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CALCULATING THE MORDELL-WEIL RANK OF
ELLIPTIC THREEFOLDS AND THE COHOMOLOGY

OF SINGULAR HYPERSURFACES

by Klaus HULEK & Remke KLOOSTERMAN (*)

Abstract. — In this paper we give a method for calculating the rank of a
general elliptic curve over the field of rational functions in two variables. We reduce
this problem to calculating the cohomology of a singular hypersurface in a weighted
projective 4-space. We then give a method for calculating the cohomology of a
certain class of singular hypersurfaces, extending work of Dimca for the isolated
singularity case.
Résumé. — Dans cet article nous présentons une méthode pour calculer le

rang d’une courbe elliptique générale sur le corps des fonctions rationnelles de
deux variables. Nous réduisons ce problème au calcul de la cohomologie d’une hy-
persurface singulière dans un espace projectif pondéré de dimension quatre. Nous
donnons alors une méthode de calcul de la cohomologie d’une certaine classe d’hy-
persurfaces singulières en étendant le travail de Dimca dans le cas des singularités
isolées.

1. Introduction

Throughout this paper we work over the field of complex numbers C. We
study families π : X → S of elliptic curves over rational surfaces, i.e., X is
a smooth threefold, S a smooth rational surface and π is a flat morphism
admitting a section σ0 : S → X. Throughout this paper we will assume
that X is not birational to a product E × S′ with E an elliptic curve and
S′ a rational surface.

Keywords: Mordel-Weil group of Elliptic threefolds, Cohomology of singular varieties,
Mixed Hodge structures.
Math. classification: 14J30, 14J70, 32S20, 32S35, 32S50.
(*) The authors wish to thank Chris Peters and Joseph Steenbrink for giving us a preview
of their book [22] and Eduard Looijenga and Orsola Tommasi for providing results
from algebraic topology. We wish to thank Noriko Yui for drawing our attention to the
examples of Hirzebruch discussed in Section 11.
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The two main invariants of π are its configuration of singular fibers and
the Mordell-Weil group MW(π) consisting of rational sections of π. Unlike
the configuration of singular fibers the Mordell-Weil group is a birational
invariant (in the sense of Section 2).
The configuration of singular fibers is well-understood. The general fiber

of π is an elliptic curve over C(S), in particular we have an equation of the
form

(1.1) y2 = x3 +Ax+B, where A,B ∈ C(S).

The singular fibers lie over the curve ∆ given by the zero and pole divisor
of 4A3 + 27B2. The fiber-type over a general point p of some irreducible
component of ∆ can be easily calculated using Tate’s algorithm. The fiber-
type over a special point can be calculated using the work of Miranda [19].
In this paper we concentrate on the Mordell-Weil group MW(π). Using

the Shioda-Tate-Wazir formula [28, Theorem 4.2] one can relate the rank
of MW(π) to the Picard numbers ρ(S) and ρ(X) and the type of singular
fibers of π over a general point of each component of ∆. In general it turns
out to be rather hard to calculate ρ(X) directly. Even in the case of elliptic
surfaces it is a difficult problem to calculate ρ(X) for a given example, this
can only be done in very specific cases, see e.g. [15].
The main idea is the following: every elliptic threefold over a rational

surface (with a section) has a model as a hypersurface Y of degree 6n
in the weighted projective space P := P(2n, 3n, 1, 1, 1), for some n. The
existence of such a model (with minimal n) is a direct consequence of the
existence of a (global minimal) Weierstrass equation for an elliptic curve
over the function field C(S) of S. Whenever we refer to a minimal model in
this paper we mean the model given by a minimal Weierstrass equation, not
to a minimal model in the sense of Mori theory. In general, this threefold
Y is singular. In the first part of this paper we show

Theorem 1.1. — Let π : X → S be an elliptic threefold X over a
rational surface S and let Y be a minimal model ofX/S in P(2n, 3n, 1, 1, 1).
Assume that H4(Y,Q) has a pure weight 4 Hodge structure. Then

rank MW(π) = rank(H2,2(H4(Y,C)) ∩H4(Y,Z))− 1.

One can easily show that the rank of the image of the cycle class map
in H4(Y,Z) is at least 1 + rank MW(π). Hence it follows from this theorem
that a multiple of a Hodge class is algebraic.
The advantage of this theorem is that we can relate the computation of

MW(π) to a computation for a hypersurface in weighted projective space.

ANNALES DE L’INSTITUT FOURIER
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The latter problem is indeed doable as we will show in the second part of
the paper.
The assumption that H4(Y,Q) has a pure weight 4 Hodge structure is

very weak. We do not know of examples such that H4(Y,Q) does not have
a pure weight 4 Hodge structure. Later on we will describe a large class of
elliptic threefolds for which we have a method to calculate H4(Y,Q). Each
member Y of this class has a pure weight 4 Hodge structure on H4(Y,Q).

For a complete proof we refer to Section 4. Here we only give a sketch of
the proof: from [19] we get a factorization of the birational map Y 99K X.
This factorization is sufficiently explicit to relate the difference ρ(X)−ρ(S)
to H2,2(H4(Y,C)) ∩H4(Y,Z). The configuration of singular fibers of π is
relatively easy to compute. Applying the Shioda-Tate-Wazir formula then
yields the proof.
If X is chosen sufficiently general then Y is quasismooth and hence a

V -manifold. Using this one can show that h4(Y ) = 1. Theorem 1.1 then
implies rank MW(π) = 0. For this reason we shall focus in this paper on
non-quasismooth hypersurfaces.
A more explicit form of the above remark is the following (see Corol-

lary 4.4):

Corollary 1.2. — Let π : X → S be an elliptic threefold associated
with a hypersurface defined by

y2 = x3 + Px+Q

with P ∈ C[z0, z1, z2]4n and Q ∈ C[z0, z1, z2]6n, such that
(1) the curve ∆ : 4P 3 + 27Q2 = 0 is reduced with only double points

as singularities and Q vanishes at each of these double points or
(2) P is identically zero and Q = 0 defines a smooth curve of degree 6n

in P2.
Then rank MW(π) = 0.

Theorem 1.1 implies the following two results: if we call δ = h4(Y ) − 1
the defect of Y then rank MW(π) 6 δ. (The notion of defect for singular
hypersurfaces is due to Clemens [3].) Moreover, one can show that MW(π)⊗
Q is isomorphic to the group of Weil divisors on Y modulo the Cartier
divisors tensored with Q.
In the case of elliptic surfaces ψ : E → P1 one has a theorem sim-

ilar to Theorem 1.1. However, we are not aware of any statement con-
cerning elliptic surfaces similar to Corollary 1.2. The reason for this is
the following: let T be a surface in weighted projective space correspond-
ing to ψ. The degree of T is divisible by 6. Set n = deg(T )/6. One

TOME 61 (2011), FASCICULE 3



1136 Klaus HULEK & Remke KLOOSTERMAN

can show that rank MW(ψ) = rank(H1,1(H2(T,C)) ∩ H2(T,Z)) − 1 and
h2,0(H2(T,C)) = n − 1. In this case, using Noether-Lefschetz theory, one
can obtain a series of statements on the Mordell-Weil rank of a very gen-
eral elliptic surface: e.g., one obtains statements on the Mordell-Weil rank
for a very general degree 6n elliptic surface, and results on the dimen-
sion of the locus of elliptic surfaces with fixed Mordell-Weil-rank [4, 16].
However, if n > 1 then h2,0(E) > 0 and hence it seems hard to calculate
rank(H1,1(H2(E,C))∩H2(E,Z))−1 in concrete examples. This is the key
obstruction for proving results similar to Corollary 1.2.
To calculate the rank of MW(π) we need to calculate the group H4(Y,C)

together with its Hodge structure. If Y has only isolated singularities and
all singularities are semi-weighted homogeneous hypersurface singularities
then this can be done by applying a method of Dimca [8]. However, Y might
have non-isolated singularities. It turns out in our situation that at a general
point of a one-dimensional component of Ysing we have a transversal ADE
surface singularity. We extend Dimca’s method to a class of hypersurfaces
with non-isolated singularities.
For the calculation of H4(Y,C) there is no reason to assume that the

hypersurface comes from an elliptic fibration, i.e., at this stage we work
in the following context: let P = P(w0, w1, w2, w3, w4) be a 4-dimensional
weighted projective space and set w = w0 + w1 + w2 + w3 + w4. We call
a degree d hypersurface Y ⊂ P admissible if Y is defined by a weighted
homogeneous polynomial f ∈ C[x0, x1, x2, x3, x4], such that

(1) Y intersects Psing transversally, i.e., if Σ is the locus where all the
partials of f vanish, then Σ∩Psing = ∅. (Y will still have singular-
ities along Psing, these arise from the construction of the weighted
projective space and are finite quotient singularities.)

(2) Y is smooth in codimension 1.
(3) In codimension 2 the threefold Y has only transversal ADE surface

singularities.
(4) In codimension 3 all singularities are contact equivalent to a

weighted homogeneous hypersurface singularity (cf. Remark 7.2).

To formulate our theorem concerning the calculation of the cohomology
groups we have to introduce some notation: we define P as the set of all
points p ∈ Σ, such that (Y, p) is not a transversal ADE surface singularity.
Now let fp ∈ C[y0, y1, y2, y3] be such that (fp, 0) is contact equivalent to
(Y, p), where fp is weighted homogeneous of degree dp and wp is the sum
of the weights. In particular, fp = 0 defines a surface in some weighted
projective 3-space.

ANNALES DE L’INSTITUT FOURIER
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Let R(fp) be the Jacobian ring of fp. If (Y, p) is an isolated singular-
ity we set R̃(fp) = R(fp). If (Y, p) is not an isolated singularity, then
R̃(fp) is defined as follows: the equation fp = 0 determines a surface S ⊂
P(v0, v1, v2, v3), which has finitely many singularities (S, q1), . . . , (S, qt).
Let Mj be the Milnor-algebra of (S, qj) and set µ :=

∑
j dimMj to be the

total Milnor number. Let h1, . . . , hµ be polynomials of degree 2dp−wp, such
that their image under the natural (surjective) map R(fp)2d−w → ⊕jMj

spans ⊕jMj and set R̃(fp) = R(fp)/(h1, . . . , hµ).
Using that fp = 0 is contact equivalent to (Y, 0) one obtains a natural

map R(f)kd−w → R(fp)kdp−wp for k = 1, 2.
The following theorem is a combination of Proposition 7.7 and several

results from Section 8.

Theorem 1.3. — Let Y be an admissible hypersurface. Then

H1(Y,Q) = H5(Y,Q) = 0 and
H0(Y,Q) = Q, H2(Y,Q) = Q(−1), H6(Y,Q) = Q(−3).

The group H4(Y,Q) has a pure weight 4 Hodge structure, with vanishing
h4,0 and h0,4 and

h3,1(H4(Y,C)) = dim coker(R(f)d−w → ⊕p∈PR̃(fp)dp−wp)
h2,2(H4(Y,C)prim) = dim coker(R(f)2d−w → ⊕p∈PR̃(fp)2dp−wp

).

Combining Theorems 1.1 and 1.3 we obtain the following (see also Sec-
tion 9)

Theorem 1.4. — Let π : X → S be an elliptic threefold, such that
S is a rational surface, and the associated threefold Y ⊂ P is admissible.
Assume that the map

R(f)d−w → ⊕p∈PR̃(fp)dp−wp

is surjective. Then

rank MW(π) = dim coker(R(f)2d−w → ⊕p∈PR̃(fp)2dp−wp).

Remark 1.5. — The only non-zero Betti number that we have not de-
termined so far is h3(Y ). Usually, one is able to calculate e(Y ) and one can
use this to determine h3(Y ).

Remark 1.6. — If Y is not admissible then our method fails. In this
case the first step would be to calculate the local cohomology Hi

p(Y,Q) of
such a singularity. To our knowledge there is no method which works for a
large class of such singularities.

TOME 61 (2011), FASCICULE 3
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This theorem can be used to classify elliptic threefolds with small nu-
merical invariants. In [17] we classify the possibilities for MW(π) if n = 1
and the j-invariant of the fibers of π is constant.
Our method is similar to Dimca’s, but differs from recent methods such

as work by Cynk [5], Rams [23], Grooten-Steenbrink [13], and the classical
work of Clemens [3], Werner [29], Schoen [24] and van Geemen-Werner [11].

The differences between the methods of the papers quoted above and
ours are the following: in all cases the method is applied to a smaller class
of singularities, namely in the isolated singularity case Rams deals with
isolated Ak, Dm, En-singularities. In the non-isolated case, Grooten-Steen-
brink deal with transversal A1 singularities and singularities of the type
w2 = xyz and zw = x2y. The other papers deal with a subset of these
singularities.
The restriction on the type of singularity (by Rams and by Grooten-

Steenbrink) implies that (Rfp
)d−w = 0 for all singularities they consider.

In particular,H4(Y,Q) is a pure (2, 2) Hodge structure. A second difference
between our method and the above mentioned methods is, that both Rams
and Grooten-Steenbrink express H2,2(H4(Y,C)) as a cokernel of a map
between two vector spaces, which are of larger dimension than the vector
spaces that occur in the sequel.
The organization of this paper is as follows. In Section 2 we recall some

standard facts on elliptic fibrations over rational varieties. In Section 3 we
discuss some results of Miranda from [19] that allow us to describe the
rational map X 99K Y . In Section 4 we give proofs of Theorem 1.1 and
Corollary 1.2. In Section 5 we recall some standard results on the coho-
mology of hypersurfaces Y in weighted projective space. In the case of
non-quasismooth hypersurfaces we use the Poincaré residue map to calcu-
late the cohomology of the smooth part of Y . In Sections 6, 7 and 8 we
relate the cohomology of the smooth part of Y and some local cohomol-
ogy with the cohomology of Y . This enables us to prove Theorem 1.3. In
Section 9 we summarize our method to calculate the Mordell-Weil group.
The remaining sections are devoted to applications of our method. In Sec-
tion 10 we calculate the Mordell-Weil rank in an example with non-isolated
singularities. In Section 11 we calculate the Mordell-Weil rank of a class of
elliptic Calabi-Yau threefolds which were constructed by Hirzebruch. This
calculation allows us to compute all the Hodge numbers of these three-
folds.

