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THE EXISTENCE OF EQUIVARIANT PURE FREE
RESOLUTIONS

by David EISENBUD, Gunnar FLØYSTAD & Jerzy WEYMAN

Dedicated to Jürgen Herzog, on the occasion of his sixty-fifth birthday

Abstract. — Let A = K[x1, . . . , xm] be a polynomial ring in m variables and
let d = (d0 < · · · < dm) be a strictly increasing sequence of m + 1 integers. Boij
and Söderberg conjectured the existence of graded A-modules M of finite length
having pure free resolution of type d in the sense that for i = 0, . . . , m the i-th
syzygy module of M has generators only in degree di.

This paper provides a construction, in characteristic zero, of modules with this
property that are also GL(m)-equivariant. Moreover, the construction works over
rings of the form A ⊗K B where A is a polynomial ring as above and B is an
exterior algebra.
Résumé. — Soit A = K[x1, . . . , xm] un anneau polynomial à m variables et soit

d = (d0 < · · · < dm) une suite strictement croissante de m + 1 nombres entiers.
Boij et Söderberg ont conjecturé l’existence de A-modules gradués M de longueur
finie ayant une résolution pure et libre de type d dans le sens ou pour i = 0, . . . , m
les générateurs du i-ème module de syzygies de M sont uniquement de degré di.

Cet article présente une construction, en caractéristique zéro, de modules avec
cette propriété qui sont aussi GL(m)-équivariants. La construction fonctionne aussi
pour les anneaux de la forme A ⊗K B où A est un anneau polynomial comme ci-
dessus et B est une algèbre extérieure.

Introduction

Let d = (d0 < · · · < dm) be a strictly increasing sequence of integers. In
their remarkable paper [2], Boij and Söderberg conjectured the existence
of a graded module M of finite length over every polynomial ring A =
K[x1, . . . , xm] whose minimal free resolution has the form

0→ Aβm(−dm)→ · · · → Aβ0(−d0).

Keywords: Pure resolution, equivariant resolution, Betti diagram, Boij-Söderberg theory,
Pieri map, determinantal variety.
Math. classification: 13D02, 13C14, 14M12, 20G05.
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Such a resolution is said to be pure of type d. This paper provides a con-
struction, in characteristic zero, that gives more: aGL(m)-equivariant mod-
ule with a pure resolution. In addition we give a another construction of
pure resolutions, of modules supported on determinantal varieties.
The constructions in this paper gave the first proof that the Boij-

Söderberg existence conjecture was correct over any field. A subsequent
paper, by Eisenbud-Schreyer [7] has verified the conjecture (along with
the other conjectures in the Boij-Söderberg paper) over arbitrary fields,
but with (generally) much worse bounds on the ranks of the modules con-
structed, and with no GL(m)-equivariance. Also, Sam and Weyman [16]
have provided a more direct proof that the modules we construct actually
have pure resolutions. It is established in [10] that the equivariant resolution
we construct, or rather its multigraded Betti diagram, has a canonical po-
sition among multigraded resolutions which become pure when considering
total degrees.
One of the major questions left open by these papers is the nature of the

semigroup of possible degrees of modules having pure resolutions with a
given degree sequence. There is a unique minimum possibility, determined
solely by integrality considerations, and it is easy to see that only integral
multiples of this minimum can occur. It is known from many examples
that not all occur. We make some conjectures in this direction, supported
by the examples in this paper, in Section 6. In particular, Conjecture 6.1
asserts that every sufficiently high multiple that is integral does occur.
The construction of Eisenbud-Schreyer [7] is complementary to this one, in
that putting together the two equivariant examples produced here with the
example produced there shows that this conjecture is true for many degree
sequences.
We are able to make our constructions in a more general context than the

polynomial rings that occur in [2] or [7]: we define resolutions over a free
strictly commutative Z/2-graded algebra that specialize to the necessary
pure resolutions in the polynomial algebra case, and also give pure resolu-
tions over exterior algebras. This suggests that there may be a stronger ver-
sion of the Boij-Söderberg conjectures/Eisenbud-Schreyer theory address-
ing resolutions over the exterior algebra.
Our constructions make use of Schur functors, Z/2-graded Schur functors

and Bott’s Theorem. This last is what limits our method to characteristic 0.
It remains an open question whether such examples exist in characteristic
p > 0.

ANNALES DE L’INSTITUT FOURIER
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By a participation λ = (λ1, . . . , λs, . . .) we shall mean an (infinite) weakly
decreasing sequence of integers which is eventually zero.
Let V = V0 ⊕ V1 be a Z/2-graded vector space with dimension vector

(m,n). We recall (see Section 1) that there exist Z/2-graded versions of
Schur modules

Sλ(V ) =
⊕
µ⊂λ

SµV0 ⊗ Sλ′/µ′V1.

Here λ′ denotes the conjugate partition to λ. For example, the conjugate
partition to (2) is (1, 1).
We work over the free Z/2-graded algebra

R = Sym(V ) =
⊕
i>0
Si(V ) = Sym(V0)⊗

∧
•(V1).

Define the positive integers ei for 2 6 i, by setting

ei = λi−1 − λi + 1,

so that ei = 1 for i� 0. For convenience we set di =
∑i
j=1 ej , and d0 = 0.

We also set d = (d0, d1, . . . ).
Next, define a sequence of partitions α(d, i) for i > 0. We set α(d, 0) = λ

and, for i > 1,

α(d, i) = (λ1 + e1, . . . , λi + ei, λi+1, . . . , λs, . . . ).

The Z/2-graded endomorphisms of V0 ⊕ V1 form a Z/2-graded Lie algebra
gl(V ). We define a complex of free gl(V )-equivariant R-modules, with the
terms

F(d)0 = SλV ⊗R,
F(d)i = Sα(d,i)V ⊗R(−e1 − · · · − ei) for i > 1.

