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SPECTRUM AND MULTIPLIER IDEALS OF
ARBITRARY SUBVARIETIES

by Alexandru DIMCA,
Philippe MAISONOBE & Morihiko SAITO

Abstract. — We introduce a spectrum for arbitrary subvarieties. This gen-
eralizes the definition by Steenbrink for hypersurfaces. In the isolated complete
intersection singularity case, it coincides with the one given by Ebeling and Steen-
brink except for the coefficients of integral exponents. We show a relation to the
graded pieces of the multiplier ideals by using the filtration V of Kashiwara and
Malgrange. This implies a partial generalization of a theorem of Budur in the hy-
persurface case. The key point is to consider the direct sum of the graded pieces
of the multiplier ideals as a module over the algebra defining the normal cone of
the subvariety. We also give a combinatorial description in the case of monomial
ideals.
Résumé. — Nous introduisons un spectre pour des sous-variétés arbitraires.Ceci

généralise la définition de Steenbrink pour les hypersurfaces. Dans le cas d’une sin-
gularité isolée d’intersection complète, il coïncide au spectre donné par Ebeling
et Steenbrink, sauf pour les coefficients des exposants entiers. Nous montrons une
relation avec les gradués des idéaux multiplicateurs en utilisant la filtration V de
Kashiwara et Malgrange. Ceci implique une généralisation partielle d’un théorème
de Budur dans le cas des hypersurfaces. Le point clef est de considérer la somme
directe des gradués d’un idéal multiplicatif comme un module sur l’algèbre dé-
finissant le cône normal de la sous-variété. Nous donnons aussi une description
combinatoire dans le cas des idéaux monomiaux.

Introduction

In [26], [27], Steenbrink introduced the spectrum for hypersurface singu-
larities. Its relations with b-function and multiplier ideals have been studied
in [3], [6], [24], [25], etc. The multiplier ideals were originally defined for
any subvariety of a smooth variety (see e.g. [16]), and the b-function for an

Keywords: Spectrum, V-filtration, multiplier ideal.
Math. classification: 32S40, 32S35.



1634 Alexandru DIMCA, Philippe MAISONOBE & Morihiko SAITO

arbitrary variety has been defined in [4]. In this paper we introduce the spec-
trum for an arbitrary variety generalizing Steenbrink’s definition [26], [27].

Let X be a closed subvariety of a smooth complex algebraic variety
or a complex manifold Y . Let (NXY )x be the fiber of the normal cone
NXY → X over x ∈ X. For each irreducible component Λ of (NXY )x, set
nΛ = dimY −dim Λ. We have the nonreduced spectrum and the (reduced)
spectrum

Ŝp(X,Λ) =
∑
α>0

mΛ,αt
α ∈ Z[t1/e], Sp(X,Λ) = Ŝp(X,Λ)− (−1)nΛtnΛ+1,

where e ∈ Z>0, see 1.2 for the definition of mΛ,α. Note that Ŝp(X,Λ),
Sp(X,Λ) are essentially independent of Y as a corollary of a product for-
mula, see Cor. 3.3 and 3.4. In case (NXY )x is irreducible, set Ŝp(X,x) =
Ŝp(X,Λ) for Λ = (NXY )x, and similarly for Sp(X,x), mx,α. This gen-
eralizes Steenbrink’s definition in the hypersurface case where NXY is a
line bundle over X. We use Sp(X,x) mainly in this case. The difference
between Ŝp(X,Λ) and Sp(X,Λ) comes from the one between cohomology
and reduced cohomology.
In the isolated complete intersection singularity case, NXY is a vector

bundle over X (in particular, (NXY )x is irreducible), and the spectrum is
associated to the mixed Hodge structure on the Milnor cohomology where
the action of the monodromy is given by choosing a sufficiently general
line passing through the origin in the base space of the Milnor fibration,
see also Remark 1.3, (i). In this case Ebeling and Steenbrink [10] defined
the spectrum in a different way where they consider also the contribution
of the Milnor cohomology associated to the singularity of the total space
of a generic 1-parameter smoothing of X so that the symmetry and the
semicontinuity hold. Their spectrum differs from ours in general ([10], [19],
[28]), but they coincide for mx,α with α /∈ Z, see Remark 1.3, (iv). So we
can apply Theorem 1 below to their spectrum except for the case β = 1.
Let J (Y, αX) denote the multiplier ideals of X ⊂ Y for α ∈ Q>0. They

can be defined by the local integrability of

|g|2/
(∑

i

|fi|2
)α

for g ∈ OY ,

where f1, . . . , fr are local generators of the ideal of X, see [16]. They are
closely related to the filtration V of Kashiwara [14] and Malgrange [18],
see [4]. Set

G(Y, αX) = J (Y, (α− ε)X)/J (Y, αX) for 0 < ε� 1.

If G(Y, αX)x 6= 0, then α is called a jumping coefficient of X ⊂ Y at x.
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SPECTRUM AND MULTIPLIER IDEALS 1635

Let β ∈ (0, 1] ∩Q, and IX be the ideal sheaf of X ⊂ Y . Define

M(β) =
⊕
i∈N
G(Y, (β + i)X), A =

⊕
i∈N
IiX/Ii+1

X .

