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THE WEIL ALGEBRA
AND THE VAN EST ISOMORPHISM

by Camilo ARIAS ABAD & Marius CRAINIC (*)

Abstract. — This paper belongs to a series of papers devoted to the study
of the cohomology of classifying spaces. Generalizing the Weil algebra of a Lie
algebra and Kalkman’s BRST model, here we introduce the Weil algebra W (A)
associated to any Lie algebroid A. We then show that this Weil algebra is related
to the Bott-Shulman complex (computing the cohomology of the classifying space)
via a Van Est map and we prove a Van Est isomorphism theorem. As application,
we generalize and find a simpler more conceptual proof of the main result of [6]
on the reconstructions of multiplicative forms and of a result of [21, 9] on the
reconstruction of connection 1-forms. This reveals the relevance of the Weil algebra
and Van Est maps to the integration and the pre-quantization of Poisson (and
Dirac) manifolds.
Résumé. — Cet article fait partie d’ une série consacrée à l’étude de la coho-

mologie des espaces classifiants. En généralisant l’algèbre de Weil d’une algèbre de
Lie et le modèle BRST de Kalkman, nous introduisons l’algèbre de Weil W (A)
associée à une algébroïde de Lie A. Nous montrons ensuite que cette algèbre de
Weil est liée au complexe de Bott-Shulman (calculant la cohomologie de l’espace
classifiant) via une application de Van Est et nous prouvons un théorème d’isomor-
phisme de type Van Est. Une application de ces méthodes conduit à généraliser de
façon plus conceptuelle des reconstitutions de formes multiplicatives et de 1-formes
de connexion.

Introduction

This paper belongs to a series devoted to the study of the cohomology of
classifying spaces. Here we extend the construction of the Weil algebra of
a Lie algebra to the setting of Lie algebroids and we show that one of the
standard complexes computing the cohomology of classifying spaces (the
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928 Camilo ARIAS ABAD & Marius CRAINIC

“Bott-Shulman complex”) is related to the Weil algebra via a Van Est map.
This Van Est map is new even in the case of Lie groups. As application, we
generalize and we find a simpler (and conceptual) proof of the main result
of [6] on the integration of Poisson and related structures.
We will be working in the framework of groupoids [15]. Lie groupoids

and Lie algebroids are a generalization of Lie groups and Lie algebras,
generalization which arises in various geometric contexts such as foliation
theory, Poisson geometry, equivariant geometry. Probably the best known
example of a Lie groupoid is the homotopy groupoid of a manifoldM , which
consists of homotopy classes of paths inM , each such path being viewed as
an “arrow” from the initial point to the ending point. In the presence of a
foliation on M , by restricting to paths inside leaves and leafwise homotopy
(or holonomy), one arrives at the groupoids which are central to foliation
theory [13]. When G is a Lie group of symmetries of a manifold M , it
is important to retain not only the group structure of G but also at the
way that the points of M are affected by the action. More precisely, one
considers pairs (g, x) ∈ G ×M and one views such a pair as an “arrow”
from x to gx; one obtains a groupoid GnM , called the action groupoid. In
Poisson geometry, the relevance of Lie groupoids [20] is a bit more subtle-
they arise through their infinitesimal counterpart (Lie algebroids) after
an integration process. They also arise as the canonical solution to the
problem of finding symplectic realizations of Poisson manifolds. Indeed, an
important feature of the resulting groupoids is that they carry a canonical
symplectic structure (for instance, if M is endowed with the zero-Poisson
structure, the resulting groupoid is T ∗M with the canonical symplectic
structure). Conceptually, such symplectic forms can be seen as arising after
integrating certain infinitesimal data, called IM forms (see Example 2.8).
This integration step is based on the main result of [6] mentioned above,
result that will be generalized and proved more conceptually in this paper.
The key remark is that the rather mysterious equations that IM forms
have to satisfy are nothing but cocycle equations in the Weil algebra of the
associated Lie algebroid.
The classifying space BG [19] of a Lie groupoid G has the same defin-

ing property as in the case of Lie groups: it is the base of an universal
principal G-bundle EG −→ BG. It is unique up to homotopy, and there
are several known constructions of BG as a topological space and of EG
as topological G-bundle - e.g., via a Milnor-type construction [13] or via
simplicial methods [4, 5]. Due to the universality of EG, the cohomology
of BG is the algebra of universal characteristic classes for G-bundles. For
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instance, if G is a compact Lie group, then H∗(BG) = S(g∗)G is the space
of G-invariant polynomials on the Lie algebra g of G, which is the source of
the Chern-Weil construction of characteristic classes via connections. The
cohomology of classifying spaces is interesting also from the point of view
of equivariant cohomology; for instance, for the Lie groupoid GnM asso-
ciated to an action of a Lie group G on a manifold M , the cohomology of
B(G nM) coincides with the equivariant cohomology of M . For general
Lie groupoids G, simplicial techniques [19] provides us with a huge but ex-
plicit complex computing H∗(BG), known as the Bott-Shulman complex
[5], which is a double complex suggestively denoted

Ω•(G•).

We can now explain the words in the title and our main results. First of
all, the classical Weil algebra W (g) associated to a Lie group G (or, better,
to its Lie algebra g) arises as the algebraic model for the “DeRham com-
plex” of the total space EG [7] (see also [12, 3]). From the point of view of
characteristic classes, the role ofW (g) is to provide an explicit and geomet-
ric construction of such classes (the Chern-Weil construction). >From the
point of view of equivariant cohomology, it is useful in constructing explicit
geometric models for equivariant cohomology (such as the Cartan model).
As we have already mentioned, the first aim of this paper is to extend the
construction of the Weil algebra from Lie algebras to Lie algebroid- for any
Lie algebroid A, its Weil algebra, denoted

W •,•(A),

will be a differential bi-graded algebra.
Next, the classical Van Est map [11] relates the differentiable cohomol-

ogy of a Lie group G to its infinitesimal counterpart, i.e., to the Lie algebra
cohomology of the Lie algebra g of G. It is an isomorphism up to degree
k provided G is k-connected. The Van Est isomorphism extends to Lie
groupoids and Lie algebroids [21, 8] without much trouble. What is inter-
esting to point out here is that the complex computing the differentiable
cohomology of G is just the first line Ω0(G•) of the Bott-Shulman complex,
while the complex computing the Lie algebroid cohomology is just the first
line W •,0(A) of the Weil algebra. With these in mind, the second aim of
the paper is to extend the classical Van Est map to a map of bi-graded
differential algebras

V : Ω•(G•) −→W •,•(A),
for any Lie groupoid G with associated Lie algebroid A. Topologically, this
map is just an explicit model for the map induced by the pull-back along
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930 Camilo ARIAS ABAD & Marius CRAINIC

the projection π : EG −→ BG. However, what is more interesting is that
the Van Est isomorphism holds not only along the first line, but along all
lines. More precisely, we will prove the following:

Theorem 0.1. — Let G be a Lie groupoid with Lie algebroid A and
k-connected source fibers. When restricted to any q-line (q arbitrary), the
Van Est map induces an isomorphism in cohomology

V : Hp(Ω̂q(G•))→ Hp(W •,q(A)),

for all p 6 k, while for p = k + 1 this map is injective.

As a consequence, we prove the following generalization of the recon-
struction result for multiplicative 2-forms which appears in [6].

Theorem 0.2. — Let G be a source simply connected Lie groupoid over
M with Lie algebroid A and let φ ∈ Ωk+1(M) be a closed form. Then there
is a one to one correspondence between:

• multiplicative forms ω ∈ Ωk(G) which are φ-relatively closed.
• C∞(M)-linear maps τ : Γ(A)→ Ωk−1(M) satisfying the equations:

iρ(β)(τ(α)) = −iρ(α)(τ(β)),

τ([α, β]) = Lα(τ(β))− Lβ(τ(α)) + dDR(iρ(β)τ(α)) + iρ(α)∧ρ(β)(φ).
for all α, β ∈ Γ(A).

This theorem reveals the relationship between the Van Est map V and
the integrability of Poisson and Dirac structures. This relationship can be
summarized as follows: the Lie algebroid associated to a Poisson (or Dirac)
structure comes together with a tautological cocycle living in the Weil al-
gebra of the associated Lie algebroid. Integrating the Lie algebroid to a Lie
groupoid G, the Van Est isomorphism tells us that the tautological cocy-
cle integrates to a cocycle on the Bott-Shulman complex of the groupoid-
which, in this case, is a multiplicative two-form on the groupoid, making
G a symplectic (or presymplectic [6]) groupoid.
Another application of our Van Est isomorphism is a generalization (and

another proof) of the result of [9] on the construction of connection 1-forms
on prequantizations. Conceptually, it answers the following question: given
ω ∈ Ωk(G) multiplicative and closed, when can one write ω = dθ with
θ ∈ Ωk−1(G) multiplicative? We prove the following result which, when
k = 2, coincides with the result of [9] that we have mentioned.

Theorem 0.3. — Let G be a source simply connected Lie groupoid
over M with Lie algebroid A and let ω ∈ Ωk(G) be a closed multiplicative
k-form. Then there is a 1-1 correspondence between:
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• θ ∈ Ωk−1(G) multiplicative satisfying d(θ) = ω.
• C∞(M)-linear maps l : Γ(A) −→ Ωk−2(M) satisfying

iρ(β)(l(α)) = −iρ(α)(l(β)),(0.1)
cω(α, β) = −l([α, β])+Lρ(α)(l(β))−Lρ(β)(l(α))+dDR(iρ(β)l(α)).(0.2)

where cω(α, β) = iρ(α)∧ρ(β)(ω)|M . The correspondence is given by

l(α) = −iα(θ)|M .

We should now point out what this paper does not achieve. In the
case of a compact Lie group G, the cohomology of BG is isomorphic to
W (g)bas ∼= S(g∗) where “bas” refers to the basic sub-complex, which con-
sists of elements that are horizontal and invariant with respect to G. More
generally, for an action groupoid GnM , the cohomology of the classifying
space is the equivariant cohomology H∗G(M), and the Weil algebra associ-
ated to the Lie algebroid gnM of GnM is W (gnM) = W (g)⊗Ω(M). In
this situation one can still define the basic subcomplex W (gnM)bas, and
it is isomorphic to Cartan’s equivariant De-Rham complex of M . Hence
W (gnM)bas computes the equivariant cohomology of the action, provided
G is compact. We discuss this construction in Subsection 1.4, more details
can be found in [12, 14]. Back to a general Lie groupoid G with Lie alge-
broid A, it is natural to expect a construction of a “basic subcomplex” of
W (A) which computes the cohomology of BG, at least under some com-
pactness assumptions. However, that does not seem to work in an obvious
way. On the other hand, we would like to mention here that in [1], we did
find a generalization of Bott’s spectral sequence using the notion of “rep-
resentations up to homotopy” to define the coadjoint representation of a
Lie groupoid. It seems possible that these two approaches can be combined
to obtain a general Cartan type model for the cohomology of classifying
spaces of Lie groupoids, but at the moment we do not know how to do it.
This paper is organized as follows. In the first two sections we recall

some standard facts about classifying spaces of Lie groups, the classical Weil
algebra, equivariant cohomology, Lie groupoids and their classifying spaces,
the Bott-Shulman complex. In Section 3 we introduce the Weil algebra of a
Lie algebroid (Definition 3.1) by giving an explicit choice free description.
Then we point out the local formulas and the relationship with the adjoint
representation and the algebra described in [2] using representations up
to homotopy. Section 4 contains the definition of the Van Est map V :
Ω̂•(G•) → W (A) (Theorem 4.1). In Section 5 we prove the isomorphism
theorem for the homomorphism induced in cohomology by the Van Est map
(Theorem 5.1). In Section 6 we explain the relation between the Van Est
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932 Camilo ARIAS ABAD & Marius CRAINIC

map and the integration of IM forms to multiplicative forms (Theorems 6.1
and 6.4). Finally, Section7 is an appendix where we describe an infinite
dimensional version of Kalkman’s BRST algebra which is used throughout
the paper.
At this point we would also like to mention that, while this work has been

carried out, various people used the supermanifold language to construct
the Weil algebra of Lie algebroids. We found out about such descriptions
from D. Roytenberg and P. Severa (unpublished); A Van Est map using
supermanifolds was constructed also by A. Weinstein (unpublished notes).
This construction appears in the PhD thesis of R. Mehta [17], where he
describes the Weil algebra of a Lie algebroid in terms of supergeometry.
That algebra is isomorphic to the one we present here.

