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ON THE BURNS-EPSTEIN INVARIANTS OF
SPHERICAL CR 3-MANIFOLDS

by Khoi The VU (*)

Abstract. — In this paper we develop a method to compute the Burns-Epstein
invariant of a spherical CR homology sphere, up to an integer, from its holonomy
representation. As an application, we give a formula for the Burns-Epstein invari-
ant, modulo an integer, of a spherical CR structure on a Seifert fibered homology
sphere in terms of its holonomy representation.
Résumé. — Dans cet article nous développons une méthode pour calculer l’in-

variant de Burns-Epstein d’une sphère d’homologie CR sphérique, à un nombre
entier près, de sa représentation d’holonomie. Comme application, nous donnons
une formule pour l’invariant de Burns-Epstein, modulo un nombre entier, d’une
structure CR sphérique sur une sphère d’homologie fibrée de Seifert en termes de
sa représentation d’holonomie.

Dedicated to Professor Ha Huy Vui on the occasion of his sixtieth birthday.

1. Introduction

In [3], Burns and Epstein define a global, biholomorphic, R-valued in-
variant µ of a compact, strictly pseudoconvex 3-dimensional CR 3-manifold
M whose holomorphic tangent bundle is trivial. As the Burns-Epstein in-
variant is defined through the transgression form, it depends on the Cartan
connection of the CR structure in a delicate way. Therefore it is not easy
to compute the Burns-Epstein invariant for a general CR 3-manifold. In
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776 Khoi The VU

Burns-Epstein’s work [3], they compute the Burns-Epstein invariant for
tangent circle bundles over Riemann surfaces and Reinhardt domains in
C2. In [4], Burns and Epstein raise the following question: ”An interesting
question is left open here about the relationship of these invariants to the
Kähler geometry of the interior manifold, and the behavior of developing
maps for CR manifolds which are locally CR equivalent to the standard
sphere”.
This paper is an attempt to answer the second part of this question.

Namely, we show that for a spherical CR homology sphere, the Burns-
Epstein invariant, modulo an integer, is basically a "topological” invariant.
More precisely, it coincides with minus the Chern-Simons invariant of the
holonomy representation. The main result of our is the development of a
cut-and-paste method, inspired from the works of P. Kirk and E. Klassen in
gauge theory (see [15, 16]), to compute the Burns-Epstein invariant, modulo
an integer, of spherical CR homology spheres. We first define the normal
form of a flat connection near the torus boundary. Next, we prove a result
(Theorem 5.1) that expresses the change of the Chern-Simons invariant of a
path of normal form flat connections on a manifold with boundary in terms
of the boundary holonomy. To compute the Chern-Simons invariant on a
closed manifold M, we decompose it as an union of manifolds with torus
boundary. On each manifold with boundary, we try to connect our original
connection to a connection whose Chern-Simons invariant is already known
and then use Theorem 5.1 to compute its Chern-Simons invariant. This
method has been applied successfully to find the Chern-Simons invariant
of representations into SU(2),SL(2,C),SU(n) (see [15, 16, 17]) and the
Godbillon-Vey invariant of foliations [13].
The rest of this paper is organized as follows. In the next section, we

recall some preliminaries about the universal covering group of U(2, 1) and
the Burns-Epstein invariant of a CR 3-manifold. In section 3, we show
that, up to an integer, the Burns-Epstein invariant of a spherical CR ho-
mology sphere equals minus the Chern-Simons invariant of its holonomy
representation. Section 4 contains technical results that allow us to define
a normal form of a flat connection on a manifold with boundary. In section
5, We prove Theorem 5.1 that expresses the change of the Chern-Simons
invariant of a path of flat connections in terms of the boundary holonomy.
This theorem are our tool to compute the Chern-Simons invariant in sec-
tion 6. There, we give an explicit formula for the Chern-Simons invariant
of a Seifert fibered homology sphere. As an illustration, we carry out an
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ON THE BURNS-EPSTEIN INVARIANTS 777

explicit computation of the Burns-Epstein invariants, modulo an integer,
of the homology sphere Σ(2, 3, 11).

2. Preliminaries

We first introduce some notations. We denote by diag(a, b, c) a 3 × 3
diagonal matrix whose main diagonal is (a, b, c). For a matrix A, we will
use the notation A† to denote its complex conjugate. Next, we recall the
definition of the unitary group U(2, 1). Let’s define

U(2, 1) := {A = (aij)i,j=1,...,3| aij ∈ C, JA†J = A−1},
where J = diag(1, 1,−1). Note that U(2, 1) acts on the open unit ball in
C2, a model for the complex hyperbolic space H2

C, by

(z, w) 7−→ (a11z + a12w + a13

a31z + a32w + a33
,
a21z + a22w + a23

a31z + a32w + a33
).