Then M(β) is a graded A-module since IXJ (Y, αX) ⊂ J (Y, (α + 1)X).
Set

Z̃β = suppAM(β) ⊂ NXY = SpecX A,

i.e. Z̃β is the support of the associated sheaf on NXY . Here SpecX A is
replaced by SpecanX A in the analytic case. For an irreducible component
E of NXY , let E0 be the complement in E of the intersection of E with the
union of the other irreducible components of NXY . Let Z̃β,E be the closure
of Z̃β ∩ E0. Let Zβ,E be the image of Z̃β,E in X. Set dβ,E = dimZβ,E .

For x ∈ X, let mY,x be the maximal ideal of OY,x, and set

M(β, x) =M(β)/mY,xM(β), A(x) = A/mY,xA.

Then M(β, x) is a graded A(x)-module. For each irreducible component
Λ of (NXY )x = SpecA(x), let µΛ,β be the multiplicity of M(β, x) at the
generic point of Λ, i.e.

µΛ,β = dimK(Λ)M(β, x)
⊗
A(x)

K(Λ),

where K(Λ) is the function field of Λ which is a localization of A(x)red.

Theorem 1. — Let β ∈ (0, 1] ∩Q. Then
(i) We have in general

0 6 mΛ,β 6 µΛ,β .

In particular, mΛ,β = 0 if x /∈ suppM(β) ⊂ X.
(ii) If Z̃β is contained in Λ on a neighborhood of ξ in NXY , then

mΛ,β = µΛ,β .

(iii) If x is a sufficiently general point of Zβ,E , then for any irreducible
component Λ of (NXY )x contained in E, we have mΛ,β+i = 0 for
any integer i < dβ,E , and

mΛ,β+dβ,E = (−1)dβ,EµΛ,β .

Here a sufficiently general point means that it belongs to a (sufficiently
small) non-empty Zariski-open subset of Zβ,E . This gives a partial gener-
alization of a theorem of Budur [3] in the hypersurface case whereM(β) is
a free A-module of rank 1 over G(Y, βX). Theorem 1 was found during an
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1636 Alexandru DIMCA, Philippe MAISONOBE & Morihiko SAITO

attempt to extend some assertions about the spectrum in [9]. The following
is a generalization of Cor 1.5 and 1.6 in loc. cit.

Theorem 2. — Let {Si}, {S′j} be Whitney stratifications of X, NXY
such that the restriction of the projection NXY → X to each S′j is a
smooth morphism to some Si, and the restriction of H• SpX CY to S′j are
local systems where SpX CY denotes the Verdier specialization [31]. Then

(i) The spectrum Ŝp(X,Λx) remains constant if {Λx}x∈U is a locally
trivial family of irreducible components of (NXY )x for x ∈ U ⊂ Si
where U is an analytically open subset of Si.

(ii) If T is a transversal slice to Si in Y such that Si ∩ T = {x}, then
we have

Ŝp(X,Λ) = (−t)di Ŝp(X ∩ T,Λ),
for an irreducible component Λ of (NX∩TT )x = (NXY )x where
di = dimSi.

Here a locally trivially family {Λx}x∈U in (i) means a local section of the
sheaf defined by the sets of the irreducible components of (NXY )x for x ∈
Si, which is a locally constant sheaf. Theorem 2 implies that Theorem 1 (iii)
is reduced to (ii) (where dβ,E = 0) by restricting to a sufficiently general
member of a family of transversal slices. Note that for β /∈ Z, we have
Zβ,E ⊂ suppM(β) ⊂ SingX, and hence dβ,E = 0 in the isolated singularity
case.
Let f = (f1, . . . , fr) be a set of local generators of IX , and bf (s) be the

b-function of f in the sense of [4] (see also [11], [20]). This is independent of
the choice of f and r, but depends on the choice of Y . By [4] and Theorem 1
we get

Theorem 3. — Let α ∈ Q>0, and assumemΛ,α 6= 0 for some irreducible
component Λ of (NXY )x. Then α+ i is a root of bf (−s) for some i ∈ Z. If
furthermore α < 1, then there is a nonnegative integer j0 such that α + j

is a jumping coefficient of X ⊂ Y at x for any integer j > j0.

It is not easy to determine i and j0 in Theorem 3 (see Example 4.6 below)
except for j0 in the hypersurface case (here j0 = 0 since G(Y, αX)x =
G(Y, (α + j)X)x for α > 0 and j ∈ N). In the monomial ideal case, j0 is
bounded by dimY − 1, see Remark 4.8 below.

In the monomial ideal case, there is a combinatorial description for the
jumping coefficients [13] and for the roots of the b-function [5]. We give
here one for the spectrum, see Th. 4.4.
In Section 1, we review the specializations and define the spectrum. In

Section 2, we prove Theorems 1–3. In Section 3, we show a product formula

ANNALES DE L’INSTITUT FOURIER



SPECTRUM AND MULTIPLIER IDEALS 1637

which implies the well-definedness of the spectrum. In Section 4, we treat
the monomial ideal case, and prove Th. 4.4.

1. Spectrum

In this section we review the specializations and define the spectrum.

1.1. Specialization. — Let Y be a smooth complex algebraic variety
or a complex manifold, and X be a subvariety or a analytic subspace of Y .
We do not assume X reduced nor irreducible. Let NXY denote the normal
cone. Let f = (f1, . . . , fr) be a set of local generators of the ideal IX of
X ⊂ Y . We denote the graph embedding by

if : Y → Ỹ := Y × Cr.