ANNALES DE L’INSTITUT FOURIER
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Part 1. Relation between the Mordell-Weil group and
cohomology of singular hypersurfaces

2. Set-up

Definition 2.1. — An elliptic threefold is a quadruple (X,S, π, σ0),
with X a smooth projective threefold, S a smooth projective surface, π :
X → S a flat morphism, such that the generic fiber is a genus 1 curve and
σ0 is a section of π.
The Mordell-Weil group of π, denoted by MW(π), is the group of rational

sections σ : S 99K X with identity element σ0.

Recall that a morphism π : X → S (with X a smooth projective three-
fold and S a smooth projective surface) is flat if and only if all fibers have
dimension one. Clearly MW(π) is a birational invariant, in the sense that
if πi : Xi → Si, i = 1, 2 are elliptic threefolds with zero-sections σ0 and σ′0
such that there exist an birational isomorphism ψ : X1

∼
99K X2 mapping the

general fiber of π1 to the general fiber of π2 and such that ψ ◦σ0 = σ′0 then
ψ∗ : MW(π2) → MW(π1) is well-defined and is an isomorphism. More-
over, the rank of MW(π) is also stable under base-change by a birational
morphism on the base surface.
The following technical definition will be needed

Definition 2.2. — Let π : X → S be an elliptic threefold. An effective
divisor D ⊂ X is called fibral if π(D) ⊂ S is a curve.

We shall frequently make use of the following fundamental result:

Theorem 2.3 (Shioda-Tate-Wazir, [28, Theorem 4.2]). — Let π : X →
S be an elliptic threefold then

ρ(X) = ρ(S) + f + rank MW(π) + 1

where f is the number of irreducible surfaces F in X such that π(F ) is a
curve, and F ∩ σ0(S) = ∅.

Using Lefschetz’ (1,1) theorem and Poincaré duality we can rephrase the
Shioda-Tate-Wazir formula as

rank MW(π) = rankH2,2(X,C) ∩H4(X,Z)− f − ρ(S)− 1.

In general this is hard to compute. Theorem 1.1 says that the analogous
formula also holds if we replace X by a minimal (singular) Weierstrass
model. In this case one has tools to compute the right hand side.
We shall now describe in some detail how to associate to an elliptic

threefold π : X → S a hypersurface in weighted projective 4-space. Here

TOME 61 (2011), FASCICULE 3
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we restrict ourselves to the case where S is a rational surface. In this case
we can find a hypersurface Y of degree 6n in P(2n, 3n, 1, 1, 1) which is
birational to X as follows: the morphism π establishes C(X) as a field
extension of C(S) = C(z1, z2). The field C(X) is the function field of an
elliptic curve over C(z1, z2), i.e., C(X) = C(x, y, z1, z2) where

(2.1) y2 = x3 + f1(z1, z2)x+ f2(z1, z2)

with f1, f2 ∈ C(z1, z2). Without loss of generality we may assume that
(2.1) is a global minimal Weierstrass equation, i.e., f1, f2 are polynomials
and there is no polynomial g ∈ C[z1, z2] such that g4 divides f1 and g6

divides f2.
To obtain a hypersurface in P(2n, 3n, 1, 1, 1) we need to find a weighted

homogeneous polynomial. Let n = dmax{deg(f1)/4,deg(f2)/6}e and define
P and Q as the polynomials

P = z4n
0 f1(z1/z0, z2/z0), Q = z6n

0 f2(z1/z0, z2/z0).

Then

y2 = x3 + P (z0, z1, z2)x+Q(z0, z1, z2)

defines a hypersurface Y of degree 6n in P := P(2n, 3n, 1, 1, 1). Let Σ be
the locus where all the partial derivatives of the defining equation vanish.
Consider the projection ψ̃ : P(2n, 3n, 1, 1, 1) 99K P2 with center L = {z0 =
z1 = z2 = 0} and its restriction ψ = ψ̃|Y to Y . Then there exists a diagram

X //___

π

��

Y

ψ

���
�
�

S //___ P2.

Note that Y ∩ L = {(1 : 1 : 0 : 0 : 0)}. If n = 1 then Psing consists of
two points, none of which lie on Y . If n > 1 then an easy calculation in
local coordinates shows that Psing is precisely L, that Σ and L are disjoint
and that Y has an isolated singularity at (1 : 1 : 0 : 0 : 0). For any n we
have that ψ is not defined at (1 : 1 : 0 : 0 : 0). Let P̃ be the blow-up of
P along L. Let X0 be the strict transform of Y in P̃. An easy calculation
in local coordinates shows that X0 → Y resolves the singularity of Y at
(1 : 1 : 0 : 0 : 0) and that the induced map π0 : X0 → S0 with S0 = P2 is a
morphism. Moreover, all fibers of π0 are irreducible curves.

ANNALES DE L’INSTITUT FOURIER
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3. Miranda’s construction

The threefolds X0 and X are birational and one might therefore ask for a
precise sequence of birational morphisms relating X0 and X. This question
might be too hard. A slightly weaker problem is solved by Miranda: starting
with π0 : X0 → S0 Miranda [19] produces a smooth elliptic threefold π′ :
X ′ → S′ birational to π. Actually, Miranda produces a series {πi : Xi → Si}
where {πi+1 : Xi+1 → Si+1} can be obtained from {πi : Xi → Si} by
applying one of the following three types of birational transformations:

(1) Si+1 is the blow-up of Si in a point p of the discriminant curve of
π, i.e., with π−1

i (p) a singular curve. Then we define Xi+1 as the
fiber product of Xi with Si+1 over Si:

Xi+1 := Xi ×Si
Si+1

��

// Xi

��
Si+1 := Blp Si // Si.

This procedure is applied in the following two cases
(a) To simplify the geometry: let ∆i ⊂ Si be the (reduced) dis-

criminant curve of πi. After applying this procedure sufficiently
many times, we may assume that each irreducible component
of ∆i is smooth, and that ∆i has only ordinary double points
as singularities.

(b) Suppose Xi has an isolated singularity in the fiber of p ∈ Si.
Blowing up this singularity would yield a non-flat morphism.
Instead, if we apply this base change procedure we get a curve
of singular points in Xi+1.

(2) Even when we start with a minimal local equation, we might obtain
a non-minimal equation, i.e., it might happen that Xi has, in one of
its charts, a local equation of the form by y2 = x3 + u4f1x+ u6f2,
where f1, f2 ∈ C[z0, z1] and u ∈ C[z0, z1] \C is irreducible. In this
chart the elliptic fibration is given by (x, y, z0, z1) 7→ (z0, z1), which
can be interpreted as projection onto the plane x = y = 0. Note
that after applying the first operation sufficiently many times, we
can assume that x = y = u = 0 is a smooth irreducible curve. We
need to get rid of the factor u4 and u6 in the equation, which can
be done as follows:
(a) Blow up Ci : x = y = u = 0, yielding a threefold Xi+1 with

local equation y2 = ux3 + u3f1x + u4f2 in one of the charts.

TOME 61 (2011), FASCICULE 3
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An easy calculation shows that in the other two “new” charts
we have that Xi+1 is smooth.

(b) Blow up Ci+1 : x = y = u = 0, yielding a (non-normal)
threefold Xi+2 with local equation y2 = u2x3 + u2f1x + u2f2
in one of the charts.

(c) Blow up the surface Ri+2 : u = y = 0, yielding a threefold
Xi+3 with local equation y2 = x3 + f1x + f2 in one of the
charts.

(d) If we patch all the local charts together, we see that the fiber
over a point in {u = 0} is a reducible curve, consisting of two
rational curves and one elliptic curve. Actually π−1

i+3({u = 0})
consists of three irreducible components, two of them are ruled
surfaces over C : {u = 0}, the third is an elliptic surface. We
can contract the two ruled surfaces, obtaining Xi+5.
An easy calculation in local coordinates shows that both
Xi+3 → Xi+4 and Xi+4 → Xi+5 are blow-ups with center
a smooth curve contained in the smooth locus.

The base surface remains unchanged, i.e., Si = Si+1 = · · · = Si+5.
The geometric construction is summarized in the following table:

Threefold Singular locus Important divisor
Xi Ci (curve) Fi = π−1

i ({u = 0})
Xi+1 = BlCi

(Xi) Ci+1 (curve) Ei+1/C = P1 − bdle.
Xi+2 = BlCi+1(Xi+1) Ri+2 = Ei+2 (surface) Ei+2/C = P1 − bdle.
Xi+3 = BlRi+2(Xi+2) ∅ Ei+3 = elliptic surface

double cover of Ei+2
Xi+4 = ConEi+1(Xi+3)
Xi+5 = ConFi

(Xi+4)

When we contract Ei+1, Fi we mean that we contract the strict
transform of Ei+1, Fi.

(3) To resolve singularities: Xi+1 is obtained by blowing up a curve
C inside the singular locus of Xi such that Cred is smooth. Set
Si+1 = Si and πi+1 to be the composition Xi+1 → Xi

πi→ Si.
Note that by using the defining equation one can show that at a

general point of Cred one has a transversal ADE surface singularity.

These three steps should be applied in the following order:

(1) Apply step 1, to obtain a fibration with nice properties: i.e., repeat
step 1 until ∆i,red ⊂ Si has at most nodes as singularities and the
j-function j : Si 99K P1 is a morphism.

ANNALES DE L’INSTITUT FOURIER
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At this stage we obtain a Weierstrass fibration i.e., there ex-
ists a line bundle Li on Si and sections A ∈ H0(Si,L⊗4

i ), B ∈
H0(Si,L⊗6

i ) such that Xi = {Y 2Z = X3 + AXZ2 + BZ3} ⊂
P(O ⊕ L−2

i ⊕ L
−3
i ). We can consider A = 0 and B = 0 as curves

inside Si. Repeat step 1 until the reduced curves underlying A = 0
and B = 0 have at most ordinary double points as singularities.

(2) Apply step 2, until there is no curve C ⊂ Si such that A vanishes
along C with order at least 4, and B vanishes along C with order
at least 6.

(3) Apply step 3, until Xi has only isolated singularities or is smooth.
If Xi is smooth then stop.

(4) Apply step 1 for each of the isolated singularities of Xi. The out-
come of this is a threefold whose singular locus consist of finitely
many smooth irreducible curves which are all disjoint.

(5) If necessary apply step 2.
(6) Go to point (3).
From this description it is not at all clear why this procedure should

terminate. For this fact we refer to [19].

Remark 3.1. — Miranda uses a slightly different order and he uses a
fourth type of modification, namely the contraction of P1×P1 to a P1. We
indicate now why this does not influence the termination of this procedure.
The extra modification is applied if Xi has an isolated A1 singularity at

p ∈ Xi. We can then first blow up Xi in p. The exceptional divisor E is
isomorphic to P1 × P1. The morphism πi+1 : Xi+1 → Si+1 = Si has a
fiber with a two-dimensional component, contradicting flatness. This can
be resolved by contracting E to P1, a so-called “small resolution”. The
problem is that the space Xi+2 obtained in this way is a priori only an al-
gebraic space, rather than an algebraic variety. To determine whether Xi+2
is actually an algebraic variety one needs to consider the global geometry
of Xi+2.
To avoid this problem we choose a different procedure: namely we blow

up Si in πi(p) and then base change. The threefold Xi+1 now has a curve C
of singularities. Then we blow up C and obtain a threefold Xi+2. A direct
calculation in local coordinates shows that Xi+2 is smooth in a neighbor-
hood of the exceptional divisor of Xi+2 → Xi+1. We give a sketch of this
calculation: in local coordinates (Xi, p) is given by t21 +t22 +t23 +t24 = 0. If we
use the base change procedure, we obtain a curve C ⊂ Xi+1 of singularities.
A straightforward calculation shows that at a general point of C we have
a local equation of the form s2

1 + s2
2 + s2

3 = 0, i.e., we have a transversal
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A1 surface singularity, except for two points on C where we have a local
equation of the form s2

1 + s2
2 + s4s

2
3 = 0 (a so-called pinch point). Here C

is given by the equation s1 = s2 = s3 = 0.
Following the above algorithm, we now need to blow up C. A calculation

in local coordinates shows that the threefold Xi+2 obtained in this way is
smooth in a neighborhood of the exceptional divisor.
In order to show that our procedure terminates, note that one could

follow Miranda’s algorithm until one has only isolated A1-singularities
left. It is clear that the above procedure then resolves all the remaining
singularities.

4. Comparing Mordell-Weil ranks

Starting with an elliptic threefold π : X → S we found a hypersurface
Y ⊂ P(2n, 3n, 1, 1, 1). Applying Miranda’s construction to Y gives us an
elliptic threefold π′ : X ′ → S′. We now want to express rank MW(π) =
rank MW(π′) in terms of invariants of Y . For this we use the following
result:

Theorem 4.1. — Let V and Ṽ be complex varieties. Let ϕ : Ṽ → V be
a proper birational morphism. Let Z ⊂ V be a closed subvariety such that
ϕ restricted to Ṽ \ π−1(Z) is injective. Set E := π−1(Z). Then there is an
exact sequence of Mixed Hodge structures

. . .→Hi−1(E,Q)→Hi(V,Q)→Hi(Ṽ ,Q)⊕Hi(Z,Q)→Hi(E,Q)→ . . . .

Proof. — See [22, Corollary 5.37]. �

Lemma 4.2. — Let V be a threefold, C ⊂ V be a smooth curve con-
tained in the smooth locus of V . Let Ṽ be the blow-up of V along C, let
E be the exceptional divisor and ι : E → Ṽ be the inclusion. Then

ι∗ : H3(Ṽ ,Q)→ H3(E,Q)

is surjective.

