step consists in finding in the representation space for πλ an
element Θλ,ζ which transforms under the action ofH by the character νζ . In
general, it will be a distribution on S (a commun fact in harmonic analysis
on semisimple symmetric space (cf. [16]). We use a geometric approach
through the realization of G/H as X (see Proposition 4.1).
Let Π be an element of X and s be in S. Observe that Π⊥ is a an (n−1)-

dimensional space, complementary to Π, and the restriction of q to Π⊥ is
negative-definite. Define

(4.9) Ψ(Π, s) = 2
(
− q(projΠ⊥ s̃)

) 1
2 .

Proposition 4.4. — Let (s1, s2) be in S2
>. Then, for any s3 in S,

(4.10) Ψ(Π(s1, s2), s3) = 2 |s1 − s3||s2 − s3|
|s1 − s2|

.

Proof. — Let σ3 = projΠ⊥ s̃3. Then there exist real numbers α1 and α2
such that σ3 = s̃3 − α1s̃1 − α2s̃2. The numbers α1 and α2 are determined
by the conditions

[σ3, s̃1] = [σ3, s̃2] = 0.
Hence,

1− s3.s2 − α1(1− s1.s2) = [s̃3, s̃2]− α1[s̃1, s̃2] = [σ3 + α2s̃2, s̃2] = 0

so that

α1 = 1− s2.s3

1− s1.s2
=
(
|s2 − s3|
|s1 − s2|

)2

and similarly

α2 = 1− s3.s1

1− s1.s2
=
(
|s1 − s3|
|s1 − s2|

)2
.
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Now

−q(σ3) = −
[
s̃3 − α1s̃1 − α2s̃2, s̃3 − α1s̃1 − α2s̃2

]
= 2α1

[
s̃1, s̃3

]
+ 2α2

[
s̃2, s̃3

]
− 2α1α2

[
s̃1, s̃2

]
=
(
|s1 − s3||s2 − s3|
|s1 − s2|

)2
.

�

Proposition 4.5. — Let g be in G. Then, for any Π in X and s in S,

(4.11) Ψ(g(Π), g(s)) = κ(g, s)Ψ(π, s).

Proof. — As g preserves the form q and hence the orthogonality relative
to q, for any Π in X

g ◦ projΠ⊥ = projg(Π)⊥ ◦ g.

Hence

q
(
projg(Π)⊥ g(s)

)
= (g s̃)−2

0 q
(
projg(Π)⊥ g s̃

)
= (g s̃)0)−2q

(
projΠ⊥ s

)
so that

Ψ(g(Π), g(s)) = (g s̃)−1
0 Ψ(Π, s) = κ(g, s)Ψ(π, s).

�

Let Π0 = Π(1+,1−) =
{
x̃ = (x0, x1, 0, . . . , 0), x0, x1 ∈ R}, and let

(4.12) Ψ0(s) = Ψ(Π0, s) = |1+−s| |1−−s| = 2(x2
2 + · · ·+ x2

n) 1
2 .

As a consequence of the previous proposition, the function Ψ0 has a nice
transformation law under the action of H.

Lemma 4.6. — Let h =

cosh t sinh t 0
sinh t cosh t 0

0 0 k

, where t is in R, and k is

in SO(n− 1). For any s in S

(4.13) Ψ0(h(s)) = κ(h, s)Ψ0(s).

Let λ and ζ be two complex numbers. For s in S define

(4.14) Θλ,ζ(s) = Ψ0(s)−ρ−λ
∣∣∣1+ − s

1−−s

∣∣∣ζ = |1+ − s|−ρ−λ+ζ |1−−s|−ρ−λ−ζ .

Proposition 4.7. — The function Θλ,ζ satisfies

(4.15) πλ(h)Θλ,ζ = νζ(h)Θλ,ζ

for all h in H.
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Proof. — Let h be in H. Then

πλ(h)Θλ,ζ(s)

= κ(h−1, s)ρ+λ Θλ,ζ(h−1(s))

= κ(h−1, s)ρ+λ Ψ0(h−1(s))−ρ−λ
∣∣∣1+−h−1(s)
1−−h−1(s)

∣∣∣ζ
= κ(h−1, s)ρ+λ κ(h−1, s)−ρ−λ Ψ0(s)−ρ−λ

∣∣∣κ(h−1,1+)
κ(h−1,1−)

∣∣∣ ζ2 ∣∣∣1+−s
1−−s

∣∣∣ζ
= Ψ0(s)−ρ−λ (e2t)

ζ
2

∣∣∣1+ − s
1− − s

∣∣∣ζ = νζ(h) Θλ,ζ(s)

by using (4.7). �

4.4. The duality between Iζ and πλ

Now define the corresponding Fourier transform Fλ,ζ : For F a smooth
section of Lζ with compact support modulo H, define Fζ,λF by

(4.16) Fλ,ζF (s) =
∫
G/H

F (g)πλ(g)Θλ,ζ(s) dµ(gH).