Though this complex is in general infinite, it becomes finite of length at
most dimV0 in the case when V1 = 0. The differential

∂i : F(d)i → F(d)i−1

is given on the generators by the Z/2-graded Pieri maps (see Section 1)

Sα(d,i)V → Sα(d,i−1)V ⊗ SeiV = Sα(d,i−1)V ⊗Ri.

We now state the main results of this paper.

Theorem 0.1. — The complex F(d)• is an acyclic complex of gl(V )-
equivariant, free R-modules. It is also pure, with the i-th differential of
degree ei.

TOME 61 (2011), FASCICULE 3



908 David EISENBUD, Gunnar FLØYSTAD & Jerzy WEYMAN

Remark. — When n > 0 the complexes F(d)• are infinite, but even-
tually linear. In fact, if the partition λ has s non-zero parts, the complex
F(d)• becomes linear after s steps.

For the second construction we fix two Z/2-graded spaces V and U (with
U of dimension vector (d, e)) and we work over the symmetric algebra
S = Sym(V ⊗ U). Fix a sequence d as above.
We define an infinite complex H(d) of free gl(V ) × gl(U)-equivariant

S-modules, with the terms

H(d)0 = SλV ⊗ S,
H(d)i = Sα(d,i)V ⊗ Sdi

U ⊗ S(−e1 − . . .− ei) for i > 1.

The differential

∂i : H(d)i → H(d)i−1

is given on the generators by the Z/2-graded Pieri maps (see Section 1)

Sα(d,i)(V )⊗ Sdi
U

↓
Sα(d,i−1)(V )⊗ Sdi−1U ⊗ Sei

V ⊗ Sei
U⋂

Sα(d,i−1)V ⊗ Sdi−1U ⊗ Sei
.

Theorem 0.2. — The complex H(d)• is an acyclic complex of free S-
modules that is gl(V )×gl(U)-equivariant. It is pure, and the i-th differential
has degree ei.

The paper is organized as follows. Section 1 is devoted to recalling neces-
sary notions from representation theory of GL(m). In §2 we briefly review
the material needed from representation theory of Z/2-graded Lie algebra
gl(V ). In §3 and §4 we prove Theorems 0.1 and 0.2 in special cases. In
§5 we deduce the general cases from the cases already treated. Further
conjectures and open problems are discussed in §6.

We are grateful to F.-O. Schreyer for pointing out to us that certain
known complexes constructed by multilinear algebra (see §2) give examples
including all the pure resolutions whose Betti tables have just two rows with
nonzero terms, and thus setting us on the idea of using Schur functors to
construct pure resolutions.

ANNALES DE L’INSTITUT FOURIER
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1. Cohomology of Homogeneous Bundles on Projective
Spaces

For the convenience of the reader we review a few necessary results from
representation theory.

We work over a field K of characteristic zero. We denote by E a vector
space of dimension m over K (or sometimes a vector bundle of rank m on
an algebraic variety), and write A = Sym(E) for the symmetric algebra.
Here and in the sequel we use the language of vector bundles but always
work with the associated locally free sheaves.
There is a one-to-one correspondence between the irreducible polyno-

mial representations of the group GL(E) and the set of partitions λ =
(λ1, . . . , λm) with at most m parts. Here we allow this weakly decreas-
ing sequence also to consist of negative integers. The representation corre-
sponding to λ will be written SλE, and λ is called the highest weight for
SλE. The construction of these representations is functorial; in character-
istic 0, for example, one may view the representation SλE as the image of
E ⊗ · · · ⊗ E, the tensor product with t =

∑
i λi factors, under the projec-

tion map defined by a Young symmetrizer , which is a certain element of the
group algebra of the symmetric group on t letters that acts by permuting
the factors of the tensor product (see [11] §4.1 and §6.1.) For this reason the
construction extends to the case where E is a vector bundle on an arbitrary
space, and the proof below will imply that the complexes of vector bundles
we construct are resolutions because acyclicity can be proved fiberwise.
For example the d-th symmetric power of E is S(d,0,...,0)E, which we

will often denote by SdE. Of course A = ⊕d>0SdE. The one-dimensional
representation ∧mE corresponds to the weight (1m) := (1, 1, . . . , 1). For
any λ and integer p we have

SλE ⊗ (∧mE)p = Sλ+(pm)

where λ+(pm) = (λ1 +p, . . . , λm+p). Thus we may assume that all the λi
are non-negative and that λm = 0 when this is convenient. It is useful to
visualize λ as a Young frame, a diagram of boxes in which the i-th column
of boxes extends down λi boxes from a given baseline; for example, the
Young frame for λ = (4, 2, 2, 1, 1) is

TOME 61 (2011), FASCICULE 3
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There is a general formula giving the decomposition—in characteristic
0—of the tensor product of two representations, called the Littlewood-
Richardson Rule. Here we will only use the simple special case called the
Pieri Formula, which gives the decomposition of SλE⊗SdE for any λ and
d. To express it, we define |λ| :=

∑m
i=1 λi, and we write µ ⊃ λ if µi > λi

for i = 1, . . . n. We will say that µ/λ is a vertical strip if µ ⊃ λ and if
µi 6 λi−1 for i = 2, . . . , n. In the case where all the λi are non-negative,
this means that the Young frame for λ fits into the upper left hand corner
of the Young frame for µ, and that no two boxes of µ that are outside λ lie
in the same row.
Since the decomposition is once again given by applying Young sym-

metrizers, it works for vector bundles as well.

Theorem 1.1 (Pieri’s Formula). — If E is a vector bundle defined on
an algebraic variety of characteristic 0 then

SλE ⊗ SiE = ⊕µSµE

where the sum is taken over all partitions µ ⊃ λ such that |µ|− |λ| = i and
µ/λ is a vertical strip.