Proof. — Let ψ : V1 → V be a resolution of singularities of V and let E1
be the exceptional divisor of ψ. Since C is contained in the smooth locus
we have that ψ−1(C) is isomorphic to C. Let ψ1 : Ṽ1 → V1 be the blow-up
of V1 along ψ−1(C). Equivalently, Ṽ1 = Ṽ ×V V1.
The exceptional divisor of ψ1 is isomorphic to E and the exceptional

divisor of Ṽ1 → V is isomorphic to the disjoint union of E and E1. Denote
Σ = Vsing.
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From Theorem 4.1 we get the following exact sequence

· · · → H3(Ṽ1,Q)→ H3(E,Q)→ H4(V1,Q)→ . . . .

Since V1 and E are smooth we have that H3(E,Q) has a pure weight 3
Hodge structure andH4(V1,Q) has a pure weight 4 Hodge structure. Hence
the map H3(E,Q)→ H4(V1) is the zero map and H3(Ṽ1,Q)→ H3(E,Q)
is surjective. Consider now the exact sequence of Theorem 4.1 for ψ1 ◦ ψ:

· · · → H3(Ṽ1,Q)⊕H3(Σ,Q)→ H3(E1,Q)⊕H3(E,Q)→ H4(V,Q)→ . . .

Since H3(Ṽ1,Q) → H3(E,Q) is surjective we obtain that H3(E,Q) →
H4(V,Q) is the zero map.
Consider now the exact sequence of Theorem 4.1 for Ṽ → V :

· · · → H3(Ṽ ,Q)→ H3(E,Q)→ H4(V,Q)→ . . .

Since H3(E,Q) → H4(V,Q) is the zero map we obtain that H3(Ṽ ,Q) →
H3(E,Q) is surjective. �

Theorem 4.3. — Let Y ⊂ P be a minimal Weierstrass fibration and let
π : X → S be an elliptic threefold, birational to Y . Assume that H4(Y,Q)
has a pure weight 4 Hodge structure. Then

rank MW(π) = rank
(
H2,2(H4(Y,C)) ∩H4(Y,Z)

)
− 1

and H5(Y,Q) ∼= H5(X,Q).

Proof. — Since both rank MW(π) and H5(X,Q) are birational invari-
ants of smooth fibred threefolds, it suffices to prove this statement for the
elliptic threefold π′ : X ′ → S′ obtained from Miranda’s procedure. Then
by the Shioda-Tate-Wazir formula and Lefschetz (1,1) one has

rank MW(π) = ρ(X ′)− ρ(S′)− f − 1
= rankH2(X ′,Z) ∩H1,1(X ′,C)− ρ(S′)− f − 1
= rankH4(X ′,Z) ∩H2,2(X ′,C)− ρ(S′)− f − 1

where f is the number of independent fibral divisors, not intersecting the
image of the zero section.
Let πi : Xi → Si be the associated sequence of modifications. Let fi

denote the number of independent fibral divisors of πi, not intersecting
the zero-section. We will show by induction that for each i we have that
H4(Xi,Q) has a pure weight 4 Hodge structure and that

(4.1) rank
(
H2,2(H4(Xi,C)) ∩H4(Xi,Z)

)
− ρ(Si)− fi − 1

is independent of i.
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This suffices for the first statement: for the elliptic threefold in the final
step of Miranda’s construction we have that (4.1) equals rank MW(π) by
the Shioda-Tate-Wazir formula.
Now consider (4.1) for i = 0. From S0 = P2 we get ρ0(S0) = 1. Since all

fibers of π0 are irreducible, we get f0 = 0. Finally, Theorem 4.1 applied to
X0 → Y yields an exact sequence of Q-MHS

H3(E,Q)→ H4(Y,Q)→ H4(X0,Q)→ H4(E,Q)→ H5(Q).

Since E ∼= P2 we get H3(E,Q) = 0 and H4(E,Q) = Q(−2). Also the map
H4(X0,Q)→ H4(E,Q) is non-zero, hence we get

0→ H4(Y,Q)→ H4(X0,Q)→ Q(−2)→ 0.

In particular, H4(X0,Q) has a pure weight 4 Hodge structure and

rank
(
H2,2(H4(X0,C)) ∩H4(X0,Z)

)
− ρ(S0)− f0 − 1

= rank
(
H2,2(H4(X0,C)) ∩H4(X0,Z)

)
− 2

= rank
(
H2,2(H4(Y,C)) ∩H4(Y,Z)

)
− 1.

To prove that (4.1) is actually independent of i, we consider each of
the three types of modifications mentioned in Miranda’s construction sepa-
rately. In each case we apply Theorem 4.1 several times without mentioning
it explicitly:

(1) Consider the first type of modification, i.e. we blow up a point
p ∈ ∆ ⊂ Si and then base change. For the proper modification
Xi+1 → Xi we have that Z = C ⊂ Xi is a curve of arithmetic
genus 1, i.e., C is either a union of k rational curves, a cuspidal
rational curve or a nodal rational curve. In the last two cases we set
k = 1. Using the universal property of the fiber product we obtain
that the exceptional divisor E ⊂ Xi+1 is isomorphic to a product
C ×P1. Using our induction hypothesis on H4(Xi,Q) (i.e., that it
is of pure weight 4) and that H3(E,Q) has no classes of weight > 4
[22, Theorem 5.39], the exact sequence of Theorem 4.1 yields the
following exact sequence

0→ H4(Xi,Q)→ H4(Xi+1,Q)→ H4(E,Q) = Q(−2)k.

Each of the k irreducible components of C ×P1 yields a class ξj in
H4(Xi+1,Q). I.e., we have

span{ξ1, . . . , ξk} ⊂ H4(Xi+1,Q)→ H4(E,Q).

Clearly dimH4(E,Q) = k and the ξj map to a basis of H4(E,Q).
In particular, the ξj are independent in H4(Xi+1,Q) and the map
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H4(Xi+1,Q)→ H4(E,Q) is surjective. The conclusion is that

rank
(
H2,2(H4(Xi+1,C)) ∩H4(Xi+1,Z)

)
=

= k + rank
(
H2,2(H4(Xi,C)) ∩H4(Xi,Z)

)
,

fi+1 = fi + k − 1 and ρ(Si+1) = ρ(Si) + 1, and hence the quantity
(4.1) is unchanged.

(2) The second modification consists of two blow-ups of a curve, the
blow-up of a rational surface and two blow-down morphisms. We
consider first the blow-up of a curve in Xi, and the blow-up of the
curve in Xi+1. A reasoning very similar to the previous case yields
that H4(Xi+1,Q) and H4(Xi+2,Q) have a pure weight 4 Hodge
structure, that classes of type (2, 2) are added to H4(Xi+1,Z) and
H4(Xi+2,Z) and that fi+2 = fi+1 + 1 = fi + 2. I.e., the quantity
(4.1) is unchanged.
Consider now the third step, the blow-up of a rational surface.

In this case both Z and E are irreducible surfaces and we have an
isomorphism H4(Z,Q) → H4(E,Q). Since H3(E,Q) has Hodge
weights at most 3 [22, Theorem 5.39] and H4(Xi+2,Q) has a pure
weight 4 Hodge structure, Theorem 4.1 implies that we have an
isomorphisms H4(Xi+2,Q)→ H4(Xi+3,Q). Hence H4(Xi+1,Q) is
of pure weight 4 and all entries in (4.1) remain unchanged.
The final two steps are the contraction of the two ruled surfaces.

I.e., Xi+3 → Xi+4 and Xi+4 → Xi+5 are blow-ups of curves. In the
previous section it is argued that these curves are smooth and lie
in the smooth locus of Xi+4 and Xi+5.

Combining Lemma 4.2 with the exact sequence of Theorem 4.1
yields exact sequences

0→ H4(Xi+4,Q)→ H4(Xi+3,Q)→ H4(Ei+1,Q)→ . . .

and

0→ H4(Xi+5,Q)→ H4(Xi+4,Q)→ H4(Fi,Q)→ . . .

(notation as in the previous section.)
In particular, H4(Xi+4,Q) and H4(Xi+5,Q) have pure weight 4

Hodge structures. As above, one can show that the class of Ei+1
(resp. Fi) in H4(Xi+3,Q) (resp. H4(Xi+4,Q)) is mapped to a
nonzero element in H4(Ei+1,Q) (resp. H4(Fi,Q)). Hence these
maps are surjective, i.e., H4(Xi+5,Z) has rank 1 smaller than
H4(Xi+4,Z), and the difference is a class of type (2, 2). Similarly,
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H4(Xi+4,Z) has rank 1 smaller than H4(Xi+3,Z), and the differ-
ence is a class of type (2, 2). Moreover, fi+3 = fi+4 + 1 = fi+5 + 2,
hence the quantity (4.1) is unchanged.

(3) The third modification is to blow up a curve C inside Xi,sing such
that Cred is smooth. The exceptional divisor of such a blow up
is not necessarily irreducible, say it has k irreducible components,
hence H4(E,Q) = Q(−2)k. Each component of E yields a class
ξj in H4(Xi+1,Q) and the same argument as above shows that
H4(Xi+1,Q) has pure weight 4 and that the classes ξj are indepen-
dent. Hence fi+1 = fi+k and rank

(
H2,2(H4(Xi,C)) ∩H4(Xi,Z)

)
increases by k. Since Si+1 = Si we have proved that (4.1) remains
unchanged.

To prove that H5(Y,Q) ∼= H5(X,Q), note that in all three cases the
map H4(Xi,Q)→ H4(E,Q) is surjective. Since h5(Z,Q) = h5(E,Q) = 0
it follows from Theorem 4.1 that H5(Xi,Q) ∼= H5(Xi+1,Q) for all i. �

Corollary 4.4. — Let π : X → S be an elliptic threefold associated
with a hypersurface

y2 = x3 + Px+Q

with P ∈ C[z0, z1, z2]4n and Q ∈ C[z0, z1, z2]6n, such that
(1) the curve ∆ : 4P 3 + 27Q2 = 0 is reduced, ∆ has only double points

as singularities, and Q vanishes at each of these double points or
(2) P is identical zero and Q = 0 defines a smooth curve of degree 6n

in P2.
Then rank MW(π) = 0.

Proof. — Using Lefschetz hyperplane Theorem [9, Theorem B22] we ob-
tain that h2(Y ) = 1. An easy calculation shows that our assumptions on
P and Q are equivalent to Y being quasismooth. Then [9, Corollary B19]
states that Hi(Y,Q) satisfies Poincaré duality, hence

h4(Y ) = h2(Y ) = 1

and rank MW(π) = 0. �

Part 2. Cohomology of hypersurfaces in P

5. Cohomology of hypersurfaces in P: general results

In this section let Y be an irreducible and reduced hypersurface of degree
d in some weighted projective space P of dimension n + 1 defined by the
polynomial g. Let Σ ⊂ P denote the locus where all the partials of g vanish.
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We assume that Σ does not intersect Psing, i.e., Y intersects the singular
locus of P transversally. As usual we set dim ∅ = −1.
For an arbitrary hypersurface Y the following form of Lefschetz’ hyper-

plane theorem holds:

Proposition 5.1 ([9, Corollary B22]). — We have the following iso-
morphisms for the cohomology of Y :

(1) Hi(Y,Q) ∼= Hi(P,Q) for i 6 n− 1.
(2) Hi(Y,Q) ∼= Hi(P,Q) for n+ 2 + dim Σ 6 i 6 2n.

In all our applications we have dim Σ 6 1.
Let U := P \ Y . Since U is affine we have

Hk(U,C) = H0(U,ΩkU )/dH0(U,Ωk−1
U ).

Note that
H0(U,ΩkU ) ∼= ∪i>0H

0(P,ΩkP(iY )).
For ω ∈ H0(U,ΩkU ) define ordY (ω) := min{i : ω ∈ H0(P,ΩkP(iY )}. Let P •
be defined by

P sH0(U,ΩkU ) = {ω ∈ H0(U,ΩkU ) : ordY (ω) 6 k − s+ 1}.

Since d(P sH0(U,Ωk−1
U )) ⊂ P sH0(U,ΩkU ) this induces a filtration P • on

Hk(U,C), called the polar filtration.
From a result of Griffiths-Steenbrink ([25, Section 4]) it follows that the

Hodge filtration and the polar filtration coincide if Y is quasismooth. If
we drop the assumption that Y is quasismooth then we get the following
weaker

Theorem 5.2 (Deligne-Dimca [6]). — For any hypersurface Y ⊂ P we
have

P sHk(U,C) ⊃ F sHk(U,C).

There exist examples for which both filtrations differ, see [9, Remark
6.1.33], [10].

Remark 5.3. — Since Hn+1(U,C) = F 1Hn+1(U,C) it follows from the
above theorem that Hn+1(U,C) = P 1Hn+1(U,C). This implies that every
class of Hn+1(U,C) has pole order at most n+ 1.

The de Rham complex with filtration P • yields a spectral sequence Ep,qr .
In the quasismooth case this spectral sequence degenerates at E1 and estab-
lishes natural isomorphisms between graded pieces of the Hodge filtration
and certain graded pieces of the Jacobian Ring of g.
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In the sequel we need the following notation. Let xi denote the coordi-
nates on P of weight wi and let w =

∑
wi. Set

Ω :=

∏
j

xj

∑(−1)iwi
dx0

x0
∧ dx1

x1
∧ · · · ∧ d̂xi

xi
∧ · · · ∧ dxn+1

xn+1
.

Then H0(P,Ωn+1(kY )) is generated (as C-vector space) by

ωf := f

gk
Ω

where deg(f) = kd− w.
Write Y ∗ = Y \ Σ and let P∗ = P \ Σ where, as before, Σ is defined

by the vanishing of the partials of g. Note that, since we have assumed
that Y intersects Psing transversally, we have Σ ∩Psing = ∅. In particular,
U = P∗ \ Y ∗ = P \ Y .