Observe that, thanks to (4.15) the integrand is a function on G/H, so that
the integral makes sense, the result being in general a distribution on S.
Proposition 4.8. — For any g in G

(4.17) Fλ,ζ Iζ(g) = πλ(g)Fλ,ζ .
Proof. — Set Θ = Θλ,ζ , F = Fλ,ζ , let F be in Lζ with compact support

modulo H and let γ be in G. Then

F ◦ Iζ(γ)F (s) =
∫
G/H

F (γ−1g) κ(g−1, s)ρ+λ Θ(g−1(s)) dµ(gH).

Set γ−1g = l and use the invariance of the measure dµ to obtain

F◦Iζ(γ)F (s)

=
∫
G/H

F (l)κ(l−1γ−1, s)ρ+λΘ(l−1(γ−1(s))dµ(lH)

= κ(γ−1, s)ρ+λ
∫
G/H

F (l)κ
(
l−1, γ−1(s)

)ρ+λΘ
(
l−1(γ−1(s)

)
dµ(lH)

= κ(γ−1, s)ρ+λ
∫
G/H

F (l)πλ(l)Θ(γ−1(s))dµ(lH)

= κ(γ−1, s)ρ+λFF (γ−1(s)) =
(
πλ(γ)FF

)
(s).

�
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4.5. Application to trilinear forms

Theorem 4.9. — Let λ1, λ2, λ3 be three complex numbers. For f1, f2, f3
three functions in C∞(S), let T (f1, f2, f3) be defined by

(4.18) T (f1, f2, f3) =
(
F−λ3, λ1−λ2Pλ1,λ2(f1 ⊗ f2), f3

)
.

Then, for any g ∈ G,

T (πλ1(g)f1, πλ2(g)f2, πλ3(g)f3) = T (f1, f2, f3),

whenever the right hand side is well defined.

Proof. — Let g be in G and let f1, f2, f3 be three functions in C∞(S).
Then

T (πλ1(g)f1, πλ2(g)f2, πλ3(g)f3)

=
(
F−λ3,λ2−λ1,Pλ1,λ2(πλ1(g)f1 ⊗ πλ2(g)f2), πλ3(g)f3

)
=
(
F−λ3,λ1−λ2Iλ1−λ2(g)Pλ1,λ2(f1 ⊗ f2), πλ3(g)f3

)
(use (4.8))

=
(
π−λ3(g)

(
F−λ3,λ1−λ2Pλ1,λ2(f1 ⊗ f2)

)
, πλ3(g)f3

)
(use (4.17))

= T (f1, f2, f3) (use (1.13)).

�

Making explicit the right handside of (4.18) shows that it coincides (up
to a constant) with the former expression of Tλ where λ = (λ1, λ2, λ3) (see
Theorem 2.1).

Appendix A. Invariant distributions supported by a
submanifold

Here is a presentation of the main results in Bruhat’s theory [2], but
written in terms of vector bundles and distribution densities (in the sense
of [7] ch. VI). We sketch the main steps of the proof, following [18]. See
also [8] for more results on this topic.

A.1. Distribution densities for a vector bundle over a manifold

First recall the composition of a distribution with a diffeomorphism. Let
X1 and X2 be two open sets of RN and let Φ: X1 → X2 be a C∞ diffeomor-
phism. Then there is a unique continous linear map Φ∗ : D′(X2)→ D′(X1)
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which extends the composition of functions, i.e. such that Φ∗f = f ◦Φ for
f ∈ C(X2).
A distribution density on a manifold X is by definition a continuous

linear form on C∞c (X). Let u be a distribution density on X. Let (Xκ, κ)
be a local chart, i.e. κ is a diffeomorphism of an open set Xκ of X onto an
open set X̃κ of RN . Then the formula

(A.1) uκ(ϕ) = u(ϕ ◦ κ)

for ϕ ∈ C∞c (X̃κ) defines a distribution uκ on X̃κ, called the local expres-
sion of u in the chart (Xκ, κ) . Further, let (Xκ, κ) and (Xκ′ , κ

′) be two
overlapping charts, and let uκ and uκ′ the corresponding local expressions
of u. Let

Φ: κ′(Xκ ∩Xκ′)→ κ(Xκ ∩Xκ′)

be the change of coordinates (equal to κ ◦ κ′−1). Then

(A.2) uκ′ = |det dΦ|Φ∗uκ in κ′(Xκ ∩Xκ′).