Acknowledgements. We would like to thank Henrique Bursztyn for sug-
gesting to us Corollary 6.6.

1. Lie groups: reminder on the classical Weil algebra
and classifying spaces

In this section we recall some standard facts about classifying spaces of
Lie groups, Weil algebras and equivariant cohomology. As references, we
mention here [4, 7, 4, 3, 14].

1.1. The universal principal bundle

Associated to any Lie group G there is a classifying space BG and an uni-
versal principal G-bundle EG −→ BG. These have the following universal
property. For any space M there is a bijective correspondence

[M ;BG] 1−1←→ BunG(M)

between homotopy classes of maps f : M −→ BG and isomorphism classes
of principal G-bundles over aM . This correspondence sends a function f to
the pull-back bundle f∗(EG). The universal property determines EG −→
BG uniquely up to homotopy. Another property that determines EG, hence
also BG, uniquely, is that EG is a free, contractible G-space. There are
explicit combinatorial constructions for the classifying bundle of a group,
we will say more about this in a moment.
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The cohomology of BG is the universal algebra of characteristic classes
for principal G-bundles. Indeed, from the universal property, any such bun-
dle P −→M is classified by a map fP : M −→ BG. Although fP is unique
only up to homotopy, the map induced in cohomology

f∗P : H•(BG) −→ H•(M)

only depends on P and is called the characteristic map of P . Any element
c ∈ H•(BG) will induce the c-characteristic class of P , c(P ) := (fP )∗(c) ∈
H•(M). This is one of the reasons one is often interested in more explicit
models for the cohomology of BG. When G is compact, a theorem of Borel
asserts that

H•(BG) ∼= S(g∗)G.
Moreover, the map f∗P can be described geometrically. This is the Chern-

Weil construction of characteristic classes in H•(M) out of invariant poly-
nomials on g, viewed as a map

S(g∗)G −→ H(M).

1.2. The Weil algebra

Regarding the cohomology of BG and the construction of characteristic
classes, the full picture is achieved only after finding a related model for
the De Rham cohomology of EG. This is the Weil algebra W (g) of the Lie
algebra of G [7, 12, 14]. As a graded algebra, it is defined as

Wn(g) =
⊕

2p+q=n
Sp(g∗)⊗ Λq(g∗).

We interpret its elements as polynomials P on g with values in Λ(g∗), but
keep in mind that the polynomial degree counts twice. The Weil algebra
can also be made into bi-graded algebra, with

W p,q(g) = Sq(g∗)⊗ Λp−q(g∗),

and its differential dW can be decomposed into two components:

dW = dhW + dvW .

Here, dvW increases q and is given by

dvW (P )(v) = iv(P (v)),

while dhW increases p and is defined as a Koszul differential of g with coeffi-
cients in Sq(g∗)- the symmetric powers of the coadjoint representation. To
be more explicit, it is customary to use coordinates. A basis e1, . . . , en for

TOME 61 (2011), FASCICULE 3



934 Camilo ARIAS ABAD & Marius CRAINIC

g gives structure constants cijk. With this choice, W (g) can be described
as the free graded commutative algebra generated by elements θ1, . . . , θn

of degree 1 and µ1, . . . , µn of degree 2, with differential:

dvW (θi) = µi,

dvW (µi) = 0,

dhW (θi) = −1
2
∑
j,k

cijkθ
jθk,

dhW (µi) = −
∑
j,k

cijkθ
jµk.

Of course, θ1, . . . , θn is just the induced basis of Λ1(g∗), while µ1, . . . , µn

is the one of S1(g∗). The cohomology of W (g) is R concentrated in degree
zero, as one should expect from the fact that EG is a contractible space.

1.3. g-DG algebras

To understand whyW (g) is a model for the De Rham complex of EG, one
has to look at the structure present in the De Rham algebras of principal G-
bundles. This brings us to the notion of g-DG algebras (cf. e.g., [12, 14]).
A g-DG algebra is a differential graded algebra (A, d) (for us A lives in
positive degrees and d increases the degree by one), together with

• Degree zero derivations Lv on the DG-algebra A , depending lin-
early on v ∈ g, which induce an action of g on A.

• Degree −1 derivations iv on the DG-algebra A such that for all
v, w ∈ g

[iv, iw] = 0, [Lv, iw] = i[v,w]

and such that they determine the Lie derivatives by Cartan’s for-
mula

div + ivd = Lv.

The basic subcomplex of a g-DG algebra A is defined as

Abas := {ω ∈ A : ivω = 0, Lvω = 0, ∀v ∈ g}.

Of course, the De Rham complexes Ω(P ) of G-manifolds P are the basic
examples of g-DG algebras. In this case Lv and iv are just the usual Lie
derivative and interior product with respect to the vector field ρ(v) on P
induced from v via the action of G. If P is a principal G-bundle over M ,
then Ω(P )bas is canonically isomorphic to Ω(M).

ANNALES DE L’INSTITUT FOURIER
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The Weil algebra W (g) is a model for the De Rham complex of EG.
Indeed, W (g) is canonically a g-DG algebra. The operators Lv are the
unique derivations which, on S1(g∗) and on Λ1(g∗), are just the coadjoint
action. The operators iv are just the standard interior products on the
exterior powers hence they act trivially on S(g∗).

1.4. Equivariant cohomology

The Weil algebra is useful because it provides explicit models that com-
pute equivariant cohomology (cf. e.g., [12, 3]). Given a G-space M , the
pathological quotient M/G is often replaced by the homotopy quotient

MG = (EG×M)/G.

Here, EG should be thought of as a replacement of the one-point space pt
with a free G-space which has the same homotopy as pt. The equivariant
cohomology of M is defined as

H•G(M) := H•(MG).

When M is a manifold, one would like to have a more geometric De Rham
model computing this cohomology. This brings us at Cartan’s model for
equivariant cohomology. One defines the equivariant De Rham complex of
a G-manifold M as

ΩG(M) = (S(g)⊗ Ω(M))G,

the space of G-invariant polynomials on g with values in Ω(M). The dif-
ferential dG on ΩG(M) is very similar to the one of W (g):

dG(P )(v) = dDR(P (v)) + iv(P (v)).

Let us recall how the Weil algebra leads naturally to the Cartan model.
The idea is quite simple.W (g) is a model for the De Rham complex of EG,
the similar model for EG×M is W (g)⊗Ω(M)- viewed as a g-DG algebra
with operators

iv = iv ⊗ 1 + 1⊗ iv, Lv = Lv ⊗ 1 + 1⊗ Lv,

and with differential
d = dW ⊗ 1 + 1⊗ dDR.

The resulting basic subcomplex should provide a model for the cohomology
of the homotopy quotient. Indeed, there is an isomorphism:

(W (g)⊗ Ω(M))bas ∼= ΩG(M).

TOME 61 (2011), FASCICULE 3
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This is best seen using Kalkman’s BRST model, which is a perturbation of
W (g)⊗ Ω(M). As a g-DG algebra, it has

iKv = iv ⊗ 1, LKv = Lv ⊗ 1.

To describe its differential, we use a basis for g as above and set:

dK = d+ θa ⊗ Lea − ωa ⊗ iea .

The resulting basic subcomplex is ΩG(M). In fact, there is an explicit
automorphism Φ of W (g) ⊗ Ω(M) (the Mathai-Quillen isomorphism [16])
which transforms iv, Lv and d into Kalkman’s iKv , LKv , dK .

2. Lie groupoids: definitions, classifying spaces
and the Bott-Shulman complex

In this section we recall some basic definitions on Lie groupoids and the
construction of the Bott-Shulman complex. As references, we use [5, 15, 18].

2.1. Lie groupoids

A groupoid is a category in which all arrows are isomorphisms. A Lie
groupoid is a groupoid in which the space of objects G0 and the space of
arrows G1 are smooth manifolds and all the structure maps are smooth.
More explicitly, a Lie groupoid is given by a manifold of objects G0 and a
manifold of arrows G1 together with smooth maps s, t : G1 → G0 the source
and target map, a composition map m : G1 ×G0 G1 → G1, an inversion
map ι : G → G and an identity map ε : G0 → G1 that sends an object to
the corresponding identity. These structure maps should satisfy the usual
identities for a category. The source and target maps are required to be
surjective submersions and therefore the domain of the composition map
is a manifold. We will usually denote the space of objects of a Lie groupoid
by M and say that G is a groupoid over M . We say that a groupoid is
source k-connected if the fibers of the source map are k-connected.

Example 2.1. — A Lie group G can be seen as a Lie groupoid in which
the space of objects is a point. Associated to any manifold M there is the
pair groupoid M × M over M for which there is exactly one arrow be-
tween each pair of points. If a Lie group G acts on a manifold M there
is an associated action groupoid over M denoted G nM whose space of
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objects is G ×M . Other important examples of groupoids are the holo-
nomy and monodromy groupoids of foliations, the symplectic groupoids of
Poisson geometry- some of which arise via their infinitesimal counterparts,
Lie algebroids.

2.2. Lie algebroids

A Lie algebroid over a manifoldM is a vector bundle π : A→M together
with a bundle map ρ : A→ TM , called the anchor map and a Lie bracket
in the space Γ(A) of sections of A satisfying Leibniz identity:

[α, fβ] = f [α, β] + ρ(α)(f)β,

for every α, β ∈ Γ(A) and f ∈ C∞(M). It follows that ρ induces a Lie
algebra map at the level of sections. Examples of Lie algebroids are Lie
algebras, tangent bundles, Poisson manifolds, foliations and Lie algebra
actions. Given a Lie groupoid G, its Lie algebroid A = A(G) is defined
as follows. As a vector bundle, it is the restriction of the kernel of the
differential of the source map to M . Hence, its fiber at x ∈ M is the
tangent space at the identity arrow 1x of the source fiber s−1(x). The
anchor map is the differential of the target map. To describe the bracket,
we need to discuss invariant vector fields. A right invariant vector field on
a Lie groupoid G is a vector field α which is tangent to the fibers of s and
such that, if g, h are two composable arrows and we denote by Rh the right
multiplication by h, then

α(gh) = Dg(Rh)(α(g)).