Proof. — See [17] (2.3.5) or [11], Appendix A, (A.7). See also [14], Chap-
ter 1. �

The other result from representation theory that we need is a special case
of Borel-Bott-Weyl theory. Let Grass(1, E) denote the Grassmannian of 1-
dimensional subspaces of E, which may also be viewed as a the projective
space,

Grass(1, E) = P(E∗) ∼= Pm−1.

Let R denote the tautological rank one sub-bundle on Grass(1, E), and let
Q the the quotient bundle, with tautological exact sequence

0→ R→ E ⊗OPm−1 → Q→ 0.

For any sheaf G on Grass(1, E), let Hi(G) denote the cohomology
Hi(Pm−1,G). The result we need describes this cohomology in the case of
an equivariant sheaf G = SαQ⊗SuR. To express it we need two other pieces
of notation. For any permutation σ we write l(σ) for the length of σ, that is,
the minimal number of transpositions necessary to express σ as a product
of transpositions. We write ρ for the partition ρ = (m− 1,m− 2, . . . , 1, 0).

Theorem 1.2 (Bott’s Theorem in a special case). — With notation as
above, Hi(SαQ⊗ SuR) is nonzero for at most one index i. More precisely,
consider the sequence of integers (α, u)+ρ = (α1 +m−1, . . . , αm−1 +1, u).

ANNALES DE L’INSTITUT FOURIER
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1) If the sequence (α, u)+ρ has a repetition then the sheaf SαQ⊗SuR
has all cohomology equal to zero.

2) If the sequence (α, u) + ρ has no repetitions then there exists a
unique permutation σ such that β := σ((α, u) + ρ) − ρ is non-
increasing. In this case SαQ⊗ SuR has only one nonvanishing co-
homology group, which is

H l(σ)(SαQ⊗ SuR) = SβE.

Proof. — The dual form of this result is [17], (4.1.9). The version used
here follows by the duality result given in Exercise 2.18b in Weyman [17].
A very short argument for Bott’s theorem may be found in [5]. �

Corollary 1.3. — Let λ1 > · · · > λm−1 be a sequence of non-negative
integers, and let B = Sym(Q).

a) If λm−1 = 0, then there is an equivariant isomorphism of graded
A := Sym(E)-modules

H0(S(λ1,...,λm−1)Q⊗ B) ∼= S(λ1,...,λm−1,0)E ⊗A.

b) If λm−1 > 0 thenH0(S(λ1,...,λm−1)Q⊗B) has an equivariant minimal
resolution by free graded A-modules of the form

0→ S(λ1,...,λm−1,1)E ⊗A(−1)→ S(λ1,...,λm−1,0)E ⊗A

Proof. — From the tautological exact sequence above we derive a reso-
lution of each Symd(Q), and thus of the graded algebra B, which takes the
form

0→ A(−1)⊗R → A⊗OPm−1 → B → 0.
We tensor this resolution with S(λ1,...,λm−1)Q and form the long exact se-
quence in cohomology,

0→ A(−1)⊗H0(S(λ1,...,λm−1)Q⊗R)→ A⊗H0(S(λ1,...,λm−1)Q)→

H0(S(λ1,...,λm−1)Q⊗ B)→ A(−1)⊗H1(S(λ1,...,λm−1)Q⊗R).

If λm−1 = 0, Bott’s Theorem shows that all the cohomology of R ⊗
S(λ1,...,λm−1)Q vanishes. By Bott’s Theorem, H0(SλQ) = SλE, so we get
Part a). If, on the other hand, λm−1 > 0 then Bott’s Theorem shows that
the H1 term is zero, and the resulting equivariant short exact sequence is
the one given in Part b). �

We remark that the use of the complex in b), which is the push-down of
the complex SλQ⊗

∧•(R), is a simple example of the geometric technique
described in [17].

TOME 61 (2011), FASCICULE 3
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2. Z/2-Graded Representation Theory

For the proof of Theorem 0.1 we will use the results of [1] giving the
structure of R as a module over a Z/2-graded Lie algebra g := gl(V ). For
the convenience of the reader we give a brief sketch of what is needed. Let
V = V0 ⊕ V1 be a Z/2-graded vector space of dimension (m,n).
The Z/2-graded Lie algebra gl(V ) is the vector space of Z/2-graded

endomorphisms of V = V0 ⊕ V1. Thus

gl(V ) = gl(V )0 ⊕ gl(V )1,

where gl(V )0 is the set of endomorphisms preserving the grading of V
and gl(V )1 is the set of endomorphisms of V shifting the grading by 1.
Additively

gl(V )0 = EndK(V0)⊕ EndK(V1),

gl(V )1 = HomK(V0, V1)⊕HomK(V1, V0)
The commutator of the pair of homogeneous elements x, y ∈ gl(V ) is de-
fined by the formula

[x, y] = xy − (−1)deg(x)deg(y)yx.

By a gl(V )-module we mean a Z/2-graded vector space M = M0 ⊕M1
with a bilinear map of Z/2-graded vector spaces ◦ : gl(V ) × M → M

satisfying the identity

[x, y] ◦m = x ◦ (y ◦m)− (−1)deg(x)deg(y)y ◦ (x ◦m))

for homogeneous elements x, y ∈ gl(V ),m ∈M .
In contrast to the classical theory, not every representation of the Z/2-

graded Lie algebra gl(V ) is semisimple. For example its natural action on
mixed tensors V ⊗k⊗V ∗⊗l is in general not completely reducible. However,
its action on V ⊗t decomposes just as in the ungraded case:

Theorem 2.1 ([1]). — The action of gl(V ) on V ⊗t is completely re-
ducible for each t. More precisely, the analogue of Schur’s double centralizer
theorem holds and the irreducible gl(V )-modules occurring in the decom-
position of V ⊗t are in 1-1 correspondance with irreducible representations
of the symmetric group Σt on t letters. These irreducibles are the (Z/2-
graded) Schur functors

Sλ(V ) = e(λ)V ⊗t

where e(λ) is a Young idempotent corresponding to a partition λ in the
group ring of the symmetric group Σt.