This action is transitive and the stabilizer of the origin is isomorphic to
U(2)×U(1). It follows that the fundamental group of U(2, 1) is isomorphic
to Z⊕ Z.

In the following, we will construct the universal covering group G of
U(2, 1). Let’s define
G := {(A, θ1, θ2) ∈ U(2, 1) × R × R | θ1 ≡ arg(det(A)) mod 2π, θ2 ≡
arg(a33) mod 2π}.
Since A ∈ U(2, 1), we find that |a31|2 + |a32|2 − |a33|2 = −1. Therefore

a33 6= 0, and the definition makes sense.
Let A = (aij) and B = (bij) be two matrices lying in U(2, 1). The

multiplication on G is defined by

(A, θ1, θ2)(B,φ1, φ2) = (AB, θ1 + φ1, θ2 + φ2 + arg(1 + a31b13 + a32b23

a33b33
)).

Here, arg is the principal argument which takes value in (−π, π].
Note that |a31b13+a32b23|2 6 (|a31|2+|a32|2)(|b13|2+|b23|2) < |a33|2|b33|2.

So we get:
|a31b13 + a32b23

a33b33
| < 1.

It follows that in our formula arg(1 + a31b13+a32b23
a33b33

) ∈ (−π2 ,
π
2 ).

Using the same argument as in [10], we see that the multiplication is
well-defined and that G is indeed a covering group of U(2, 1). To check
that G is simply connected, we consider its action on the open unit ball
in C2 through the action of the first component A ∈ U(2, 1). It is not
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778 Khoi The VU

hard to see that the action is transitive and the stabilizer of the origin is
homeomorphic to SU(2) ×R ×R. This implies that, homotopically, G is
the same as SU(2) therefore it is simply connected. We will also identify
the Lie algebra of G with u(2, 1)− the Lie algebra of U(2, 1).
Elements of U(2, 1) can be divided into 3 types according to their action

on the complex hyperbolic space H2
C (see [5]). Namely, a matrix is called

elliptic if it has a fixed point in H2
C. It is called parabolic if it has a unique

fixed point in H2
C and this lies on ∂H2

C. And finally, a matrix is called
loxodromic if it has exactly two fixed points in H2

C which lie on ∂H2
C. We

will call an element of the universal covering group G elliptic, parabolic
or loxodromic if its image under the projection map G→ U(2, 1) is of the
corresponding type.
Let M be a smooth, compact, oriented 3-manifold. A contact structure

on M is an oriented 2-plane field V = ker α, where α is an 1-form such
that α ∧ dα is nowhere zero. A strictly pseudoconvex CR structure on M

is a contact structure V together with a complex structure J on V. Let
V ⊗C = v ⊕ v̄, where v, v̄ are the i and −i eigenspaces of J respectively.
We call v the holomorphic tangent bundle of the CR manifold M.

A CR structure, which is locally isomorphic to the standard CR structure
on the unit sphere S3 ⊂ C2, is called a spherical CR structure. A spherical
CR structure is determined by a pair (D, ρ), where D : M̃ → S3 is a local
isomorphism and ρ : (M)→ PU(2, 1) is the holonomy representation such
that D ◦ γ = ρ(γ) ◦ D, for all γ ∈ (M). See [8] for more details about
spherical CR structures.
We now briefly recall the definition of the Burns-Epstein invariant. The

reader is referred to [3] for more details. Let (M,V,J) be a CR 3-manifold
with trivial holomorphic tangent bundle and πY : Y → M be its CR
structure bundle. We denote by π the Cartan connection form, that is an
su(2, 1)-valued 1-form on Y. Let Π = dπ + π ∧ π be its curvature form.
Consider the following 3-form on Y :

TC2(π) := 1
8π2Tr(π ∧Π + 1

3π ∧ π ∧ π).

The main theorem of Burns-Epstein [3] says that there exists a 3-form
T̃C2(π) on M, which is defined up to an exact form, such that
π∗Y (T̃C2(π)) = TC2(π). Moreover, the value of the integral

∫
M
T̃C2(π)

is a biholomorphic invariant of the CR structure on M. For a given CR
3-manifold (M,V, J), this value is simply denoted by µ(M) and called the
Burns-Epstein invariant of M.
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ON THE BURNS-EPSTEIN INVARIANTS 779

Since the Burns-Epstein invariant is only defined when the holomorphic
tangent bundle is trivial, for simplicity, we will restrict ourself to the case
of homology spheres so that this condition is automatically fulfilled. With
some modifications, the reader may extend our results here to the relative
version of the Burns-Epstein on a general 3-manifold as defined in [6].

3. The relation between Burns-Epstein invariant and
Chern-Simons invariant

Next, we recall the definition of the Chern-Simons invariant of a flat
connection associated to a representation. The reader is referred to [7] for
general facts about the Chern-Simons invariant. For technical reasons, we
will work with the universal covering group G.

