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H-COBORDISM AND S-COBORDISM THEOREMS:
TRANSFER OVER SEMIALGEBRAIC AND NASH

CATEGORIES, UNIFORM BOUND AND
EFFECTIVENESS

by Mady DEMDAH KARTOUE

Abstract. — The h-cobordism theorem is a noted theorem in differential and
PL topology. A generalization of the h-cobordism theorem for possibly non simply
connected manifolds is the so called s-cobordism theorem. In this paper, we prove
semialgebraic and Nash versions of these theorems. That is, starting with semialge-
braic or Nash cobordism data, we get a semialgebraic homeomorphism (respectively
a Nash diffeomorphism). The main tools used are semialgebraic triangulation and
Nash approximation.

One aspect of the algebraic nature of semialgebraic or Nash objects is that
one can measure their complexities. We show h and s-cobordism theorems with a
uniform bound on the complexity of the semialgebraic homeomorphism (or Nash
diffeomorphism) obtained in terms of the complexity of the cobordism data. The
uniform bound of semialgebraic h-cobordism cannot be recursive, which gives an-
other example of non effectiveness in real algebraic geometry. Finally we deduce
the validity of the semialgebraic and Nash versions of these theorems over any real
closed field.
Résumé. — Le théorème de h-cobordisme est bien connu en topologie diffé-

rentielle et PL. Une généralisation pour les h-cobordismes possiblement non sim-
plement connexe est appelée théorème de s-cobordisme. Dans ce papier, nous dé-
montrons les versions semi-algébrique et Nash de ces théorèmes. C’est-à-dire, avec
des données semi-algébriques ou Nash, nous obtenons un homéomophisme semi-
algébrique (respectivement un difféomorphisme Nash). Les principaux outils inter-
venant sont la triangulation semi-algébrique et les approximations Nash.

Un aspect de la nature algébrique des objets semi-algébriques et Nash est qu’on
peut mesurer leurs complexités. Nous montrons les théorèmes de h et s-cobordisme
avec borne uniforme sur la complexité de l’homéomorphisme semi-algébrique (dif-
féomorphisme Nash) obtenu, en fonction de complexité des données du cobor-
disme. La borne uniforme pour le h-cobordisme semi-algébrique réelle ne peut
être effective. Ce qui donne un autre exemple de non effectivité en géométrie al-
gébrique réelle. Pour finir, nous déduisons la validité de ces théorèmes version
semi-algébrique et Nash sur tout corps réel clos.

Keywords: Cobordism, semialgebraic, complexity, effectiveness.
Math. classification: 14P20, 57N70.
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Introduction

The h-cobordism theorem is a classical result in differential and PL topol-
ogy. In this paper we prove that it holds true in semialgebraic and Nash
categories over any real closed field.
Let M be a compact smooth manifold having as boundary a disjoint

union of two smooth manifolds M0 and M1 such that M0 and M1 are both
deformation retracts of M . A triplet (M,M0,M1) like this is said to be an
h-cobordism. The h-cobordism theorem states:

Theorem 0.1 ([14]). — Let (M,M0,M1) be a simply connected smooth
h-cobordism. If dimM = 6 then M is diffeomorphic to M0 × [0, 1].

It is a general procedure to use Tarski-Seidenberg Principle to transfer
statements from R to any real closed field, once uniform bounds are found
for the complexity of all the semialgebraic or Nash objects involved in the
statements.
To do this, first of all we need a semialgebraic or Nash version of the

h-cobordism theorem, that we easily get triangulating our manifold and
using an approximation result.

Secondly we have to make precise the meaning of some topological facts
in a semialgebraic setting and verify that definitions are consistent.

The uniform bound which is established is the following: the complexity
of the semialgebraic homeomorphism f : M →M0×[0, 1] can be bounded in
terms only of the complexity of the h-cobordism (M,M0,M1). This enables
us to translate the semialgebraic h-cobordism theorem to a countable family
of first order statements of the theory of real closed fields (one for each
complexity of the triplet (M,M0,M1)).
Once this is done, we can use Tarski-Seidenberg Principle to transfer the

semialgebraic or Nash h-cobordism theorem to any real closed field.
In a similar way we get also the semialgebraic and Nash s-cobordism

theorems over any real closed field
It is a natural question to ask whether the uniform bounds that we get are

effective or not, that is to ask whether the complexity of the isomorphism
f : M → M0 × [0, 1] is bounded by a recursive function of the complexity
of (M,M0,M1).
We prove that this cannot be the case for the h-cobordism theorem. The

failure is because we have to recognise wether a semialgebraic set is simply
connected or not.

The non effectiveness of the h-cobordism theorem is another exemple of
non effectiveness in real algebraic geometry see [1].
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1. Semialgebraic and Nash h-cobordism theorems and
s-cobordism theorems

We shall agree in this work that every semialgebraic mapping is con-
tinuous. A semialgebraic manifold is a semialgebraic subset M of Rn (or
of Rn, where R is a real closed field) equipped with a finite semialgebraic
atlas, that is, M =

⋃
i∈I Ui, I finite set, Ui open semialgebraic in M and

φi : Ui → Rd a semialgebraic homeomorphism onto an open semialgebraic
subset of Rd).
A Nash manifold is a semialgebraic subset of Rn (or of Rn) which is also

a C∞ submanifold and is equipped with a finite Nash atlas {Ui, φi} where
φi is semialgebraic and C∞. For more detail see [12].

Any compact semialgebraic set S ⊂ Rn (or Rn) can be triangulated, i.e.
there is a finite simplicial complex K in Rn (or Rn) and a semialgebraic
homeomorphism h : |K| → S (where |K| is the union of the simplices of K).
Moreover the semialgebraic triangulation can be chosen compatible with
a finite family (Ti)i∈I of a semialgebraic subsets of S, which means that
each Ti is the image by h of the union of some open simplices (see [2],
p. 217). The semialgebraic triangulation is unique, in the sense that any two
compact polyhedraK and L which are semialgebraically homeomorphic are
PL homeomorphic (cf. [13]). Hence any semialgebraic set gets a unique PL
structure.
Also we get:

Proposition 1.1. — Every compact semialgebraic manifold is semial-
gebraically homeomorphic to a PL manifold.

Proof. — Let M be a compact semialgebraic manifold of dimension m.
There is a semialgebraic triangulation h : |K| →M where K is a finite sim-
plicial complex. We have to check that the polyhedron |K| is a PL manifold.
Take x ∈ |K| and y = h(x). By definition, there is a neighbourhood V of
y in M semialgebraically homeomorphic to a open semialgebraic set U in
Rm, that is, there is a semialgebraic chart (V, φ) such that φ : V → U is
a semialgebraic homeomorphism. Then, there is an open neighbourhood
h−1(V ) of x in |K| semialgebraically homeomorphic to an open semialge-
braic set U of Rm. There is a closed PL ball B ⊂ U such that φ(y) ∈ IntB.

TOME 61 (2011), FASCICULE 4
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It follows that the set W = h−1 ◦ φ−1(B) is a closed and bounded neigh-
bourhood of x in |K|. Assuming the triangulation h to be compatible with
φ−1(B), one has thatW is a polyhedron. It follows thatW and B are semi-
algebraically homeomorphic. By uniqueness, they are PL homeomorphic.
Then Int(W ) and Int(B) are PL homeomorphic. This shows that |K| is a
PL manifold. �

Definition 1.2. — Let (M,M0,M1) be a triple of compact semialge-
braic manifolds such that: ∂M = M0 ∪ M1 and M0 ∩ M1 = ∅. Then,
(M,M0,M1) is called a semialgebraic cobordism.
A semialgebraic cobordism (M,M0,M1) is said to be a semialgebraic

h-cobordism if the inclusions M0 ↪→ M and M1 ↪→ M are semialgebraic
homotopy equivalences, that is, the deformation retractions are semialge-
braic.