Let z1, . . . , zr be the coordinates of Cr. We have the canonical surjection

A′ := OY [z1, . . . , zr]→ A :=
⊕
i∈N
IiX/Ii+1

X ,

sending zi to fi. This implies the inclusion NXY ⊂ Ỹ such that the projec-
tion π′ : Ỹ → Y induces π : NXY → X. Let ∂i = ∂/∂zi, and define

(M,F ) := (if )∗(OY , F ) = (OY [∂1, . . . , ∂r], F ).

Here the Hodge filtration F on OY is defined so that GrFp OY = 0 for
p 6= − dimY , and the direct image (if )∗ is defined as a filtered D-module.
Setting ∂ν =

∏
i ∂

νi
i , the Hodge filtration F on the direct image is defined

by

(1.1.1) FpM =
∑

|ν|6p+dimY

OY ⊗ ∂ν .

Let V denote the filtration of Kashiwara [14] and Malgrange [18] on M
along Y × {0} indexed by Q. The specialization of (OY , F ) along X is
defined by

SpX(OY , F ) = π′−1
(⊕
α∈Q

GrαV (M,F )
) ⊗
π′−1A′

O
Ỹ
.

By [4], [9] this is compatible with the definition of specialization [31] in the
category of perverse sheaves [1] or mixed Hodge modules [23]

(1.1.2) SpX QY [dimY ] = ψtRj∗QY×C∗ [dimY ],

where

j : Y × C∗ = SpecY (OY [t, t−1])→ SpecY
(⊕
i∈Z
I−iX ⊗ t

i
)
,

TOME 61 (2011), FASCICULE 4



1638 Alexandru DIMCA, Philippe MAISONOBE & Morihiko SAITO

denotes the inclusion to the deformation to the normal cone, see [31]. Here
I−iX = OY for i > 0, and SpecY is replaced by SpecanY in the analytic
case. Note that the action of the semisimple part Ts of the monodromy
associated to the nearby cycle functor ψt corresponds to the multiplication
by exp(−2πiα) on GrαV (M,F ). These follow from the fact (see [4], [9]) that
the filtration V corresponding to the functor ψt is essentially given by⊕

i∈Z
V α−iM ⊗ ti.

By [4] (see also [9] for the analytic case) we have the isomorphisms

(1.1.3) F− dimY GrαV M = G(Y, αX) for α ∈ Q.

ForM(β) as in the introduction, this implies

F− dimY SpX(OY ) = π′−1
( ⊕

0<β61
M(β)

) ⊗
π′−1A′

O
Ỹ

= π′−1
( ⊕

0<β61
M(β)

) ⊗
π−1A

ONXY .

since ONXY = π−1A
⊗

π′−1A′ OỸ for the last isomorphism. These imply
thatM(β) is locally finitely generated over A′ or A.

1.2. Definition. — With the above notation, set

(NXY )x = π−1(x) for x ∈ X.

Let Λ be an irreducible component of (NXY )x, and take a sufficiently gen-
eral point ξ of Λ. Let iξ : {ξ} → NXY denote the inclusion morphism.
Set

dY = dimY, dΛ = dim Λ, nΛ = dY − dΛ.

We denote the pull-back of SpX(OY , F )[−dY ] as a complex of filtered D-
modules by

i∗ξ SpX(OY , F )[−dY ],

see Remark 1.3 (ii) below. This corresponds to i∗ξ SpX CY , and underlies a
complex of mixed Hodge modules on {ξ}, which is identified with a complex
of mixed Hodge structures [8], see [23]. Combined with the action of Ts, it
defines the nonreduced spectrum as in [26], [27]:

Ŝp(X,Λ) =
∑
α

mΛ,αt
α,

ANNALES DE L’INSTITUT FOURIER



SPECTRUM AND MULTIPLIER IDEALS 1639

where

(1.2.1) mΛ,α =
∑
j

(−1)j dim GrpF H
j+nΛ(i∗ξ SpX OY [−dY ])λ,

with p = [nΛ + 1− α], λ = exp(−2πiα).

Here H•(i∗ξ SpX OY [−dY ])λ denotes the λ-eigenspace of the cohomology
group by the action of Ts. Set

Sp(X,Λ) = Ŝp(X,Λ)− (−1)nΛtnΛ+1.

If (NXY )x is irreducible, set for Λ = (NXY )x
Ŝp(X,x) = Ŝp(X,Λ), Sp(X,x) = Sp(X,Λ), mx,α = mΛ,α.

1.3. Remarks.
(i) This generalizes Steenbrink’s definition in the hypersurface case ([26],

[27]). Assume X is a hypersurface or an isolated complete intersection
singularity. Then NXY is a line bundle or a vector bundle over X, and
the Milnor cohomology is given by

H•
(
i∗ξ SpX(OY , F )[−dY ]

)
for ξ ∈ (NXY )x sufficiently general,

where the pull-back i∗ξ is explained in Remark 1.3 (ii) below. In the isolated
complete intersection singularity case, the action of the monodromy is given
by taking a sufficiently general line C passing through the origin in the
base space of the Milnor fibration and corresponding to ξ ∈ Λ = (NXY )x.
Indeed, if the complete intersection X is defined by

f = (f1, . . . , fr) : Y → Cr,

then f induces the projection

NXY = X × Cr → N{0}Cr = Cr,

and the inverse image Z of a sufficiently general line C ⊂ Cr by f is a 1-
parameter smoothing of X. Moreover, its Milnor cohomology is isomorphic
to the cohomology of (SpX CY )ξ with C ξ ⊂ (NXY )x corresponding to C
by the above projection, and the restriction of SpX CY to NXZ ⊂ NXY

is isomorphic to SpX CZ on a neighborhood of ξ ∈ (NXZ)x if ξ is suffi-
ciently general. (Note also that we can replace Y with the total space of
the miniversal deformation of f by Cor. 3.4.)