Conversely, suppose we have an atlas F of charts (Xκ, κ) covering the
manifold M and suppose that for each κ we are given a distribution uκ ∈
D′(X̃κ). Assume further that for any two overlapping charts (Xκ, κ) and
(Xκ′ , κ

′), the condition (A.2) is satisfied. Then the system
(
(uκ), κ ∈ F

)
defines a unique distribution density u on X such that, for κ in F and
ϕ ∈ C∞c (X̃κ) condition (A.1) is satisfied.

The space of distribution densities on X is denoted by D′(X). A smooth
density is a density the local expressions of which are C∞ functions. The
smooth densities are C∞ sections of a line bundle called the density bundle
Ω(X). It is very similar to the bundle of differential forms of maximal
degree on X, in the sense that their transition functions just differ by an
absolute value.

This definition can be extended to the case of vector bundles. Let π : L→
X be a C∞ vector bundle over M , with model fiber E0. Let (Xi) be a
family of open subsets of X such that over each Xi the bundle can be
trivialized. Let Ψi : π−1(Xi) → Xi × E0 and Ψj : π−1(Xj) → Xj × E0 be
two trivializations of the bundle over two overlapping subsets Xi and Xj .
Then the map Ψi ◦ Ψ−1

j over (Xi ∩ Xj) × L0 → (Xi ∩ Xj) × L0 is of the
form

(x, v) 7→ (x, gij(x) v)

where gij(x) is in GL(L0) and the map (transition functions of the bundle)

gij : Xi ∩Xj ∈ x 7→ gij(x) ∈ GL(E0)
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is C∞. A distribution density for the bundle L is a system (ui) of distribu-
tion densities on Xi with values in L0 such that

ui = gijuj in Xi ∩Xj .

Denote by D′(X,L) the space of distribution densities for the bundle L.
Let L∞c be the space of C∞ sections with compact support of the bun-

dle L. Then the dual of L∞c is identified with the space D′(X,L∗). The
smooth elements in the dual (those given locally by integration against a
smooth function) are the C∞ sections of the bundle Ω(X)⊗ L∗.

A.2. Invariant distribution: The case of a homogeneous vector
bundle

Let G be a Lie group acting transitively on a manifold X. Let o be a
base-point in X, and H = Go be its stabilizer in G, so that X ' G/H.
An element h of H acts on X and fixes o, so that by differentiation, it
acts on its tangent plane by (say) τ0(h). The tangent space T0X can be
identified with g/h. The element h acts on g by the adjoint action Adg(h),
and preserves the subalgebra h on which it acts by Adh h. Hence its acts
on g/h, and this action coincides with τ0(h). This action satisfies

(A.3) det τ0(h) = det(Adg h)
det(Adh h) .

The modular function δG of a Lie group G is defined by

δG(g) = |det Ad(g−1)|

so that

(A.4) |det τ0(h)| := χ0(h) = δH(h)
δG(h) .

A homogeneous vector bundle L over X is a vector bundle L together
with an action of the group G on L by bundle isomorphisms. If g is in G
and x in X, then g maps the fiber Lx into Lg(x) by a linear isomorphism.
In particular, H acts on Lo by a representation (say) τ . Conversely, given a
representation τ of H in a vector space E, then one constructs the bundle
G ×τ E as G × E/ ∼, where ∼ is the equivalence relation defined by the
right action of H on G× E

(g, v) ∼ (gh−1, τ(h)v) for some h ∈ H,

g in G and v ∈ E. Any homogeneous vector bundle over X is of that sort,
in the sense that the bundle L is isomorphic to G×τ L0 (see [17]).

ANNALES DE L’INSTITUT FOURIER



TRILINEAR INVARIANT FORM 1835

A section s : X −→ L can be realized as a L0-valued function fs on G

which satisfies

(A.5) fs(gh) = τ−1(h)fs(g)

and, conversely, such a function f gives raise to a section of L. Let L∞c be
the space of smooth sections of L with compact support. The space L∞c is
G-equivariantly isomorphic to C∞c (G,H, τ), the space of C∞ functions on
G which satisfy (A.5) and have compact support modulo H. The group G
acts by left translations on L∞c , and this action is equivariant with the left
action of G on C∞c (G,H, τ).

The tangent bundle TX of X is an example of such a homogeneous bun-
dle. The action of H on the fiber T0X is τ0. Another important homoge-
nous bundle is the bundle Ω(X) of densities over X. It is a line bundle,
corresponding to the character of H given by |det

(
(τ(h)−1)t

)
| = χo(h)−1

(cf. (A.4)), so that, in this context, we denote the fiber at o of the bundle
Ω(X) by Cχ−1

0
.