Let ρ : (M) −→ G be a representation of the fundamental group of M.

Consider the flat G-bundle Eρ := M̃ ×ρ G associated to ρ. Let A be the
connection form of the flat connection on Eρ, then the Chern-Simons form
of A is defined by

CS(A) := 1
8π2Tr(A ∧ dA+ 2

3A ∧A ∧A).

As we have shown that homotopically G is the same as SU(2), standard
obstruction theory implies that Eρ is a trivial bundle. The Chern-Simons
invariant of ρ is defined by

cs(ρ) :=
∫
M

s∗(CS(A)) mod Z,

where s is a section of Eρ. It is not hard to see that the Chern-Simons
invariant is well-defined. The reason is that the difference between two
sections is, homologically, a multiple of the fiber. Moreover, the Chern-
Simons form, when restricted to the fiber, is the generator ofH3(G; Z) ∼= Z.
We can also define the Chern-Simons invariant for a representation ρ into

the groups U(2, 1),SU(2, 1) or PU(2, 1) in the same manner as long as the
associated bundle Eρ is trivial. However we will get nothing new, since in
these cases we can lift ρ to a representation ρ̃ into G and cs(ρ) ≡ cs(ρ̃). The
equality of the Chern-Simons invariant of ρ and ρ̃ follows from two facts.
The first one is that the connection form A is induced from the pullback of
the Maurer-Cartan form by the projection map M̃ × G → G. The second
fact is that the Maurer-Cartan forms are preserved under pullback by the
covering maps of Lie groups.
Next, we show that the Burns-Epstein invariant of a spherical CR struc-

ture, modulo an integer, coincides with minus the Chern-Simons invariant
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780 Khoi The VU

of the holonomy representation. So the Burns-Epstein invariant, modulo
an integer, only depends on the holonomy representation.

Proposition 3.1. — Let (M,V, J) be a spherical CR homology sphere
whose holonomy representation is ρ : (M) −→ PU(2, 1) then

µ(M) ≡ −cs(ρ) mod Z.

Proof. — Let D : M̃ −→ S3 be the developing map for the CR structure
on M and D be the induced map on the CR structure bundles. We denote
by YM̃ and YS3 the CR structure bundles over M̃ and S3 respectively.
Consider the commutative diagram below

YM̃ YS3

M̃ S3

-D

?

πM̃

?

πS3

-D

Let A be the Cartan connection form on YS3 . By the naturality of Cartan
connections, we find that D∗(A) is the Cartan connection form on YM̃
which is denoted by π̃. AsM is a homology sphere, the CR structure bundle
over M is trivial. So, there exists an equivariant section s : M̃ −→ YM̃ .

The equivariant 3-form s∗(TC2(D∗(A))) on M̃ will descend to the 3-form
T̃C2(π) on M.

As the curvature Π̃ = dπ̃ + π̃ ∧ π̃ ≡ 0, we deduce that dπ̃ = −π̃ ∧ π̃.
Therefore, we obtain:

TC2(D∗(A)) = 1
8π2Tr(π̃∧ Π̃+ 1

3 π̃∧ π̃∧ π̃) = − 1
8π2Tr(π̃∧dπ̃+ 2

3 π̃∧ π̃∧ π̃).

The reader may have noticed that the form in the last equality above is
nothing but minus the Chern-Simons form associated to π̃. This gives us
the following:

s∗(TC2(D∗(A))) = s∗(−CS(D∗(A))) = −CS((D ◦ s)∗(A)).(3.1)

On the other hand, YS3 can be identified with the Lie group SU(2, 1) (see
[11]). Moreover, the Cartan connection A on YS3 is identified with the
Maurer-Cartan form on SU(2, 1).
Consider the equivariant map D ◦ s : M̃ → YS3 ≡ SU(2, 1). Under the

above identification, it can be regarded as a section of the principal bundle
Eρ = M̃×ρ SU(2, 1) overM. Therefore (D◦s)∗(A) is an equivariant 1-form
on M̃ that descends to the flat connection form on M. For simplicity, we
still use (D ◦ s)∗(A) to denote the flat connection form on M.

ANNALES DE L’INSTITUT FOURIER
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By (3.1) and the above reasoning, we deduce that

µ(M) ≡
∫
M

T̃C2(π) ≡
∫
M

−CS((D ◦ s)∗(A)) ≡ −cs(ρ) mod Z.

�

Remark 3.2. — In the proof of Proposition 3.1 we use the hypothesis
that M is a homology sphere only to get the triviality of the CR structure
bundle. So this proposition is true anytime the CR structure bundle is
trivial.