ANNALES DE L’INSTITUT FOURIER
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(This result is also proven in Section 1 of [8].) The notation is consistent
with the notation above in the sense that the d-th homogeneous component
of the ring S(V ) is Sd(V ) where d represents the partition (d) with one part.
Here we use the symbol Sλ to denote the Z/2-graded version of the

Schur functor Sλ; the latter acts on ungraded vector spaces. The partition
(d) with only one part will be denoted simply d, so for example S2(V ) =
S2(V0) ⊕ (V0 ⊗ V1) ⊕ ∧2V1 and similarly

∧2
V = S(1,1)V = ∧2V0 ⊕ V0 ⊗

V1 ⊕ S2(V1). In each case the decomposition is as representations of the
subalgebra gl(V0) × gl(V1) ⊂ gl(V ). Similar decompositions hold for all
SdV and

∧d
V . The Pieri formula (and the Littlewood-Richardson rule)

generalize verbatim to Z/2-graded Schur functors:

Proposition 2.2 (Z/2-graded Pieri Formula). — If V is a Z/2-graded
vector space, and λ a partition, we have an isomorphism of gl(V )-modules

SλV ⊗ SiV =
⊕
µ

SµV

where the sum is taken over all partitions µ such that |µ|− |λ| = i and µ/λ
is a vertical strip.

This follows from the results of [1].

3. First Construction of Pure Resolutions in the Even
Case

Let E be an m-dimensional vector space, or more generally a rank m

vector bundle on an algebraic variety, over a field of characteristic 0. Fix
a strictly increasing sequence of integers d = (d0, d1, . . . , dm). We will pro-
duce a pure acyclic equivariant complex of length m with terms in degrees
d0, . . . , dm. To simplify notation we set

e0 := d0, ei := di − di−1, for i = 1, . . . ,m,

and we sometimes write e = (e0, . . . , em) for the sequence corresponding
to d.
We will construct a complex

F(d)• = F(d)(E)• : 0→ F (d)m → F (d)m−1 → · · · → F (d)1 → F (d)0

where F (d)i is a free A = Sym(E)-module generated in degree di =
−e1 − · · · − ei. Let λ = (λ1, . . . , λm) be the partition with parts λi =

TOME 61 (2011), FASCICULE 3
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e0 +
∑m
i+1(ej − 1) (so in particular λm = e0). We define a sequence of

partitions α(d, i) for 0 6 i 6 m by
α(d, 0) = λ,

α(d, i) = (λ1 + e1, λ2 + e2, . . . , λi + ei, λi+1, . . . , λm),
and set

F (d)i := Sα(d,i)E ⊗A(−e0 − e1 − . . .− ei).
We could of course have reduced to the case d0 = 0; as defined below,

the resolutions cases with d0 6= 0 are obtained from the ones with d0 = 0
simply by tensoring with the 1-dimensional representation (∧mE)d0 . We
will sometimes make the assumption d0 = 0 for simplicity, but we will need
the case with d0 > 0 for induction.
To make it easier to think about these complexes, we give a pictorial rep-

resentation. The following example contains all features of the general case.

Example 3.1. — Take m = 4 and d = (0, 4, 6, 9, 11), so that e =
(0, 4, 2, 3, 2). Then the partition α(d, i) (for 0 6 i 6 4) is the subdiagram
filled with numbers 6 i in the Young diagram

0 0 0 4
0 0 3 4
0 0 3
0 2 3
1 2
1
1
1

.

Here α(d, 0) is the partition in which the difference between the i-th and
i+ 1’st column equals ei+1 − 1. We get α(d, i) from α(d, i− 1) by adding
ei boxes to the i-th column. Notice that for each i > 1 there is exactly one
row in the diagram above containing boxes numbered i and i + 1— these
are the highest box with the number i and the lowest box with the number
i+ 1. This is a general phenomenon that makes it possible for us to define
a differential, there is really no choice about how to construct it because of
the following observation:

Because Sα(d,i)E is obtained from Sα(d,i−1)E by adding ei boxes in one
column, the Pieri Formula implies that it occurs exactly once in the de-
composition of in Sα(d,i−1)E⊗SeiE into irreducible GL(E)-modules. Thus
there is a unique (up to scalar) nonzero equivariant map of A-modules

φ(d, i) : F (d)i → F (d)i−1,

ANNALES DE L’INSTITUT FOURIER
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and it has degree 0 in the grading coming from A since the generators of
F (d)i have degree ei more than those of F (d)i−1.

For any i 6 m−2, there is a row of α(d, i+2) containing two more boxes
than are present in α(d, i). The Pieri Formula thus implies that Sα(d,i)E

does not occur in Sα(d,i−2)E ⊗ Sei+ei−1E, so φ(d, i− 1)φ(d, i) = 0, so the
maps φ(d, i) make F(d)• into a complex. This argument actually shows
that any equivariant maps of GL(E) modules F(d)i → F(d)i−1 would
make F(d)• into a complex; and by the construction above, any nonzero
equivariant maps make it into a complex isomorphic to F(d)•. We will use
this uniqueness in the proof below.
Here is our main result in the even case:

Theorem 3.2. — If E is a vector space of dimension m over a field of
characteristic 0, and d = (d0, . . . , dm) is a strictly increasing sequence of
integers, then

1) The complex

F(d)(E)• : 0→ F (d)m
φ(d,m)→ · · · → F (d)1

φ(d,1)→ F (d)0 → 0

is a minimal graded free resolution, and the generators of F (d)i
have degree di.