Theorem A.1. — There exists a non trivial invariant continous linear
forms on L∞c if and only if there exists a non trivial linear form ξ on E

such that, for all h ∈ H

(A.6) τ(h−1)tξ = χ0(h)ξ.

More precisely,

(A.7)
(
L∞

∗

c

)G
= D′(X,L∗)G ' (L∗0 ⊗ Cχ−1

0
)H .

Sketch of proof. — An element of the dual of L∞c is a distribution density
for the bundle L∗. If it is invariant byG, then the corresponding distribution
density turns out to be smooth. Hence we are looking for a G-invariant
smooth section of the bundle L∗ ⊗ Ω(X). But this is equivalent to an H

invariant element in the fiber at o. �

A.3. Invariant distribution supported in a submanifold

Let X be a manifold and G a Lie group acting on X. Let Q be an orbit
of G in X and assume that Q is closed. Let L be a homogeneous vector
bundle over X. Let N be the normal bundle of Q (i.e. the quotient bundle
TX|Q/TQ). Fix a base-point o in Q, let Go = H be the stabilizer of o.
Then H acts on the tangent space ToX, preserving the subspace ToQ, and
hence acts on the normal space No = ToX/ToQ at o.
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Let T be a distribution on Q. Then the map

C∞c (X) 3 ϕ 7−→ (T, ϕ|Q)

defines a distribution on X, which we still denote by T .
Let L∞c be the space of smooth sections of L with compact support.

Let T be a continuous linear form on L∞c supported in Q. Choose a local
coordinate system on X

(u1, . . . , us, v1, . . . , vr)

such that vj = 0, 1 6 j 6 r are local equations for Q. The (ui)16i6s
form a coordinate system of Q near o. On the other hand let N be the
normal bundle of Q. The family ( ∂

∂vj
)16j6r gives a local trivialization of

the normal bundle N . Choose a local trivialization of the bundle L, and
denote by e∗1, . . . , e∗l the corresponding coordinates on the fiber.

By Schwarz’s local structure theorem for distributions supported in a
vector subspace, there exists an integer k ∈ N (the local transversal order
of the distribution), and for each j, 1 6 j 6 l and each multidiindex α =
(α1, . . . , αr) with |α| = α1 + · · ·+αr 6 k uniquely determined distributions
T jα on (some open subset of) Rs ⊂ Rs × Rr such that

T =
∑

16j6l

∑
|α|6k

(−1)|α|DαT jα e∗j

Let us consider the “top terms” subcollection (T jα, |α| = k, 1 6 j 6 l).
This collection can be interpreted as the local expression of a distribution
density for the bundle Sk(N)⊗L∗|Q on Q. This is obtained by checking the
way the collection transforms under
• change of local trivialization of the bundle L (change the e∗j ’s)
• change of local trivialization of the normal bundle (change the vj ’s)
• change of the local coordinate system on Q (change the uj ’s).
Denote by σ(k)(T ) the section of the bundle Sk(N)⊗L∗|Q associated to T .
Denote by D′k(Q,L) the space of continuous linear forms on L∞c which

are supported on Q and of transversal order 6 k on any local chart of X .

Theorem A.2. — The map T 7−→ σ(k)(T ) is a linear map fromD′k(Q,L)
in D′

(
Q,Sk(N)⊗L∗|Q

)
, with kernel D′k−1(Q,L). Moreover, if Φ is a bundle

diffeomorphism of the bundle L, which maps Q into Q, then

σ(k)(Φ∗T ) = Φ∗σ(k)(T ),

where Φ∗ denotes the action naturally induced by Φ on D′(Q,L) or of the
restriction of Φ|L|Q on D′(Q,Sk(N)⊗ L∗|Q).
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Assume now that T is invariant by G. Observe that invariance insures
that the local transversal degree of T is the same for all charts of Q.
Denote by D′k(Q,L)G the space of G-invariant elements of D′k(Q,L). The

conjonction of Theorem A.1 and Theorem A.2 gives some estimate of its
dimension.

Theorem A.3. — For any k ∈ N,

dim
(
D′k(Q,L)G/D′k−1(Q,L)G

)
6 dim

(
Sk(N0)⊗ L∗0 ⊗ Cχ−1

0

)H
.

The theorem is mostly used through the following corollary.

Corollary A.4. — Assume that for any k ∈ N(
Sk(N0)⊗ L∗0 ⊗ Cχ−1

0

)H = {0}.

Then there exists no non trivial continuous G-invariant linear form on L∞c
such that Supp(T ) ⊂ Q.
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