The space of right invariant vector fields is closed under the Lie bracket
of vector fields and is isomorphic to Γ(A). Thus, we get the desired Lie
bracket on Γ(A).
Unlike the case of Lie algebras, Lie’s third theorem does not hold in

general. Not every Lie algebroid can be integrated to a Lie groupoid. The
precise conditions for the integrability are described in [10]. However, Lie’s
first and second theorem do hold. Due to the first one- which says that
if a Lie algebroid is integrable then it admits a canonical source simply
connected integration- one may often assume that the Lie groupoids under
discussion satisfy this simply-connectedness assumption.

TOME 61 (2011), FASCICULE 3
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2.3. Actions

A left action of a groupoid G on a space P ν→ M over M is a map
G1×MP → P defined on the space G1×MP of pairs (g, p) with s(g) = ν(p),
which satisfies ν(gp) = t(g) and the usual conditions for actions. Associated
to the action of G on P →M there is the action groupoid, denoted GnP .
The base space is P , the space of arrows is G1 ×M P , the source map is
the second projection and the target map is the action. The multiplication
in this groupoid is (g, p)(h, q) = (gh, q).

Example 2.2. — For a Lie groupoid G, we denote by Gk the space of
strings of k composable arrows of G. When we write a string of k compos-
able arrows (g1, . . . , gk) we mean that t(gi) = s(gi−1). Since the source and
target maps are submersions, all the Gk are manifolds. Each of the Gk’s
carries a natural left action. First of all, we view Gk over M via the map

t : Gk →M, (g1, . . . , gk) 7→ t(g1).

The left action of G on Gk
t→M is just

g(g1, g2, . . . , gk) = (gg1, g2, . . . , gk).

We denote by Pk−1(G) the corresponding action groupoid.

Analogous to actions of Lie groupoids, there is the notion of infinitesimal
actions. An action of a Lie algebroid A on a space P ν→M over M is a Lie
algebra map ρP : Γ(A)→ X(P ), into the Lie algebra of vector fields on P ,
which is C∞(M)-linear in the sense that

ρP (fα) = (f ◦ ν)ρP (α),

for all α ∈ Γ(A), f ∈ C∞(M). Note that this last condition is equivalent
to the fact that ρP is induced by a bundle map ν∗A→ TP .

As in the case of Lie groupoids, associated to an action of A on P there
is an action algebroid AnP over P . As a vector bundle, it is just the pull-
back of A via µ. The anchor is just the infinitesimal action ρP . Finally, the
bracket is uniquely determined by the Leibniz identity and

[µ∗(α), µ∗(β)] = µ∗([α, β]),

for all α, β ∈ Γ(A).
As expected, an action of a groupoid G on a space P ν→ M over M

induces an action of the Lie algebroid A of G on P . As a bundle map
ρP : ν∗A→ TP it is defined fiberwise as the differential at the identity of
the map

s−1(ν(p))→ P, g 7→ gp.
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Moreover, the Lie algebroid of Gn P is equal to An P .

Example 2.3. — For the action of G on Gk (Example 2.2), the resulting
algebroid A n Gk is just the foliation Fk of Gk by the fibers of the map
d0 : Gk −→ Gk−1, which deletes g1 from (g1, . . . , gk).

2.4. Classifying spaces

We now recall the construction of the classifying space of a Lie groupoid,
as the geometric realization of its nerve [19]. First of all, the nerve of G,
denotedN(G), is the simplicial manifold whose k-th component isNk(G) =
Gk, with the simplicial structure given by the face maps:

di(g1, . . . , gk) =


(g2, . . . , gk) if i = 0,
(g1, . . . , gigi+1, . . . , gk) if 0 < i < k,

(g1, . . . , gk−1) if i = k,

and the degeneracy maps:

si(g1, . . . , gk) = (g1 . . . , gi, 1, gi+1, . . . , gk)

for 0 6 i 6 k.

The thick geometric realization of a simplicial manifold X•, is defined as
the quotient space

||X•|| =
(∐
k>0

Xk ×∆k
)
/ ∼,

obtained by identifying (di(p), v) ∈ Xk×∆k with (p, δi(v)) ∈ Xk+1×∆k+1

for any p ∈ Xk+1 and any v ∈ ∆k. Here ∆k denotes the standard topological
k-simplex and δi : ∆k −→ ∆k+1 is the inclusion as the i-th face. The
classifying space of a Lie groupoid G is defined as

BG = ||N(G)||.

Definition 2.4. — The universal G-bundle of a Lie groupoid G is de-
fined as

EG = B(P0(G)),
the classifying space of the groupoid associated to the action of G on itself.

The nerve of P0(G) satisfies (P0(G))k = Gk+1 which, for each k, is
a (principal) G-space over Gk. Moreover, each face map is G-equivariant
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with respect to the right action, see Example 2.2. It follows that EG is a
principal G-bundle over BG

G1

�� ��

EG

π

��

µ

}}{{
{{

{{
{{

G0 BG

Example 2.5. — When G is a Lie group, one recovers (up to homotopy)
the usual classifying space of G and the universal principal G-bundle EG→
BG. More generally, for the groupoid GnM associated to an action of G
on M , B(GnM) is a model for the homotopy quotient

B(GnM) ∼= MG = (EG×M)/G.

2.5. The Bott-Shulman complex

In general, the geometric realization of a simplicial manifoldX• is infinite
dimensional and in particular, it is not a manifold. However, there is a De
Rham theory that allows one to compute the cohomology of the geometric
realization ||X•|| with real coefficients using differential forms. Given a
simplicial manifold X• the Bott-Shulman complex [5], denoted Ω(X•), is
the double complex

...
...

...

Ω2(X0)

OO

δ // Ω2(X1)

d

OO

δ // Ω2(X2)

d

OO

δ // . . .

Ω1(X0)

d

OO

δ // Ω1(X1)

d

OO

δ // Ω1(X2)

d

OO

δ // . . .

Ω0(X0)

d

OO

δ // Ω0(X1)

d

OO

δ // Ω0(X2)

d

OO

δ // . . .

where the vertical differential is just the De Rham differential and the
horizontal differential δ is given by the simplicial structure,

δ =
p+1∑
i=0

(−1)id∗i .
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The total complex of Ω(X•) is the De Rham model for the cohomology of
||X•||. We will also consider the normalized Bott-Shulman complex of X•,
denoted Ω̂(X), which is the subcomplex of Ω(X•) that consists of forms
η ∈ Ωq(Xp) such that s∗i (η) = 0 for all i = 0, . . . , p − 1. The inclusion
Ω̂(X•)→ Ω(X•) induces an isomorphism in cohomology.

Theorem 2.6 (Dupont, Bott, Shulman, Stasheff). — There is a natural
isomorphism

H(Tot(Ω(X•))) ∼= H(||X•||).

For a Lie groupoid G we will write Ω(G•) instead of Ω(N(G)). Note
that the Bott-Shulman complex Ω(G•) provides us with an explicit model
computing H•(BG). However, it is rather big and unsatisfactory compared
with the infinitesimal models available for Lie groups. We would like to em-
phasize another aspect of the Bott-Shulman complex. It is the natural place
on which several geometric structures live. The best example is probably
that of multiplicative forms. We first recall the definition (see, for instance,
[6]).

Definition 2.7. — A multiplicative k-form on a Lie groupoid G is a
k-form ω ∈ Ωk(G) satisfying

d∗1(ω) = d∗0(ω) + d∗2(ω).

Given φ ∈ Ωk+1(M) closed, we say that ω is relatively φ-closed if dω =
s∗φ− t∗φ.

In terms of the Bott-Shulman complex, the conditions appearing in the
previous definition can be put together into just one: ω + φ is a cocycle in
the Bott-Shulman complex of G.

Example 2.8. — With this terminology, a symplectic groupoid is a Lie
groupoid G endowed with a symplectic form ω which is multiplicative.
This corresponds to the case k = 2, φ = 0 in the previous definition.
Symplectic groupoids arise in Poisson geometry, the global geometry of a
Poisson manifold is encoded in a topological groupoid which is a symplectic
groupoid provided it is smooth. In turn, smoothness holds under relatively
mild topological conditions. The case k = 2 and φ-arbitrary arises from
various generalizations of Poisson geometry which, in turn, show up in
the study of Lie-group valued momentum maps. With these motivations,
relatively closed multiplicative two forms have been intensively studied in
[6] culminating with their infinitesimal description which we now recall.
Given a Lie algebroid A over M and a closed 3-form φ on M , an IM
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(infinitesimally multiplicative) form on A relative to φ is, by definition, a
bundle map

σ : A −→ T ∗M,

satisfying

〈σ(α), ρ(β)〉 = −〈σ(β), ρ(α)〉,
σ([α, β]) = Lρ(α)(σ(β))− Lρ(β)(σ(α)) + d〈σ(α), ρ(β)〉+ iρ(α∧β(φ),

for all α, β ∈ Γ(A). Here 〈·, ·〉 denotes the pairing between a vector space
and its dual. If A is the Lie algebroid of a Lie groupoid G, then any mul-
tiplicative 2-form ω on G which is closed relative to φ induces such a σ:

σ(α) = iα(ω)|M .

The main result of [6] says that, if the s-fibers ofG are 1-connected, then the
correspondence ω 7→ σ is a bijection. The basic example of this situation
comes from Poisson geometry. The cotangent bundle T ∗M of a Poisson
manifoldM carries an induced Lie algebroid structure and the identity map
is an IM form. If T ∗M is integrable and Σ(M) is the (unique) Lie groupoid
with 1-connected s-fibers integrating it, the corresponding multiplicative
two form ω is precisely the one that makes Σ(M) a symplectic groupoid.

3. The Weil algebra

In this section we introduce and discuss Weil algebras in the context of
Lie algebroids.

Throughout the section, A is a fixed Lie algebroid over M . The Weil
algebra of A, denoted W (A), will be a bi-graded differential algebra. An
element c ∈W p,q(A) is a sequence c = (c0, c1, . . .) of operators that satisfy
some compatibility relation. Before explaining what each ci is, we want to
emphasize that c0 should be viewed as the leading term of c, while the
remaining terms c1, c2, . . . should be viewed as correction terms for c0. The
leading term c0 is just an antisymmetric R-multilinear map

c0 : Γ(A)× . . .× Γ(A)︸ ︷︷ ︸
p times

→ Ωq(M).

As a general principle, the role of the higher order terms is to measure the
lack of C∞(M)-linearity of c0. With this in mind, one can often compute
the higher terms from c0.
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Definition 3.1. — A element in W p,q(A) is a sequence of operators
c = (c0, c1, . . .) with

ci : Γ(A)× . . .× Γ(A)︸ ︷︷ ︸
p−i times

→ Ωq−i(M ;Si(A∗)),

satisfying

ci(α1, . . . , fαp−i) = fci(α1, . . . , αp−i)− df ∧ ∂αp−i(ci+1(α1, . . . , αp−i−1)),

for all f ∈ C∞(M), αi ∈ Γ(A).