According to [11], over the standard 3-sphere, the form T̃C2(A) coincides
with − 1

2π2 dV ol, where dV ol is the volume form on the unit 3-sphere. So it
follows from the proof above that

µ(M) ≡
∫
M

s∗(TC2(D∗(A))) ≡
∫
M

(D ◦ s)∗(TC2(A))

≡
∫
M

(D◦s)∗(πS3)∗(− 1
2π2 dV ol) ≡ −

1
2π2

∫
M

D∗(dV ol).

So we deduce that if κ : M̃ → S3 is any equivariant map, regarded as a
section of the associated bundle M̃ ×ρ S3, then

µ(M) ≡ −
∫
M

κ∗( 1
2π2 dV ol) mod Z.

The reason is that two sections D and κ are homologically differed by a
multiple of the fiber S3 and the integral of the form 1

2π2 dV ol over the unit
3-sphere is 1. We get the following corollary:

Corollary 3.3. — LetM be a spherical CR homology sphere. Suppose
that the holonomy representation ρ : (M) −→ PU(2, 1) is reducible then
µ(M) ≡ 0 mod Z.

Proof. — As the holonomy representation ρ is reducible, we can find a
common fixed point ∗ ∈ S3 for all elements in its image. So we can take
the constant map as a section of the associated bundle M̃ ×ρ S3 and the
corollary follows. �

4. Normal forms of flat connections near the boundary
torus

On a manifold with boundary, the integral of the pullback of the Chern-
Simons form may depend on the way we choose the section s. To be able to
define the Chern-Simons invariant on the manifold with boundary we will
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firstly define explicit normal forms of flat connections near the boundary.
We then show that every flat connection can be gauge transformed into
a normal form. This will be done by finding an explicit form, near the
boundary, of the developing map associated to the flat connection.
Let X be a 3-manifold whose boundary ∂X is a torus T. We fix a pair

of meridian and longitude µ, λ on T. Choose a coordinate (e2πix, e2πiy) on
T such that the corresponding map:

R2 −→ T

(x, y) 7−→ (e2πix, e2πiy)

sends the horizontal line to µ and the vertical line λ. Let T × [0, 1] be the
collar neighborhood of T in X. Suppose that {dx, dy, dr} is an oriented
basis of 1-forms on X near T. Here r is the coordinate on [0, 1] such that
T × {1} = ∂X and we orient T by the ”outward normal last" convention.

Let A be a flat connection form on a principal G-bundle over X with the
holonomy ρ. As the bundle is trivial, we could regard A as an u(2, 1)-valued
1-form on X. Recall that the developing map of A is a map DA : X̃ −→ G

such that DA(α ◦ x̃) = ρ(α) ◦DA(x̃) for all α ∈ (X) and x̃ ∈ X̃.
We will follow the scheme in [13] and define the normal form for a flat

connection on X by dividing into several cases according to the type of the
boundary holonomy.
(I) Elliptic: suppose that the boundary holonomies ρ(µ) and ρ(λ) are ellip-
tic. By conjugation we may assume that

ρ(µ) = (A, 2π(α1 +α2 +α3), 2πα3) and ρ(λ) = (B, 2π(β1 +β2 +β3), 2πβ3).

Where αi, βi are real numbers and A,B are respectively the following ma-
trices: e2πiα1 0 0

0 e2πiα2 0
0 0 e2πiα3

 ,

e2πiβ1 0 0
0 e2πiβ2 0
0 0 e2πiβ3

 .

We can see that, near the boundary, the developing map D : R2× [0, 1] −→
G is given by

D(x, y, r) = (M, 2π(α1x+ α2x+ α3x+ β1y + β2y + β3y), 2π(α3x+ β3y)).

Where M is the following matrix:e2πi(α1x+β1y) 0 0
0 e2πi(α2x+β2y) 0
0 0 e2πi(α3x+β3y)

 .
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It follows that near ∂X = T, we can gauge transform the flat connection
A to the form

D−1dD =

2πi(α1dx+ β1dy) 0 0
0 2πi(α2dx+ β2dy) 0
0 0 2πi(α3dx+ β3dy)

 .

(II) Loxodromy: it follows from [5, Lemma 3.2.2] that in this case the
boundary holonomy can be conjugated to the form

ρ(µ) = (A, 2πθ1 + 4πθ2, 2πθ2) and ρ(λ) = (B, 2πτ1 + 4πτ2, 2πτ2).

Where θi, τi, u, v in the formula are real numbers and A,B are respectively
the following matrices:e2πiθ1 0 0

0 e2πiθ2 cosh u e2πiθ2 sinh u
0 e2πiθ2 sinh u e2πiθ2 cosh u

 ,

e2πiτ1 0 0
0 e2πiτ2 cosh v e2πiτ2 sinh v
0 e2πiτ2 sinh v e2πiτ2 cosh v

.
The developing map, near the boundary, is given by

D(x, y, r) = (M, 2π(θ1x+ τ1y) + 4π(θ2x+ τ2y), 2π(θ2x+ τ2y)).