2) The module M(d) := cokerφ(d, 1) resolved by F(d)(E)• is equi-
variant for GL(E). As a representation, M(d) is isomorphic to the
direct sum of all the irreducible summands of Sα(d,0)E ⊗ Sym(E)
corresponding to the partitions that do not contain α(d, 1). In par-
ticular M(d) is finite dimensional as a vector space, and is zero in
degrees > α(d, 1)1.

Remark. — If we simply think of each F(d)i as a sum of representa-
tions, and define M(d) as the sum of the representations in part 2), then
in the augmented complex consisting of F(d)• and M(d), each irreducible
representation that occurs in one term occurs either in the term before or
the term after, but not both. Moreover, in a given F(d)i no representa-
tion occurs more than once. Thus we see that it is combinatorially possible
that F(d)• is a resolution of M(d). To make this into a proof of Theo-
rem 1, one could first apply the Acyclicity Lemma of [15], which implies
that it is enough to prove the acyclicity of F(d)• after replacing the vari-
ables (x1, . . . , xm) in Sym(E) = K[x1, . . . , xm] by (1, 0, . . . , 0). To finish
the proof, one would need to show that the highest weight vector of each
GL(x2, . . . , xm)-representation contained in both Sα(d,i) and Sα(d,i−1) is
mapped from the first module into a nonzero vector in the second. The

TOME 61 (2011), FASCICULE 3
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proof below shows that this must in fact be true! But we do not at present
know how to prove it directly.

Proof of Theorem 3.2. — We use induction on m and (in the last part of
the proof) on dm − d0 =

∑
i>1 ei. If m = 1 then the complex has the form

F(e0, e1)• : A(−e1 − e0)→ A(−e0)

with the map being the multiplication by xe1
1 , and the assertions are trivial.

On the other hand, if dm − d0 = m, the smallest possible value, then all
the ei are 1 and the complex F(d)• is simply the Koszul complex on the
variables in the polynomial ring A, so the theorem is true in this case as well.
We next show that part 1) of the theorem, for a given m, implies part 2)

for that m. We use Pieri’s formula to understand the F (d)i, and assume
that F(d)• is a resolution of M(d). Since no SβE occurs with multiplicity
more than 1 in a term of the complex, a representation is present (with
multiplicity 1) in M(d) if it is present in F (d)0 but not F (d)1; and it is
absent fromM(d) if it is either absent from F (d)0 or present in F (d)0 and
also in F (d)1 but not in F (d)2.
First, if β 6⊃ α(d, 1) then Sβ cannot occur in F (d)1 = A⊗ S(d,1)E, so if

Sβ is present in F (d)0 = A⊗ SλE then it is present in M(d).
Next suppose that β ⊃ α(d, 1) and Sβ occurs in A ⊗ SλE. It is clear

from the Pieri formula that Sβ also occurs in A ⊗ Sα(d,1)E. But since Sβ
occurs in A⊗SλE, and β1 > α(d, 1) > λ1, we must have β2 6 λ1. It follows
that β 6⊃ α(d, 2). Thus Sβ does not occur in F (d)2, so it is in the image of
F (d)1 → F (d)0, and thus cannot occur in M(d), completing the proof of
part 2) based on part 1).
In the inductive step in the proof of part 1) it will be sufficient to verify

that F(d)• is a resolution when d0 = 0, which we now assume. Consider the
sheaf of algebras B = Sym(Q) on Grass(1, E) ∼= Pm−1, and let F(d)(Q) be
the corresponding complex of vector bundles on Grass(1, E). The bundle
Q has rank m− 1, so applying our induction on the dimension of E to the
fibers of the bundle Q at each point, we see that the complex of vector
bundles F(d0, . . . , dm−1)(Q)•, and with it the complex

F• := F(d0, . . . , dm−1)(Q)• ⊗ (
m−1∧
Q)⊗em−1

is acyclic. Its terms are the Schur functors on Q with highest weights

α′(d, i) := α(d, i)1, . . . , α(d, i)m−1

for 0 6 i 6 m − 1—the same as α′(d, i) but with the last part α(d, i)m,
which is e0 = d0 = 0 omitted to make a partition of length m − 1. By
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induction, F• is a resolution of a B-module that we may callMQ(d), which
is a direct sum of finitely many representations, each a Schur functor of Q.
Next consider the complex obtained from F by taking global sections,

H0(F•) : 0→ H0(Fm−1)→ · · · → H0(F0).

By Bott’s Theorem, Hj(Fi) = 0 for all i and all j > 0. Breaking the
complex F into short exact sequences, one sees by induction that this im-
plies the acyclicity of the complex H0(F•), and this is a resolution of the
A-module H0(MQ(d)).
By the Corollary 1.3, each term

H0(Fi) = H0
(

F(d0, . . . , dm−1)(Q)i ⊗ (
m−1∧
Q)⊗em−1)

)
of H0(F•) is either free or has a free resolution of length 1. We distinguish
these two cases. The reader will find an explicit example for each of these
cases in Example 3.3 and Example 3.4 below, and it may be helpful to
consider the pictures there while reading the following.

Case 1. em = 1. In this case each F(d0, . . . , dm−1)(Q)i⊗(
∧m−1Q)⊗em−1

for i 6 m − 2 satisfies the conditions of Part a) of the Corollary to Bott’s
Theorem. Thus the modules H0(Fi) for i < m−1 are free, and are the same
as those of F(d)•. By part b), on the other hand the last term H0(Fm−1)
has homological dimension 1, and we see that the terms of its resolution fur-
nish the remaining two terms of F(d)•. By the uniqueness of the nonzero
maps of the given degree between the terms of F(d)•, we may identify
H0(F•) with this complex, proving acyclicity as required for part a).