Let X be a semialgebraic set defined over a real closed field R. The semi-
algebraic fundamental group of X can be defined considering semialgebraic
loops and semialgebraic homotopies between loops. We write π1(X,x0)alg
with x0 ∈ X.
If R = R we have:

Proposition 1.3 ([5], Theorem 6.4, p. 271). — Let X be a closed semi-
algebraic subset of Rn. Then π1(X, x0)alg and π1(X,x0) are isomorphic.

The results just recalled enable us to translate the PL h-cobordism the-
orem to the semialgebraic category.

Theorem 1.4. — Let (M,M0,M1) be a semialgebraic h-cobordism sim-
ply connected in Rn. If dimM = 6 then M is semialgebraically homeomor-
phic to M0 × [0, 1].

Proof. — By Proposition 1.1, there is a semialgebraic triangulation
λ : |K| →M.We may assume that the triangulation is compatible with the
submanifolds M0 and M1, i.e. there are simplicial subcomplexes K0,K1 ⊂
K that λ(|K0|) = M0 and λ(|K1|) = M1. The polyhedra |K|, |K0| and |K1|
are compact PL manifolds (Proposition 1.1). The polyhedra |K0| and |K1|
are semialgebraic deformation retracts of |K|. They are also PL deforma-
tion retracts of |K|, by PL approximation (cf. [7], Lemma 4.2, p. 92). It
follows that (|K|, |K0|, |K1|) is a simply connected PL h-cobordism. Then

by the PL h-cobordism theorem |K|
PL∼= |K0| × [0, 1], where

PL∼= indicates
the PL homeomorphism. Since a compact PL manifold is a semialgebraic
manifold and a PL homeomorphism between compact PL manifolds is a

ANNALES DE L’INSTITUT FOURIER
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semialgebraic homeomorphism, it follows easily thatM is semialgebraically
homeomorphic to M0 × [0, 1]. This ends the proof. �

2. Extension of some topological properties

In this section, we want to extend the meaning of some topological prop-
erties as semialgebraic simple connectedness and s-homotopy from R to any
real closed field R. This will be useful in the sequel of this paper.
Let R and K be two real closed fields such that K is a real closed ex-

tension of R. If X is semialgebraic subset of Rn, we denote by XK the
semialgebraic subset of Kn defined by the same boolean combination of
polynomial equation and inequalities as X. Actually by Tarski-Seidenberg
Principle, XK depends only on X and not on its description.

Proposition 2.1. — Let X and Y be two semialgebraic subsets of Rn.
The semialgebraic sets X and Y are semialgebraically homeomorphic if and
only if XK and YK are semialgebraically homeomorphic.

Proof. — The first implication is obvious.
Conversely, set X = {x ∈ Rn : φ(a, x)}, Y = {x ∈ Rn : ψ(b, x)} where

φ(a, x) and ψ(b, x) are first order formulas of the theory of real closed
fields with parameters a ∈ Rm and b ∈ Rm

′ . Let f be a semialgebraic
homeomorphism from XK onto YK . Let ψ(c, x, y) be a first order formula of
the theory of real closed field with parameter c ∈ Kr defining Γf = {(x, y) ∈
Kn ×Kn : ψ(c, x, y)} the graph of f . One can get a first order formula in
the theory of real closed fields λ(a, b, c) which says that f is a semialgebraic
homeomorphism between XK and YK . So, we have K |= λ(a, b, c). Let us
observe that: K |= ∃z λ(a, b, z) with a ∈ Rm and b ∈ Rm

′ . By Tarski-
Seidenberg Principle, we get: R |= ∃z λ(a, b, z). That is, there exists a
parameter c′ ∈ Rr which defines a homeomorphism between X and Y .
This completes the proof. �

Next step is to show that the notion of being Cr-Nash manifold can be
translated into a first order formula of the theory of real closed fields. This
can be done using the fact that a Cr-manifold is locally the graph of a
Cr-map.

Proposition 2.2. — Let S ⊂ Rn be a semialgebraic set. Then, the
statement “S is a Cr-Nash submanifold of Rn of dimension m” can be
translated into a first order formula of the theory of real closed fields.

TOME 61 (2011), FASCICULE 4
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Proof. — Set x = (x1, . . . , xn), y = (x1, . . . , xm), z = (xm+1, . . . , xn).
We can write a formula Φ(x) which says that there are positive real numbers
ε and η such that S∩(Bm(y, ε)×Bn−m(z, η)) is the graph of a Cr-function
from Bm(y, ε) to Rn−m. Furthermore, for all permutation σ of {1, . . . , n},
let us indicate by Φσ(x) the formula that says the same things for the
image of x and S by the permutation σ of the coordinates (in order to
get all projections on m coordinates among n). There exists a permutation
σ of {1, . . . , n} such that Φσ(x) is true. We deduce the following formula:
∀x ∈ S

∨
σ Φσ(x) which says clearly that S is a Cr-Nash submanifold of

dimension m of Rn. �

Proposition 2.3. — Let S and T be semialgebraic subsets of Rn such
that T ⊂ S. Then, the statement “S is a Cr-Nash submanifold of Rn of
dimension m, with boundary the set T” can be translated into a first order
formula of the theory of real closed fields.

Proof. — Let x = (x1, . . . , xn), y = (x1, . . . , xm−1), z = (xm+1, . . . , xn).
We can write a first order formula of the theory of real closed fields Ψ(x)
which says that there are positive real numbers ε, δ and η such that both
1) and 2) below hold.
1) T ∩ (Bm−1(y, ε) × ]xm − δ, xm + δ[ × Bn−m(z, η)) is the graph of a

Cr- map g : Bm−1(y, ε)→ Rn−m+1.
Denote by ξ : Bm−1(y, ε) → R the first component of the map g

and by Γ+
ξ ⊂ Bm−1(y, ε) × R, Γ−ξ ⊂ Bm−1(y, ε) × R its over and

undergraph (that is Γ+
ξ = {(u, v) ∈ Bm−1 × R : v > ξ(u)} similarly

Γ−ξ ).
2) S ∩ (Bm−1(y, ε) × ]xm − δ, xm + δ[ × Bn−m(z, η)) is the graph of a

semialgebraic Cr-map from either Γ+
ξ ∩(Bm−1(y, ε)× ]xm−δ, xm+δ[)

to Rn−m, or Γ−ξ ∩ (Bm−1(y, ε)× ]xm − δ, xm + δ[).
Further, for every permutation σ of {1, . . . , n}, let us indicate by Ψσ(x)
the formula that says the same thing for the image of x, S and T by
the permutation σ of coordinates. We construct Ψσ(x) following the same
idea as in the proof of Proposition 2.2, and we take the conjunction of
∀x ∈ S r T

∨
σ Φσ(x) and ∀x ∈ T

∨
σ Ψσ(x) with Φσ(x) as in the proof

of Proposition 2.2. There is a delicate point when we say that we have the
graph of a Cr-differentiable function over something which is not open (the
overgraph). But we can take the coordinate map

g : Bm−1 × R+ −→ Γ+
ξ

(x, y) 7−→ (x, y + ξ(x)).