In generalizing the approach of Griffiths and Steenbrink to the non-
quasismooth case we encounter the following problems:

(1) The Poincaré residue map is not an isomorphism.
(2) We can still define the filtered de Rham complex and construct the

spectral sequence Ep,qr . This sequence, however, does not degenerate
at E1 but at a higher step.

(3) The polar filtration and the Hodge filtration can differ.
The following approach is similar to [8], where Dimca studied hyper-

surfaces with isolated singularities. The exact sequence of the pair (Y, Y ∗)
reads as

(5.1) · · · → Hk
Σ(Y,Q)→ Hk(Y,Q)→ Hk(Y ∗,Q)→ Hk+1

Σ (Y,Q)→ . . .

This is a sequence of Mixed Hodge structures by [22, Proposition 5.47].
From now we on assume that n = 2 and dim Σ 6 0 or n = 3 and

dim Σ 6 1. This will be the case in all our applications. By Proposition 5.1
the only interesting cohomology groups are Hi(Y,Q) for i = n, n+1, n+2.
We will study these groups by using (5.1). In this section we focus on the
calculation of Hi(Y ∗,Q). The calculation of Hi

Σ(Y,Q) will then be done
in the following sections.
We start by relating the cohomology of Y ∗ to the cohomology of U and

Σ. For this we need the notion of primitive cohomology. If V ⊂ P is a quasi-
projective subvariety of codimension c, we define Hi(V,Q)prim to be the
kernel of the natural map Hi(V,Q) → Hi+2c(P,Q)(c), given by repeated
cupping with the hyperplane class.
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In the quasismooth case we can relate Hi(Y ∗,C)prim to Hi+1(U,C) by
using the Poincaré residue map. In the non-quasismooth case this is more
subtle.

Proposition 5.4. — We have the following:
(1) Suppose n = 2 and dim Σ = 0, then

H2(Y ∗,Q)prim ∼= H3(U,Q)(1); H3(Y ∗,Q) ∼= Q(−2)#Σ−1

and H4(Y ∗,Q) = 0.

(2) Suppose n = 3 and dim Σ = 0, then

H3(Y ∗,Q) ∼= H4(U,Q)(1); H4(Y ∗,Q) ∼= Q(−2)
and H5(Y ∗,Q) ∼= Q(−3)#Σ−1.

(3) Suppose n = 3 and dim Σ = 1, then

0→ H4(U,Q)(1)→ H3(Y ∗,Q)→ H2(Σ,Q)∗prim(−3)→ 0

is exact. Moreover

H4(Y ∗,Q) ∼= H1(Σ,Q)∗(−3) and H5(Y ∗,Q) ∼= H0(Σ,Q)∗prim(−3).

Before proving Proposition 5.4 we shall prove some auxiliary results.

Proposition 5.5. — We have a Thom-type isomorphism

(5.2) T : Hk(Y ∗,Q)→ Hk+2(P∗, U,Q)(1).

Proof. — The map T is induced by the Thom isomorphism on the (punc-
tured) affine cones over Y ∗, P∗ and U . For the precise construction we refer
to [8, Section 2]. �

Consider now the long exact sequence of MHS of the pair (P∗, U):
(5.3)
. . .→ Hk(P∗, U,Q) j∗→ Hk(P∗,Q) i∗→ Hk(U,Q)→ Hk+1(P∗, U,Q)→ . . .

Lemma 5.6. — We have that

Hk(P∗, U,Q) ∼= Hk(P∗,Q)

for k > n+ 2 and that

Hk(Y ∗,Q) ∼= Hk+2(P∗,Q)(1)

for k > n.

Proof. — Since U is affine we have Hi(U,Q) = 0 for i > n + 2, hence
the first isomorphism follows from sequence (5.3). The second isomorphism
follows from the Thom isomorphism combined with the first isomorphism.

�
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Using that P∗ is a V -manifold we can relate Hk(P∗) to the cohomology
of Σ:

Lemma 5.7. — If dim Σ = 0 then

Hi(P∗,Q) ∼=


0 for i = 2n+ 2

H0(Σ,Q)∗prim(−n− 1) for i = 2n+ 1
Hi(P,Q) for i < 2n+ 1

as MHS and if dim Σ = 1 then

Hi(P∗,Q) =



0 for i = 2n+ 2
H0(Σ,Q)∗prim(−n− 1) for i = 2n+ 1
H1(Σ,Q)∗(−n− 1) for i = 2n
H2(Σ,Q)∗prim(−n− 1) for i = 2n− 1

Hi(P,Q) for i < 2n− 1
as MHS.

Proof. — We have the Gysin exact sequence

0→ H0
c (P∗,Q)→ H0

c (P,Q)→ H0
c (Σ,Q)→ H1

c (P∗,Q)→ . . .

Note that P and Σ are compact. If dim Σ = 0 then it follows immediately
from the Gysin sequence that

Hi
c(P∗,Q) =


0 i = 0

H0(Σ,Q)prim i = 1
Hi(P,Q) i > 1.

If dim Σ = 1 it follows that

Hi
c(P∗,Q) =



0 i = 0
H0(Σ,Q)prim i = 1
H1(Σ,Q) i = 2

H2(Σ,Q)prim i = 3
Hi(P,Q) i > 3.

Since P is a V-manifold, the same holds for P∗ and we can apply Poincaré
duality to obtain the lemma. �

We are now in a position to prove Proposition 5.4.
Proof of Proposition 5.4. — Suppose that n = 2 and dim Σ = 0. Then

we have

H3(Y ∗,Q) ∼= H5(P∗, U,Q)(1) ∼= H5(P∗,Q)(1)
∼= H0(Σ,Q)prim(−2)∗ ∼= Q(−2)#Σ−1.
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The first isomorphism is the Thom-isomorphism (Proposition 5.5), the sec-
ond isomorphism comes from Lemma 5.6, the third isomorphism comes
from Lemma 5.7 and the fourth isomorphism is immediate. Similarly, one
has H4(Y ∗,Q) ∼= H6(P∗, U,Q)(1) = 0. To calculate H2(Y ∗,Q) consider
the long exact sequence (5.3) of the pair (P∗, U):

. . .→ H3(P∗,Q)→ H3(U,Q)→ H4(P∗, U,Q)→ H4(P∗,Q)→ . . . .

It follows from Lemma 5.7 that H3(P∗,Q) ∼= H3(P,Q) = 0. From the
same lemma it follows that H4(P∗,Q) ∼= H4(P,Q). Since U is affine and
of dimension 3, we have thatH4(U,Q) = 0. Finally, the Thom-isomorphism
yields H4(P∗, U,Q) ∼= H2(Y ∗,Q)(−1). Combining everything gives

0→ H3(U,Q)→ H2(Y ∗,Q)(−1)→ H4(P,Q)→ 0

whence H3(U,Q)(1) ∼= H2(Y ∗,Q)prim.
In the case n = 3 we can proceed similarly: combining the Thom isomor-

phism with Lemmas 5.6 and 5.7 yields the following isomorphisms:

H5(Y ∗,Q) ∼= H7(P∗,Q)(1) ∼= H0(Σ,Q)∗prim(−3).

If dim Σ = 0 then

H4(Y ∗,Q) ∼= H6(P∗,Q)(1) ∼= H6(P,Q)(1) = Q(−2)

and if dim Σ = 1 then

H4(Y ∗,Q) ∼= H6(P∗,Q)(1) ∼= H1(Σ,Q)∗(−3).

The calculation of H3(Y ∗,Q) is slightly more complicated. We have an
exact sequence

H4(P∗,Q)→ H4(U,Q)→ H5(P∗, U,Q)→ H5(P∗,Q)→ H5(U,Q) = 0.

From Lemma 5.7 it follows that H5(P∗,Q) ∼= H2(Σ,Q)∗prim(−3). From the
same lemma it follows that H4(P∗,Q) ∼= H4(P,Q). Since H4(P,Q) →
H4(U,Q) is the zero-map, we obtain, after applying the Thom-isomorphism,
the following short exact sequence

0→ H4(U,Q)(1)→ H3(Y ∗,Q)→ H2(Σ,Q)∗prim(−3)→ 0.

To finish the proof, note that if dim Σ = 0 then H0(Σ,Q)prim = Q#Σ−1

and H2(Σ,Q)prim = 0. In particular, H4(U,Q)(1) ∼= H3(Y ∗,Q) in this
case. �

Remark 5.8. — Later on we will show that the contribution ofH•(Σ,Q)
to H•(Y ∗,Q) is irrelevant for the calculation of H4(Y,Q).
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Remark 5.9. — To finish our analysis of Hn(Y ∗,Q) we give a set of
generators for Hn+1(U,C). Recall that we have the pole order filtration on
Ω•U , inducing a filtration on Hi(U,C).
As explained above, the pole filtration on the de Rham complex yields a

spectral sequence. Remark 5.3 implies that P 1Hn+1(U,C) = Hn+1(U,C).
From this it follows easily that

⊕n+1
p=0E

n+1−p,p
1 → Hn+1(U,C)

is surjective. An easy calculation (the same as in the quasismooth case)
shows that

⊕n+1
p=0E

n+1−p,p
1 = ⊕n+1

k=1R(g)dk−w.
The right hand side is finite dimensional and generates Hn+1(U,C). More-
over, the direct sum decomposition is the same as the direct sum decom-
position with respect to the graded pieces of the polar filtration.

A summary of our results is the following:

Proposition 5.10. — Suppose n = 3. Let C be the cokernel of
H4(U,Q) → H4

Σ(Y,Q). Suppose C is a pure weight 4 Hodge structure,
with trivial (4, 0) and (0, 4)-part. Then the cokernel of

ψ1 : Rd−w(g)→ H4
Σ(Y,C)

contains F 3CC. The cokernel of

ψ2 : R2d−w(g)⊕Rd−w(g)→ F 2H4
Σ(Y,C)

contains F 2CC. Moreover, if ψ1 is surjective, then C has a pure (2, 2)-Hodge
structure with

dimC = dim coker(R2d−w(g)→ H4
Σ(Y ∗,C)).

Proof. — Since P 4H4(U,C) consists of forms of pole order 0, we have
that P 4H4(U,C) and H0(P,Ω4

P) are isomorphic. Since this group van-
ishes we have that P 4H4(U,C) = 0. Since F 3H4(U,C) ⊂ P 3H4(U,C) (by
Theorem 5.2) it follows that

P 3H4(U,C) = Gr3
P H

4(U,C)→ Gr3
F H

4(U,C)

is surjective. Since Rd−w(g) surjects onto P 3H4(U,C) we obtain that
h3,1(C) equals the dimension of the cokernel of

Rd−w(g)→ Gr3
F H

4
Σ(Y,C).

Similarly one obtains that h3,1(C) + h2,2(C) equals the dimension of the
cokernel

Rd−w(g)⊕R2d−w(g)→ F 2H4
Σ(Y,C).
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Finally, if ψ1 is surjective then 0 = h3,1(C) = h1,3(C). Hence C is of pure
type (2, 2) and

dimCC = dim Gr2
F CC = dim coker(R2d−w(g)→ Gr2

F H
4
Σ(Y,C))

= dim coker(R2d−w(g)→ H4
Σ(Y,C)).

�

Remark 5.11. — The above proof could be slightly simplified if P • =
F •. However, there exist degree 5 surfaces in P4 with one singularity,
namely an ordinary double point, such that F • 6= P •. See [10].

6. Cohomology of a surface with isolated
ADE-singularities

Let S ⊂ P be a surface in a 3-dimensional weighted projective space given
by an equation g = 0, such that the set Σ, the locus where all partials of g
vanish, is finite and all singularities of S at points of Σ are of type Ak, Dm

or En. As usual we set S∗ = S \Σ. We want to calculate H2(S,Q)prim and
for this reason compare it to a quasismooth surface S̃ of the same degree
as S.

Lemma 6.1. — Let µ be the total Milnor number of S. We have that
Hi(S,Q) has a pure Hodge structure of weight i and

hp,q(S) =
{

hp,q(S̃) if (p, q) 6= (1, 1)
h1,1(S̃)− µ if (p, q) = (1, 1).

Proof. — We first remark that the statement follows from the Lefschetz
Hyperplane Theorem 5.1 for all p+ q 6= 2, 3.

Consider the long exact sequence of the pair (S, S∗)

. . . → H3
Σ(S,Q)→ H3(S,Q)→ H3(S∗,Q)

→ H4
Σ(S,Q)→ H4(S,Q)→ H4(S∗,Q)→ . . .

From e.g. [8, Example 1.9] it follows that H3
Σ(S,Q) = 0. For each p ∈ Σ we

have that (S, p) is given locally by a weighted homogeneous equation. In
particular, we can find a small neighborhood X of p such that X is a cone
over a projective curve, and X∗ = X \ {p} is a C∗-bundle over this curve.
It follows directly from the Leray-spectral sequence that H3(X∗,Q) =
H1(C∗,Q) ⊗H2(X,Q) = H2(X∗,Q)(−1). From the long exact sequence
of the pair (X,X∗) and the fact that X is contractible it follows that
H4
p (S,Q) = H4

p (X,Q) = H3(X∗,Q) = Q(−2).
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Using Proposition 5.4 the above exact sequence simplifies to

0→ H3(S,Q)→ Q(−2)#Σ−1 → Q(−2)#Σ → Q(−2)→ 0.

In particular, H3(S,Q) = 0. The same argument with Σ = ∅ also shows
H3(S̃,Q) = 0. It remains to show thatH2(S,Q) has a pure Hodge structure
and to determine the Hodge numbers of H2(S,Q).
Let S′ be a minimal resolution of the singularities of S that are contained

in Σ. The exceptional locus E consist of a union of smooth rational curves.
Each connected component has an intersection matrix of type ADE. We
want to apply Theorem 4.1 with Z = Σ and exceptional locus E. Since the
singularities are rational we have h1(E,Q) = 0. In particular, H2(S,Q) ↪→
H2(S′,Q). Since H2(S′,Q) has pure weight 2 Hodge structure the same
holds for H2(S,Q).