Here we use the notation from the Appendix. In particular, for α ∈
Γ(A), ∂α : Sk(A∗) −→ Sk−1(A∗) is the partial derivative along α. Also,
viewing elements of Ω(M ;S(A∗)) as polynomial functions on A with values
in ΛT ∗M , we use the notation:

ci(α1, . . . , αp−i|α) := ci(α1, . . . , αp−i)(α) ∈ Ω(M) (for α ∈ Γ(A)).

Remark 3.2. — Suppose that c, c′ are elements of Wp,q(A). If c0 = c′0
then c = c′ provided q 6 dim(M).

3.1. The DGA structure

We now discuss the differential graded algebra structure on W (A). First
of all, as in the case of the Weil algebra of a Lie algebra, the differential d
of W (A) is a sum of two differentials

d = dv + dh.

The vertical differential dv increases q and it is induced by the De
Rham differential on M in the following sense. Given c ∈ W p,q(A), the
leading term of dv(c) is, up to a sign, just the De Rham differential of the
leading term of c:

(dvc)0(α1, . . . , αp|α) = (−1)pdDR(c0(α1, . . . , αp|α)).

The other components (dvc)k (k > 1) can be found by applying the general
principle mentioned above, by looking at the failure of C∞(M)-linearity.
For instance, replacing αp with fαp in the previous formula, one finds the
following formula for the next component of dvc:

(dvc)1(α1, . . . , αp−1|α) = (−1)p−1(dDR(c1(α1, . . . , αp−1|α))
+ c0(α1, . . . , αp−1, α|α)).
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Proceeding inductively, one can find the explicit formulas for all the other
components. The final result, which will be taken as the complete definition
of (dvc), is:

(dvc)k(α1, . . . , αp−k|α) = (−1)p−k(dDR(ck(α1, . . . , αp−k|α))
+ ck−1(α1, . . . , αp−k, α|α)).

The horizontal differential dh increases p and, as above, it is induced
by the Koszul differential in the following sense. Given c ∈ W p,q(A), the
leading term of dh(c) is given by the Koszul differential of the leading term
of c, where we use Ω(M ;SA∗) as a representation of the Lie algebra Γ(A)
(see the Appendix):

(dhc)0(α1, . . . , αp+1) =
∑
i<j

(−1)i+jc0([αi, αj ], . . . , α̂i, . . . , α̂j , . . . , αp+1)

+
∑
i

(−1)i+1Lρ(αi)(c0(α1, . . . , α̂i, . . . , αp+1)).

As above, replacing αp+1 with fαp+1 and applying the general principle,
one finds the formula for the next component of dhc:

(dhc)1(α1, . . . , αp|α) = δ(c1)(α1, . . . , αp|α) + (−1)p−1iρ(α)c0(α1, . . . , αp).

Proceeding inductively, one finds the explicit formulas for all the other
components. The final result, which will be taken as the complete definition
of (dhc), is:

(dhc)k(α1, . . . , αp−k+1|α) = δ(ck)(α1, . . . , αp−k+1|α)

+ (−1)p−kiρ(α)ck−1(α1, . . . , αp−k+1|α).

Remark 3.3. — Our signs were chosen so that they coincide with the
standard ones for Lie algebra actions. Admittedly, they do not look very
natural.

The algebra structure on W (A) is the following. Given c ∈W p,q(A),
c′ ∈W p′,q′(A) we describe cc′ ∈W p+p′,q+q′(A). The leading term is

(cc′)0(α1, . . . , αp+p′ |α) = (−1)qp
′∑

sgn(σ)c0(ασ(1), . . . , ασ(p)|α)

c
′

0(ασ(p+1), . . . , ασ(p+p′)|α),

where the sum is over all (p, p′)-shuffles. The other components can be
deduced, again, by applying the general principle we have already used.
The general formula also follows from the relation with the Kalkman’s
BRST algebra (Proposition 3.5 below).
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Theorem 3.4. — dv, dh and the product are well defined, dv, dh are
derivations and

dvdv = 0, dhdh = 0, dvdh + dhdv = 0.

In conclusion, W (A) becomes a bigraded bidifferential algebra.

Proof. — The statement is a consequence of Proposition 3.5. �

In order to shed some light into the formulas, we point out the relation-
ship with the infinite dimensional version of Kalkman’s BRST algebra (see
the Appendix). We will consider W (g; Ω(M)) applied to the Lie algebra

gA := Γ(A)

acting on M via the anchor map. We will use the canonical inclusion

W (A) ↪→W (gA; Ω(M))

to realize W (A) as a subspace of Kalkman’s complex. From the explicit
formulas, we deduce the following:

Proposition 3.5. — The algebraW(A) is a sub-algebra ofW(gA;Ω(M)).
Moreover, the horizontal and the vertical differentials of W (gA; Ω(M)) re-
strict to W (A) and coincide with the ones defined above.

Proof. — As a vector space W (A) lives inside of W (gA; Ω(M)) and a
simple computation shows that it is closed under the product. The explicit
formulas for the differentials in the two algebras clearly coincide on W (A).
Thus one only needs to show that the differentials preserve the W (A). For
the vertical differential we compute:

(dvc)k(α1, . . . , fαp−k|α) = (−1)p−k(dDR(ck(α1, . . . , αp−k|α))
+ ck−1(α1, . . . , fαp−k, α|α))

= (−1)p−k(fdDR(ck(α1, . . . , αp−k|α))
+ df ∧ (ck(α1, . . . , αp−k|α))
+ df ∧ dDR(∂αp−kck+1(α1, . . . , αp−k−1|α))
+ fck−1(α1, . . . , αp−k, α|α)
+ df ∧ ∂αp−k(ck(α1, . . . , αp−k−1, α|α)))

= f(dvc)k(α1, . . . , fαp−k|α)
− df ∧ (∂αp−k(dvc)k+1(α1, . . . , αp−k−1|α)).

The fact that the horizontal differentials preserves W (A) follows by a sim-
ilar computation once we observe that
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δ(ck)(α1, . . . , fαp−k+1|α) = fδ(ck)(α1, . . . , αp−k+1|α)
− df ∧ ∂αp−k+1δ(ck+1)(α1, . . . , αp−k|α)

+ (−1)p−k+1df ∧ iρ(αp−k+1)ck(α1, . . . , αp−k|α).

�

Remark 3.6. — The previous proposition can be taken as a definition of
the differentials and the product on W (A). The converse is more interest-
ing, Kalkman’s formulas can be recovered from the De Rham and Koszul
differentials by computing the higher order terms.

Example 3.7. — When A = g is a Lie algebra one recovers the usual
Weil algebra. Also, when A = gnM , one recovers Kalkman’s differentials.

3.2. The Weil algebra in local coordinates

Since all the operators involved are local, it is possible to describe W (A)
in coordinates.

Definition 3.8. — Let (xa) be local coordinates in a chart for M on
which there is a trivialization (ei) of the vector bundle A. Over this chart,
we obtain the following algebra Wflat(A). As a bigraded algebra, it is the
commutative bigraded algebra over the space of smooth functions generated
by elements ∂a of bidegree (0, 1), elements θi of bi-degree (1, 0) and elements
µi of bi-degree (1, 1).

There is an isomorphism between Wflat(A) and W (A), over the trivial-
izing chars, given by:

(1) ∂a to dxa ∈ Ω1(M) = W 0,1(A).
(2) θi to the duals of ei, viewed as elements in Γ(Λ1A∗) = W 1,0(A).
(3) µi to the elements µ̂i ∈ W 1,1(A), where µ̂i is determined by the

fact that µ̂i0 vanishes on the ei’s, while µ̂i1 is the dual of ei, viewed
as an element of Γ(S1A∗).
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The map Wflat(A) −→W (A) is an isomorphism. The differentials can now
be computed explicitly on generators and one finds (compare with [12]):

dvflat(∂a) = 0,

dvflat(θi) = µi,

dvflat(µi) = 0,

dhflat(∂a) = −ρai µi + ∂ρai
∂xb

θi∂b,

dhflat(θi) = −1
2c
i
jkθ

jθk,

dhflat(µi) = −cijkθjµk + 1
2
∂cljk
∂xa

θjθk∂a,

where we use the Einstein summation convention, ρai are the coefficients of
ρ and cijk are the structure functions of A. Namely,

ρ(ei) =
∑

ρai ∂a, [ej , ek] =
∑

cijkei.

Note that, on smooth functions:

dvflat(f) = ∂a(f)∂a, dhflat(f) = ∂a(f)ρai θi.

3.3. The Weil algebra using a connection

A global version of the previous remark is possible with the help of a
connection ∇ on the vector bundle A and produces a version W∇(A) of
W (A) depending on ∇. As a bigraded algebra it is just:

W p,q
∇ (A) =

⊕
k

Γ(Λq−kT ∗M ⊗ Sk(A∗)⊗ Λp−k(A∗)).

However, the associated operators dh∇, dv∇ acting on W∇(A) are more in-
volved and are computed in [2]. Working with the global ∇, one can write
down the explicit local formulas for dh∇, dv∇ on generators. The resulting
equations will be similar to the ones for Wflat(A), but they have rather
non-trivial extra-terms which involve the coefficients of the connection and
two types of curvature tensors. The explicit map

I∇ : W∇(A) −→W (A),

is defined as follows. It is the unique algebra map which is C∞(M)-linear
and has the properties:

• on Ω(M) and Γ(ΛA∗), which are subspaces of both W∇(A) and
W (A), I∇ is the identity.
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• for ξ ∈ Γ(S1A∗), I∇(ξ) = ξ̂, where

ξ̂0(α) = −ξ(∇(α)), ξ̂1 = ξ.

Proposition 3.9. — I∇ is an isomorphism of bigraded algebras.

Proof. — We view I∇ as a map of sheaves. It suffices to show that I∇ is
an isomorphism locally. We then use the generators ∂a, θi and µi as above.
These elements also belong to the Kalkman algebra W (gA,Ω(M)) and the
map I∇ can be seen as a map from W∇(A) into W (gA,Ω(M)) which leaves
∂a and θi invariant, but which sends µi into µ̂i. Since the Kalkman algebra
is free commutative and the map is injective on the generators, we conclude
that I∇ is injective. Surjectivity is a consequence of the fact that W (A)
is generated by the elements in W 0,0(A), W 1,0(A), W 0,1(A) and the map
I∇ is clearly a bijection in those degrees. Finally, since the differentials are
derivations, it is enough to prove that they coincide in low degree, and this
is a simple check. �

3.4. The Weil algebra and the adjoint representation

Let us give now a short summary of our paper [2] and explain the con-
nection with the Weil algebra. In order to be able to talk about the adjoint
representation of a Lie algebroid, one has to enlarge the category Rep(A)
of (standard) representations and work in the category Rep∞(A) of repre-
sentations up to homotopy. Such representations, by their nature, serve as
coefficients for the cohomology of A. Underlying any object of Rep∞(A)
there is a cochain complex (E, ∂) of vector bundles over A; the extra-
structure present on (E, ∂) is a linear operation of A on E, which is not
quite an action- but the failure is precisely measured and there are higher
and higher coherence conditions. For instance, for the adjoint representa-
tion, the underlying complex is:

(3.1) A
ρ−→ TM

with A in degree zero, TM in degree one and zero otherwise. However,
to give this complex the structures of a representation up to homotopy,
one needs to use a connection ∇ on the vector bundle A. The resulting
object Ad∇ ∈ Rep∞(A) does not depend on ∇ up to isomorphism. Its
isomorphism class is denoted by Ad. This indicates in particular that the
resulting cohomologies with coefficients in Ad∇ or other associated repre-
sentations (such as symmetric powers, duals etc) do not depend on ∇ and
can be computed by an intrinsic complex. The rows (W •,q(A), dh) of the
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Weil algebra are the intrinsic complexes computing the cohomology of A
with coefficient in Sq(Ad∗):

(3.2) H(W •,q(A)) ∼= H(A;Sq(Ad∗)).