ANNALES DE L’INSTITUT FOURIER
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which identifies the overgraph with a half-space and compute derivatives
of this function with respect to these coordinates , which completes the
proof. �

The following proposition assures that the fundamental group of a semi-
algebraic set does not change during a real closed extension.

Proposition 2.4 ([5], Theorem 6.3, p. 270). — Let X be a semial-
gebraic set in Rn, x0 ∈ X and K be a real closed extension of R. The
map k : π1(X,x0)alg → π1(XK , x0)alg, defined by k[γ] := [γK ] is a group
isomorphism.

3. Semialgebraic h-cobordism theorem over any real
closed field

In this section we prove the existence of a uniform bound on the com-
plexity of the homeomorphism in the semialgebraic h-cobordism theorem
and use this bound to transfer the semialgebraic h-cobordism theorem over
any real closed field.

Definition 3.1. — Let R be a real closed field. A semialgebraic subset
of Rn is said of complexity at most (p, q) if it admits a description as follows

s⋃
i=1

ki⋂
j=1

{
x ∈ Rn | fij(x) ∗ij 0

}
,

where fij ∈ R[X1, . . . , Xn], and ∗ij ∈ {<, >, =}, Σsi=1ki 6 p, deg(fij) 6 q
for i = 1, . . . , s and j = 1, . . . , ri.
The complexity of a semialgebraic subset S of Rn is the smallest cou-

ple (p, q), with respect to the lexicographic order, such that S admits the
description above.

Assume a semialgebraic subset S(R) ⊂ Rk is defined for any real closed
field R. We say that S is defined uniformly when there is a first order
formula of the theory of real closed fields without parameter which describes
S(R) for every real closed field R. In order to check that S(R) is defined
uniformly, it suffices to check that, for any real closed extension R ⊂ K,
one has S(R)K = S(K).
Assume a semialgebraic subset S(R,n, p, q) ⊂ Rα(n,p,q) is defined for

every real closed field R and any positive integers n, p, q. Assume moreover
that for any n, p, q, S(R,n, p, q) is uniformly defined by a formula without
parameter Φn,p,q: Then we say that S is effectively defined if there is an

TOME 61 (2011), FASCICULE 4
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algorithm which, given n, p, q, produces Φn,p,q. (Technically, using a Gödel
numbering of formulas, this means that the function which associates to
(n, p, q) the Gödel number of Φn,p,q is recursive (cf. [9], Chap. VII, § 4, p.
242)). In what follows, we drop the explicit dependence on R and we write
S(n, p, q) instead of S(R,n, p, q).

Proposition 3.2. — There exist a semialgebraic subset A(n, p, q) in
some affine space Rα(n,p,q) and a semialgebraic family S(n, p, q) ⊂
A(n, p, q)×Rn such that:

(i) For every a ∈ A(n, p, q) the fiber

Sa(n, p, q) =
{
x ∈ Rn : (a, x) ∈ S(n, p, q)

}
is a semialgebraic subset of complexity at most (p, q) of Rn

(ii) For every semialgebraic subset S ⊂ Rn of complexity at most (p, q),
there is a ∈ A(n, p, q) such that: S = Sa(n, p, q).
A(n, p, q) and S(n, p, q) are defined in a uniform way by first order
formulas of the theory of real closed fields without parameters which
can be effectively constructed from n, p, q.

Proof. — Let us first give a description of the fibers of S(n, p, q) which
allow us to show that their union is semialgebraic set.
We start with a set of p polynomials of degree 6 q. Let us call f0, . . . , fp−1

the polynomials. A system of sign conditions over these polynomials is given
by an element σ ∈ {−1, 0, 1}p. This system of signs condition is satisfied in
the set

p−1⋂
i=0

{
x ∈ Rn : sign(fi(x)) = σi

}
.

We will show that a semialgebraic in Rn of complexity at most (p, q) can be
described by a boolean combination of sign conditions over p polynomials
in n variables of degree 6 q, that is, it can be written in the following form:⋃

σ∈Σ

p−1⋂
i=0

{
x ∈ Rn : sign(fi(x)) = σi

}
,

where Σ is a subset of {−1, 0, 1}p.
Let us index the subsets of {−1, 0, 1}p by the integers l starting form 0 to

23p−1. Now, we describe the space of parameters. To do it, we introduce the
notation fa to indicate the polynomial in n variables of degree 6 q where
the list of the coefficients of the monomials of f ordered with respect to
the lexicographic order is a ∈ RN with N =

(
n+q
x

)
. Consider

(a0, . . . , ap−1, l) ∈ (RN )p × {0, . . . , 23p

− 1}.

ANNALES DE L’INSTITUT FOURIER
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The semialgebraic set of Rn corresponding to this parameter is⋃
σ∈Σ[l]

p−1⋂
i=0

{
x ∈ Rn : sign(fai(x)) = σi

}
.

We can then describe S(n, p, q) by the following formula in

(a0, . . . , ap−1, l, x) ∈ (RN )p × {0, . . . , 23p

− 1} ×Rn :

Φn,p,q(a0, . . . , ap−1, l, x) =
∨

σ∈Σ[l]

(
p−1∧
i=0

sign(fai
(x)) = σi

)
.

So, we have

S(n, p, q) =
23p
−1⋃

l=0
{(a0, . . . , ap−1, l, x) ∈ (RN )p ×R×Rn :

Φn,p,q(a0, . . . , ap−1, l, x)}.

As defined, S(n, p, q) is a semialgebraic subset of (RN )p×R×Rn. The set
A(n, p, q) =

⋃23p

l=0(RN )p×{l} ⊂ (RN )p×R gives us the space of parameters
of the semialgebraic subsets of Rn of complexity at most (p, q). Then, one
obtains effectively for any real closed field that the space of parameters
A(n, p, q) is a semialgebraic subset of (RN )p ×R. �

If Sa is the semialgebraic set parametrized by a ∈ A(n, p, q) by abuse
of notation we will write Sa ∈ A(n, p, q). Let us recall the definition of
semialgebraic trivialisation of a semialgebraic map.

Definition 3.3. — A continuous semialgebraic map f : A→ B is said
to be semialgebraically trivial over a semialgebraic subset C ⊂ B if there is
a semialgebraic set F and a semialgebraic homeomorphism h : f−1(C) →
C × F , such that the composition of h with the projection C × F → C

is equal to the restriction of f to f−1(C). This is shown by the following
commutative diagram:

A ⊃ f−1(C) h−−−−→ C × Fyf ypr1

B ⊃ C =−−−−→ C

.

The homeomorphism h is called a semialgebraic trivialisation of f over C.
We say that the trivialisation h is compatible with a subset D ⊂ A if

there is a subset G ⊂ F such that h(D ∩ f−1(C)) = C ×G.

We can now state Hardt’s theorem. A detailed proof which works over
any real closed in field can be found in ([2], p.221).

TOME 61 (2011), FASCICULE 4
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Theorem 3.4. — Let A ⊂ Rn, B ⊂ Rm be two semialgebraic sets and
f : A→ B a semialgebraic map. There is a finite semialgebraic partition of
B =

⋃k
i=1Bi such that f is semialgebraically trivial over each Bi. Moreover,

if A1, . . . , Ah are finitely many semialgebraic subsets of A, we can ask each
trivialisation hi to be compatible with all Aj .

Remark 3.5. — Let a and b be any two elements of the same Bi then,
one gets that f−1(a) and f−1(b) are semialgebraically homeomorphic.