Again using that S has rational singularities it follows that h2,0(S) =
h2,0(S̃) and h0,2(S) = h0,2(S̃) (see e.g., [26, Introduction]). Since e(S) =
e(S̃)− µ (e.g., by [9, Corollary 5.4.4]), the lemma follows. �

As argued in Section 5, we can express the Hodge numbers of S̃ in terms
of the Jacobian ideal of g̃, where g̃ is an equation for S̃. Let d = deg(g̃) and
w =

∑
wi. Let R(g̃) be the Jacobian ring of g̃. Then h2,0(S̃) = h0,2(S̃) =

dimR(g̃)d−w = dimR(g̃)3d−w and h1,1(S̃) = dimR(g̃)2d−w.
We want to calculate H2(S,C) together with the Hodge filtration. From

Proposition 5.4 it follows that H3(U,C)(1) ∼= H2(S,C)prim. In [26] it is
proven that the Hodge and polar filtration coincide in this case.
Let g be an equation for S and let R(g) be Jacobian ring of S. Then we

have surjections

R(g)d−w → H2,0(S,C), R(g)3d−w → H0,2(S,C)

and
R(g)2d−w → H1,1(S,C)prim

(cf. the results in Section 5, in particular, Remark 5.9).
In [26] this statement is made more precise. For each singularity (S, p)

let gp be a local equation and let R(gp) be the Jacobian ring of gp. Note
that R(gp) is naturally isomorphic to the Milnor algebra of (S, p). Let
πp : R(g)→ R(gp) be the natural projection. Then

Theorem 6.2 (Steenbrink [26]). — The Poincaré residue map induces
the following isomorphisms

H2,0(S,C) ∼= Rd−w(g)

and
H1,1(S,C)prim ∼= {f ∈ R2d−w(g) : f ∈ ker(πp) ∀p ∈ Σ}.

ANNALES DE L’INSTITUT FOURIER



ELLIPTIC THREEFOLDS 1157

Proof. — This is a reformulation of the main result of [26]. We show how
this statement can be obtained from the result in [26]. In the introduction of
[26] it is argued that H2,0(S) ∼= Rd−w(g). In Section 5 of [26] it is moreover
shown that dimR2d−w(g) = dimR2d−w(g̃)(= h1,1(S̃)prim). As argued in
Section 5 the map

R2d−w(g)→ H1,1(S)prim

is surjective. Using these two facts and h1,1(S) = h1,1(S̃) − µ we get that
the kernel of

R2d−w(g)→ H1,1(S,C)prim

has dimension µ.
We will now construct a section to this map. Let j : S \ Σ → S be the

inclusion. Let Ω̃pS = j∗ΩpS\Σ and let T be the cokernel of d : Ω1(S) →
Ω2(2S). Then T is a skyscraper sheaf supported at Σ. At each p ∈ Σ we
have that the stalk Tp is isomorphic to the Tjurina algebra of (S, p), which
is by definition isomorphic to R(gp). Since S has only ADE-singularities
we have for each p ∈ Σ that the Milnor algebra and the Tjurina algebra of
(S, p) coincide, in particular, h0(S, Tp) = µ.

Consider the exact sequence (from [26, Corollary 17])

0→ H1(S, Ω̃1
S)prim → R2d−w(g)→ H0(S, T )→ H2(S, Ω̃1

S)→ 0.

As argued in [26] we have that H2(S, Ω̃1
S) ⊂ H3(S,C) = 0.

Hence this exact sequence reduces to

0→ H1(S, Ω̃1
S)prim → R2d−w(g)→ ⊕p∈ΣR(gp)→ 0.

In [26] it is then argued that H1(S, Ω̃1
S) = H1,1(S,C). Hence the above

map provides the desired section. (The fact that H1,1(S) → R2d−w(g) →
H1,1(S) is actually the identity follows from the construction of the first
map in [26].) �

Remark 6.3. — Steenbrink’s point of view is different from the approach
taken by Dimca. In the previous section we constructed a surjection from
R2d−w(g) ontoH1,1(S,C), whereas Steenbrink constructs an injection from
H1,1(S,C) to R2d−w(g), which is a section of the former map.
To unite the two approaches we can do the following. Let µ be the total

Milnor number of S. Fix µ polynomials h1, . . . , hµ of degree 2d − w such
that their image spans ⊕p∈ΣR(gp). Set R̃(g) := R(g)/(h1, . . . , hµ). Then
H2,0(Y,C) ∼= R̃d−w(g) and H1,1(Y,C) ∼= R̃2d−w(g).

Remark 6.4. — Suppose p ∈ Σ has a non-trivial stabilizer group, i.e.,
p̃ := (x0, x1, x2, x3) is a lift of p to C4 and the stabilizer subgroup Gp ⊂ C∗
of p̃ is non-trivial.
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Without loss of generality we can assume that p̃ = (1, α, 0, 0). Suppose
f(x0, x1, x2, x3) is a defining polynomial for S. Let g(x1, x2, x3) = f(1, x1 +
α, x2, x3). If Gp consists of one element then the Milnor algebra of (S, p)
equals C{x1, x2, x3}/(gx1 , gx2 , gx3). However, if #Gp > 1 then the Milnor
algebra of (S, p) equals

(C{x1, x2, x3}/(gx1 , gx2 , gx3))Gp .

7. Calculation of H4
Σ(Y,C), local information

In this and the following section we assume that Y is an admissible hyper-
surface in a weighted projective space P(w0, . . . , w4) (cf. the Introduction)
given by f = 0. Let Σ ⊂ P(w0, . . . , w4) be the locus where all partials of f
vanish.
Since Y is admissible we can find for every p ∈ Σ a weighted homogeneous

polynomial gp (with weights w1,p, w2,p, w3,p, w4,p and degree dp) such that
(1) (Y, p) is contact equivalent to ({gp = 0}, 0) ⊂ (C4, 0);
(2) the surface S := {gp = 0} ⊂ P(w1,p, w2,p, w3,p, w4,p) has finitely

many ADE-singularities.

Remark 7.1. — The conditions on the singularities of Y are very mild.
For example in the case of elliptic threefolds we considered hypersurfaces of
the form y2 = x3 + Px+Q, with (P,Q) ∈ C[z0, z1, z2]4n ×C[z0, z1, z2]6n.
For fixed n the locus where the conditions on the singularities are not
satisfied has a large codimension. E.g., in the isolated singularity case the
most frequently occuring singularities such as ADE threefold singularities
are all weighted homogeneous singularities.

Remark 7.2. — Recall that two singularities ({f1 = 0}, 0) and ({f2 =
0}, 0) are contact equivalent if and only if

C{x1, . . . , xn}/(f1) ∼= C{x1, . . . , xn}/(f2).

If f1 (and f2) are isolated singularities then f1 and f2 are contact equiv-
alent if and only if their Milnor algebras are isomorphic. If we assume
that f1 is weighted homogeneous then, by the Euler formula, we get f1 +
J(f1) = J(f1), hence the Tjurina algebra and the Milnor algebra of f1 are
isomorphic.
It turns out that if f2 is isolated and contact equivalent to a weighted

homogeneous singularity f1 then it is also right equivalent to f1, and hence
the Tjurina algebra of f2 is isomorphic to the Tjurina algebra of f1. This
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implies that in the isolated case we could reword our condition on (Y, p)
by saying that the Milnor number and the Tjurina number of (Y, p) coin-
cide. (Details of this reasoning can be found in [7, Theorem 7.42] and [14,
Section 9.1].)
For non-isolated singularities we are not aware of such a simple reformu-

lation.

Remark 7.3. — Note that the surface S satisfies the hypothesis of the
previous section. We define S∗ = S \ Σp where Σp is the locus where all
the partials of gp vanish. Let X ⊂ C4 be the zero set of gp, i.e. the affine
cone over the surface S.

Lemma 7.4. —
Hi
p(Y,Q) ∼= Hi

0(X,Q).

Proof. — This follows directly from the definition of contact equivalence.
�

Let Σ′ be the singular locus of X and set X∗ = X \ {0}. In this section
we relate H•0 (X,Q) to H•(S,Q).

Lemma 7.5. — For i > 1 we have isomorphisms

Hi
0(X,Q) ∼= Hi−1(X∗,Q).

Moreover,
Hi

0(X,Q) = 0
for i = 0, 1.

Proof. — Since X is the affine cone over S ⊂ P(w1,p, w2,p, w3,p, w4,p) it
is contractible and hence Hi(X,Q) = 0 for i > 0. The long exact sequence
of the pair (X,X∗) therefore yields an isomorphism

Hi
0(X,Q) ∼= Hi−1(X∗,Q)

for i > 1. Clearly, the natural map

H0(X,Q)→ H0(X∗,Q)

is an isomorphism. Since H1(X,Q) = 0 the same sequence gives that both
H0

0 (X,Q) and H1
0 (X,Q) vanish. �

The coneX∗ is a C∗-fibration over S. Recall from Section 6 thatHi(S,Q)
vanishes unless i = 0, 2, 4 and that H0(S,Q) = Q, H4(S) = Q(−2). The
Hodge structure on H2(S,Q) can be calculated by Theorem 6.2. This en-
ables us to calculate the Hodge structure of H•0 (X,Q).
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Proposition 7.6. — We have that

Hi
0(X,Q) =


H2(S,Q)prim for i = 3

H2(S,Q)prim(−1) for i = 4
Q(−3) for i = 6

0 otherwise.

Proof. — Consider the E2 part of the Leray spectral sequence for
X∗ → S:
H1(C∗,Q) Q(−1) 0 H2(S,Q)(−1) 0 Q(−3)
H0(C∗,Q) Q 0 H2(S,Q) 0 Q(−2)

H0(S,Q) H1(S,Q) H2(S,Q) H3(S,Q) H4(S,Q)

The only possible non-zero differentials are the maps Q(−1) → H2(S,Q)
and H2(S,Q)(−1) → Q(−2). We will show below that these maps are
actually injective, respectively surjective. Assuming this for the moment it
follows that the E3-terms equal

H1(C∗) 0 0 H2(S,Q)prim(−1) 0 Q(−3)
H0(C∗) Q 0 H2(S,Q)prim 0 0

H0(S) H1(S) H2(S) H3(S) H4(S)

and the spectral sequence degenerates at E3. Hence Hi(X∗,Q) ∼= ⊕jEi−j,j3
and thus

Hi(X∗,Q) =



Q for i = 0
0 for i = 1

H2(S,Q)prim for i = 2
H2(S,Q)prim(−1) for i = 3

0 for i = 4
Q(−3) for i = 5.

By Lemma 7.5 we have Hi
0(X,Q) = Hi−1(X∗,Q) for i > 1 and thus we

obtain the proposition.
It remains to show that the differential Q(−1) → H2(S,Q) is injective

and that the differential H2(S,Q)(−1)→ Q(−2) is surjective.
Let X̃ be the blow-up of X at 0. Then X̃ is a C-fibration over S. Note

that S admits Poincaré duality (a consequence of Lemma 6.1). Using that
Hi
c(C∗,Z) = 0 for i 6= 1 it follows that the Leray-Spectral sequence (for

cohomology with compact support) associated with X̃ → S degenerates at
E2 and we get that H6−i

c (X̃,Q) ∼= Hi(S,Q)(−1). Similarly, we get that
Hi(X̃,Q) = Hi(S,Q).
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Let E ⊂ X̃ be the exceptional divisor. Then E ∼= S and X̃ \ E = X∗.
Consider the following part of the Gysin exact sequence:

H1(E,Q) = 0 → H2
c (X∗,Q)→ H2

c (X̃,Q)→ H2(E,Q)
→ H3

c (X∗,Q)→ H3
c (X̃,Q) = 0.

The map H2
c (X̃,Q) → H2(E,Q) is induced by a map from integral co-

homology. Let h ∈ H2(E,Z) be the hyperplane class. From the Leray
spectral sequence it follows that H2

c (X̃,Z) = H0(E,Z) ⊗ H2
c (C,Z). Let

h1 ∈ H2
c (X̃,Z) be [E] times a generator of H2

c (C,Z). Let ι : E → X̃ be the
inclusion. Then it is easy to see that ι∗(h1) = −h. Hence the map ι∗ is not
constant and since h2

c(X̃,Q) = h4(S,Q) = 1 it follows that ι∗ is injective.
From the Gysin exact sequence it follows that H2

c (X∗,Q) = 0 and that
h3
c(X∗) = h2(E) − 1. Assume for the moment that X∗ is smooth, i.e., E

is quasismooth. Using Poincaré duality we get that h3(X∗) = h2(E) − 1.
Since H3(X∗,Q) equals

ker(H2(E,Q)(−1)→ H4(X̃,Q)) = ker(H2(S,Q)(−1)→ Q(−2))

it follows that the differential H2(S,Q)(−1)→ Q(−2) is surjective.
For the other differential we can proceed similarly:

H3(E,Q) = 0 → H4
c (X∗,Q)→ H4

c (X̃,Q)→ H4(E,Q)
→ H5

c (X∗,Q)→ H5
c (X̃,Q) = 0.

The map H4
c (X̃,Q) → H4(E,Q) is again induced by a map on inte-

gral cohomology, and the class of h times a generator of H2
c (C,Z) is

mapped to a nonzero multiple of a generator of H4(E,Z). This implies
that h4

c(X∗) = h4
c(X̃) − h4(E) = h2(E) − 1. Using Poincaré duality we

get that the differential Q(−1)→ H2(S,Q) is injective, provided that S is
quasismooth.
If S is not quasismooth then we can find a family of quasismooth surfaces

Sλ degenerating to S for λ = 0. Now for λ 6= 0, we have that the differential

Q(−1)→ H2(Sλ,Q)

is induced by a non-zero map H2(X̃λ,Z) → H2(Eλ,Z). Let hλ be a fam-
ily of generators of H2(Eλ,Z) and let h′λ be a family of generators of
H2(X̃λ,Z). Then h′λ is mapped to −hλ. By taking the limit λ → 0, we
see that h′0 is mapped to −h0, hence H2(X̃0,Q) → H2(E,Q) is injective,
and from this it follows that Q(−1) → H2(S,Q) is injective. A similar
argument shows that also H2(S,Q) → Q(−2) is surjective. This finishes
the proof. �

The following proposition will be useful for our purposes
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Proposition 7.7. — Let Y, p, dp be as above. Let wp = w1,p + w2,p +
w3,p + w4,p. Then H4

p (Y,Q) has a pure weight 4 Hodge structure without
(0, 4) and (4, 0)-component. We have

F 3H4
p (Y,C) ∼= R̃dp−wp

(gp)

and
F 2H4

p (Y,C)/F 3H4
p (Y,C) ∼= R̃2dp−wp

(gp)
where R̃ is obtained from R as explained in Remark 6.3.