Case 2. em > 1. In this case, Part b) of the Corollary to Bott’s Theorem
shows that each H0(Fi) has an equivariant free resolution of length 1. From
that Corollary we see moreover that the resolution takes the form

0→ F(d′)i → F(d)i → H0(Fi)→ 0

for i = 0, . . . ,m− 1, where d′ is given by

1, d1 + 1, . . . , dm−1 + 1, dm

corresponding to the sequence

e′ := (1, e1, . . . , em−1, em − 1)

and we have simplified the notation by writing F(d′) and F(d) instead of
F(d′)(E) and F(d)(E).
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Because F(d)(E)i is a free A-module generated by a representation, and
everything splits as GL(E)-modules, we can lift the differential on H0F•
to get the following commutative diagram, where each column is exact.

0 0 0
↓ ↓ ↓

0 → F(d′)m → F(d′)m−1 → · · · → F(d′)0
↓ ↓ · · · ↓

0 → F(d′)m = F(d)m → F(d)m−1 → · · · → F(d)0
↓ ↓ · · · ↓

0 → 0 → H0Fm−1 → · · · → H0F0
↓ ↓ ↓
0 0 0

The horizontal maps are constructed simply to be GL(E)-equivariant and
make the diagram commute, except that we take the upper left map
F(d′)m → F(d′)m−1 to be the map coming from the complex F(d′)•,
we take the upper left vertical map F(d′)m → F(d′)m = F(d)m to be the
equality (so that the left-most column is also exact), and we take the hori-
zontal map F(d)m → F(d)m−1 to be the composite of the two maps above
it, assuring the commutativity of the upper left-hand square of the diagram.
We will now prove that the two upper horizontal rows are in fact the

complexes F(d′)• and F(d)•. As defined, the left-hand map in the upper
row is the right map, and the map below it in the middle row is at least
nonzero. From the uniqueness statement in the definition of the differen-
tials of our complexes, all the other horizontal maps will be the correct
ones as soon as we know that they are all nonzero.
Let G• be the total complex of the double complex made from the two

upper rows of the diagram, so that G• is a resolution of the same mod-
ule H0(MQ) as that resolved by H0(F•) The last vertical map F(d′)m →
F(d)m defines a quotient complex of G•, and is an isomorphism. We may
take the kernel of this quotient map, it has the same homology as G•,
arriving at a complex

G′• : 0→ F(d′)m−1 → · · · → F(d)0

of length m that is, once again, a resolution of the module H0(MQ).
First, we note that the complex G′• is graded, with degree 0 differen-

tials, if we give the generators of each F(d)i the degree di as in the def-
inition of F(d)•, and similarly for the F(d′)i. This is because the unique
occurence of the representation Sα(d,i) that generates F(d)i, in F(d)i−1 is
in Sei

⊗Sα(d,i−1), and similarly for the F(d′)i. It follows that all the maps

ANNALES DE L’INSTITUT FOURIER



PURE FREE RESOLUTIONS 919

in the resolution G′• are given by matrices of elements of positive degree
in A; that is, the resolution G′• is minimal. From this minimality it follows
that for each i the constructed map F(d)i → F(d)i−1 is nonzero; for if it
vanished then by exactness F(d)i would be in the image of F(d)i+1⊕F(d′i),
which is impossible.
Since theMQ(d) is the direct sum of finitely many Schur functors applied

to Q, Bott’s Theorem tells us that the cohomology module H0(MQ(d)) is a
direct sum of finitely many representations, each a Schur functor of E, and
is thus finite-dimensional as a vector space. It follows that the dual of G′•
is also a minimal free resolution of an A-module of finite length. The dual
argument to that just given shows that all the maps F(d′)i → F(d′)i−1 are
nonzero as well.
We have now proven the existence of a short exact sequence of complexes

0→ F(d′)• → F(d)• → H0(F•)→ 0.

We know that the complex H0(F•) is acyclic. Since d′m−d′0 = dm−d0−1,
our second induction shows that the complex F(d′)• is acyclic as well. From
the long exact sequence in homology associated to the short exact sequence
of complexes, we see that F(d)• is acyclic too, and the proof is done. �

Example 3.3. — Take d = (0, 2, 5, 7, 8) so that e = (0, 2, 3, 2, 1). Our
Young diagram is

0 0 3 4
0 2 3
0 2
1 2
1

.

The complex F(d)• has terms

(3, 1, 0, 0)← (5, 1, 0, 0)← (5, 4, 0, 0)← (5, 4, 2, 0)← (5, 4, 2, 1)

where we write λ instead of SλE⊗A. To get the acyclicity by induction we
start with the complex of sheaves on the projective space with the terms

(3, 1, 0)← (5, 1, 0)← (5, 4, 0)← (5, 4, 2)

where λ is the shorthand for SλQ⊗ B. Taking modules of sections we get
A-modules with free resolutions (written as columns)

(3, 1, 0, 0) ← (5, 1, 0, 0) ← (5, 4, 0, 0) ← (5, 4, 2, 0)
↑ ↑ ↑ ↑
0 ← 0 ← 0 ← (5, 4, 2, 1)
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where again we write λ instead of SλE ⊗ A. So the mapping cone is the
required complex.

Example 3.4. — Take d = (0, 2, 5, 6, 8), so that e = (0, 2, 3, 1, 2). Our
Young diagram is

0 0 0 4
0 2 3 4
0 2
1 2
1

.