(ii) Under a closed embedding of smooth complex varieties or complex
manifolds i : X → Y , the pull-back of a complex of filtered D-modules
(M,F ) underlying a complex of mixed Hodge modules is locally defined
as follows. By factorizing i locally on Y , we may assume X is defined by

TOME 61 (2011), FASCICULE 4



1640 Alexandru DIMCA, Philippe MAISONOBE & Morihiko SAITO

y1 = 0 where y1, . . . , ym are local coordinates of Y . Let V be the filtration
of Kashiwara [14] and Malgrange [18] alongX. Then the pull-back i∗(M,F )
as a complex of filtered D-modules is defined to be the mapping cone of

(1.3.1) ∂/∂y1 : Gr1
V (M,F [1])→ Gr0

V (M,F ),

where (F [1])p = Fp−1. This is the same as in the case of right D-modules,
and the transformation between the corresponding left and rightD-modules
is done without shifting the filtration in this paper. (Note that the usual
definition of pull-back as in [2] does not work for the Hodge filtration.)

(iii) Define

(1.3.2) p(M,F ) = min
{
p | FpM 6= 0

}
.

By Remark (ii), p(M,F ) does not decrease under the cohomological pull-
back functor Hki∗ for filtered D-modules by a closed embedding i, and
increases by the codimension under a non-characteristic restriction to a
transversal slice (since Gr0

V M = 0 in the non-characteristic case).
Under the pull-back by a smooth morphism, p(M,F ) decreases by the

relative dimension where the complex is also shifted. This is compatible
with the definition of F on OY , and we have

(1.3.3) p(OY , F ) = p(SpX OY , F ) = −dimY.

Then we get by Remark (ii)

(1.3.4) mΛ,α = 0 if α 6 0, mΛ,β > 0 if β ∈ (0, 1].

(iv) The normalization of spectrum (1.2.1) is dual of the one used by
Ebeling and Steenbrink [10]. Indeed, for a Hodge structure H with an
automorphism T of finite order, they use

Sp′(H,T ) =
∑
α

mH,αt
α with mH,α = dimC GrpF HC,λ,

where p = [α], λ = exp(2πiα).

Here HC,λ = Ker(T −λ) ⊂ HC. This definition is somewhat dual of (1.2.1).
In the case of isolated hypersurface singularities, their definition of spec-
trum coincides with ours by the symmetry of the spectrum which follows
from the self-duality of the mixed Hodge structure on the Milnor cohomol-
ogy [26]. In the case of isolated complete intersection singularities, they
apply the above definition to the mixed Hodge structure

ϕfψgQX [dX ],

ANNALES DE L’INSTITUT FOURIER
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where f : X ′ → C is a generic 1-parameter smoothing of X, g : X → C is a
generic 1-parameter smoothing of X ′, T is the semisimple part of the mon-
odromy associated to ϕf , and dX = dimX, see [10] for details. Then the
symmetry of their spectrum follows from the self-duality of ϕfψgQX [dX ]
in [23], 2.6.2.
Denoting the Milnor fibers of f, g by Ff , Fg, we have a short exact se-

quence

0→ H̃dX (Ff ,C)→ ϕfψgQX [dX ]→ HdX+1(Fg,C)→ 0,

since ψgQX |X′r{0} = QX′r{0} and (ψgQX )0 = RΓ(Fg,C). This means
that we have to consider also the contribution of HdX+1(Fg,C) in order
to satisfy the symmetry and the semicontinuity. Since the action of the
monodromy on HdX+1(Fg,C) is associated to the function f , it is the
identity. So their definition coincides with ours for the mx,α with α /∈ Z.
However, it seems rather difficult to generalize the construction in [10] to
the case of arbitrary singularities.

(v) By the definition of specialization (1.1.2) using the deformation to
the normal cone, we have

supp SpX CY = NXY with dimNXY = dimY.

The assumption of the next proposition is satisfied in case X has a 0-
dimensional embedded component so that dim(NXY )x = dim Y , see also
Th. 4.4 and Ex. 4.6 below.

1.4. Proposition. — If dim Λ=dim Y , then mΛ,α=0 unless α∈(0, 1].

Proof. — It is enough to show that the restriction of SpX(OY , F ) to
a sufficiently small open subvariety of Λ is a variation of mixed Hodge
structure of level 0 (i.e. the Hodge filtration is trivial). Let n =: dim Λ =
dimY , and

(H,F ) = i∗ξ SpX(OY , F )[−n].
This underlies a mixed Hodge structure (where F p = F−p) since ξ is suffi-
ciently general. By Remark 1.3 (iii) we have

min
{
p | FpH 6= 0

}
> 0.

Moreover, the self-duality D(OY , F ) = (OY , F [n]) implies

D(SpX(OY , F )) = SpX(OY , F [n]),
D(H,F ) = (H,F ).