Proof. — This is a combination of Lemma 7.4, Proposition 7.6 and The-
orem 6.2. �

Proposition 7.8. — Let (Y, p) be a transversal ADE surface singular-
ity. Then H6

p (Y,Q) = Q(−3) and Hi
p(Y ) = 0 for i 6= 6.

Proof. — For simplicity we assume that (Y, p) is an Ak-singularity. Using
Lemma 7.4 it suffices to prove the statement for (Y, p) given by

x2
1 + x2

2 + xk+1
3 = 0.

This equation defines a surface S ⊂ P(k + 1, k + 1, 2, 1) of degree 2k + 2
with an isolated Ak-singularity in (0 : 0 : 0 : 1).
From Lemma 7.4 and Proposition 7.6 it follows that it suffices to prove

that H2(S,Q)prim = 0. We start by calculating h2(S̃) for a quasismooth
surface S̃ of the same degree, e.g., g̃ := x2

1 + x2
2 + xk+1

3 + x2k+2
4 = 0. This

can be done by calculating the dimension of several graded pieces of the
Jacobian ring of Ỹ . The sum of the weights equals 2k + 5, hence we are
interested in h2,0(S̃) = dimR(g̃)−3 = 0, h0,2(S̃) = R(g̃)4k+1 = 0 and

h1,1(S̃) = dimR(g̃)2k−1 = dim span{[xi3x
j
4] : 2i+ j = 2k − 1} = k.

Hence h2(S̃)prim = k. Since µ(Y, p) = k, we get h2(S)prim = h2(S̃)prim −
µ(Y, p) = 0. This finishes the Ak case.
For Dm, En-singularities one can proceed similarly. �

8. Glueing local information

Let P be a four dimensional weighted projective space and let Y ⊂ P be
a hypersurface, given by f = 0. Let Σ be the locus where all the partials of
f vanish. We assume the usual conditions, i.e., Σ∩Psing = ∅, dim Σ 6 1 and
that at a general point of any one dimensional component of Σ we have a
transversal ADE surface singularity. Finally, let P ⊂ Σ be the set of points
p ∈ Σ such that (Y, p) is not a transversal ADE surface singularity.
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We want to use the previous section to relate H4(Y,Q)prim to the coker-
nel of H4(U,Q)(1)→ ⊕p∈PH4

p (Y,Q). In this section all considerations are
topological. For this reason we work with Q coefficients and use Hi(·) as
shorthand for Hi(·,Q).
For each point p ∈ P, fix a small contractible neighborhood Up ⊂ Σ. Let

Σ1 := Σ \ ∪p∈PUp be the complement of the Up. Note that Σ1 is a closed
Riemann surface with boundary embedded in P.

Lemma 8.1. — We have that

H4
Σ1

(Y ) ∼= H2(Σ1)∗(−3), H5
Σ1

(Y ) ∼= H1(Σ1)∗(−3)

and
H6

Σ1
(Y ) ∼= H0(Σ1)∗(−3).

Proof. — Take a finite open covering U := {Vi} of Σ1 such that each
Vi is homeomorphic to a disc with boundary S1, in particular each Vi is
contractible. Let Di = Vi be the closure in the complex topology. It is
easy to show that we can find such a covering with the property that each
intersection Di1 ∩Di1 ∩ · · · ∩Dik is empty or contractible.
We now proceed by induction. If #U = 1, then Σ1 is contractible. Hence

H0(Σ1) = Q and all other cohomology groups of Σ1 vanish. In this case
we have a deformation retract (Y, Y \Σ1) to (Y ′, Y ′ \ {p}) where (Y ′, p) is
a transversal ADE surface singularity. From this it follows that Hi

Σ1
(Y ) ∼=

Hi
p(Y ′). From Proposition 7.8 it follows thatH6

p (Y ′) = Q(−3) and all other
local cohomology groups vanish. Hence the statement is true in this case.
Assume now #U = k, let Σ0 = ∪16i6k−1Di. We have two Mayer-Vietoris

sequences (one is dual to the usual Mayer-Vietoris sequence, the other is
Mayer-Vietoris for cohomology with support), namely

Hi(Dk ∩ Σ0)∗ //

∼
��

Hi(Dk)∗ ⊕Hi(Σ0)∗ //

∼
��

. . .

H6−i
Dk∩Σ0

(Y )(3) // H6−i
Dk

(Y )(3)⊕H6−i
Σ0

(Y )(3) // . . .

. . . // Hi(Σ1)∗ //

��

Hi−1(Dk ∩ Σ0)∗

∼
��

. . . // H6−i
Σ1

(Y )(3) // H6−(i−1)
Dk∩Σ0

(Y )(3)

The first two vertical maps are isomorphisms by the induction hypothe-
sis. From the five-lemma it follows that dimHi(Σ) = dimH6−i

Σ (Y ), which
yields the lemma. �
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Lemma 8.2. — We have that

H6
Σ(Y ) ∼= H0(Σ)∗(−3) and H5

Σ(Y ) ∼= H1(Σ)∗(−3).

Proof. — Let Dp = Up. Using that Dp is contractible we have that
Hi
Dp

(Y ) ∼= Hi
p(Y ). From Proposition 7.6 it follows that H6

p (Y ) = Q(−3)
and also that H5

p (Y ) = 0.
Let Σ2 = ∪Up. Since Up is contractible we have that H1(Σ2) = 0 and

H5
Σ2

(Y ) = ⊕H5
p (Y ) = 0. In a similar way we get H6

Σ2
(Y ) = Q(−3)#P =

H0(Σ2)∗(−3).
Along D := Σ1 ∩Σ2, which is union of circles, we have transversal ADE

surface singularities. A reasoning as in Lemma 8.1 shows that H5
D(Y ) ∼=

H1(Y )∗ and H6
D(Y ) ∼= H0(D)∗.

As in the previous lemma we can consider the two Mayer-Vietories se-
quences (the vertical arrows are isomorphisms by either the above discus-
sion or using Lemma 8.1)

H1(D)∗ //

∼

��

H1(Σ1)∗ ⊕ H1(Σ2)∗ //

∼

��

H1(Σ)∗ //

��

. . .

H5
D(Y )(3) // H5

Σ1(Y )(3) ⊕ H5
Σ2(Y )(3) // H5

Σ(Y )(3) // . . .

. . . // H0(D)∗

∼

��

// H0(Σ1)∗ ⊕ H0(Σ2)∗ //

∼

��

H0(Σ)∗ //

��

0

. . . // H6
D(Y )(3) // H6

Σ1(Y )(3) ⊕ H6
Σ2(Y )(3) // H6

Σ(Y )(3) // 0

An application of the five-lemma yields the proof. �

Lemma 8.3. — Suppose dim Σ = 1. Then H5(Y ) = 0 and H4(Y ∗) →
H5

Σ(Y ) is an isomorphism.

Proof. — Consider the exact sequence of the pair (Y, Y ∗)

H4(Y ) → H4(Y ∗)→ H5
Σ(Y )→ H5(Y )

→ H5(Y ∗)→ H6
Σ(Y )→ H6(Y )→ H6(Y ∗) = 0.

Note that it follows from Proposition 5.4 that H5(Y ∗) = H0(Σ)∗prim(−3).
Using Lemma 8.2 it follows that h5(Y ∗) = h6

Σ(Y )− h6(Y ), hence the map
H5(Y ∗)→ H6

Σ(Y ) is injective.
From Proposition 5.4 it follows thatH4(Y ∗) is isomorphic toH1(Σ)∗(−3).

From Lemma 8.2 it follows thatH5
Σ(Y ) is isomorphic toH1(Σ)∗(−3). Hence

H4(Y ∗) and H5
Σ(Y ) have the same dimension.
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Note that the possible Hodge weights of H4(Y ∗) ∼= H1(Σ)∗(−3) are 5
and 6, whereH4(Y ) has Hodge weights at most 4 [22, Theorem 5.39]. Hence
H4(Y )→ H4(Y ∗) is the zero-map, H4(Y ∗) ∼= H5

Σ(Y ) and H5(Y ) = 0. �

Theorem 8.4. — We have that

H4(Y )prim = coker(H4(U)(1)→ ⊕p∈PH4
p (Y )).

Proof. — Suppose first that dim Σ = 0. Then P = Σ.
Consider the exact sequence

H3(Y ∗)→ H4
Σ(Y )→ H4(Y )→ H4(Y ∗).

From Proposition 5.4 it follows H4(Y ∗)prim = 0 and H3(Y ∗) ∼= H4(U)(1),
hence we have an exact sequence

H4(U)(1)→ H4
Σ(Y )→ H4(Y )prim → 0.

This proves the case dim Σ = 0.
Suppose that dim Σ = 1. Consider the diagram (where both the horizon-

tal and the vertical sequence are exact)

0 // H4(U)(1) // H3(Y ∗) //

��

H2(Σ)∗(−3)prim // 0

H4
Σ(Y )

��
H4(Y )

��
0.

The horizontal sequence comes from Proposition 5.4, the vertical sequence
is part of the long exact sequence of the pair (Y, Y ∗). From Lemma 8.3 it
follows that H4

Σ(Y )→ H4(Y ) is surjective.
We start by constructing a map H4

Σ(Y ) → H2(Σ)∗(−3): let Ỹ be a
resolution of all singularities contained in Σ of Y . Let E be the exceptional
divisor. Then there is a natural map H2(Σ) → H2(E). Since Ỹ is smooth
we have that Hi

E(Ỹ ) = H6−i(E)∗(−3). The resolution (Ỹ , E) → (Y,Σ)
induces a natural map Hi

Σ(Y )→ Hi
E(Ỹ ). Composing the maps as follows

H4
Σ(Y )→ H4

E(Ỹ ) ∼= H2(E)∗(−3)→ H2(Σ)∗(−3)
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yields a map H4
Σ(Y ) → H2(Σ)∗(−3). It is easy to check that the compo-

sition H3(Y ∗) → H4
Σ(Y ) → H2(Σ)∗(−3)prim is the same map as the map

H3(Y ∗)→ H2(Σ)∗(−3) in the above diagram.
LetK be the kernel of the map H4

Σ(Y )prim → H2(Σ)∗prim(−3). The above
diagram shows that

H4(Y )prim = cokerH3(Y ∗)→ H4
Σ(Y )prim = cokerH4(U)(1)→ K.

The final equality is a consequence of the snake lemma.
Hence it remains to show that

K ∼= ⊕p∈PH4
p (Y ).

Let Σ2 := ∪Up and D = Σ1 ∩ Σ2. Note that D is a union of circles.
Consider the Mayer-Vietoris sequence

H4
D(Y ) → H4

Σ1
(Y )⊕H4

Σ2
(Y )→

→ H4
Σ(Y )→ H5

D(Y )→ H5
Σ1

(Y )⊕H5
Σ2

(Y )→ H5
Σ(Y )

Note that H5
Σ(Y ) = H1(Σ)∗(−3) by Lemma 8.2. Note also that that

H5
Σ2

(Y ) = H1(Σ2)∗(−3) by a reasoning similar to the one in the proof
of Lemma 8.1. Since H1(Σ2) = 0 it follows that H5

Σ2
= 0.

Since we have transversal ADE-singularities along D and Σ1 this se-
quence becomes (after tensoring with Q(3))

0 = H2(D)∗ → H2(Σ1)∗ ⊕H4
Σ2

(Y )(3)→
→ H4

Σ(Y )(3)→ H1(D)∗ → H1(Σ1)→ H1(Σ)∗ → . . .

Since Σ1 is a deformation retract of Σ \ P we obtain the following exact
sequence (dualized sequence of the pair (Σ,Σ \ P)):

0→ H2(Σ1)∗ → H2(Σ)∗ → ⊕p∈PH2
p (Σ)∗ → H1(Σ1)∗ → H1(Σ)∗

This yields a diagram

0 // H2(Σ1)∗⊕H4
Σ2

(Y )(3)
ϕ1 //

��

H4
Σ(Y )(3) //

��

H1(D)∗ //

��

H1(Σ1)∗

=

��
0 // H2(Σ1)∗

ϕ2 // H2(Σ)∗ // ⊕p∈PH
2
p(Σ)∗ // H1(Σ1)∗

Here, the map H4
Σ2

(Y )(3) → H2(Σ)∗ is the unique map, making this
diagram commutative.
Using that gp = 0 is weighted homogeneous we get that (Σ, p) is locally a

set of m lines through p. In particular, Up \{p} can be retracted to Up∩Σ1.
Taking direct sums over all p ∈ P this shows that Hi(Σ2 \ P) ∼= Hi(D).
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Since for each p ∈ P we have that Up is contractible we get a natural
isomorphism

Hi+1
P (Σ) ∼= Hi(Σ2 \ P) ∼= Hi(D).