Where M is the matrixe2πi(θ1x+τ1y) 0 0
0 e2πi(θ2x+τ2y) cosh(ux+ vy) e2πi(θ2x+τ2y) sinh(ux+ vy)
0 e2πi(θ2x+τ2y) sinh(ux+ vy) e2πi(θ2x+τ2y) cosh(ux+ vy)

.
So, near the boundary, the connection has the form

D−1dD =

2πi(θ1dx+ τ1dy) 0 0
0 2πi(θ2dx+ τ2dy) udx+ vdy

0 udx+ vdy 2πi(θ2dx+ τ2dy)


(III) Parabolic: according to [5, Thm. 3.4.1], a parabolic element g ∈ U(2, 1)
has a unique decomposition g = pe = ep, where p is unipotent and e is
elliptic. Furthermore, parabolic elements of U(2, 1) can be divided into two
types according to whether the minimal polynomial of the unipotent part
p is (x− 1)3 or (x− 1)2.

If the minimal polynomial of p is (x−1)3 then g can be conjugated to the

form

1− s ā s

−a 1 a

−s ā 1 + s

 e2πiα with <(s) = |a|2
2 . Note that using a further

conjugation by an appropriate diagonal matrix, we may assume that a is
real.

TOME 61 (2011), FASCICULE 2
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In case g has the unipotent part p with the minimal polynomial (x−1)2,

it can be conjugated to the following form:e2πiθ1(1− ip) 0 ipe2πiθ1

0 e2πiθ2 0
−ipe2πiθ1 0 e2πiθ1(1 + ip)

 .

So we consider two cases.
Case 1: by conjugation, we may assume that

ρ(µ) = (A, 6πα, arctan( p

1 + a2/2) + 2πα),

where A =

1− a2

2 − ip a a2

2 + ip

−a 1 a

−a
2

2 − ip a 1 + a2

2 + ip

 e2πiα.

As ρ(λ) is of the same type and commutes with ρ(µ), it is not hard to check
that ρ(λ) must have the following form:

ρ(λ) = (B, 6πβ, arctan( q

1 + b2/2) + 2πβ).

Here the matrix B has a similar form:

B =

1− b2

2 − iq b b2

2 + iq

−b 1 b

− b
2

2 − iq b 1 + b2

2 + iq

 e2πiβ .

Note that all the parameters a, b, p, q, α, β are real numbers.
We then can choose the developing map to be

D(x, y, r) = (M, 6π(αx+ βy), arctan( px+ qy

1 + (ax+ by)2/2) + 2π(αx+ βy)),

where M =



1− (ax+by)2

2 − (ax+ by) (ax+by)2

2 +
i(px+ qy) i(px+ qy)

−(ax+ by) 1 (ax+ by)

− (ax+by)2

2 (ax+ by) 1 + (ax+by)2

2 +
−i(px+ qy) i(px+ qy)


e2πi(αx+βy).
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By straightforward computations, we deduce that, near the boundary, the
connection form D−1dD is the following:

−i(pdx+ qdy) (adx+ bdy) i(pdx+ qdy)
2πi(αdx+ βdy)

−(adx+ bdy) 2πi(αdx+ βdy) (adx+ bdy)

−i(pdx+ qdy) (adx+ bdy) i(pdx+ qdy)+
2πi(αdx+ βdy)


.

Case 2: after conjugation, we may assume that

ρ(µ) = (A, 4πθ1 + 2πθ2, 2πθ1 + arctan(p))

and ρ(λ) = (B, 4πτ1 + 2πτ2, 2πτ1 + arctan(q)).

Where the parameters θi, τi, p, q are real numbers and

A =

e2πiθ1(1− ip) 0 ipe2πiθ1

0 e2πiθ2 0
−ipe2πiθ1 0 e2πiθ1(1 + ip)

 ,

B =

e2πiτ1(1− iq) 0 iqe2πiτ1

0 e2πiτ2 0
−iqe2πiτ1 0 e2πiτ1(1 + iq)

 .

So the developing map is of the form

D(x, y, r)
= (M, 4π(θ1x+ τ1y) + 2π(θ2x+ τ2y), 2π(θ1x+ τ1y) + arctan(px+ qy)).

Where M is the following matrix:

e2πi(θ1x+τ1y)− 0 i(px+ qy)e2πi(θ1x+τ1y)

i(px+ qy)e2πi(θ1x+τ1y)

0 e2πi(θ2x+τ2y) 0

−i(px+ qy)e2πi(θ1x+τ1y) 0 e2πi(θ1x+τ1y)+
i(px+ qy)e2πi(θ1x+τ1y)


.
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After some lengthy computations, we find the connection form D−1dD to
be 

2πi(θ1dx+ τ1dy)− 0 i(pdx+ qdy)
i(pdx+ qdy)

0 2πi(θ2dx+ τ2dy) 0

−i(pdx+ qdy) 0 2πi(θ1dx+ τ1dy)+
i(pdx+ qdy)


.