Proposition 3.6. — Given the integers n, p and q, there exists a cou-
ple of integers (t, u) such that for every couple of semialgebraic sets of
complexity at most (p, q) which are semialgebraically homeomorphic, there
is a semialgebraic homeomorphism f between them whose graph Γf ∈
A(2n, t, u).

Proof. — Consider the following projection:

Π: RpN+1 ×Rn −→ RpN+1

(a, x) 7−→ a

with a∈RpN+1 and x∈Rn. We have that S(n, p, q) =
{

(a, x)∈A(n, p, q) ×
Rn : x∈Sa

}
where Sa is a semialgebraic subset of Rn parametrized by a ∈

A(n, p, q). The set S(n, p, q) is a semialgebraic subset of RpN+1 × Rn (see
the proof of Lemma 3.2). The projection

Π|S(n,p,q) : S(n, p, q)→ A(n, p, q)

is a semialgebraic map. By the Hardt trivialisation theorem, applied to the
semialgebraic map Π|S(n,p,q), there exists a finite semialgebraic partition
of A(n, p, q) in Si: A(n, p, q) =

⋃s
i=1 Si such that for each i, there exists a

semialgebraic subset Xi and a semialgebraic homeomorphism hi such that
the following diagram commutes:

Π−1(Si)
hi−−−−→ Si ×XiyΠ

ypr1

Si
=−−−−→ Si

.

As the number of trivialisation homeomorphisms is finite, let us take max-
imum (u, v) of their complexity. We choose a representative in each Si,
i ∈ {1, . . . , s} and take for Xi the corresponding semialgebraic set. As-
sume Xi1 to be semialgebraically homeomorphic to Xi2 for some i1, i2 ∈
{1, . . . , s}. There is a couple of integers (ti1i2 , ui1i2) such that there ex-
ists a semialgebraic homeomorphism f : Xi1 → Xi2 whose graph belongs
to A(2n, ti1i2 , ui1i2). Let X and Y be two semialgebraic sets belonging to
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A(n, p, q) such that they are semialgebraically homeomorphic. Then there
are i1 and i2 such that X = Sa with a ∈ Si1 , Y = Sb with b ∈ Si2and Xi1 ,
Xi2 are semialgebraically homeomorphic by f as before. It follows that X
is semialgebraically homeomorphic to Xi1 by the trivialization homeomor-
phism, the same for Y and Xi2 . We have more precisely: hi1 |X : X → Xi1

defined by (a, hi1 |X(x)) = hi1(a, x).We get here that the complexity of this
restriction is bounded by (u, v) independently of X. And for Y , we have the
semialgebraic homeomorphism hi2 |Y : Y → Xi2 defined by (b, hi2 |Y (x)) =
hi2(b, x). Consequently this homeomorphism has a complexity bounded by
(u, v), independently of Y . Hence we get an homeomorphism from X to Y
by g = hi2

−1
|Y ◦ f ◦ hi1 |X . The complexity of g is bounded by (t′i1i2 , u

′
i1i2

)
independently of X and Y , since it is a composition of semialgebraic home-
omorphisms with complexity bounded independently of X and Y , and de-
pends only on i1 and i2 ∈ {1, . . . , s}. Set

E =
{
(i, j) ∈ {1, . . . , s}2 | Xi andXj are semialgebraically homeomorphic

}
.

This set is finite. Then, take (t, u) =
(

max
(i,j)∈E

(t′ij), max
(i,j)∈E

(u′ij)
)
. �

We can define the complexity of a semialgebraic cobordism.

Definition 3.7. — Let (M,M0,M1) be a semialgebraic cobordism such
that the semialgebraic manifoldsM ,M0 andM1 have respective complexi-
ties (t, u), (t0, u0) and (t1, u1). The complexity of the cobordism (M,M0,M1)
is

(v, w) =
(
max(t, t0, t1),max(u, u0, u1)

)
.

The following theorem gives uniform bound for the h-cobordism theorem.

Theorem 3.8. — Given n,m > 6, (p, q) ∈ N2, there exists (t, u) =
ΨHC(n,m, p, q) in N2 such that for all simply connected semialgebraic h-
cobordism (M,M0,M1) in Rn of complexity at most (p, q) and dimM = m,
there exists a semialgebraic homeomorphism f : M → M0 × [0, 1] whose
graph Γf ∈ A(2n+ 1, t, u).

Proof. — To prove the existence of the uniform bound (t, u), we will
first construct a set of parameters of semialgebraic h-cobordisms in Rn
with complexity at most (p, q) and semialgebraically simply connected. We
need to translate the fact of being:

“a semialgebraic h-cobordism in Rn of complexity at most
(p, q) simply connected”,

into a first order formula of the theory of real closed fields.
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Indeed, the fact that a semialgebraic subset of Rn is a semialgebraic
submanifold of Rn of dimension m can be said by a first order formula
of the theory of real closed fields (see Proposition 2.2 (ii)). Which implies
that the set of semialgebraic submanifolds of Rn of dimension m and with
complexity at most (p, q) is a semialgebraic subset of A(n, p, q). Let us
denote it by B(n,m, p, q). So, it is defined by a first order formula of the
theory of real closed fields in in a uniform and effective way.
The conditions which must satisfy a triplet of semialgebraic manifolds

(M,M0,M1) to be a cobordism can be translated to a conjunction of first
order formulas of the theory of real closed fields with coefficients in Z. Then
the set of elements (a, b, c) ∈ B(n,m, p, q) × B(n,m − 1, p, q)2 such that
(Ma,Mb,Mc) is a cobordism is a semialgebraic subset of R3N+3. This set
parametrizes the semialgebraic cobordisms with complexity at most (p, q)
and we denote it by Cob(n,m, p, q). It is defined uniformly and effectively.

There is a semialgebraic family C(n,m, p, q)⊂Cob(n,m, p, q) × Rn with
two subfamilies C0(n,m, p, q)⊂C(n,m, p, q) and C1(n,m, p, q)⊂C(n,m, p, q)
such that:

• For every b ∈ Cob(n,m, p, q), the fiber

Cb(n,m, p, q) =
{
x ∈ Rn : (b, x) ∈ C(n,m, p, q)

}
is a semialgebraic manifold of Rn of dimension m of complex-
ity at most (p, q) with boundary the disjoint union of the fiber
C0,b(n,m, p, q) and C1,b(n,m, p, q).

• For every semialgebraic cobordism (M,M0,M1),M ⊂ Rn of dimen-
sionm and complexity at most (p, q), there exists b ∈ Cob(n,m, p, q)
such that:
M = Cb(n,m, p, q), M0 = C0,b(n,m, p, q), M1 = C1,b(n,m, p, q).

The families C(n,m, p, q), C0(n,m, p, q) and C1(n,m, p, q) are defined uni-
formly and effectively. Consider the projection defined by:

Π: C(n,m, p, q) −→ Cob(n,m, p, q)
(a, x) 7−→ a.

Since Π is a semialgebraic map, by Hardt Theorem, there exists a finite
semialgebraic partition of Cob(n,m, p, q) =

⋃s
i=1Hi, compatible with the

subfamilies C0(n,m, p, q) and C1(n,m, p, q), such that for all i there exists
a semialgebraic homeomorphism of trivialisation Πi : Π−1(Hi) → Hi × Ci
where Ci = (Ci, Ci0, Ci1) is a semialgebraic h-cobordism. Assume Πi of
complexity at most (ti, ui). Then, there is J ⊂ {1, . . . , s} such that the
union Hcob(n,m, p, q) =

⋃
j∈J Hj parametrizes the set of simply connected
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semialgebraic h-cobordisms of complexity at most (p, q). This set is a semi-
algebraic.
We lose exactly here the effectiveness because the problem of deciding

which semiqalgebraic cobordisms are simply connected h-cobordisms is not
effective (cf. [15]).