Hence the above diagram simplifies to

0 // H2(Σ1)∗ ⊕H4
Σ2

(Y )ϕ1 //

��

H4
Σ(Y ) //

��

cokerϕ1 //

∼
��

0

0 // H2(Σ1)∗
ϕ2 // H2(Σ) // cokerϕ2 // 0

(The main point here is that cokerϕ1 ∼= cokerϕ2.) From this diagram
it follows that H4

Σ2
(Y ) = ker(H4

Σ(Y ) → H2(Σ)∗) = ker(H4
Σ(Y )prim →

H2(Σ)∗prim).
Since the Dp := Up are contractible, there exists a deformation retract

from Y \Σ2 to Y \P, hence H4
Σ2

(Y ) ∼= H4
P(Y ), which yields the proof. �

9. Method for calculating MW (π)

In this section we present a method to calculate the Mordell-Weil rank
of a general elliptic threefold.

We start by identifying the set Σ and a finite subset P ′ containing the
set P (cf. the previous section.)

Proposition 9.1. — Suppose we have a threefold Y ⊂ P(2n, 3n, 1, 1, 1)
defined by the vanishing of g := −y2 + x3 + Px + Q, where P and Q are
homogeneous polynomials in z0, z1, z2 of degree 4n and 6n. Suppose Y is
minimal.
Let ∆ be the curve defined by 4P 3 +27Q2 = 0 and ∆1 be the underlying

reduced curve. Let ψ : P(2n, 3n, 1, 1, 1) → P2 be the projection onto the
plane x = y = 0. Take P to be the set defined in Section 8. Then ψ(P) is
contained in ∆1,sing ∪Q1 ∪Q2 where

Q1 := {q ∈ ∆1,smooth : q is an isolated zero of P |∆1}

and

Q2 :=
{
q ∈ ∆1,smooth : P and ∆1 have a common component C

containing q, ordC(P ) = 2 and ordq(P ) > 3.

}
.

Proof. — If all the partials of g vanish at p then, in particular, ∂g/∂x and
∂g/∂y vanish, hence p is a singular point of ψ|−1

Y (ψ(p)) and ψ(Σ) ⊂ ∆1.
Moreover, if p ∈ Σ, then p is the unique singular point of ψ|−1

Y (ψ(p)).
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For a general point q on a component C of ∆ one can find the transversal
type of the singularity along the corresponding component of Σ by Tate’s
algorithm. For more details we refer to [19]. We will use Tate’s algorithm
to identify the set of points where we do not have a transversal surface
singularity.
Iν-fiber. Suppose C is a component of ∆ of multiplicity ν and P |C 6≡ 0.

We show now that if p ∈ P then q := ψ(p) is either in ∆1,sing or P (q) = 0
(i.e., q ∈ Q1).
For each q ∈ C we have that ψ−1(q) has precisely one singular point. Let

Σ′ be the union of all these points. Let t = 0 be an equation for C and let
s be a second local coordinate.
An easy calculation show that at a general point of C the x-coordinate of

p equals −3Q(s, t)/2P (s, t). As long as P (s, t) 6= 0 we can move the point
x = −3Q(s, t)/2P (s, t), y = 0 to (0, 0). This yields a new local equation of
Y , namely

8P 3y2 = 8P 3x3 − 36PQ2x2 + 2P∆x−Q∆.
Since ∆(s, t) = tνh(s, t), we have that (Y, p) is equivalent to the singularity

y2 = x2 + tνx+ tν

unless h(t, s)P (t, s)Q(t, s) = 0. For degree reasons we can disregard tνx,
hence we have a transversal Aν−1 singularity unless h(t, s)P (t, s)Q(t, s) =
0. Since ∆ = 4P 3 + 27Q2 we have that then h(t, s)P (t, s) = 0.
I∗ν -fiber, ν > 0. Suppose C is a component of ∆ with multiplicity 6 + ν

and that ordC(P ) = 2, ordC(Q) = 3. Let t = 0 be an equation for C and
let s be a second local coordinate. I.e., we can write P (s, t) = t2P1(s, t) and
Q(s, t) = t3Q1(s, t). As above, we move the point (−3tQ1(s, t)/P (s, t), 0)
to (0, 0). Then we get a local equation of the form

8P1(t)3y2 = 8P1(t)3x3−36tP1(t)Q1(t)2x2 +2t2P1(t)∆2(t)x− t3Q1(t)∆2(t)

where ∆2(t, s) = ∆(t, s)/t6. Then ∆2 = 4P1(t, s)3 + 27Q1(t, s)2 = tνh(t, s)
for some h. This local equation is equivalent to a transversal D4+ν-singu-
larity, unless P1(t, s)Q1(t, s)h(t, s) = 0. A reason similar to the Iν case
shows that either p ∈ ∆1,sing or P1 and Q1 vanish at q, which implies that
P = t2P1 vanish at least up to order 3 at q, i.e., q ∈ Q2.
Exceptional cases II, III, IV, I∗0 , IV ∗, III∗, II∗.
Of these we do only the most difficult cases II∗, III∗, the other cases

being very similar.
Case II∗: from Tate’s algorithm it follows that we have a local equation

of the form
y2 = x3 + t4P1(s, t)x+ t5Q1(s, t)
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such that Q1(s, t) does not vanish at a general point of C. Hence ∆(s, t) =
t10(4t2P1(s, t)3 + 27Q1(s, t)5). This is a transversal E8-singularity unless
Q1(t, s) vanishes, but then q is a singular point of ∆1.

Case III∗: from Tate’s algorithm it follows that we have a local equation
of the form

y2 = x3 + t3P1(s, t)x+ t5Q1(s, t)
such that P1(s, t) does not vanish at a general point of C. Hence ∆(s, t) =
t9(4P1(s, t)3 + 27tQ1(s, t)2). This is a transversal E7-singularity unless
P1(s, t) vanishes, but then q is a singular point of ∆1. �

Lemma 9.2. — Suppose q ∈ P2 is such that P (q) = 0 and q is an
isolated double point of ∆. Then P ∩ ψ−1(q) = ∅.

Proof. — Using that ∆ = 4P 3 + 27Q2 and our assumptions on ∆ and
P we obtain that Q = 0 is a smooth reduced curve in a neighborhood of q
and that Q = 0 does not have a common component with P = 0 or ∆ = 0
in a neighborhood of p. I.e., we have a local equation of the form

y2 = x3 + Px+ s.

If Σ and ψ−1(q) intersect, then the fiber needs to be singular at that point,
i.e., (x, y, t, s) = (0, 0, 0, 0), However, it is easy to see that Y is smooth at
this point, hence ψ−1(q) ∩ Σ = ∅. �

For a Weierstrass equation g := −y2 + x3 + Px + Q let Q := (∆1,sing ∪
Q1 ∪Q2) \ Q3, where Q1 and Q2 are defined as in Proposition 9.1 and

Q3 = {q ∈ ∆1,sing : P (q) = 0 and q is an isolated double point of ∆}.

Let
P ′ :=

⋃
q∈Q

ψ|−1
Y (q)sing ⊂ Y.

Note that P ′ is a finite set and contains the set P of the previous section.

Procedure 9.3. — Given an equation y2 = x3 + Px + Q with homo-
geneous polynomials P ∈ C[z0, z1, z2]4n, Q ∈ C[z0, z1, z2]6n such that there
is no u ∈ C[z0, z1, z2] \C with u4|P and u6|Q.

(1) Set Y = {(x, y, z0, z1, z2) ∈ P(2n, 3n, 1, 1, 1) : y2 = x3 + Px+Q}.
(2) Determine the set P ′ ⊂ Y defined above.
(3) For each p ∈ P ′ check whether (Y, p) is contact equivalent to a

weighted homogeneous hypersurface singularity (Y ′, p′).
If not, then stop, otherwise fix weights w1,p, w2,p, w3,p, w4,p and

a weighted homogeneous polynomial gp ∈ C[y1, y2, y3, y4] such that
(Y, p) is contact equivalent to ({gp = 0}, 0). Fix also a map (Y, p)→
({gp = 0}, 0). Let dp := deg gp, wp :=

∑
wi,p.
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(4) For each p ∈ P ′ let R(gp) be the Jacobian ring of gp. If (Y, p) is
an isolated singularity then set R̃(gp) = R(gp). If (Y, p) is not an
isolated singularity then R̃ is defined as in Remark 6.3.

(5) Calculate the dimension r1 of the cokernel of the natural map

C[x, y, z0, z1, z2]7n−3 → ⊕p∈P′R̃(gp)2dp−wp
.

(6) Calculate the dimension r0 of the cokernel of the natural map

C[x, y, z0, z1, z2]n−3 → ⊕p∈P′R̃(gp)dp−wp
.

(7) If r0 = 0 then rank MW(π) = r1.
(8) If r0 > 0 then rank MW(π) 6 r1.

Proof. — As is shown above P ′ is finite and contains P. For each p ∈ P ′\
P we have that (Y, p) is smooth or a transversal ADE surface singularity.
By proposition 7.8 it follows that H4

p (Y,Q) = 0. Hence to calculate the
cokernel of H4(U,Q)(1)→ ⊕q∈PH4

q (Y,Q), we can replace P by P ′.
We proceed by calculating h3,1(H4(Y,C)) and h2,2(H4(Y,C)). Combin-

ing Proposition 7.7 with Theorem 8.4 yields that
(1) h3,1(H4(Y,C)) 6 r0 and h2,2(H4(Y,C))prim 6 r1.
(2) If r0 = 0 then h3,1(H4(Y,C)) = h4,0(H4(Y,C))= 0. Since H4(Y,Q)

has a pure weight 4 Hodge structure it follows that h1,3(H4(Y,C)) =
h0,4(H4(Y,C)) = 0, hence H4(Y,C) is of pure type (2, 2) and

rankH4(Y,C)prim ∩H2,2(H4(Y ))prim = r1.

Applying Theorem 4.3 finishes the proof. �

Remark 9.4. — An elliptic curve E over C(t1) is for trivial reasons also
an elliptic curve over C(t1, t2). We discuss what the outcome of our method
is, if we apply it to such Y . Note that Y is defined as the zero-set of

−y2 + x3 + P (z0, z1)x+Q(z0, z1)

i.e., Y is a cone over an elliptic surface. Here we assume that n is such that
deg(P ) = 4n and deg(Q) = 6n. The discriminant curve is a union of lines
through (0 : 0 : 1). From this it follows that P ′ = {(0 : 0 : 0 : 0 : 1)}. For
simplicity assume that the (0 : 0 : 0 : 0 : 1) is an isolated singularity.
For p = (0 : 0 : 0 : 0 : 1) we have a local equation

(9.1) − v2 + u3 + P (s, t)u+Q(s, t) = 0

i.e., we have dp = 6n and wp = 5n + 2. Our algorithm tells us that we
should calculate the dimension r1 of the cokernel of

C[x, y, z0, z1, z2]7n−3 → R̃(gp)7n−2
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and calculate the dimension r0 of the cokernel of

C[x, y, z0, z1, z2]n−3 → ⊕p∈P′R̃(gp)n−2.

It is easy to see that both maps are the zero map. In particular, our method
tells us that

rank MW(π) 6 r1 = dimR(gp)7n−2 = h1,1(S)prim

where S is the elliptic surface defined by (9.1). Of course, we could obtain
this inequality directly, i.e., by applying the Shioda-Tate formula to S.

Part 3. Examples

10. Examples

Example 10.1. — Consider the elliptic threefold Y

y2 + x3 + z2
0z

2
2(z0z2 − z2

1).

The locus Σ of Y is given by y = w = z0z2 = 0, i.e., is 1-dimensional.
The discriminant curve is z2

0z
2
2(z0z2 − z2

1). The set P ′ consists of three
points p1 = (0 : 0 : 1 : 0 : 0), p2 = (0 : 0 : 0 : 1 : 0), p3 = (0 : 0 : 0 : 0 : 1).
Note that Σ is one dimensional in this case.
At p1 and p3 we have a local equation of the form

v2 = u3 + t2s2 + s3

Set weights for s, t, u, v as 2, 1, 2, 3. Then this equation is weighted homo-
geneous of degree 6, and

R(gp)dp−wp = 0, R(gp)2dp−wp = span{t4, s2, rt2, rs}.

Along v = u = s = 0 we have a transversal A2-singularity. The Milnor
algebra of an isolated A2-singularity v2 + u3 + t2 is generated by 1 and u.
If we homogenize these two monomials we get t4 and ut2. Hence

R̃(gp)2dp−wp = R(gp)2dp−wp/(t4, ut2) = span{s2, us}.

For p = p1 we have that, after homogenizing, s2 corresponds to z2
0z

2
2 and

xs corresponds to xz0z2. For p = p3 we get similarly that R̃gp
is generated

by z2
0z

2
2 and xz0z2.

At p = p2 we have a local equation of the form

v2 = u3 + t2s2

TOME 61 (2011), FASCICULE 3



1172 Klaus HULEK & Remke KLOOSTERMAN

If we set weights for s, t, u, v as 2, 2, 1, 3 we get a weighted homogeneous
equation of degree 12. Again R(gp)dp−wp

= 0. We get that R(gp)2dp−wp
is

4-dimensional, and that
R̃(gp)2dp−wp

= 0.
This implies that r0 = 0 and r1 is the cokernel of

C[x, y, z0, z1, z2]4 → R̃(gp1)4 ⊕ R̃(gp3)4.

Since both summands have the same generators it turns out that the
cokernel has dimension 2. In particular, rank MW(π) is 2. The sections
(x = e2πik/3z0z2, y = z0z1z2) for k = 0, 1 generate a finite-index subgroup
of MW(π).
In order to determine the torsion subgroup of MW(π): fix a general line

` in P2 and consider π` : π−1(`) → `. Then π−1(`) is a rational elliptic
surface with 2IV fibers and 2II fibers. Such an elliptic surface has tivial
torsion subgroup [21], hence MW(π) has no torsion.

Example 10.2. — The second author has given several examples of el-
liptic threefolds with higher rank. For example if Y is given by y2 =
x3 + f(z0, z1, z2) where f = 0 defines a sextic in P2 with 9 cusps then
the rank of MW(π) equals 6. (See [17, 18])

11. An application

The following construction of Calabi-Yau threefolds is due to F. Hirze-
bruch and was communicated to us by N. Yui. Some of the details of the
construction were worked out in the Diplomarbeit [2] of N. Behrens.