Definition 4.1. — We say that a flat G-connection form on a manifold
with torus boundary X is in normal form if, near the boundary, it has one
of the forms as in the cases (I), (II) and (III) above.

Note that one connection may have different normal forms as we can add
integers to the exponential parameters in the holonomy matrices without
changing the matrices themselves.

For the computation of the Burns-Epstein invariant, we need to bring
connections to the normal forms. The following proposition shows that we
can always do so.

Proposition 4.2. — a) Let A be a flat connection form on X. Then
there exists a gauge transformation that brings A into a normal form.
b) Let At be a path of flat connection 1-forms on X. Then there exists a
path of gauge transformations gt such that gt · At is in normal form for
all t.

Proof. — We have shown above that, near the torus boundary, we can
always gauge transform the flat connection into a normal form. By using
standard obstruction theory argument as in [16, Prop. 2.3], we can extend
the gauge transformation to all of X and therefore prove the proposition.

�

The next lemma tells us that the integral of the Chern-Simons form
of a normal form flat connection on a manifold with boundary is gauge
invariant.

Lemma 4.3. — Let A and B be two normal form flat connections on a
manifold with torus boundary X. Suppose that:

• A and B are gauge equivalent.
• A and B are in normal form and equal near the boundary.

Then we get the equality
∫
X
CS(A) ≡

∫
X
CS(B) mod Z.
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Proof. — The proof is similar to the one of [16, Thm. 2.4], so we will
leave it to the reader as an exercise. �

By Lemma 4.3, we may define the Chern-Simons invariant of a normal
form flat connection A as follows:

cs(A) :=
∫
X

CS(A) mod Z.

5. Variations of the Chern-Simons invariant

In this section, we will prove the main technical tool for computing the
Chern-Simons invariant. Our result is a formula that expresses the change
of the Chern-Simons invariant of a path of normal form flat connections in
terms of the boundary holonomy.

Theorem 5.1. — Let At be a path of normal form flat connections
on a manifold with torus boundary X. Suppose that ρt : (X) −→ G is
the corresponding path of holonomy representations. In the following, we
consider several cases.
(I) Elliptic: let ρt(µ) and ρt(λ) be elliptic elements. Suppose that, near the
boundary, At has the form2πi(α1(t)dx+ β1(t)dy) 0 0

0 2πi(α2(t)dx+ β2(t)dy) 0
0 0 2πi(α3(t)dx+ β3(t)dy)

.
Then

cs(A1)− cs(A0) ≡ 1
2

∫ 1

0
[(α1β̇1− α̇1β1)+(α2β̇2− α̇2β2)+(α3β̇3− α̇3β3)]dt.

(II) Loxodromy: let ρt(µ) and ρt(λ) be loxodromy elements. Suppose that,
near the boundary, At has the form2πi(θ1(t)dx+ τ1(t)dy) 0 0

0 2πi(θ2(t)dx+ τ2(t)dy) u(t)dx+ v(t)dy
0 u(t)dx+ v(t)dy 2πi(θ2(t)dx+ τ2(t)dy)

 .

Then

cs(A1)− cs(A0) ≡ 1
2

∫ 1

0
(θ1τ̇1 − θ̇1τ1)dt

+
∫ 1

0
(θ2τ̇2 − θ̇2τ2)dt+ 1

4π2

∫ 1

0
(u̇v − uv̇)dt.

(III) Parabolic:
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Case 1: let ρt(µ) and ρt(λ) be parabolic elements whose unipotent parts
have minimal polynomial (x − 1)3. Suppose that, near the boundary, At
has the form

−i(p(t)dx+ q(t)dy)+ a(t)dx+ b(t)dy i(p(t)dx+ q(t)dy)
2πi(α(t)dx+ β(t)dy)

−(a(t)dx+ b(t)dy) 2πi(α(t)dx+ β(t)dy) a(t)dx+ b(t)dy

−i(p(t)dx+ q(t)dy) a(t)dx+ b(t)dy i(p(t)dx+ q(t)dy)+
2πi(α(t)dx+ β(t)dy)


.

Then
cs(A1)− cs(A0) ≡ 3

2

∫ 1

0
(αβ̇ − α̇β)dt.

Case 2: let ρt(µ) and ρt(λ) be parabolic elements whose unipotent parts
have minimal polynomial (x − 1)2. Suppose that, near the boundary, At
has the form

2πi(θ1(t)dx+ τ1(t)dy)− 0 i(p(t)dx+ q(t)dy)
i(p(t)dx+ q(t)dy)

0 2πiθ2(t)dx+ 0
2πiτ2(t)dy

−i(p(t)dx+ q(t)dy) 0 2πi(θ1(t)dx+ τ1(t)dy)+
i(p(t)dx+ q(t)dy)


.