On the other hand the space of parameters Hcob(n,m, p, q) is uniformly
defined since the property of being semialgebraically simply connected is
invariant under extension of real closed fields (Proposition 2.4). Moreover,
over R semialgebraic simple connectedness is the same as topological simple
connectedness (Proposition 1.3).
Let (M,M0,M1) be a semialgebraic simply connected h-cobordism with

a parameter a ∈ Hcob(n,m, p, q), then there exists j ∈ J such that a ∈ Hj .
Hence, Πj |M : M → Cj is a semialgebraic homeomorphism with complexity
at most (tj , uj). Cj0 × [0, 1] has a complexity bounded in terms(p, q) in an
effective way. Since Cj and Cj0 × I are semialgebraically homeomorphic
(Theorem 1.4), then by Proposition 3.6, there exists a couple of integers
(v, w) which depends only on n, p, q such that there exists a semialgebraic
homeomorphism fj : Cj → Cj0 × I whose graph Γf admits a complexity
at most (v, w). So we have the following semialgebraic homeomorphism:
gj = ((Πj |M0)−1× idI) ◦ fj ◦Πj |M : M →M0× I. We get that there exists
a bound on the complexity of gj , write (t′j , u′j), which depends only on j

and not on (M,M0,M1). Take

(t, u) =
(

max
j∈J

(t′j),max
j∈J

(u′j)
)

and this ends the proof. �

As we pointed out in the proof of the above theorem there is a precise
point where we loose effectiveness even if we get uniform bounds. We shall
look at this question in the next section.

We give now the semialgebraic h-cobordism theorem over any real closed
field. Note that by compact we mean closed and bounded.

Theorem 3.9. — Let (M,M0,M1) be a semialgebraically simply con-
nected semialgebraic h-cobordism defined over a real closed field R. If
dimM > 6, then M is semialgebraically homeomorphic to M0 × [0, 1].

Proof. — Fix n the dimension of ambient space, m > 6 the dimension
of semialgebraic h-cobordism and (p, q) a bound on its complexity. By the
above Theorem, there exists (t, u) ∈ N2 such that the following formula
holds:

Φ(n,m, p, q, t, u) :=
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“For every semialgebraic h-cobordism (M,M0,M1) in Rn
of complexity at most (p, q) simply connected, there exists
a semialgebraic homeomorphism f : M → M0 × [0, 1] such
that its graph Γf ∈ A(2n+ 1, t, u).”

We ask for this sentence to be true over any real closed field. We can
translate the statement Φ(n,m, p, q, t, u) into a first order sentence of the
theory of real closed fields.
Indeed, the space of parameters of semialgebraic h-cobordisms in Rn of

complexity at most (p, q) and semialgebraically simply connected of dimen-
sion m is Hcob(n,m, p, q) as constructed in the above Theorem. Denote by
G(n, p, q, t, u) the set of (a, b, f) ∈ A(n, p, q)2 × A(2n + 1, t, u) such that
f : Sa → Sb × [0, 1] is a semialgebraic homeomorphism. The conditions
that must be satisfied by f to be a semialgebraic homeomorphism, can
be translated into a first order formula of the theory of real closed fields
with coefficients in Z in an effective way (see the proof of Proposition 2.1).
Consequently G(n, p, q, t, u) is a semialgebraic set defined by a first order
formula of the theory of real closed fields with coefficients in Z. We can
now write the following statement:

Φ(n,m, p, q, t, u) :
“∀(a, b, c) ∈ Hcob(n,m, p, q), ∃f ∈ A(2n+ 1, t, u)(a, b, f) ∈
G(n, p, q, t, u)”.

We ask for The statement Φ(n,m, p, q, t, u) as defined is a first order sen-
tence of the theory of real closed fields with coefficients in Z. Since R |=
Φ(n,m, p, q, t, u), by Tarski-Seidenberg Principle, for any real closed field R,
one gets R |= Φ(n,m, p, q, t, u). �

4. On non-effectiveness of semialgebraic
h-cobordism theorem

We proved the existence of a uniform bound in the semialgebraic h-
cobordism theorem. One the other hand one could expect, when working
with semi-algebraic and compact PL objects, that bounds should be re-
cursive in the sense of [9]. To be more precise, what we mean by effective
is the following. A statement is effective if admits a uniform bound which
is bounded by a recursive function. It is not always the case. There are
examples where uniform bounds exist but are not recursive. An example
of this type can be found in [1]. Namely:
Let K∆m be the standard triangulation of the standard simplex ∆m. Let

be B = |K| a PL m-ball with K a finite simplicial complex. By Standard
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Subdivision of B we mean a simplicial isomorphism g : K ′ → L where
K ′ CK and LCK∆m .

Fixing m, the authors proved the following:
There exists ΨSS(d) depending only on d such that for any
finite simplicial complex K with at most d vertices such
that |K| is a PL m-ball, there exists K ′ CK with at most
ΨSS(d) vertices, and a simplicial isomorphism of K ′ with L
a subdivision of K∆m .

But the preceding uniform bound is not recursive

Theorem 4.1 ([1], Corollary 2.18). — For m > 5, ΨSS cannot be
bounded by a recursive function.

We can now prove the non-effectiveness of the semialgebraic h-cobordism
theorem.

Theorem 4.2. — For m > 6, the uniform bound ΨHC of Theorem 3.8
cannot be bounded by a recursive function.

Proof. — Let be B a PL m-ball with m > 6. Assume B triangulated by
a finite simplicial complex K = {σ1, . . . , σn} with at most d vertices. Let
τ be an m-dimensional simplex in B such that |τ | ∩ ∂B = ∅ (subdivide
K if necessary). It is clear that (B r τ , ∂τ, ∂B) is a PL simply connected
h-cobordism. The complexity of this h-cobordism is bounded by a recursive
function in terms of d.

Assume ΨHC to be recursive. Then there is a semialgebraic homeomor-
phism: h : B r τ → ∂τ×I whose complexity is recursively in terms of d. We
can attach τ to ∂τ × I, identifying ∂τ ⊂ τ with ∂τ × {0}. Then extending
h over B by the identity on τ , we get a semialgebraic homeomorphism

h′ : B → τ
⋃
∂τ

(∂τ × I)

with complexity bounded by a recursive function Φ(d). Let x̃ = (x0, . . . ,

xm) with xi > 0 and
∑
xi = 1 be a point of τ with its barycentric coor-

dinates. Let b̃ = ( 1
m+1 , . . . ,

1
m+1 ) the barycenter of standard m- simplex.

Now consider the following PL homeomorphism g : τ
⋃
∂τ (∂τ × I) → ∆m

defined by

g(x) =


1
2 b̃+ 1

2 x̃ if x ∈ τ
1−λ

2 b̃+ 1+λ
2 x̃, if (x, λ) ∈ ∂τ × I.