Indeed, the second isomorphism follows from the first by using the duality

i∗ξ ◦D = D ◦ i!ξ

TOME 61 (2011), FASCICULE 4
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together with

i!ξ SpX(OY , F ) = i∗ξ SpX(OY , F [n])[2n].

Here the last isomorphism follows from the fact that SpX(OY , F )[−n] un-
derlies a variation of mixed Hodge structure on a neighborhood of ξ in Λ.
So the assertion follows. �

2. Proof of main theorems

In this section we prove Theorems 1–3. We first show the following propo-
sition which will be used in the proof of Theorem 1.

2.1. Proposition. — Let (M,F ) be a filtered DY -module on a smooth
variety or a complex manifold Y , which underlies a mixed Hodge module
M. Let p0 = p(M,F ) in the notation of (1.3.2). Let i : X → Y be a closed
immersion of a smooth subvariety. Let i∗(M,F ) denote of the pull-back as
a complex of filtered D-modules. Then

(i) We have Fp0Hki∗M = 0 for k 6= 0, and Fp0H0i∗M is locally a
quotient of OX

⊗
OY Fp0M .

(ii) If suppFp0M ⊂ X, then Fp0H0i∗M = Fp0M .

Proof. — By the definition of the pull-back, we may assume that X is
defined by y1 = 0 as in Remark 1.3 (ii). Then the assertion (i) for k 6= 0
easily follows. Moreover, the assertion (i) for k = 0 is reduced to

(2.1.1) Fp0M ⊂ V 0M.

(Indeed, this implies y1Fp0M ⊂ V >0M , and hence Fp0 Gr0
V M is a quotient

of OX
⊗
OY Fp0M .) Then (2.1.1) follows from the strict surjectivity of

∂/∂y1 : Grα+1
V (M,F [1])→ GrαV (M,F ) for α < 0,

see [22], 3.2.1.3, where (F [1])p = Fp−1 and Vα = V −α.
For the assertion (ii) it is enough to show Fp0V

>0M = 0 under the
condition suppFp0M ⊂ X. By the definition of the filtration V , we have
the injectivity of

y1 : V αM → V α+1M for α > 0.

If Fp0V
>0M 6= 0, then its support cannot be contained in X = {y1 = 0}

by the above injectivity of y1. So the assertion follows. This completes the
proof of Prop. 2.1. �
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2.2. Proof of Theorem 1. — Set (M,F ) = SpX(OY , F ). Applying Prop. 2.1 (i)
to the pull-back by

ı̃x : {x} × Cr → Ỹ ,

we get the assertion (i), because the pull-back by

i′ξ : {ξ} → Λ

is a non-characteristic pull-back (since ξ ∈ Λ is sufficiently general), and is
defined by the pull-back as O-modules, see Remark 1.3 (ii). (Note that the
pull-back by Λ→ {x} ×Cr is the inverse of the direct image by the closed
embedding if we restrict to a neighborhood of ξ where Λ is smooth. So this
is essentially trivial.)
If x is a sufficiently general point of Zβ,E , we may assume Zβ,E is a

point by [9], Th. 5.3 taking a sufficiently general member of a family of
transversal slices to Zβ,E . Here dimY and dβ,E are replaced respectively
by dimY − dβ,E and 0. Thus the assertion (iii) is reduced to (ii), and the
latter follows from Prop. 2.1 (ii). This completes the proof of Theorem 1.

2.3. Proof of Theorem 2. — The first assertion is clear since the restric-
tion of H• SpX CY to S′j underlies a variation of mixed Hodge structure.
For the second assertion, note that the stratification {S′j} of NXY gives a

stratification satisfying Thom’s (af )-condition for the function t in (1.1.2)
since Y ×C∗ is smooth, see e.g. [9], Prop. 2.17 and the references there. So
the assertions follow from the same argument as in the proofs of [9], The-
orems 1.2 and 5.3.

2.4. Proof of Theorem 3. — The first assertion on the roots of b-function
follows from [4], Cor. 2.8, and the second assertion on the jumping coef-
ficients follows from Theorem 1 (i). Indeed, if the second assertion does
not hold, then the degree i part of M(β, x) vanishes for i � 0 (since the
graded algebra A is generated by the degree 1 part). But this implies that
suppM(β, x) ⊂ {0} in SpecA(x) = (TXY )x, and it contradicts Theo-
rem 1 (i). This completes the proof of Theorem 3.

2.5. Remark. — Let EΛ = {α | mΛ,α 6= 0}, and Rf,x be the set of the
roots of bf,x(−s), where bf,s(s) is defined for the germ (X,x), see [4]. Then
the first assertion of Theorem 3 is equivalent to⋃

Λ

exp(−2πiEΛ) ⊂ exp(−2πiRf,x),

where Λ runs over the irreducible components of (NXY )x. However, the
equality does not always hold (e.g. if f = x2y) unless we take the union
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over the irreducible components Λ of (NXY )y for any y ∈ Z sufficiently
near x.

3. Product formula

In this section we show a product formula which implies the well-
definedness of the spectrum.