Then

cs(A1)− cs(A0) ≡
∫ 1

0
(θ1τ̇1 − θ̇1τ1)dt+ 1

2

∫ 1

0
(θ2τ̇2 − θ̇2τ2)dt.

Proof. — Consider the path At as a connection form on X × [0, 1], then
it is a flat connection, that is FAt ∧ FAt ≡ 0. by Stokes’ Theorem∫
X

CS(A1)−
∫
X

CS(A0)−
∫
∂X×[0,1]

CS(At) =
∫
X×[0,1]

tr(FAt ∧FAt) = 0.

So

cs(A1)− cs(A0) ≡
∫
∂X×[0,1]

1
8π2 tr(At ∧ dAt + 2

3At ∧At ∧At).

We now use this formula and the normal form of the connections to compute
the changes of Chern-Simons invariant in each case.
(I) Elliptic: in this case tr(At∧dAt+ 2

3At∧At∧At) = 4π2[(α1β̇1− α̇1β1)+
(α2β̇2 − α̇2β2) + (α3β̇3 − α̇3β3)]dx ∧ dy ∧ dt. So the result follows.
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(II) Loxodromy: after some computation, we find that
tr(At ∧ dAt + 2

3At ∧At ∧At) = 4π2(θ1τ̇1 − θ̇1τ1)dx ∧ dy ∧ dt+
8π2(θ2τ̇2 − θ̇2τ2)dx ∧ dy ∧ dt+ 2(u̇v − uv̇)dx ∧ dy ∧ dt.
So we deduce the required formula.

(III) Parabolic:
Case 1: straightforward computations show that

tr(At ∧ dAt + 2
3At ∧At ∧At) = 12π2(αβ̇ − α̇β)dx ∧ dy ∧ dt.

So the change in the Chern-Simons invariant is given by the stated formula.
Case 2: in this case, we find that
tr(At ∧ dAt + 2

3At ∧At ∧At) = 8π2(θ1τ̇1 − θ̇1τ1)dx ∧ dy ∧ dt+
4π2(θ2τ̇2 − θ̇2τ2)dx ∧ dy ∧ dt.
So the formula follows. �

In the last part of this section, we will study the difference between
the Chern-Simons invariant of two different normal form connections in
the elliptic case. This result will be used in the computation of the next
section. Our result is similar to Theorem 2.5 of [16].

Consider a manifold with torus boundary X. Let A be a normal form
flat connection that has the following form near the boundary ∂X:2πi(α1dx+ β1dy) 0 0

0 2πi(α2dx+ β2dy) 0
0 0 2πi(α3dx+ β3dy)

 .

We define h : S1 → G by h(e2πiθ) = (diag(e2πiθ, e−2πiθ, 1), 0, 0). It is not
hard to see that h is a nullhomotopic map into G. So we may find a path
ht : S1 → G, 0 6 t 6 1, such that:

• ht is constant when t is near 0 or t is near 1.
• h0 ≡ 1 ∈ G and h1 = h.

Next we use the map ht above to define two gauge transformations on
X as follows. Recall that we denote by T × [0, 1], with the coordinate
(e2πix, e2πiy, r), a collar neighborhood of ∂X in X such that T ×{1} = ∂X.

Let gx, gy : T × [0, 1]→ G be maps that are defined by

gx(e2πix, e2πiy, r) = hr(e2πix) and gy(e2πix, e2πiy, r) = hr(e2πiy).

Note that we can extend gx and gy to be identical to 1 ∈ G outside the
collar neighborhood.
It is not hard to check that gx ·A and gy ·A are also in normal form. In

fact, near ∂X, we have
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gx ·A =



2πi(α1 + 1)dx+ 0 0
2πiβ1dy

0 2πi(α2 − 1)dx+ 0
2πiβ2dy

0 0 2πi(α3dx+ β3dy)


and

gy ·A =



2πiα1dx+ 0 0
2πi(β1 + 1)dy

0 2πiα2dx+ 0
2πi(β2 − 1)dy

0 0 2πi(α3dx+ β3dy)


.

We now state the following theorem:

Theorem 5.2. — Let A and B be two gauge equivalent normal form
flat connections on X. Suppose that

A =

2πi(α1dx+ β1dy) 0 0
0 2πi(α2dx+ β2dy) 0
0 0 2πi(α3dx+ β3dy)

 and

B =



2πi(α1 +m)dx+ 0 0
2πi(β1 + n)dy

0 2πi(α2 −m)dx+ 0
2πi(β2 − n)dy

0 0 2πi(α3dx+ β3dy)


near the boundary ∂X, for some integers m and n. Then

cs(B)− cs(A) ≡ m(β1 − β2)/2− n(α1 − α2)/2 mod Z.