Construction 11.1. — Let S be a del Pezzo surface, i.e., the blow-up of
P2 in m points p1, . . . pm in general position (meaning no three points on
a line, and no six points on a conic), 0 6 m 6 8. By Ei we denote the
exceptional divisors of the blow-down morphism ϕ : S → P2. Let L be the
pullback to S of a general line in P2.
We consider the anti-canonical line bundle L = ω−1

S = O(3L −
∑
Ei)

and define the rank 3 bundle E = O⊕L−2⊕L−3. Then P(E) is a P2-bundle
over S. We use Grothendieck’s definition of projective space, in particular
p∗OP(E)(1) = E where p is the bundle projection. Fix sections

X := (0, 1, 0) ∈ H0(L2 ⊕O ⊕ L−1) = H0(OP(E)(1)⊗ L2),
Y := (0, 0, 1) ∈ H0(L3 ⊕ L⊕O) = H0(OP(E)(1)⊗ L3),
Z := (1, 0, 0) ∈ H0(O ⊕ L−2 ⊕ L−3) = H0(OP(E)(1)).
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For general sections g2, g3 in H0(L4) and H0(L6) respectively, the equation

(11.1) Y 2Z = 4X3 + g2XZ
2 + g3Z

3

defines a smooth hypersurface W in P(E). Note that W is in the linear
system defined by the anti-canonical line bundle ω−1

P(E) = (p∗L6)⊗OP(E)(3).
The projection onto S defines an elliptic fibration π : W → S with a section.

Lemma 11.2. — The threefold W has trivial canonical bundle.

Proof. — Since

ωP(E) = p∗(ωS ⊗ det E)⊗OP(E))(−3) = p∗L−6 ⊗OP(E))(−3)

and OP(E)(W7) = p∗L6 ⊗OP(E))(3) it follows from the adjunction formula
that

ωW7 = ωP(E)(W7)|W7 = OW7 .

�

In [2] a detailed proof of the following result is given:

Theorem 11.3 ([2, Theorem 2.35]). — Let r = rank MW(π). Then W
has the following Hodge numbers:

(1) h1,0(W ) = h0,1(W ) = h2,0(W ) = h0,2(W ) = 0,
(2) h1,3(W ) = h3,1(W ) = 0,
(3) h0,3(W ) = h3,0(W ) = 1,
(4) h1,1(W ) = m+ 2 + r,
(5) h1,2(W ) = h2,1(W ) = 272− 29m+ r.

The topological Euler characteristic e(W ) = −540 + 60m.

Remark 11.4. — The fact that h1,0(W ) = h2,0(W ) = 0 and that ωW =
OW implies that W is a Calabi-Yau threefold. For Calabi-Yau threefolds
finding their mirror partner is of particular interest. The line bundle (p∗L6)⊗
OP(E)(3) is not an ample line bundle. (This follows e.g., since π∗(OP(E)(1)⊗
L2) = E ⊗ L2 = L2 ⊕ OS ⊕ L−1.) Hence we are not in a position where
Batyrev’s mirror construction [1] can be applied directly. In order to find
a mirror family it is first of all necessary to compute the Hodge numbers
of W . This was the motivation behind [2].

To actually find the Hodge numbers we need to determine the rank of
MW(π). In [2] it is conjectured that r = 0 for all such W . We apply our
methods to prove this conjecture. We first calculate the Mordell-Weil rank
by computing h4(Y ).
We know that W is birational to a hypersurface Y of degree 6n in some

weighted projective space P(2n, 3n, 1, 1, 1). For n = 1, 2 such a threefold is
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a deformation of a rational variety. Since W is a Calabi-Yau hypersurface
we have n > 3.

Lemma 11.5. —There exists a degree 18 hypersurface Y inP(6, 9, 1, 1, 1),
birational to W and such that Ysing consists of (1 : 1 : 0 : 0 : 0) and m

isolated semi-weighted homogeneous hypersurface singularities with Mil-
nor number 50. For each of these singularities we have that H4

p (Y,Q) ∼=
Q(−2)8.

Proof. — We need to consider g2, g3 as functions on P2, rather than el-
ements in H0(S,Li). Since ϕ∗L = O(3) ⊗ Ip1,...,pm

, it follows that g2 ∈
H0(O(12)⊗I4

p1,...,pm
) and g3 ∈ H0(O(18)⊗I6

p1,...,pm
). Let P and Q be the

associated weighted homogeneous polynomials of degree 12 and 18 respec-
tively. Then

(11.2) y2 = x3 + Px+Q

defines a degree 18 hypersurface Y in P(6, 9, 1, 1, 1) birational to W .
Let ψ̃ : P→ P2 be the projection from {z0 = z1 = z2 = 0} to the plane

{x = y = 0}. Then ψ = ψ̃|Y corresponds to the elliptic fibration on W .
Note that p is defined on Y \ {(1 : 1 : 0 : 0 : 0)}. Since W is smooth all
singularities (besides (1 : 1 : 0 : 0 : 0)) lie in ψ−1(pi) for i = 1, . . .m.

Equation (11.2) shows that ψ−1(pi) has equation Y 2Z=X3+P (pi)XZ2+
Q(pi)Z3. In particular, ψ−1(pi) is an irreducible and reduced cubic plane
curve and it has at most one singularity. Since Y is singular at qi = (0 : 0 :
pi), the same holds for ψ−1(pi), and there are no other singular points on
Y \ {(1 : 1 : 0 : 0 : 0)}.
We proceed by calculating the Milnor number of (Y, qi). A local equation

for Y around qi is

v2 = 4u3 + h4(t, s)u+ h6(t, s) + h.o.t.

An easy calculation, using that W is smooth, shows that the lowest degree
part

v2 = 4u3 + h4(t, s)u+ h6(t, s)
defines a quasismooth surface in P(2, 3, 1, 1). In particular, (Y, qi) is a semi-
weighted homogeneous hypersurface singularity, i.e., we may ignore the
higher order terms.
To calculate the Milnor number of (Y, qi) we need to consider the Jaco-

bian ring R of the defining equation of the singularity. Using Lemma 11.6
(proven below) it follows that∑

dimRdt
d = 1 + 2t+ 4t2 + 6t3 + 8t4 + 8t5 + 8t6 + 6t7 + 4t8 + 2t9 + t10.
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Hence µ = dimR = 50.
To calculate the local cohomology it suffices to determine dimRd−w =

R−1 and dimR2d−w = dimR5. The former space is 0, the latter space is
8-dimensional. Now apply Proposition 7.6 and Theorem 6.2. �

Lemma 11.6. — Let f ∈ C[x0, . . . , xn+1] be a weighted homogeneous
polynomial of degree d with weights w0, . . . , wn+1. Assume that each wi
divides d and that f = 0 has at most an isolated singularity at the origin.
Let R be the Jacobian ring of f . Then∑

k

dimRkt
k =

∏ td−wi − 1
twi − 1 .

Proof. — Since f = 0 has at most a singularity at the origin it follows
that the partials of f form a regular sequence in C[x0, . . . , xn+1]. This
implies that R is resolved by its Koszul complex. An easy calculation yields
the proof. �

For the rest of this section, let Y be the degree 6n hypersurface in
P(6, 9, 1, 1, 1) constructed in the proof above. In particular, Y ∩ {z1 =
z2 = z3 = 0} = {(1 : 1 : 0 : 0 : 0)}. Let qi = (0 : 0 : pi).

The form of the singularity (Y, qi) allows us to use Dimca’s results. For
this we first prove the following two lemmas.

Lemma 11.7. — Let T ⊂ P(6, 9, 1, 1, 1) be a quasismooth hypersurface
of degree 18. Then h3(T ) = 546 and the topological Euler characteristic
e(T ) = −542.

Proof. — Since the topology of quasismooth hypersurfaces is invariant
under deformation, it suffices to prove this statement for T given by

f := y2 + x3 + z18
0 + z18

1 + z18
2 .

Let R be the Jacobian ring of f . Using Griffiths-Steenbrink (see Section 5)
we know that

h3(T ) = dimR0 + dimR18 + dimR36 + dimR54.

An easy calculation shows that dimR0 = dimR54 = 1 and dimR18 =
dimR36 = 272. Hence h3(T ) = 546. From Lefschetz’ hyperplane theorem
(Proposition 5.1) it follows that hi(T ) = 1 for i = 0, 2, 4, 6 and all other
Betti numbers vanish. From this the equality e(T ) = 4 − 546 = −542
follows. �

Lemma 11.8. — The topological Euler characteristic e(Y ) of Y equals
−542 + 50m.
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Proof. — Let T be a quasismooth hypersurface of the same degree of Y .
From e.g. [9, Corollary 5.4.4] it follows that

e(Y ) = e(T ) + µ

where µ is the total Milnor number of Y , i.e., the sum of the Milnor numbers
of the singularities of Y besides (1 : 1 : 0 : 0 : 0). From Lemma 11.5 and
Lemma 11.7 it follows that e(Y ) = −542 + 50m. �

Using the Lefschetz hyperplane theorem (Proposition 5.1) we obtain that

h0(Y ) = h2(Y ) = h6(Y ) = 1 and h1(Y ) = h5(Y ) = 0.

Hence h3(Y ) = 546− 50m+ h4(Y )− 1.
To calculate h4(Y ) we use Dimca’s method. For this we need some results

on linear systems on P2.

Definition 11.9. — Let Ld(km) be the linear system of degree d curves
having a point of order k at p1, . . . , pm. The defect of Ld(km) equals
mk(k+1)

2 −codimC[z0,z1,z2]d Ld(km), i.e., the difference between the expected
codimension and the actual codimension.

We are interested in L18(6m) and L12(4m), in the case that the m points
are the pi.

Proposition 11.10. — For k > 0 we have that the linear system
L3k(km) has no defect.

Proof. — Note that L3k(km) is isomorphic toH0(S,OS(3kH−k
∑
Em)).

Set D = 3H−
∑
Ei and let C be an irreducible smooth curve in |D|. (Such

a curve exists since the pi are in general position and m 6 8.) Since C is
the strict transform of a degree 3 curve in P2 we have that g(C) = 1.
Let L = O(D)|C . Then deg(L) = D2 = 9 −m > 0. Using g(C) = 1 we

find for t > 0 that h0(Lt) = t(9−m) and h1(L⊗t) = 0.
Consider now the long exact sequence in cohomology associated to

0→ OS((t− 1)D)→ OS(tD)→ L⊗t → 0.

Since for t > 1 we have that h1(L⊗t) = 0, we find that h1(OS(tD)) 6
h1(OS((t − 1)D)). Note that for t = 1 we have that h1(OS((t − 1)D)) =
h0,1(S) = 0. Combining this yields that h1(OS(tD)) = 0 for t > 0. This
implies that

h0(OS(tD)) = h0(OS((t− 1)D)) + h0(L⊗t) = h0(OS((t− 1)D)) + t(9−m)

whence

h0(OS(tD)) = t(t+ 1)(9−m)
2 + h0(OS) = t(t+ 1)(9−m)

2 + 1.
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The expected dimension of L3k(km) equals

(3k + 1)(3k + 2)
2 −mk(k + 1)

2 = k(k + 1)(9−m)
2 + 1.

This implies that L3k(km) has the expected dimension and thus L3k(km)
has no defect. �

Proposition 11.11. — We have that h4(Y ) = 1, hence h3(Y ) = 546−
50m.

Proof. — From Dimca’s work, (the dimension zero case of Sections 7
and 8), it follows that the primitive cohomology H4(Y,Q)prim is isomorphic
to the cokernel of

H4(P \ Y,Q)→ ⊕qi
H4
qi

(Y,Q).

From Lemma 11.5 we know that H4
qi

(Y,Q) = Q(−2)8.
A local equation of (Y, qi) (see the proof of Lemma 11.5) is

fqi := −v2 + 4u3 + h4,i(t, s)u+ h6,i(t, s).

This equation is weighted homogeneous. Moreover, we know that this is an
equation of a quasismooth surface. Let R(fqi

) denote the Jacobian ring of
fqi .
From Proposition 7.7 and Theorem 8.4 it follows that the cokernel of

H4(P \ Y,C) → ⊕H4
qi

(Y,C) equals the cokernel of Gr2
P H

4(P \ Y,C) →
⊕H4

qi
(Y,C). Using the natural maps

C[z0, z1, z2]12x⊕C[z0, z1, z2]18 � R(f)18 � Gr2
P H

4(P \ Y,C)

it follows that it suffices to prove that

(11.3) C[z0, z1, z2]12x⊕C[z0, z1, z2]18 → ⊕H4
qi

(Y,C) = ⊕iR(fqi)5

is surjective.
Define Tq,m,d : C[z0, z1, z2]d → Cm(m+1)/2 to be the (m − 1)st part of

the Taylor expansion around (α1, α2, α3) for some fixed lift of q ∈ P2 to
C3. Then the map form (11.3) can be factored as

C[z0, z1, z2]12x⊕C[z0, z1, z2]18
⊕(Tqi,4,12⊕Tqi,6,18)

−→ ⊕i
(
C10⊕C21)→⊕R(fqi

)5.

The first map is surjective by Proposition 11.10 and the second map is
surjective since it is a projection. From this the lemma follows. �
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Applying Theorem 4.3 yields:

Corollary 11.12. — We have rank MW(π) = 0.

Remark 11.13. — Actually, MW(π) = 0: let ` ⊂ P2 be a general line.
Then π` : π−1(`) → ` is an elliptic surface with 36 I1 fibers. (This follows
from the fact that the discriminant curve is reduced.) Suppose MW(π`) has
a torsion section of order k, then one can factor the j-map over X1(k) →
X(1) since this map is ramified at ∞ with ramifaction index k it turns out
that π` has a fiber of type Ikm of I∗km for some m > 1. Since all fibers
of π` are of type I1 it follows that MW(π`) has trivial torsion part, hence
MW(π) has trivial torsion.
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