3.1. Cartesian product. — For a = 1, 2, let Ya be a smooth complex
algebraic variety or a complex manifold, and Xa be a closed subvariety
of Ya. Let X = X1 ×X2, Y = Y1 × Y2 with the projection pra to the a-th
factor. Let Ia denote the ideal of Xa ⊂ Ya. Then IX = pr∗1 I1 + pr∗2 I2, and

(3.1.1) IiX =
∑
p+q=i

Ip1 � Iq =
∑
p+q=i

pr∗1 I
p
1 ∩ pr∗2 I

q
2 ,

i.e. the filtration {IiX}i∈N is the convolution of the filtrations {pr∗1 I
p
1}p∈N

and {pr∗2 I
q
2}q∈N. Here the last isomorphism of 3.1.1 is shown by taking the

exterior product of the exact sequences

0→ Ip1 → OY1 → OY1/I
p
1 → 0,

0→ Iq2 → OY2 → OY2/I
q
2 → 0,

which gives a diagram of short exact sequences by the exactness of exterior
product. By a similar argument, we get then (see also [1], 3.1.2.9)

(3.1.2) IiX/Ii+1
X =

⊕
p+q=i

(
Ip1/I

p+1
1 � Iq2/I

q+1
2
)
,

i.e. ⊕
i∈N
IiX/Ii+1

X =
(⊕
p∈N
Ip1/I

p+1
1
)
�
(⊕
q∈N
Iq2/I

q+1
2
)
,

and hence

(3.1.3) NXY = NX1Y1 ×NX2Y2.

3.2. Proposition. — With the above notation we have a canonical
isomorphism

(3.2.1) SpX(OY , F ) = SpX1(OY1 , F )� SpX2(OY2 , F ),

where the action of Ts on the left-hand side corresponds to Ts � Ts on the
right-side hand.
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Proof. — Let Ma be the direct image of OYa by the graph embedding as
in 1.1. Let

(M,F ) = (M1, F )� (M2, F ).
These have the filtration V of Kashiwara [14] and Malgrange [18]. Using
the same argument as in the proof of (3.1.1), we see that the filtration V
on M is the convolution of pr∗1 V and pr∗2 V , i.e.

V αM =
∑

α1+α2=α
V α1M1 � V

α2M2.

(Indeed, the filtration defined by the right-hand side satisfies the conditions
of the filtration V .) Then we have

GrαV (M,F ) =
⊕

α1+α2=α
Grα1

V (M1, F )�Grα2
V (M2, F ).

So the assertion follows. �

3.3. Corollary. — With the above notation, write Ŝp(Xa,Λa) =∑
αma,Λa,αt

α for an irreducible component Λa of (NXaYa)xa , and
Ŝp(X,Λ) =

∑
αmΛ,αt

α for Λ = Λ1 × Λ2 under the isomorphism (3.1.3).
Then

(3.3.1) mΛ,α =
∑

α1 +̃α2=α

m1,Λ1,α1m2,Λ2,α2 .

where α1 +̃α2 is defined to be α1 + α2 if dα1e − α1 + dα2e − α2 > 1, and
α1 +α2−1 otherwise. Here dαe is the smallest integer which is greater than
or equal to α.

Proof. — Let ξ = (ξ1, ξ2) ∈ NXY = NX1Y1 × NX2Y2. By Prop. 3.2 we
have

i∗ξ SpX(OY , F ) = i∗ξ1 SpX1(OY1 , F )� i∗ξ2 SpX2(OY2 , F ).
So the assertion follows. �

3.4. Corollary. — The spectrum Ŝp(X,Λ) is essentially independent
of Y using the isomorphism 3.1.3 for X2 = pt.

Proof. — Since the spectrum is defined analytically locally, it is enough
to compare the embedding X → Y with

X → Y = Y × {0} → Y × C.

So the assertion follows from 3.3, since Ŝp(X2,Λ2) = t in the case X2 is a
(reduced) point, dimY2 = 1, and Λ2 = NX2Y2. �
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4. Monomial ideal case

In this section, we treat the monomial ideal case, and prove Th. 4.4.

4.1. Notation. — Assume Y = Cn, and X is defined by a monomial
ideal a of C[x] = C[x1, . . . , xn]. We denote by xν the monomial correspond-
ing to ν ∈ Nn. Let Γa ⊂ Nn be the semigroup corresponding to a, i.e.

Γa =
{
ν ∈ Nn | xν ∈ a

}
.

Let Pa be the convex hull of Γa in Rn>0 which is called the Newton poly-
hedron of a. Let J(Y, αX) ⊂ C[x] denote the multiplier ideals of a. Set
1 = (1, . . . , 1), and

U(α) =
{
ν ∈ Nn | ν + 1 ∈ (α+ ε)Pa with 0 < ε� 1

}
.

Then we have by Howald [13]

(4.1.1) J(Y, αX) =
∑

ν∈U(α)

Cxν .

See [5] for a combinatorial description of the roots of the b-function.
For an (n − 1)-dimensional compact face σ of Pa, let Lσ be the linear

function such that L−1
σ (1) ⊃ σ. Let cσ be the smallest positive integer such

that cσLσ has integral coefficients. Let

G′σ = Zn ∩ L−1
σ (0),

and Gσ be the subgroup generated by ν − ν′ for ν, ν′ ∈ Γa ∩ σ. Set

eσ =
∣∣G′σ/Gσ∣∣.

For a face σ of Pa, let Bσ ⊂ C[x] be the C-subalgebra generated by xν
for ν ∈ σ ∩ Γa. Let

B =
∑
σ

Bσ ⊂ C[x],

where the multiplication of xν and xν′ in B is given by xν+ν′ if xν , xν′ ∈ Bσ
for some σ, and it vanishes otherwise. Set

A =
⊕
i∈N

ai/ai+1.