The complex F(d)• has terms

(3, 1, 1, 0)← (5, 1, 1, 0)← (5, 4, 1, 0)← (5, 4, 2, 0)← (5, 4, 2, 2)

where we write λ instead of SλE⊗A. To get the acyclicity by induction we
start with the complex of sheaves on the projective space with the terms

(3, 1, 1)← (5, 1, 1)← (5, 4, 1)← (5, 4, 2)

where λ is the shorthand for SλQ ⊗ B. Taking A-modules of sections we
get A-modules with free resolutions (written as columns)

(3, 1, 1, 0) ← (5, 1, 1, 0) ← (5, 4, 1, 0) ← (5, 4, 2, 0)
↑ ↑ ↑ ↑

(3, 1, 1, 1) ← (5, 1, 1, 1) ← (5, 4, 1, 1) ← (5, 4, 2, 1)

where again we write λ instead of SλE ⊗ A. The first row is the required
complex F(d)• without the last term (5, 4, 2, 2). But the second row is the
complex F(1, 3, 6, 7, 8)• without the last term. It corresponds to the Young
diagram

0 0 0 0
0 2 3 4
0 2
1 2
1

where the row of zeros is added because e0 = 1. Now we notice that the
last missing term of this complex is also (5, 4, 2, 2), which proves that the
homology of the top row is isomorphic to this free A-module, and this
concludes the proof.

Remarks. — The ranks of the modules in a pure resolution are easy
to calculate from the Herzog-Kühl equations [12]; see Section 2.1 of [2]. In
the case of complexes F(d)• these formulas are special cases of the Weyl
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dimension formula. The multiplicative form of these formulas was one of
the motivations for looking at Schur functors.

Similarly, it is a standard result that for a graded module of finite
length over a polynomial ring, the dimension of the socle equals the Cohen-
Macaulay type, that is, the rank of the last syzygy module. The represen-
tation in the highest degree of M(d) corresponds to the partition we get
from α(d, 0) by adding one box to each of the first α(d, 1)1 − 1 rows. It
is amusing to see that this is the partition α(d,m) with the first row of
length m removed. So the socle ofM(d) is the representation in the highest
degree, as it should since the last term in the resolution is pure.
We finish this section by analyzing some of the features of the complexes

we constructed.

Proposition 3.5. — Let us assume the sequence e is symmetric, i.e.
ei = em+1−i for i = 1, . . . ,m. Then the complex F(d)• is self-dual, i.e.
F(d)∗• = F(d)•. This duality is GL(E)-equivariant.

Proof. — Assume that the sequence e is symmetric. Let λ = α(d, 0).
Consider the rectangular partition µ := (λ1 + e1)m. It is clear that the
partitions α(d, i) and α(d,m − i) are complementary with respect to this
rectangle. This means we have a GL(E)-equivariant nondegenerate pairing

Sα(d,i)E ⊗ Sα(d,m−i)E → (
m∧
E)⊗(λ1+e1).

This can be extended to the isomorphism of complexes we claim. �

Example 3.6. — Let us take m = 5 and e = (2, 3, 1, 3, 2). The corre-
sponding picture is

0 0 0 0 5
0 0 0 4 5
0 0 0 4
0 2 3 4
0 2
1 2
1

.

The partitions α(d, i) for i = 0, . . . , 5 correspond to the boxes with entries
6 i. Considering the boxes with entries > i + 1 (letting the empty boxes
have entry 6), if we turn the rectangle 180◦ this is the partition α(d, 5− i).
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4. Modules Supported on Determinantal Varieties

In this section we describe another way of constructing a Cohen-Macaulay
module whose free resolution is pure, with given degree shifts d. These
modules are supported on the degeneracy locus of a generic map of free
modules G→ F , and equivariant for GL(F )×GL(G). (Of course one can
derive non-equivariant artinian modules from them by reducing modulo
a general sequence of linear forms, at least in the case where the ground
field is infinite.) This family of resolutions generalizes the ones described
by Kirby [13] and Buchsbaum and Eisenbud [3] (see [6] Appendix A2.6 for
an exposition) and re-interpreted by Weyman ([17] exercises 37-39, chap-
ter 6), though in the special case treated by those authors the resolutions
work in arbitrary characteristic, while the method used here to obtain the
generalization depends on characteristic 0.
With notation as in Section 1, we fix the strictly increasing sequence d =

(d0, . . . , ds) and its sequence of differences e = (e0 = d0, e1 = d1 − d0, . . .).
Take two vector spaces F , G, with dim(F ) = 1+

∑s
i=1(ei−1) and dim(G) =

dim(F ) + s− 1. Let B be the polynomial ring B = Sym(F ⊗G∗). Consider
the Grassmannian Grass(1, F ) of lines in F (this is just a projective space),
with tautological sequence

0→ R→ F ⊗OGrass(1,F ) → Q→ 0,

so that Q is a bundle of rank dim(F )− 1.
Consider the incidence variety

Z = {(φ,R) ∈ Hom(F,G)×Grass(1, F ) | φ|R = 0}.

This is one of the desingularizations of the determinantal variety defined
by the maximal minors of the generic matrix φ, denoted in the Section 6.5
of [17] by Z(1)

s−1.
Consider the partition λ(d) = ((s−1)es−1, (s−2)es−1−1, . . . , 0e1−1), and

let N (d) be the sheaf N (d) = Sλ(d)Q⊗OZ . To describe the second family
of complexes we set

γ(d, i) := ((s−1)es−1, (s−2)es−1−1, . . . , iei+1−1, iei , (i−1)ei−1−1, . . . , 1e1−1).

The partition γ(d, i) is conjugate to the partition α(d, i) defined in the
introduction.

Theorem 4.1. — Hi(Z,N (d)) = 0 for i > 0, and H0(Z,N (d)) has a
pure GL(F )×GL(G)-equivariant minimal resolution H(d)• of type d, with
terms

H(d)i = Sγ(d,i)F ⊗
di−d0∧

G∗ ⊗B(−di + d0).
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Proof. — Let p : Z → Grass(1, F ) be the projection map. Because p is
an affine map it suffices for the first statement to show thatHip∗(N (d)) = 0
for i > 0. However,

p∗(N (d)) = Sλ(d)Q⊗ Sym(Q⊗G∗).