So we get a semialgebraic homeomorphism f : B → ∆m, given by f =
g ◦ h′, of complexity bounded by a recursive function Θ(d) in term of d.
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Since f is a semialgebraic homeomorphism of complexity bounded by Θ(d)
between two compact simplicial complexes with at most d vertices, the
effective semialgebraic Hauptvermutung (see [3]), implies that there exists
a recursive function χ in terms of Θ(d) and d (so just in term of d) such
that there is a simplicial isomorphism between the subdivisions of these
simplicial complexes with at most χ(d) vertices. This is in contradiction
with Theorem 4.1. �

5. Nash h-cobordism theorem over any real closed field

Now we consider Nash manifolds.

Definition 5.1. — Let M , M0, M1 be compact Nash manifolds such
that: ∂M = M0 ∪M1 and M0 ∩M1 = ∅. Then, the triplet (M,M0,M1) is
called a Nash cobordism.
A Nash cobordism (M,M0,M1) is said to be a Nash h-cobordism if the

inclusions M0 ↪→ M and M1 ↪→ M are semialgebraic homotopy equiva-
lences, that is, the deformation retractions are semialgebraic.

Theorem 5.2 (Nash h-cobordism theorem). — Let (M,M0,M1) be a
simply connected Nash h-cobordism . If dimM = 6 then M is Nash diffeo-
morphic to M0 × [0, 1].

This theorem is an easy consequence of differentiable h-cobordism the-
orem quoted in the introduction and of the following Nash approximation
theorem:

Theorem 5.3 ([12], Theorem VI.2.2, p .202). — Let L1, L2 be compact
Nash manifold possibly with boundary, and M1, M2 their interior. The
following conditions are equivalent.

(i) L1 and L2 are C1 diffeomorphic.
(ii) L1 and L2 are Nash diffeomorphic.
(iii) M1 and M2 are Nash diffeomorphic.

We state two results which give an analogue of Hardt theorem for Nash
manifolds with boundaries.

Theorem 5.4. — Let B ⊂ Rp be a semialgebraic set, let X be a semial-
gebraic subset ofRn×B such that for every b ∈ B,Xb is a Nash submanifold
of Rn.Then there is a stratification B =

⋃
i∈IM

i of B into a finite number
of Nash manifolds, such that for any i ∈ I, X|Mi is Nash manifold and the
projection X|Mi → M i is a submersion. If, moreover, Xb is compact for
every b ∈ B, we can ask this submersion to be proper.
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Proof. — See ([4], Corollary 2.3). �

Theorem 5.5. — LetM ⊂ Rm′ be a Nash submanifold of dimension m
possibly with boundary ∂M . Let$ : M → Rk, k > 0 be a proper onto Nash
submersion such that $|∂M is onto submersion. Then there exists a Nash
diffeomorphism ϕ = (ϕ′, $) : (M,∂M)→ (M∩$−1(0), ∂M∩$−1(0))×Rk.

Proof. — See ([6], Theorem I). �

We can now formulate a Nash triviality in family of Nash manifolds with
boundaries.

Theorem 5.6. — Let B be a semialgebraic set and Π: Rn×B → B be
the projection on B. Let X be a semialgebraic subset of Rn ×B such that
for all b ∈ B,

Xb =
{
x ∈ Rn : (x, b) ∈ X

}
is a compact Nash manifold in Rn with boundary. Then there exists a finite
partition of B in B =

⋃
i∈I M

i whereM i are Nash manifolds, and for each
i ∈ I there is an affine Nash manifold F i ⊂ Rn with boundary and a Nash
diffeomorphism which trivializes Π|X|Mi

hi : F i ×M i → X ∩Π−1(M i)

compatible with the boundary.

Proof. — Set Y =
{

(x, b) : x ∈ ∂Xb

}
. By Theorem 5.4, one can prove

that there exists a finite Nash partition of B into B =
⋃r
i=1Bi such

that for every i, Bi, X|Bi
and Y|Bi

are Nash submanifolds and the pro-
jections π|X|Bi

: X|Bi
→ Bi and π|Y|Bi

: Y|Bi
→ Bi are proper onto Nash

submersions. For any i , there exists a partition of Bi, by ([2], Propo-
sition 2.9.10, p. 57), into Bi =

⋃t
j=i Sij such that Sij is Nash diffeo-

morphic to ]0, 1[kij . However, it is clear that ]0, 1[kij is Nash diffeomor-
phic to Rkij . So we get the proper onto Nash submersions X|Sij

→ Rkij

and Y|Sij
→ Rkij . By Theorem 5.5 applied to X|Sij

with its boundary
∂X|Sij

= Y|Sij
, there exists a Nash submanifold with boundary Fij of

Rn such that: (X|Sij
;Y|Sij

) ∼= (Fij ; ∂Fij ) × Rkij . This is equivalent to:
(X|Sij

;Y|Sij
) ∼= (Fij ; ∂Fij )× Sij . Which ends the proof. �

By a result of Ramanakoraisina (cf. [10], Proposition 3.5), given m, p, q
there is an integer l such that for any semialgebraic map f of complexity
(p, q), over an open subset of Rm, f is Nash if and only if f is Cl. Moreover,
the integer l is recursive in terms of m, p, q (cf. [4], Lemma 5.1). From this
we get the following proposition.
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Proposition 5.7. — Let S and T be semialgebraic subsets of Rn such
that T ⊂ S. The following statements can be translated into a first order
formula of the theory of real closed fields:

(i) “S is a Nash submanifold of Rn of dimension m”
(ii) “S is a Nash submanifold of Rn of dimension m, with boundary the

set T”

Proof.
(i) Just use the notification above and the proof of Proposition 2.2.
(ii) Use the notification above and the proof of Proposition 2.3. �

In a similar way to Proposition 2.1, one has the following result in the
Nash case.

Proposition 5.8. — Let R and K be two real closed fields such that
K is a real closed extension of R. Let X and Y be two Nash submanifold
Rn. The Nash manifolds X and Y are Nash diffeomorphic if and only if
XK and YK are Nash diffeomorphic.

Proof. — The proof is similar to the proof of Proposition 2.1 adding the
property that a semialgebraic map must satisfy to be a Nash map which
can be translated in a first order formula of the theory of real closed fields
(cf. [10], Proposition 3.5). This ends the proof. �

We prove here the analogue of Proposition 3.6 for Nash manifolds.

Proposition 5.9. — Given the integers n, p and q, there exists a cou-
ple of integers (t, u) such that for all couples of Nash submanifolds of Rn
of complexity at most (p, q) and Nash diffeomorphic, there exists a Nash
diffeomorphism fbetween them, whose graph Γf admits a complexity at
most (t, u).

Proof. — Let us notice that all Nash submanifolds of Rn of complexity
at most (p, q) belong to A(n, p, q). We have shown in the proof of Proposi-
tion 3.6 that the space of parameters A(n, p, q) is a semialgebraic set. The
set of parameters of Nash submanifolds of Rn of dimension m of complex-
ity at most (p, q) is included in A(n, p, q) and is a semialgebraic subset of
A(n, p, q). Indeed, the condition for a semialgebraic subset to be a Nash
manifold can be translated uniformly and effectively in a first order formula
of the theory of real closed fields (Proposition 5.7.(i)). Let us denote this set
by N (n,m, p, q). By the Nash Triviality theorem mentioned above, there
exists a finite Nash stratification N (n,m, p, q) =

⋃s
i=1M

i of N (n,m, p, q)
into Nash manifolds M i such that the Nash manifolds parametrized by

ANNALES DE L’INSTITUT FOURIER



SEMIALGEBRAIC COBORDISM 1591

points in M i are Nash diffeomorphic. The remainning part of the proof is
similar to the end of the proof of Proposition 3.6. �

Now, the existence of a uniform bound for Nash h-cobordism Theorem,
can be deduced in the same way as for the semialgebraic case

Theorem 5.10. — Given n,m > 6, (p, q) ∈ N2, there exists (t, u) ∈ N2

such that for all Nash h-cobordism (M,M0,M1) in Rn of complexity at
most (p, q) simply connected and dimM = m, there exists a Nash diffeo-
morphism f : M →M0 × [0, 1] such that its graph Γf ∈ A(2n+ 1, t, u).