From this description it immediately follows that the cohomology of W (A)
is isomorphic to the cohomology of M - which should be expected because
the fibers of the map EG −→M are contractible.

Example 3.10 (Multiplicative forms). — Closed multiplicative forms on
groupoids are related to homogeneous cocycles of the Weil algebra. To
illustrate this, let A be the Lie algebroid of a Lie groupoid G over M .
Then, any 2-form ω ∈ Ω2(G) induces an element c ∈W 1,2(A) with leading
term

c0 : Γ(A) −→ Ω2(M), c0(|α) = Lα(ω)|M ,
where α ∈ Γ(A) is identified with the induced right invariant vector field
on G and we use the inclusion M ↪→ G as units. The other component,
c1 ∈ Ω1(M ;S1A∗), is given by

c1(|α) = −iα(ω)|M .

When ω is closed c is dv closed and when ω is multiplicative c is dh-closed.
This is an instance of the Van Est map that will be explained in the next
section.

Example 3.11 (IM forms). — In turn, (1, 2) cocycles on the Weil alge-
bra of a Lie algebroid A can be identified with the IM forms on A (see
Example 2.8 in the case when φ = 0). To see this, we first remark that
an element c ∈ W 1,2(A) which is dv-closed is uniquely determined by its
component c1, which we interpret as a bundle map A −→ T ∗M as before
and denote it by σ. Indeed, the condition (dvc)1 = 0 gives us

c0(|α) = −dDR(σ(α)).

If c is also dh-closed one has in particular that (dhc)2 = 0 and (dhc)1 = 0.
These two conditions coincide with the conditions for σ to be an IM form
(see Example 2.8). One can check directly that, conversely, these conditions
also imply (dhc)0 = 0.
As a conclusion of the last two examples, the correspondence between

multiplicative two-forms on groupoids and IM -forms on algebroids de-
scribed in Example (2.8) factors through the Weil algebra. This will be
generalized to arbitrary forms on the nerve of G in the next section. We
will show that the main result of [6] can be derived as a consequence of a
general Van Est isomorphism theorem.
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We now explain a version of the Weil algebra with coefficients which
will be used in the proof of our main theorem. The coefficients are the
generalizations of g-DG algebras to the context of Lie algebroids.

Definition 3.12. — Given a Lie algebroid A overM , an A-DG algebra
is a DG-algebra (A, d) together with

• a structure of Γ(A)-DG algebra, with Lie derivatives and interior
products denoted by Lα and iα, respectively.

• a graded multiplication Ω(M)⊗A −→ A which makes (A, d) a DG-
algebra over the De Rham algebra Ω(M) and which is compatible
with Lα and iα (i.e., it is a map of Γ(A)-DG algebras)

such that

ifα(a) = fiα(a), Lfα(a) = fLα(a) + (df)iα(a),

for all α ∈ Γ(A), f ∈ C∞(M), a ∈ A.

Given such an A-DG algebra, we define W (A;A) as follows. An element
c ∈W p,q(A;A) is a sequence (c0, c1, . . .) where

ci : Γ(A)× . . .× Γ(A)︸ ︷︷ ︸
p−i times

×Γ(A)× . . .× Γ(A)︸ ︷︷ ︸
i times

→ Aq−i,

(α1, . . . , αp−i, αp−i+1, . . . , αp) 7→ ci(α1, . . . , αp−i|αp−i+1, . . . , αp)
is R-multilinear and antisymmetric on α1, . . . , αp−i and is C∞(M)-multili-
near and symmetric on αp−i+1, . . . , αp; moreover, ci and ci+1 are required
to be related as in Definition 3.1. As before,W (A;A) sits inside Kalkman’s
W (gA;A) and we use this inclusion to induce the algebra structure and the
two differentials on W (A;A).

Example 3.13. — The basic example of an A-DG algebra is the De
Rham complex of M , in which case we recover W (A). More generally, if
A acts on a space P µ−→ M over M , Ω(P ) has the structure of an A-DG
algebra. In this case Lα and iα are the usual Lie derivatives and interior
products with respect to the vector fields on P induced by α, while the
Ω(M)-module structure is

Φ · ω = µ∗(Φ) ∧ ω,

for Φ ∈ Ω(M) and ω ∈ Ω(P ).

Remark 3.14. — Consider an action of A on P µ−→M and the induced
A-DG algebra structure on Ω(P ). Then, the algebraW (A; Ω(P )) is isomor-
phic (as a bigraded differential algebra) to W (An P ), where An P is the
corresponding action Lie algebroid.
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4. The Van Est map

In this section we introduce the Van Est map which relates the Bott-
Shulman complex of a groupoid to the Weil algebra of its algebroid.

Throughout this section, G is a Lie groupoid overM and A is its Lie alge-
broid. Any section α ∈ Γ(A) induces a vector field αp on each of the spaces
Gp of strings of p-composable arrows. Explicitly, for g = (g1, . . . , gp) ∈ Gp
with t(g) = x, αpg is the image of αx ∈ Ax (i.e., in the tangent space at 1x
of s−1(x)) by the differential of the map

Rg : s−1(x) −→ Gp, a 7→ ag := (ag1, g2, . . . , gp).

The map α −→ αp is nothing but the infinitesimal action induced by
the canonical right action of G on Gp (see Subsection 2 and in particular
Example 2.2). When no confusion arises, we will denote the vector field αp
simply by α. The induced Lie derivative acting on Ω(Gp), combined with
the simplicial face map s0 : Gp−1 −→ Gp (which inserts a unit on the first
place) induces a map

Rα : Ωq(Gp) −→ Ωq(Gp−1).

Intuitively, Rα(ω) is the derivative on the first argument along α, at the
units.

Proposition 4.1. — Let G be a Lie groupoid over M with Lie al-
gebroid A. For any normalized form in the Bott-Shulman complex of G,
ω ∈ Ω̂q(Gp), the map

Γ(A)× . . .× Γ(A)︸ ︷︷ ︸
p times

−→ Ωq(M),

(α1, . . . , αp) 7→ (−1)
p(p+1)

2
∑
σ∈Sp

sgn(σ)Rασ(1) . . . Rασ(p)(ω)

is the leading term of a canonical element V (ω) ∈ W p,q(A) induced by ω.
Moreover, the resulting map

V : Ω̂q(Gp)→W p,q(A)

is compatible with the horizontal and the vertical differentials in the sense
that

V d = (−1)pdvV,(4.1)

V δ = dhV.(4.2)
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Remark 4.2 (More standard Van Est maps). — The standard Van Est
map for a Lie groupoid G relates the differentiable cohomology H•d (G) with
the cohomology H•(A) of the associated Lie algebroid. These cohomologies
can be identified in our framework as follows. H•d (G) is the cohomology of
the first row Ω0(G•) of the Bott-Shulman complex of G. On the other hand
H•(A) is the cohomology of the first row W •,0(A) of the Weil algebra. Our
Van Est map extends the ordinary one to a map of double complexes.

As in the discussions in the previous section, one can heuristically derive
all the components of V (ω) out of the formula for the leading term. How-
ever, strictly speaking we have to specify the higher order terms for V (ω)
to be well defined. To achieve this, we need an operation similar to Rα, but
which uses interior products instead of Lie derivatives:

Jα : Ωq(Gp) −→ Ωq−1(Gp−1), Jα(ω) := s∗0(iα(ω)).

The component V (ω)i evaluated on sections of Γ(A),

V (ω)i(α1, . . . , αp−i|α) ∈ Ωq−i(M ;Si(A∗))

will be a sum in which each term arises by applying the operators Rαk p− i
times and Jα i times in all possible ways, with the appropriate sign. The
summation is over all permutations σ ∈ Sp such that

σ−1(p− i+ 1) < . . . < σ−1(p− 1) < σ−1(p).

We denote by Sp(i) the set of all such permutations. For each σ ∈ Sp(i),
we consider the expression

V (ω)σi (α1, . . . , αp−i|α) := (−1)iD1 . . . Dp(ω)

where the ordered sequence D1, . . . , Dp is obtained as follows. One starts
with the sequence

Rασ(1) , . . . , Rασ(p)

and one replaces Rαk by Jα whenever k ∈ {p − i + 1, . . . , p}. With these
conventions we define

V (ω)i = (−1)
p(p+1)

2
∑

σ∈Sp(i)

sgn(σ)V (ω)σi .

Proof of Proposition 4.1. — We first point out the following properties of
the operators Rα and Jα, which follow immediately from similar properties
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of the operators Lα and iα:

Rα = Jαd + dJα,(4.3)
Rα(ηω) = Rα(η)s∗0(ω) + s∗0(η)Rα(ω),(4.4)
Jα(ηω) = Jα(η)s∗0(ω) + (−1)qs∗0(η)Jα(ω),(4.5)
Rfα(η) = d(f)Jα(η) + fRα(η),(4.6)

Jfα = fJα.(4.7)

Next, Rα and Jα interact with the degeneracy maps si as follows:

s∗jJα = Jαs
∗
j+1,(4.8)

s∗jRα = Rαs
∗
j+1.(4.9)

The second equation follows formally from the first one and formula (4.3).
The first one follows from the simplicial relations and the equation

(4.10) s∗j+1iαq = iαq−1s∗j+1.

In order to prove this last equation it is enough to evaluate it on a one form
ω ∈ Ω1(Gq). We will use the formula

(dsj+1)g(αq−1) = αqsj+1(g),

which follows from the definition of αq and the fact that sj+1Rg = Rsj+1(g).
Indeed, one simply computes:

iαq−1s∗j+1(ω)g = s∗j+1(ω)(αq−1
g )

= ω(dsj+1)g(αq−1
g ))

= ω(αqsj+1(g))

= s∗j+1iαq (ω)g.