Since this does not involve R, it has no higher cohomology.
To prove the second statement, we apply the Basic Theorem (5.1.2) from

[17] to the sheaf N (d). In the notation of that result, we set ξ = R⊗G∗,
η = Q⊗ G∗ and V = Sλ(d)Q. We get a complex F(Sλ(d)Q)• which is our
H(d)•, which is a resolution ofH0p∗(N (d)) because the higher cohomology
Hip∗(N (d)) vanishes.

The direct calculation of the cohomology groups using Bott’s theorem
([17], (4.1.9)), dualized using exercise 18 b), p.83), gives the terms of our
complex. More precisely, the calculation comes down to applying Bott’s
Theorem to the weights

((s− 1)es−1, (s− 2)es−1−1, . . . , 0e1−1, u)

for 0 6 u 6 dim(G). The partition γ(d, i) comes from the term with
u = di − d1 + 1 + i. �

Remark. — The above theorem is the specialization of Theorem 0.2 we
get by setting V = V1 = F and U = U1 = G∗.

5. Proofs of Theorems 0.1 and 0.2

Proof of Theorem 0.1. — The differential in F(d)• is gl(V )-equivariant
by definition. The Z/2-graded Pieri formula implies F(d)• is a complex.
By Berele-Regev theory, the gl(V ) action on each homogeneous component
of each module F(d)i is semi-simple. Thus the homogeneous components
of the homology are direct sums of Schur modules SµV .

Now assume that for some λ and some (m,n) the complex F(d)• is not
acyclic, so some module SµV consists of cycles that are not boundaries.
But then, for a bigger dimension vector (m,n), such that Sµ(V0) 6= 0, the
same Schur module SµV is in the homology. Ifm is large enough, this Schur
module contains elements in some weight that does not involve V1, that is,
elements defined by tableaux that contain only basis elements from V0.

Since the differential of F(d)• preserves the weight space decomposition,
this implies that the complex F(d)• for V0 is not acyclic. This contradicts
Theorem 3.2, proving the Theorem. �
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Proof of Theorem 0.2. — The proof of Theorem 0.2 follows the same
outline as the proof of Theorem 0.1, except that we use subspaces U1 ⊂ U
and V1 ⊂ V , and Theorem 4.1, where we set F = V1 and G∗ = U1. �

Remark. — Consider Theorem 0.1 in the odd case, that is wherem = 0,
and set F = V1. Then R =

∧•(F ) and the complex F(d)• has terms

F(d)i = Sα(d,i)′E ⊗R(−e1 − · · · − ei).

In this way we get truncations of the Tate resolutions constructed by Fløys-
tad [9]. An alternate proof of Theorem 0.1. could be obtained by reducing
to the odd case. The proof in the current paper avoids Bernstein-Gel’fand-
Gel’fand duality. One can also relate the even and odd cases to each other
by means of Schur duality.

6. Some open problems and conjectures

In 6.1–6.5 below we work over the polynomial ring A.

Conjecture 6.1. — Every sufficiently large integral point in the ray
defining the possible pure Betti tables of graded modules of finite length
over a polynomial ring, with a given degree sequence, is actually the Betti
table of the free resolution of a Cohen-Macaulay module.

The following examples are expressed in terms of the smallest integral
multiple of the Betti number on a ray of pure resolutions, corresponding
to the given degree sequence d, which we call the primitive vector of Betti
numbers. In all these examples m = 3.

Example 6.2. — d = (0, 3, 4, 7). The primitive vector of Betti num-
bers is β = (1, 7, 7, 1). The construction of §3 gives Betti numbers 6β,
the Eisenbud-Schreyer construction gives 15β and the construction from
§4 gives 50β. Thus all three are needed in order to conclude the conjecture
for this extremal ray. But in this case we know that the primitive vector is
achieved by the minimal free resolution of the ideal of 6× 6 Pfaffians of a
7× 7 skew-symmetric matrix of linear forms; see [4].

Example 6.3. — d = (0, 4, 9, 13). The primitive vector of Betti numbers
is β = (5, 13, 13, 5). The construction of §3 gives Betti numbers 18β, the
Eisenbud-Schreyer construction gives 380β and the construction of §4 gives
9075β. These three examples together imply the truth of the conjecture on
this ray.
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Example 6.4. — d = (0, 1, 4, 6). The primitive vector of Betti numbers
is β = (5, 8, 5, 2). All three constructions give 5β. This is the smallest
sequence for n = 3 where we cannot conclude the conjecture using our
three constructions.

The material presented in this paper raises some other interesting questions.

Problem 6.5. — Equivariant Boij-Söderberg conjectures. We use the
notation of Section 3. Let F• be a GL(E)-equivariant acyclic complex of
A-modules. Is it in the cone generated by the Betti tables of pure resolutions
constructed in Section 3 in the sense that there existGL(E)-representations
W and W1, . . . ,Ws and degree shifts d(i) (for 1 6 i 6 s) such that for each
j = 0, . . . ,m we have isomorphisms of GL(E)-modules

W ⊗ Fj =
s⊕
i=1

Wi ⊗ F(d(i))j?

In particular, assuming F• is pure with degree shifts d, does it mean that
W ⊗ F• = W ′ ⊗ F(d)• for some GL(E)-modules W,W ′?

Problem 6.6. — Z/2-graded Betti tables. Let R = Sym(V0) ⊗
∧•(V1).

Is the Betti table of every acyclic complex of free R-modules in the cone
generated by the Betti tables of pure acyclic complexes? What are the
facets of the cone generated by Betti tables of pure acyclic complexes of
free modules, is this cone self-dual in some sense?
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