The validity over any real closed field follows as consequence of the above
theorem.

Theorem 5.11. — Let (M,M0,M1) be a Nash h-cobordism, semialge-
braically simply connected defined over a real closed field R. If dimM > 6,
then M is Nash diffeomorphic to M0 × [0, 1].

6. Semialgebraic and Nash s-cobordism theorems

We first define the notion of simple homotopy equivalence.

Definition 6.1. — Let P and Q be two polyhedra such that Q ⊂ P .
Let Bn a PL n-ball. If P = Q ∪ Bn , Q ∩ Bn ⊂ ∂Bn and Q ∩ Bn is a PL
(n− 1)-ball, we say that Q is obtained from P by an elementary collapse.
We denote it by P ⇓ Q. We say also that there is elementary expansion of
Q in P .
We say that P collapse on Q and we denote it by P ↘ Q if there is

a finite sequence of elementary collapses P = P0 ⇓ P1 ⇓ · · · ⇓ Pm = Q.

We will say also that there is an expansion of Q to P and we denote it by
Q↗ P .

Definition 6.2. — A polyhedron P is said to be simply homotopic to
another polyhedron Q if P is obtained from Q by a sequence of collapses
and expansions of Q

P = P0 ↘ P1 ↗ P2 ↘ · · · ↘ Pn = Q relQ

where rel Q means that during the collapses and expansions operations Q
remains unchanged. We will say: P is s-homotopic to Q.

Now we define the notion of semialgebraic simple homotopy equivalence.

Definition 6.3. — Let X and Y be two semialgebraic sets such that
Y ⊂ X. We say that X elementary semialgebraically collapses on Y , and
we write X ⇓ Y , if there is a semialgebraic map f : In → X such that
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• f |(0,1]×In−1 is an embedding
• f(0× In−1) ⊂ Y , f((0, 1]× In−1) ∩ Y = ∅ and X = Y ∪ f(In)

We say that X semialgebraically collapses on Y , and write X ↘ Y , if there
is a finite sequence of elementary semialgebraic collapses X = X0 ⇓ X1 ⇓
· · · ⇓ Xm = Y.

Remark 6.4. — A PL elementary collapse of compact polyhedra is in
particular a semialgebraic collapse. A kind of converse is proved in next
lemma.

In the following definition, the notation “rel Y ” means that during the
collapse and expansion operations, Y remains unchanged.

Definition 6.5. — Let Y ⊂ X be compact semialgebraic sets. The
semialgebraic set X is semialgebraically s-homotopic to the semialgebraic
set Y if and only if there is a sequence of semialgebraic collapses and
expansions of X on Y rel Y .

Lemma 6.6. — Let Y ⊂ X be two compact semialgebraic sets and
assume X ⇓ Y . Take a triangulation |K| → X compatible with Y and put
|K ′| = h−1(Y ). Then |K| ↘ |K ′|.

Proof. — By hypothesis X ⇓ Y . This means that there is a semialgebraic
map f : In → X satisfying the properties of Definition 6.3. Set g = f|0×In−1 .
We may, consider X as a mapping cylinder Mg of g, setting X = Mg =
In∪Y/(0, x) ∼ g(0, x). A semialgebraic triangulation |K| of X, compatible
with Y and cl(Mg r Y ), induces a semialgebraic triangulation |K ′| of Y
and another |K ′′| of cl(MgrY ). This means that K ′ ⊂ K and K ′′ ⊂ K. It
follows that |K| = |K ′′| ∪ |K ′|. We can construct a projection π : |K ′′| →
[0, 1] such that π−1(0) = |K ′′|∩|K ′|, in the following way. Let x and y be in
In. One defines an equivalence relation “x ≈ y” if and only if f(x) = f(y).
The map induced by f , say f ′, defined by

In/ ≈ −→ f(In)
[t] 7−→ f ′([t]) = f(t)

where t = (t1, . . . , tn) ∈ In, is a homeomorphism for the quotient topology.
The semialgebraic triangulation of X induces a semialgebraic homeomor-
phism k : |K ′′| → f(In). Let be p : I×In−1 → I such that p(t1, . . . , tn) = t1
for all (t1, . . . , tn) ∈ In and p′ : In/ ≈→ I the induced continuous map.
Consider the map π as follows π = p′ ◦ f ′−1 ◦ k : |K ′′| → [0, 1]. There ex-
ists 0 < ε < 1 such that π−1([0, ε]) contains all vertices of the simplices
that have at least one face in π−1(0) making some subdivisions of K ′′ if
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necessary. We observe that: π−1([0, ε]) = k−1(f([0, ε]× In−1)). The semial-
gebraic subset f([0, ε]×In−1) is a semialgebraic compact neighbourhood of
f(0×In−1) in the semialgebraic set f(In). It follows that π−1([0, ε]) = U is
a regular neighbourhood π−1(0) in |K ′′|, asking that k is compatible with
f([0, ε] × In−1). Since cl(|K ′′| r U) is PL homeomorphic to In, |K ′′| PL
collapses on U . Furthermore, we have that U PL collapses on π−1(0), since
it is a regular neighbourhood of π−1(0) cf. ([11], Corollary 3.30). We get
that |K| PL collapses on |K ′|. This closes the proof. �

Corollary 6.7. — LetM andM0 be two compact semialgebraic man-
ifolds with M0 a deformation retraction of M . Then, M collapses semial-
gebraically on M0 if and only if |K| PL collapses on |K0|, where |K| is a
semialgebraic triangulation ofM compatible withM0 and |K0| the induced
triangulation of M0.

Proof. — The proof follows using Lemma 6.6 and Definition 6.5. �

We get now a semialgebraic version of the s-cobordism theorem.

Theorem 6.8. — Let (M,M0,M1) be a connected semialgebraic h-
cobordism with dimM > 6. Then, M and M0× [0, 1] are semialgebraically
homeomorphic if and only if M is semialgebraically s-homotopic to M0.

Proof. — It is an easy consequence of the classical PL s-cobordism the-
orem using Corollary 6.7. �

To close this section, we prove the Nash version of s-cobordism theorem.

Theorem 6.9. — Let (M,M0,M1) be a connected Nash h-cobordism
with dimM > 6. then M and M0 × [0, 1] are Nash diffeomorphic if and
only if M is semialgebraically s-homotopic to M0.

Proof.
⇒) Assume that M is Nash diffeomorphic to M0 × [0, 1] . Since M and

M0 × [0, 1] are Nash manifolds, they are in particular smooth and diffeo-
morphic. By the smooth s-cobordism theorem, one has M is s-homotopic
to M0. This implies that M is semialgebraically s-homotopic to M0.

⇐) Conversely, assume that M is semialgebraically s-homotopic to M0.