In particular, the equations above imply that Rα and Jα preserve the nor-
malized subcomplex. We will also use the Ω(M)-module structure on Ω(Gp)
given by

Φω = t∗(Φ) ∧ ω.
As a consequence of the previous formulas we have:

Rα(Φω) = ΦRα(ω), Jα(Φω) = (−1)deg(Φ)ΦJα(ω),

for all Φ ∈ Ω(M), ω ∈ Ω̂(G•). From these and (4.6) and (4.7), it imme-
diately follows that the components V (ω)i satisfy the desired C∞(M)-
linearity in the symmetric variables while on the other variables we obtain
the equation which expresses the relation between V (ω)i and V (ω)i+1. In
other words, V (ω) does belong to W (A).
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We will use the following remark on the functoriality of the Van Est map.
Given an action of G on a space P µ−→ M , there is an action groupoid
Gn P over P with associated Lie algebroid An P . The pull-back from M

to P induces inclusions of the Weil algebra of A and of the Bott-Shulman
complex of G, into the ones corresponding to AnP and GnP , respectively
(see also Remark 3.14), which is compatible with the Van Est map:

W (A) V //

incl
��

Ω̂(G)

incl
��

W (An P ) V // Ω̂(P nG)

Also, the inclusion maps are clearly compatible with the vertical and the
horizontal differentials. We will use this diagram in order to simplify the
proof of the compatibility of V with the differentials. For instance, take
ω ∈ Ω̂q(Gp) and q 6 dim(M). In order to prove that

V (d(ω)) = (−1)pdv(V (ω)),

it suffices to show that their leading terms coincide (see Remark 3.2). How-
ever, using a G-space P with the dimension of P big enough (for a fixed
ω!), the previous diagram shows that all we have to show is that

V (d(ω))0 = (−1)pdv(V (ω))0,

for all algebroids and all ω’s. In turn, this formula follows immediately from
the definition of dv(ω)0 and the fact that the operations Rα commute with
De Rham differentials.
For the compatibility of V with the horizontal differentials, we will use

the following formulas.

Rαd
∗
i =


d∗i−1Rα if i > 1,
Lα if i = 1,
0 if i = 0.

(4.11)

RαLβ −RβLα = R[α,β].(4.12)

Equations (4.11) follow from the simplicial equations and the following
formula, which can be proven in the same way in which (4.10) was proved:

iαq+1d∗i =
{
di
∗iαq if i > 0,

0 if i = 0.

Equation (4.12) follows immediately from [Lα, Lβ ] = L[α,β]. We now prove
the compatibility with the horizontal differentials. As before, it suffices to
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show that

(4.13) V (δ(ω))0 = dh(V (ω))0.

Assume that ω∈Ωq(Gp−1) and we evaluate the right hand side on (α1,. . . ,αp).
We have two types of terms. The first type is

p∑
i=1

(−1)i+1Lαi(V (ω)(α1, . . . , α̂i, . . . , αp)).

Writing out V (for each i fixed) we get a sum over permutations σ0 of
1, . . . , î, . . . , p. To the pair (i, σ0) corresponds the permutation σ = (i, σ0(1),
. . .) ∈ Sp. Note that the number τ(σ) of transpositions of σ equals to
i− 1 + τ(σ0), so the sum above equals to

(4.14)
p∑
i=1

(−1)
p(p−1)

2 sgn(σ)Lασ(1)(Rασ(2) . . . Rασ(p)ω).

The other term is∑
i<j

(−1)i+j(V ω)([αi, αj ], α1, . . . , α̂i, . . . , α̂j , . . . , αp).

Again, for each i and j, writing out V we get a sum over permutations σ1
of the list

0, 1, . . . , î, . . . , ĵ, . . . , p,

where 0 is used to index the position of [αi, αj ]. To (i, j, σ1) we associate

• a number k ∈ {1, . . . , p − 1} defined by the condition that 0 is on
the (p− k)th-position of σ1.

• a permutation σ ∈ Sp which is obtained from σ1 by inserting i on
the (p− k)th place, and j on the (p− k+ 1)th (so that σ(p− k) = i,
σ(p−k+1) = j and the ordered sequence σ(1), σ(2), . . . from which
i and j are deleted coincides with ordered sequence σ1(0), σ1(1), . . .
from which 0 is deleted.

Note that, modulo 2, the number of transpositions of these permutations
satisfy:

τ(σ1) = τ(σ(1), . . . , σ(p− k − 1), 0, σ(p− k + 2), . . . , σ(p))
= p− k + 1 + τ(σ(1), . . . , σ(p− k − 1), σ(p− k + 2), . . . , σ(p)),

TOME 61 (2011), FASCICULE 3



956 Camilo ARIAS ABAD & Marius CRAINIC

τ(σ) = τ(σ(1), . . . , σ(p− k − 1), i, j, σ(p− k + 2), . . . , σ(p)) ≡
≡ τ(i, j, σ(1), . . . , σ(p− k − 1), σ(p− k + 2), . . . , σ(p))

+ τ(p− k, p− k + 1, 1, 2, . . .)
= τ(i, j, σ(1), . . . , σ(p− k − 1), σ(p− k + 2), . . . , σ(p))
= (i− 1)+(j − 2) + τ(σ(1), . . . , σ(p− k − 1), σ(p− k + 2), . . . , σ(p)).

Thus
(−1)i+jsgn(σ1) = (−1)p−ksgn(σ).

We conclude that the second term which arises from the right hand side of
(4.13) is:

(4.15) (−1)
p(p+1)

2
∑
k

∑
σ:σ(p−k)<σ(p−k+1)

(−1)ksgn(σ)Rασ(1) . . . Rασ(p−k−1)

R[ασ(p−k),ασ(p−k+1)] . . . Rασ(p) .

The left hand side of (4.13) applied to (α1, . . . , αp) is

(−1)
p(p+1)

2
∑
σ

p∑
k=0

sgn(σ)(−1)kRασ(1) . . . Rασ(p)d
∗
kω.

Using (4.11), this is equal to

(−1)
p(p+1)

2

p∑
k=1

sgn(σ)(−1)kRασ(1) . . . Rασ(p−k)Lασ(p−k+1) . . . Rασ(p) .

When k = p we obtain precisely (4.14). It remains to show that the remain-
ing terms give us (4.15). In that sum (over σ and k 6 p− 1) we distinguish
two cases:

• (k, σ) satisfies: σ(p− k) < σ(p− k + 1).
• (k, σ)-satisfies: σ(p− k) > σ(p− k + 1).

Note that, using the transposition τk := (p − k, p − k + 1)), we have a
bijection (k, σ) 7→ (k, σ ◦ τk) between the first and second cases. Hence,
both cases can be indexed by (k, σ) which satisfy σ(p− k) < σ(p− k + 1),
but the second case will produce terms of type:

(−1)
p(p+1)

2 (−sgn(σ))(−1)kRασ(1) . . . Rασ(p−k+1)Lασ(p−k) . . . Rασ(p) ,

where we used that sgn(σ ◦ τk) = −sgn(σ). Putting together the two cases,
we obtain:

(−1)
p(p+1)

2 (−1)ksgn(σ)Rασ(1) . . . (Rασ(p−k)Lασ(p−k+1)−Rασ(p−k+1)Lασ(p−k))
. . . Rασ(p) ,
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which combined with (4.12) gives us precisely (4.15). �

5. The Van Est isomorphism

In this section we will prove the following Van Est isomorphism theorem.

Theorem 5.1. — Let G be a Lie groupoid with Lie algebroid A and
k-connected source fibers. The homomorphism induced in cohomology by
the Van Est map:

V : Hp(Ω̂q(G•))→ Hp(W •,q(A)),

is an isomorphism for p 6 k and is injective for p = k + 1.

Remark 5.2. — When q = 0 one recovers the Van Est isomorphism of
[8]. In view of the isomorphism (3.2), the theorem gives an isomorphism
between Hp(Ωq(G•)) and Hp(A;Sq(Ad∗)). When G is a Lie group and
A = g is a Lie algebra, this should be compared with the result of Bott
[4] which gives an isomorphism between Hp(Ωq(G•)) and the differentiable
cohomology Hp−q

d (G;Sqg∗). In our coming paper [1] we will show that the
result of Bott holds for arbitrary Lie groupoids.

The proof of the theorem will be divided in two steps. First we will prove
that there is a homomorphism in cohomology which is an isomorphism in
the required degrees. Then we will prove that this homomorphism coincides
with the one induced by the Van Est map.

The first step is organized in the following co-augmented double complex:

...
...

...

Ωq(G2)
d∗0 //

dh

OO

W0,q(F2)

δv

OO

dh
// W1,q(F2)

δv

OO

// . . .

Ωq(G1)
d∗0 //

dh

OO

W0,q(F1)

δv

OO

dh
// W 1,q(F1)

δv

OO

// . . .

Ωq(G0)
d∗0 //

dh

OO

W0,q(F0)

δv

OO

dh
// W 1,q(F0)

δv

OO

// . . .

W0,q(A)

δv

OO

dh
// W1,q(A)

δv

OO

// . . .
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Let us explain how this double complex is defined. As before, Gk denotes
the space of strings of k-composable arrows. Next, Fk is the foliation on
Gk+1 given by the fibers of the map d0 : Gk+1 −→ Gk. We interpret Fk as
an integrable sub-bundle of TGk+1 (namely the kernel of the differential
of d0), hence also as a Lie algebroid over Gk+1, with the inclusion as an-
chor. W (Fk) is the Weil algebra of Fk and the dh’s are the corresponding
horizontal differentials. We also define F−1 := A.

The maps d∗0 : Ωq(Gk) −→ W 0,q(Fk) = Ωq(Gk+1) are given by the
pull-back by d0. To explain δv, we view W (Fk) as follows. First of all,
using the action of G on Gk+1 (Example 2.2) and the induced infinitesimal
action of A on Gk+1, we have already mentioned that the associated Lie
algebroid AnGk+1 can be identified with Fk (see Example 2.3). Hence, by
Remark 3.14, we have a canonical isomorphism

W (Fk) ∼= W (A; Ω(Gk+1)),

where the left hand side is the Weil algebra with coefficients in the A-DG
algebra Ω(Gk+1) associated to the action of A on Gk+1 (see Example 3.13).
Since the simplicial maps di : Gk+1 −→ Gk are maps of G-spaces for i > 1,
we will have induced maps

d∗i : W (A; Ω(Gk)) −→W (A; Ω(Gk+1))

which commute with dh. We define

δv =
∑
i>1

(−1)id∗i .

This completes the description of the double complex. Next, we claim that
the co-augmented columns of the double complex

0 // W p,q(A) δv
// W p,q(F0)

δv
// W p,q(F1)

δv
// W p,q(F1)

δv
// . . .

are exact. This is a rather standard argument. Since δv comes from a simpli-
cial structure arising from the nerve of G by deleting the first face map (d0
is not used in the definition of δv), the first degeneracy map s0 can be used
to produce a contraction. More precisely, since s∗0 : Ω(Gk) −→ Ω(Gk−1)
respects the Ω(M)-module structure, it will induce a map:

s∗0 : W (A; Ω(Gk)) −→W (A; Ω(Gk−1)).
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The fact that s∗0 is a contracting homotopy follows formally from the sim-
plicial identities:

σ∗0δ
v + δvσ∗0 =

j+2∑
i=1

(−1)i+1σ∗0δ
∗
i +

j+1∑
i=1

(−1)i+1δ∗i σ
∗
0

= Id +
j+2∑
i=2

(−1)i+1σ∗0δ
∗
i +

j+1∑
i=1

(−1)i+1δ∗i σ
∗
0

= Id−
j+1∑
i=1

(−1)i+1δ∗i σ
∗
0 +

j+1∑
i=1

(−1)i+1δ∗i σ
∗
0 = Id.