With the above notation, we have the following:

4.2. Proposition. — Ared = B.

ANNALES DE L’INSTITUT FOURIER



SPECTRUM AND MULTIPLIER IDEALS 1647

Proof. — For ν ∈ Nn, set

v(ν) = min{Lσ(ν)},

where σ runs over the (n − 1)-dimensional faces of Pa. Let σ̂ be the cone
generated by σ in the real vector space Rn. Then

Rn>0 ⊂
⋃
σ

σ̂ ⊂ Rn>0,

and

(4.2.1) v(ν) =
{
Lσ(ν) if ν ∈ σ̂,
0 if ν /∈

⋃
σ σ̂.

So we get for ν ∈ Rn>0

(4.2.2) ν ∈ αPa ⇐⇒ v(ν) > α.

Note that

(4.2.3) v(ν + ν′) = Lσ′′(ν + ν′) > v(ν) + v(ν′) if ν + ν′ ∈ σ̂′′.

Let C be a positive number such that for any ν ∈ Nn and k ∈ N

(4.2.4) xν ∈ ak if v(ν) > k + C.

For the existence of such C, it is enough to show

(4.2.5)
k∑

Γa + Rn>0 ⊃ (k + C)Pa,

where
∑k

S :=
{∑k

i=1 vi | vi ∈ S
}

for S ⊂ Rn. Then the assertion is
reduced to

(4.2.6)
k∑

(σ ∩ Γa) + Rn>0 ⊃ σ̂ ∩ (k + C)Pa for any σ.

If σ is not compact, it is the union of σ′ + RI>0 for compact faces σ′ of σ,
where I is the subset of {1, . . . , n} such that σ is stable by adding the i-th
unit vector for i ∈ I. So the assertion is reduced to the case σ compact. By
increasing induction on k, it is further reduced to

(4.2.7) (σ ∩ Γa) + σ̂ ⊃ σ̂ ∩ αPa if α� 0,

since v(ν) = 1 for ν ∈ σ ∩ Γa. Then the assertion is proved by replacing σ
with a simplex σ′ defined by vertices of σ.

Set
N =

[
(C + 1)/ε

]
+ 1 with ε = min

{
c−1
σ

}
,

where σ runs over the (n− 1)-dimensional faces of Pa. Note that

(4.2.8) v(ν) > k + ε if v(ν) > k with ν ∈ Nn.
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Let Ik be the ideal of C[x] generated by xν ∈ ak with v(ν) > k. Set

I =
⊕
k∈N

Ik/a
k+1.

Then I is an ideal of A such that IN = 0 and A/I = B by the above
arguments. So the assertion follows. �

4.3. Corollary.
(i) The irreducible components Λ of NXY are given by SpecBσ for

(n − 1)-dimensional faces σ of Pa, and we have for any faces σ, σ′
of Pa

SpecBσ ∩ SpecBσ′ = SpecBσ∩σ′ .
(ii) The irreducible components Λ of (NXY )0 are given by SpecBσ for

(n− 1)-dimensional compact faces σ of Pa.

Proof. — The first assertion of (i) is clear by Prop. 4.2. Let

Jσ = Ker(B → Bσ).

This is generated over C by xν for ν ∈ Nn such that xν ∈ B and ν /∈ σ̂. So
we get

Jσ∩σ′ = Jσ + Jσ′ ,

and the last assertion of (i) follows. For the assertion (ii), note that the
image of SpecBσ in Y is a point if and only if σ is compact. Then the
assertion (ii) follows from (i). �

4.4. Theorem. — For Λ = SpecBσ with σ compact, we have in the
notation of 4.1

Ŝp(X,Λ) =
cσ∑
i=1

eσt
i/cσ .

Proof. — Let B′σ be the localization of Bσ by the monomials xν in Bσ.
Then

(4.4.1) rank
B
′
σ
M(β)

⊗
A

B
′
σ =

{
eσ if β ∈ c−1

σ Z,
0 otherwise.

So the assertion follows from Theorem 1 together with Prop. 1.4, 4.2 and
Cor. 4.3. �

4.5. Comparison. — With the notation of 4.1, let f =
∑
ν cνx

ν ∈
C{{x}}. Assume f is non-degenerate with respect to the Newton boundary
∂Pa, see [15]. Let D = f−1(0) ⊂ (Y, 0) = (Cn, 0). Assume

Xred = {0} so that SingD = {0}.
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Then we may assume f ∈ C[x] by the finite determination property as is
well-known. Let JC(Y,X), JC(Y,D) denote the sets of jumping coefficients.
With the notation in the proof of Prop. 4.2 we have by Howald [13] (see 4.1.1
above)

(4.5.1) JC(Y,X) =
{
v(ν) | ν ∈ Zn>0

}
.

Note that JC(Y,D) contains always 1, and we have the periodicity

(4.5.2) JC(Y,D) =
(
JC(Y,D) ∩ (0, 1]

)
+ N.

Write Sp(f, 0) =
∑
αmf,αt

α (the spectrum of f). Define the set of ex-
ponents by

E(D, 0) = {α | mf,α 6= 0}, E(X,Λ) = {α | mΛ,α 6= 0}.