This implies in particular that M is s-homotopic to M0. By the smooth
s-cobordism theorem (cf. [8]), one gets M diffeomorphic to M0 × [0, 1]. It
follows by Theorem 5.3 that M is Nash diffeomorphic to M0 × [0, 1]. This
closes the proof. �
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7. Semialgebraic and Nash s-cobordism theorems
over any real closed field

In this section we prove that the semialgebraic and Nash s-cobordism
theorems hold over any real closed field. To make short, we will just write
“sas-homotopic” instead of “semialgebraically s-homotopic”. Since one im-
plication in the s-cobordism theorem is obvious, in the following we will
only consider the other one.

First we see that sas-homotopy is preserved in a real closed extension.

Proposition 7.1. — Let X and Y be two semialgebraic subset of Rr
and K a closed real extension of R. Then, X ⇓ Y algebraically if and only
if XK ⇓ YK semialgebraically.

Proof. — Use Tarski-Seidenberg Principle. �

Proposition 7.2. — Let X and Y be two semialgebraic subset of Rr
and K a real closed extension of R. Then, X is sas-homotopic to Y if and
only if XK is sas-homotopic to YK .

Proof. — Set: X = {x ∈ Rr : φ(a, x)}, Y = {x ∈ Rr : ψ(b, x)} where
φ(a, x) and ψ(b, x) are first order formulas of the theory of real closed fields
with parameters a ∈ Rm and b ∈ Rm′ .

⇒) X is sas-homotopic to Y if there is a sequence of semialgebraic col-
lapses and expansions: X = X0 ↘ X1 ↗ X2 ↘ · · · ↘ Xs = Y relY. Let i
be such that Xi ↘ Xi+1. It is equivalent to say that there exists a finite
sequence of elementary semialgebraic collapses. By the above Proposition,
one has XiK ↘ Xi+1K .
If on the other hand Xi ↗ Xi+1, it is the same to say that Xi+1 ↘ Xi.

We deduce in the same way that X is sas-homotopic to Y .

⇐) XK is sas-homotopic YK if there exists a sequence of semialgebraic
collapses and expansions: XK = X0 ↘ X1 ↗ X2 ↘ · · · ↘ Xs = YK relYK .
Assume that Xi = {x ∈ Kr : φi(ai, x)} with ai ∈ Kmi , where φi(ai, x) is
a first order formula of the theory of real closed fields for i = 0, . . . , s and
φ0(a0, x)} = φ(a, x), a0 = a, m0 = m, φs(as, x) = ψ(b, x), as = b and
ms = m′.
Let i ∈ {0, . . . , s} be such that Xi ↘ Xi+1. This implies that there

exists a sequence of elementary semialgebraic collapses Xi = Xi0 ⇓ Xi1 ⇓
· · · ⇓ Xiki

= Xi+1. Set Xij = {x ∈ Kr : φij(aij , x)}. The fact that Xij ⇓
Xij+1 can be translated in a first order sentence of the theory of real
closed fields, denote it by: βij(aij , aij+1, cij) where cij is a parameter which
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define the graph of the semialgebraic map which define the elementary
semialgebraic collapse. Then the fact that Xi ↘ Xi+1 can be translated
into a first order sentence of the theory of real closed fields as follows:∧ki

j=0 βij(aij , aij+1, cij). Now assume that Xi ↗ Xi+1. This is equivalent
to Xi+1 ↘ Xi. By the same techniques we construct a first order formula
of the theory of real closed fields as follows:

∧ki

j=0 βi
′
j(ai+1j , ai+1j+1, ci+1j).

Then the fact that XK = X0 ↘ X1 ↗ X2 ↘ · · · ↘ Xs = YK relYK can
be translated into a first order sentence of the theory of real closed fields
as following:( s∧

i=0

( ki∧
j=0

βij(aij , aij+1, cij

)∨(ki+1∧
j=0

βi
′
j

(
ai+1j , ai+1j+1, ci+1j

)))
∧(∧

i,j

λ(aij , b)
)
,

where λ(aij , b) translate the fact that Yk ⊂ Xij and the collapses let fix
pointwise Yk for all i and j. Let us denote this sentence by Φ((aij), (cij)),
where a00 = a and asks

= b. By hypothesis one gets K |= Φ((aij), (cij)).
Some parameters are already in R. Take the parameters alt and cuv which
are not. Omitting the parameters defined over R in the formula Φ (to
make short), one gets: K |= ∃ylt∃zuvΦ(ylt, zuv), where the quantification
runs over the variables with indices lt, uv in Φ. So, by Tarski-Seidenberg
Principle, we have: R |= ∃ylt∃zuvΦ(ylt, zuv). This means that there exists a
sequence XK = X0 ↘ X1 ↗ X2 ↘ · · · ↘ Xs = YK relYK with all Xi and
semialgebraic collapses defined by first order formulas of the theory of real
closed fields with coefficients in R. This implies that X is sas-homotopic to
Y . �

We prove that there is a uniform bound on the complexity of the semi-
algebraic homeomorphism in term of the complexity of the semialgebraic
h-cobordism in the s-cobordism theorem.

Theorem 7.3. — Given n,m > 6, (p, q) ∈ N2, there exists (t, u) ∈ N2

such that for all semialgebraic h-cobordism (M,M0,M1) in Rn of complex-
ity at most (p, q) with M sas-homotopic to M0 and dimM = m, there
exists a semialgebraic homeomorphism f : M →M0×I such that its graph
Γf ∈ A(2n+ 1, t, u).

Proof. — We follow the proof of Theorem 3.8, instead of choosing, in the
partition of Cob(n,m, p, q), the semialgebraic h-cobordism semialgebraically
simply connected, we select the semialgebraic h-cobordism (M,M0,M1)
such that M is sas-homotopic to M0 and connected.
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This gives us a semialgebraic set of parameters of the semialgebraic h-
cobordism (M,M0,M1) in Rn of complexity at most (p, q) with M sas-
homotopic to M0, which we denote by Scob(n,m, p, q). The semialgebraic
set Scob(n,m, p, q) is defined uniformly by Proposition 7.2.

Then we change Hcob(n,m, p, q) by Scob(n,m, p, q) in the remaining
part of the proof of Theorem 3.8. �

Here is the semialgebraic s-cobordism theorem over any real closed field.

Theorem 7.4. — Let (M,M0,M1) be a semialgebraic h-cobordism de-
fined over a real closed field R such that M sas-homotopic to M0. If
dimM > 6, then M is semialgebraically homeomorphic to M0 × I.

Proof. — Fixing a bound on the complexity of the semialgebraic h-
cobordism, with Theorem 7.3, the proof is the same as the proof of Theo-
rem 3.9. �

We get in the same way the Nash version of these theorems.

Theorem 7.5. — Given n,m > 6, (p, q) ∈ N2, there exists (t, u) ∈ N2

such that for all Nash h-cobordism (M,M0,M1) in Rn of complexity at
most (p, q) with M sas-homotopic to M0 and dimM = m, there exists a
Nash diffeomorphism f : M → M0 × I such that its graph Γf ∈ S(2n +
1, t, u).

Proof. — The proof is the same as the proof of Theorem 7.3. �

We close this section with the Nash s-cobordism Theorem over any real
closed field.

Theorem 7.6. — Let (M,M0,M1) be a Nash h-cobordism defined over
a real closed field R such that M sas-homotopic to M0. If dimM > 6, then
M is Nash diffeomorphic to M0 × [0, 1].

Proof. — Fixing a bound on the complexity of the Nash h-cobordism,
with Theorem 7.5, the proof is the same as the proof of Theorem 5.11. �
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