This proves that the co-augmented columns of the double complex are
exact. The standard homological algebra of double complexes implies that
the map induced by the co-augmentation maps are isomorphisms:

a : H(W •,q(A)) ∼= H(Tot(W •,q(F•))).

Next, we look at the co-augmented rows

0 // Ωq(Gj)
d∗0 // W0,q(Fj) // W1,q(Fj) // . . . ,

and we show that, under the assumption in the theorem, these are exact
up to degree k. Again, homological algebra implies that the map induced
by the co-augmentation of the columns

b : Hp(Ωq(G•))→ Hp(Tot(W •,q(F•)),

is an isomorphism for p < k+ 1 and is injective for p = k+ 1. To prove the
(partial) acyclicity of the rows, we will use the following lemma.

Lemma 5.3. — Let F be a foliation given by the fibers of a submersion
with homologically k-connected fibers. Then, for 0 < p 6 k,

Hp(W •,q(F)) = 0.

Proof. — Here we will use the interpretation of the Weil algebra in terms
of representations up to homotopy given in Remark 3.1. The adjoint com-
plex of a foliation is quasi-isomorphic to the complex ν[1] which consists
of the normal bundle ν = TM/F concentrated in degree 1. We now use
the properties of representations up to homotopy proved in [2]. We observe
that the representation up to homotopy Sq(Ad∗) is quasi-isomorphic to
the ordinary representation Λq(ν∗). Passing to cohomology and using the
isomorphism (3.2), we deduce that

Hp(W •,q(F)) ∼= Hp(F , Sq(ν∗)) = 0

where the last equation is a direct application of Theorem 2 from [8]. �
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We still have to show that the map

a−1 ◦ b : Hp(Ωq(G•))→ Hp(W •,q(A)),

which is an isomorphism in the desired degrees, is the same as the Van Est
map. More precisely we will show that, in cohomology,

V = ±a−1 ◦ b ◦ e,

where e is the isomorphism induced by the inclusion Ω̂(G•) ↪→ Ω(G•).
First we observe that s∗0, the homotopy operator for the columns of the
double complex, gives a formula for the map a−1. Consider an element
c ∈ W j,q(Fp) such that δv(c) = dh(c) = 0. Then, chasing the diagram we
obtain that a−1(c) = (−1)ps∗0(dhs∗0)p. We will use this formula to compute
a−1 ◦ b ◦ e. Take an element η ∈ Ω̂q(Gp) such that δ(η) = 0 and compute:

a−1 ◦ b ◦ e(η) = (−1)ps∗0(dhs∗0)pd∗0(η) = (−1)p(s∗0dh)p(η).

We claim that for each 0 6 l 6 p:

(s∗0dh)l(η)0(α1, . . . , αl) = (−1)lq
∑
λ∈Sl

(−1)|λ|Rαλ1
. . . Rαλl (η),

and also that s∗0((s∗0dh)l(η)0(α1, . . . , αl)) = 0. We will prove our claim by
induction on l. For l = 0 the claim is true because η is normalized. We
assume now that the condition holds for l − 1 and compute:

(s∗0dh)l(η)0(α1, . . . , αl)

= s∗0(dh((s∗0dh)l−1(η)(α1, . . . , αl)

= s∗0(
l∑
i=1

(−1)i+q+1Lαi((s∗0dh)l−1(η))0(α1, . . . , α̂i, . . . , αl))

= (−1)q(
l∑
i=1

(−1)i+1Rαi((s∗0dh)l−1(η))0(α1, . . . , α̂i, . . . , αl))

= (−1)lq
∑
λ∈Sl

(−1)|λ|Rαλ1
. . . Rαλl (η).

In particular, for l = p this means that V = ±a−1 ◦ b ◦ e. Since all e, b, a−1

are isomorphisms in the required degrees, this completes the proof.

Corollary 5.4. — Let G be a Lie groupoid with Lie algebroid A and
k-connected source fibers. Then, the Van Est map V : Hp(Ω(G•)) →
Hp(Tot(W (A))) is an isomorphism for p 6 k and is injective for k = p+ 1.
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Remark 5.5. — The isomorphism theorem 5.1 is the result one would
expect from a topological point of view. The map V corresponds to the pro-
jection EG→ BG, whose fibers are isomorphic to the fibers of the source
of G. In case this map is a fibration, the Lerray-Serre spectral sequence
gives isomorphisms in cohomology in degrees less than the connectedness
of the fiber.

6. Applications

In this section we discuss multiplicative forms from the point of view of
the Van Est isomorphism theorem. In particular, we will prove Theorem 0.2
and Theorem 0.3 from the introduction.

We start with the following more precise version of Theorem 0.2, which
generalizes the main result of [6] on integration of Dirac structures.

Theorem 6.1. — Let G be a source simply connected Lie groupoid over
M with Lie algebroid A and let φ ∈ Ωk+1(M) be a closed form. Then there
is a one to one correspondence between:

• multiplicative forms ω ∈ Ωk(G) which are φ-relatively closed.
• C∞(M)-linear maps τ : Γ(A)→ Ωk−1(M) satisfying the equations:

iρ(β)(τ(α)) = −iρ(α)(τ(β)),(6.1)
τ([α, β]) = Lα(τ(β))− Lβ(τ(α)) + dDR(iρ(β)τ(α)) + iρ(α)∧ρ(β)(φ).(6.2)

for all α, β ∈ Γ(A).
The correspondence is given by:

τ(α) = iα(ω)|M ,

where, on the right hand side, α ∈ Γ(A) is identified with the corresponding
right invariant vector field on G and the restriction to M makes use of the
inclusion M ↪→ G as units.

First we show that the correspondence ω 7→ τ is well-defined, i.e., τ
satisfies the equations (6.1) and (6.2). For that, we first remark that τ
is precisely V (ω)1 ∈ Ωk−1(M ;S1(A∗)), viewed as a map Γ(A) −→ Ωk−1.
Since ω+φ is a cocycle in the Bott-Shulman complex (see subsection 2), it
follows that V (ω)+φ is a cocycle in the Weil algebra. The desired equations
for τ will then be implied by the following:

Proposition 6.2. — Given φ ∈ Ωk+1(M), σ = (σ0, σ1) ∈ W 1,k(A),
σ + φ is a cocycle in the Weil algebra if and only if:
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(1) φ is a closed form and σ1 satisfies equations (6.1), (6.2).
(2) σ0(α) = iρ(α)(φ)− d(σ1(α)).

Proof. — The condition that σ + φ is a cocycle means that dv(σ) +
dh(φ) = 0. But

dv(σ)0(α) = −dDR(σ0(α)), (dvσ)1(|α) = dDR(σ1(|α)) + σ0(α),

(dhφ)0(α) = Lρ(α)(φ), (dhφ)1(|α) = −iρ(α)(φ),

hence we obtain the equations:

σ0(α) = iρ(α)(φ)− d(σ1(α)), d(σ0(α)) = Lρ(α)(φ).

Since the second equation is obtained by applying dDR to the first one and
using that φ is closed, we only have to keep in mind the first equation.
The other condition for σ+ φ to be a cocycle is dh(σ) = 0. We write the

components:

(dhσ)0(α, β) = −σ0([α, β]) + Lρ(α)(σ0(β))− Lρ(β)(σ0(α)),

(dhσ)1(α|β) = Lρ(α)(σ1(β))− σ1([α, β]) + iρ(β)(σ0(α)),

(dhσ)2(|α) = −iρ(α)(σ1(α)).

Clearly, (dhσ)2 = 0 is equivalent to (6.1). Also, (dhσ)1 = 0 is equivalent to

σ1([α, β]) = Lρ(α)(σ1(β))− Lρ(β)(σ1(α)) + diρ(β)(σ1(α)) + iρ(β)iρ(α)(φ),

which is equivalent to (6.2). Finally, a simple computation shows that if
(dhσ)2 = 0 and (dhσ)1 = 0 then (dhσ)0 = 0. �

Next, we prove that the correspondence ω 7→ τ in the theorem is injective.
Since τ = V (ω)1, this part follows from the following:

Lemma 6.3. — If G is a Lie groupoid with connected source-fibers and
ω ∈ Ωk(G) is closed and multiplicative, then the following are equivalent:

(i) V (ω) = 0.
(ii) V (ω)1 = 0.
(iii) ωx = 0 for all x ∈M .
(iv) ω = 0.

Proof. — Since V (ω) is a cocycle in the Weil algebra, Proposition 6.2 tells
us that V (ω) is determined by V (ω)1, hence (i) and (ii) are equivalent. In
turn, from the definition of V (ω)1, (ii) means that

ω(αx, V 2
x , . . . , V

k
x ) = 0

for all x ∈M , V kx ∈ TxM , α ∈ Γ(A), where we identify α with the induced
right invariant vector field on G. In other words, ωx is zero when applied to
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one vector tangent to the s-fiber and (k−1) vectors tangent to the base. We
have to show that this implies ωx is zero when applied to all vectors. But
TxG splits as the sum of the tangent space to the s-fiber and the tangent
space of M (both at x), hence it remains to show that ω|M = 0. But this
follows immediately from ω|M = s∗0d

hω. Finally, we have to show that (iii)
implies ω = 0. For this we evaluate expressions of type

(6.3) ωg
(
αg, V

2
g , . . . , V

k
g

)
for g ∈ G, α ∈ Γ(A), V ig ∈ TgG arbitrary. To make use of the multiplica-
tivity of ω, we write

αg = (dm)y,g(αy, 0), vig = (dm)y,g
(
(dt)g(V ig ), V ig

)
and we find that (6.3) is equal to

ω
(
αy, (dt)g(V 2

g ), . . . , (dt)g(V kg )
)
,

which, by assumption, is zero. We conclude that iα(ω) = 0 for all α hence,
since ω is also closed, it is basic with respect to the submersion s : G −→M .
Since the s-fibers are connected, we find θ on M such that ω = s∗θ. But
ω|M = 0 implies θ = 0 and then ω = 0. �

End of proof of theorem 6.1. — Finally, we prove that the correspon-
dence ω 7→ τ in the theorem is surjective. Note that the case k = 2 was
proved in [6] and surjectivity was the most difficult part of the proof. Given
τ , take σ ∈W 1,k(A) as in Proposition 6.2 with σ1 = τ . Since σ is dh-closed,
Theorem 5.1 implies that there exist some multiplicative form ω′ ∈ Ωp(G)
such that V (ω′) = dh(θ) + σ, for some θ ∈ Ωk(M). It is then clear that
ω = ω′ − δ(θ) is a multiplicative form satisfying V (ω) = σ. In particular,
V (dω + δφ) = dvσ + dhφ = 0 and dvω + dhφ is both multiplicative and
closed. Using the previous lemma, we find that ω is φ-relatively closed. This
concludes the proof of Theorem 6.1. �

Next, we discuss Theorem 0.3 from the introduction. We will prove the
following more precise statement.