Then we have

(4.5.3)
JC(Y,D) ∩ (0, 1) (1)== JC(Y,X) ∩ (0, 1)

(2)
∥∥ ∩(3)

E(D, 0) ∩ (0, 1) ⊂
(4)

⋃
ΛE(X,Λ) ∩ (0, 1)

Indeed, we have the equality (1) by Howald [12], and (2) by Budur [3]. The
inclusion (3) follows from Theorem 1 and (4.4.1) or Theorem 4.4 and (4.5.1).
The spectrum of f is calculated by Steenbrink [26] (see also [21], [30]).
This implies that the composition of (1) and (2) is the equality, since the
exponents at most 1 are given by restricting the right-hand side of (4.5.1).
Combined with Theorem 4.4, the last assertion also implies (4). Note that
equality does not necessarily hold for (3) and (4), see Ex. 4.6–4.7 below.
As for the b-function, it is well known that the roots of the b-function are

not determined by the Newton boundary even if f is non-degenerate in the
sense of [15]. For example, the roots of the b-function of fλ = x5+y4+λx3y2

depend on whether λ = 0 or not. Indeed, for λ 6= 0, 11
20 is a root of bfλ(−s)

and 31
20 is not. For λ = 0, see (4.7.1) below.

4.6. Example. — Assume Y = Cn and f = (f1, . . . , fn) with fi = xmii ,
where x1, . . . , xn are the coordinates of Cn and themi are positive integers.
Let σ be the unique (n−1)-dimensional compact face of Pa, i.e. the convex
hull of {m1e1, . . . ,mnen}, where ei is the i-th unit vector of Rn. Then
Lσ =

∑
i xi/mi, and

(4.6.1) cσ = LCM(m1, . . . ,mn), eσ = m1 · · ·mn/cσ.

Indeed, let Gσ and G′σ denote respectively the injective image of Gσ and
G′σ by the projection Zn → Zn−1 to the first n− 1 factors. Set

b = LCM(m1, . . . ,mn−1), d = GCD(b,mn).
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Then b = b′d, mn = m′nd with b′,m′n ∈ N. This implies cσ = mnb
′, and

|Zn−1/Gσ| = m1 · · ·mn−1, |Zn−1/G
′
σ| = b′.

So the assertion for eσ follows. The assertion for cσ is clear.
Set

E =
{

(a1, . . . , an) ∈ Nn | ai ∈ [1,mi]
}
.

Then

JC(Y,X) =
{ n∑
i=1

ai
mi
| ai ∈ Z>0

}
,

Ŝp(X, 0) =
cσ∑
i=1

eσt
i/cσ ,(4.6.2)

bf (s) =
[ ∏

(a1,...,an)∈E

(
s+

n∑
i=1

ai
mi

)]
red
.

Here [
∏
j(s + βj)nj ]red =

∏
j(s + βj) if the βj are mutually different and

nj ∈ Z>0. The assertion on the spectrum follows from Th. 4.4 or Cor. 3.3
using (4.6.1). The other assertions follow from (4.5.1) and [4], Th. 5. This
example shows that it is not necessarily easy to determine i and j0 in
Theorem 3 in general.

4.7. Example. — Let f =
∑
i x

mi
i and D = f−1(0) ⊂ Y = Cn. Set

Ẽ =
{

(a1, . . . , an) ∈ Nn | ai ∈ [1,mi − 1]
}
.

Then

JC(Y,D) ∩ (0, 1] =
{ n∑
i=1

ai
mi
| ai ∈ Z>0

}
∩ (0, 1],

Sp(D, 0) =
n∏
i=1

(t− t1/mi)/(t1/mi − 1),(4.7.1)

b̃f (s) =
[ ∏

(a1,...,an)∈Ẽ

(
s+

n∑
i=1

ai
mi

)]
red
,

where b̃f (s) = bf (s)/(s+ 1). The assertions on JC(Y,D) and Sp(D, 0) fol-
low from [12] and [29]. The assertion on b̃f (s) is an unpublished result of
Kashiwara asserting that in the isolated weighted homogeneous singularity
case, the roots of b̃f (−s) coincide with the exponents and have multiplic-
ity 1. (This also follows from [17].) Note that the formula for Sp(D, 0) holds
in the isolated weighted homogeneous singularity case if we replace 1/mi

by the weights wi.
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4.8. Example. — In the monomial ideal case, j0 in Theorem 3 is bounded
by n − 1. Indeed, with the notation of the proof of Prop. 4.2 we have for
β ∈ Q ∩ (0, 1] and a face σ of Pa

(4.8.1) min
{
Lσ(ν) | ν ∈ Zn ∩ σ̂, Lσ(ν)− β ∈ Z

}
6 n.

To show this, we may replace σ̂ with σ̂′ +
∑
i∈I RI>0 where σ′ is a simplex

defined by vertices {vi} of a compact face of σ, and I is as in the proof of
Prop. 4.2. Set

Dσ′ = Int σ̂′ r
⋃
i

(Int σ̂′ + vi),

where Int σ̂′ is the interior of σ̂′. Then

Int σ̂′ =
⋃
ν∈N

(
Dσ +

∑
i

νivi

)
,

and (4.8.1) follows. By a similar argument, JC(Y,X) is stable by adding
any positive integers in the monomial ideal case. Note that j0 = n−1 if the
mi in 4.6 are mutually prime. In general it is unclear whether j0 is always
bounded by n− 1.
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