Theorem 6.4. — Let G be a source simply connected Lie groupoid
over M with Lie algebroid A and let ω ∈ Ωk(G) be a closed multiplicative
k-form. Then there is a 1-1 correspondence between:

• θ ∈ Ωk−1(G) multiplicative satisfying d(θ) = ω.
• C∞(M)-linear maps l : Γ(A) −→ Ωk−2(M) satisfying

iρ(β)(l(α)) = −iρ(α)(l(β)),(6.4)
cω(α, β) = −l([α, β])+Lρ(α)(l(β))−Lρ(β)(l(α))+dDR(iρ(β)l(α)).(6.5)
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where cω(α, β) = iρ(α)∧ρ(β)(ω)|M . The correspondence is given by

l(α) = −iα(θ)|M .

From the previous two theorems we immediately deduce what is the
infinitesimal data associated to multiplicative forms on groupoids.

Remark 6.5. — When k = 2, Ωk−2(M) = C∞(M), so that (6.4) is
void while (6.5) simply becomes cω = δ(l), where δ is the differential of
the DeRham complex (Ω(A), δ) of A. Hence, in this case, we obtain the
following: if ω ∈ Ω2(G) is multiplicative and closed then cω ∈ Ω2(A) is a
cocycle and there is a 1-1 correspondence between θ ∈ Ω1(G) multiplicative
such that dθ = ω and l ∈ Ω1(A) satisfying δ(l) = ω. This is the statement
that appears in [9].

Corollary 6.6. — Let G be a source simply connected Lie groupoid
over M with Lie algebroid A. Then there is a one to one correspondence
between:

• multiplicative forms θ ∈ Ωk(G).
• C∞(M)-linear maps τ : Γ(A)→ Ωk(M) and l : Γ(A) −→ Ωk−1(M)
satisfying the equations:

iρ(β)(l(α)) = −iρ(α)(l(β)),
iρ(β)(τ(α)) = −l([α, β]) + Lρ(α)(l(β))− Lρ(β)(l(α)) + dDR(iρ(β)l(α)).
τ([α, β]) = Lα(τ(β))− Lβ(τ(α)) + dDR(iρ(β)τ(α)),

for all α, β ∈ Γ(A).

Proof. — A multiplicative k-form θ is determined by the following data:
(1) A closed multiplicative (k + 1)-form ω,
(2) A multiplicative k-form θ such that dθ = ω.

Thus, in order to reconstruct θ it suffices to apply the previous two theo-
rems. �

We now discuss the proof. Let σ = V (ω) and let us first look at solutions
ξ ∈W 1,k−1(A) of the equations:

(6.6) dv(ξ) = σ, dh(ξ) = 0.

We use the same formulas as in the proof of Proposition 6.2 (but applied
to ξ instead of σ) to write out explicitly the equations. For dv(ξ) = σ we
find

−dDR(ξ0(α)) = σ0(α), dDR(ξ1(α)) + ξ0(α) = σ1(α).
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As in the proof of Proposition 6.2, we only have to remember the second
one. In other words, dv(ξ) = σ tells us that ξ0 is determined by ξ1:

(6.7) ξ0(α) = σ1(α)− dDR(ξ1(α)).

The condition dh(ξ) = 0 gives three equations, corresponding to the three
components. For (dh(ξ))2 = 0 we find that ξ1 must satisfy the anti-symme-
try condition (6.4). For (dh(ξ))1 = 0 we find:

ξ1([α, β]) = Lρ(α)(ξ1(β)) + iρ(β)(ξ0(α)).

Using the formula for ξ0 in terms of ξ1, we find that ξ1 must satisfy (6.5).
Next, if θ is as in the theorem, we have δθ = 0 and dθ = −ω, i.e.,

ξ := −V (θ) must satisfy (6.6). The previous discussion shows that l = ξ1
must satisfy the equations above. From the definition of the Van Est map
it follows that l(α) = −Jα(θ) = −iα(θ)|M .
Assume now that l satisfies the equations from the statement. Let ξ ∈

W 1,k−1(A) with ξ1 = l and ξ0 defined by (6.7), so that ξ satisfies (6.6).
Using the Van Est isomorphism, we find θ′ ∈ Ωk−1(G) multiplicative and
η ∈ Ωk−1(M) such that V (θ′) = −ξ + dh(η). Choose θ = θ′ − δη. Then

V (d(θ)−ω)=−dv(V (θ))−V (ω)=−dv(−ξ+dhη−V (dhη))−σ = dvξ−σ = 0.

On the other hand, d(θ)−ω is both multiplicative and closed and therefore
Lemma 6.3 implies that ω = d(θ). By construction, the l corresponding to
θ is the l we started with, concluding the proof of the surjectivity. For the
injectivity, one proceeds exactly as in the proof of Theorem 6.1. If θ and θ′
have the same associated l and transgress ω, θ − θ′ will be multiplicative
and closed with V (θ− θ′)1 = l− l = 0. In this case Lemma 6.3 implies that
θ = θ′.

7. Appendix: Kalkman’s BRST algebra
in the infinite dimensional case

In this paper we use some constructions which, although standard in the
finite dimensional case, need some clarification in the infinite dimensional
setting. Here we make these clarifications and we fix our notations. In
particular, we will give an intrinsic description of Kalkman’s BRST algebra
which applies also to infinite dimensional Lie algebras and more general
coefficients.
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7.1. Chevalley-Eilenberg complexes

For a representation V of a Lie algebra g, the action g ⊗ V −→ V is
denoted by (α, v) 7→ Lα(v). The Chevalley-Eilenberg complex with coeffi-
cients in V is

Λ(g∗, V ) := HomR(Λg, V ),
where “HomR” stands for the space of R-linear maps. In degree k, Λk(g∗, V )
consists of antisymmetric multilinear maps depending on k-variables from
g, with values in V . The Chevalley-Eilenberg differential,

δ : Λp(g∗, V ) −→ Λp+1(g∗, V )

is given by the Koszul formula:

(δ(c))(α1, . . . , αp+1) =
∑
i<j

(−1)i+jc([αi, αj ], . . . , α̂i, . . . , α̂j , . . . , αp+1)

+
∑
i

(−1)i+1Lρ(αi)(c(α1, . . . , α̂i, . . . , αp+1)).

7.2. Symmetric powers

We now specify our conventions and notations regarding symmetric pow-
ers. For any two vector spaces E and V , the space of V -valued polynomials
on E is

S(E∗, V ) := HomR(SE, V ).
where “HomR” stands for the space of R-linear maps. A polynomial of
degree k will be viewed either as a symmetric k-multilinear map

P : E × . . .× E︸ ︷︷ ︸
k times

−→ V

or as an actual function on E with values in V : P (α) = P (α, . . . , α). We
will also use the following operation. For each α ∈ E there is a partial
derivative

∂α : Sk(E∗, V ) −→ Sk−1(E∗, V ),

∂α(P )(α0) := d

dt
|t=0P (α0 + tα).

Here the derivative should be interpreted formally. In the multilinear no-
tation this operation is:

∂α(P )(α0) = kP (α, α0, . . . , α0).
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7.3. Some representations

For any representation V of g, S(g∗;V ) is itself a representation in a
canonical way. The action

g⊗ S(g∗;V ) −→ S(g∗;V ), (α, P ) 7→ Lα(P )

is induced from the coadjoint action on g∗ and the given action on V . These,
together with the Leibniz identity for Lα, determine the action uniquely in
the finite dimensional case. We take the resulting explicit formula as the
definition in the general case:

Lα(P )(α1, . . . , αp) = Lα(P (α1, . . . , αp))−
∑
i

P (α1, . . . , [α, αi], . . . , αp).

A related representation arises in the case when g = Γ(A) is the Lie
algebra of sections of a Lie algebroid A overM . It is the algebra Ω(M ;SA∗)
of forms on M with values in the symmetric algebra of A. The action
(α, ω) 7→ Lα(ω) is uniquely determined by

• the Leibniz derivation identity: for all ω, ω′ ∈ Ω(M ;SA∗),

Lα(ωω′) = Lα(ω)ω′ + ωLα(ω′).

• on Ω(M), Lα coincides with the usual Lie derivative Lρ(α) along
the vector field ρ(α).

• on Γ(A∗), Lα is given by Lα(ξ)(β) = Lα(ξ(β))− ξ(Lα(β)).
Actually, Ω(M ;SA∗) is just a sub-representation of S(g∗;V ) with V =
Ω(M).

7.4. The Weil algebra with coefficients

Assume now that g is a Lie algebra and A is a g-DG algebra. We define

W (g;A) := Λ(g∗;S(g∗,A))

with the following bi-grading:

W p,q(g;A) :=
⊕
k

Λp−k(g∗;Sk(g∗,Aq−k)).

For an element c ∈ Λp−k(g∗;Sk(g∗,Aq−k)) we use the notation

c(α1, . . . , αp−k|α) := c(α1, . . . , αp−k)(α) ∈ Aq−k,
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which is an expression multilinear antisymmetric in its first entries and
polynomial in the last entry. W (g;A) has a product structure compatible
with the bi-grading. For

c ∈ Λp(g∗;Sk(g∗,Aq)), c′ ∈ Λp
′
(g∗;Sk

′
(g∗,Aq

′
)),

cc′ is given by

(cc′)(α1, . . . , αp+p′ |α) = (−1)qp
′∑

sgn(σ)c(ασ(1), . . . , ασ(p)|α)

c′(ασ(p+1), . . . , ασ(p+p′)|α),

where the sum is over all (p, p′)-shuffles. The sign in front of the sum
comes from the finite dimensional case and the standard sign conventions:
in W (g)⊗A,

(w ⊗ a)(w′ ⊗ a′) = (−1)deg(a)deg(w′)(ww′ ⊗ aa′).

7.5. Kalkman’s BRST differentials

As in the case of the standard Weil algebra, there are two differentials.
The first one, dh, increases p and is given by

dh(c) = δ(c) + iA(c).

Here δ is the Koszul differential, while

iA : Λp(g∗, Sk(g∗,Aq)) −→ Λp(g∗, Sk+1(g∗,Aq−1))

is given by

iA(c)(α1, . . . , αp|α) = (−1)p+1iα(c(α1, . . . , αp|α)).

Both δ and iA are derivations (and that motivates the sign in iA).
The second differential, dv, increases q and is given by

dv(c) = dA(c) + ig(c).

Here dA is given by

dA(c)(α1, . . . , αp|α) = (−1)pdA(c(α1, . . . , αp|α)),

while
ig : Λp(g∗, Sk(g∗,Aq)) −→ Λp−1(g∗, Sk+1(g∗,Aq))

is given by

ig(c)(α1, . . . , αp−1|α) = (−1)p+1c(α1, . . . , αp−1, α|α).

Again, both dA and ig are derivations.
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In the case that g is finite dimensional, W (g;A) = W (g) ⊗ A and we
can use a basis ea of g to write the formulas more explicitly. We denote by
θa the induced basis of Λ1g∗, by µa the induced basis of S1g∗ and by dW
the differential of W (g). From the derivation property of all the operators
δ, iA, dA, ig and after a straightforward checking on generators, we deduce
that

δ = dhW ⊗ 1 + θa ⊗ Lea , iA = −µa ⊗ iea ,
dA = 1⊗ dA, ig = dvW ⊗ 1.

Hence, in this case, dh + dv does coincide with Kalkman’s differential on
W (g)⊗A.
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