Proof. — By Lemma 4.3, if g is a gauge transformation such that g ·A ≡
B near ∂X then cs(g ·A) ≡ cs(B) mod Z. Therefore, it is enough to prove
that cs(gx · A) − cs(A) ≡ (β1 − β2)/2 mod Z and cs(gy · A) − cs(A) ≡
(α2 − α1)/2 mod Z.

By Proposition 1.27(e) of [9], the difference between two Chern-Simons
forms CS(gx ·A)− CS(A) is equal to

1
8π2 d(Tr(g−1

x Agx ∧ g−1
x dgx))− 1

24π2Tr(g
−1
x dgx ∧ g−1

x dgx ∧ g−1
x dgx).

ANNALES DE L’INSTITUT FOURIER



ON THE BURNS-EPSTEIN INVARIANTS 791

It follows from the definition of gx that ∂gx

∂y = 0. So the last term in this
formula vanishes. By direct computation, we deduce that
cs(gx ·A)− cs(A) ≡ 1

8π2

∫
T
Tr(g−1

x Agx ∧ g−1
x dgx) = 1

2
∫
T

(β1 − β2)dxdy
≡ (β1 − β2)/2.

By using a similar argument, we can show that the formula for gy also
holds. Thus the theorem follows. �

6. Applications

In this section, we will apply our main theorem to find the Chern-Simons
invariant of representations of a Seifert fibered homology sphere. We also
give an explicit example where we find all the Chern-Simons invariants of
the manifold and deduce result about the Burns-Epstein invariant.

Let Σ = Σ(a1, . . . , an) be a Seifert fibered homology sphere, where ai > 1
are pairwise relatively prime integers. We put a := a1 · · · an. We denote by
R∗(Σ) the space of irreducible representations from (Σ) to G.
The fundamental group of Σ is given by

(Σ) = {x1, . . . , xn, h |h is central, xa1
1 hb1 = · · · = xan

n hbn = x1 · · ·xn = 1}.

Here the numbers bi are chosen so that
∑n

1
bi

ai
= 1

a .

Let ρ be an element of R∗(Σ). Since h is in the center of (Σ), ρ(h) is in
the center of G. As xai

i h
bi = 1, we deduce that ρ(xi) is an elliptic element

for all i. Suppose that the representation ρ is given by

ρ(h) = (diag(e2πip0 , e2πiq0 , e2πir0), 2π(p0 + q0 + r0), 2πr0) and

ρ(xi) ∼ (diag(e2πipi , e2πiqi , e2πiri), 2π(pi + qi + ri), 2πri).
Here we use the notation ∼ to denote the conjugacy relation in G.

As ρ(h) is central, we have p0 ≡ q0 ≡ r0 mod Z. Since ρ must preserve
the relation xai

i h
bi = 1, i = 1, . . . , n, we deduce that

si := aipi + bip0 = −(aiqi + biq0) are integers for all i = 1, . . . , n.(6.1)

airi + bir0 = 0 for all i = 1, . . . , n.(6.2)

Theorem 6.1. — The Chern-Simons invariant of ρ is given by

cs(ρ) ≡ 1
2a
(

(
n∑
i=1

pi)2 + (
n∑
i=1

qi)2 + (
n∑
i=1

ri)2

)
.
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Proof. — We write Σ = X ∪ (−S), where X is the complement of the
nth exceptional fiber and S is the solid torus neighborhood of the nth

exceptional fiber. Next, we then find paths of representations on X and S
that connect ρ to the trivial representation. We then apply Theorem 5.1 to
compute the Chern-Simons invariant on each X and S.
Step 1. Computation on X.
We know that (X) is obtained from (Σ) by eliminating the relation

xan
n hbn . Moreover, X has a natural meridian µ = xan

n hbn and longitude
λ = x

−a1···an−1
n hc, where c = a1 · · · an−1

∑n−1
1

bi

ai
.

After conjugation, we may assume that

ρ(xn) = (diag(e2πipn , e2πiqn , e2πirn), 2π(pn + qn + rn), 2πrn).

Since each conjugacy class in G is connected, we can deform ρ|X(xi), within
its conjugacy class, to the diagonal form for all i = 1, . . . , n−1. This means
that we can find a path of representations ρt : (X) −→ G, 0 6 t 6 1, such
that ρ0 = ρ|X , ρt(h) = ρ(h) for all t and

ρ1(xi) = (diag(e2πipi , e2πiqi , e2πiri), 2π(pi + qi + ri), 2πri), i = 1, . . . , n− 1.

For this path of representations we find that

ρt(xn) = (diag(e2πip(t), e2πiq(t), e2πir(t)), 2π(p(t) + q(t) + r(t)), 2πr(t)).

Where p(t), q(t), r(t) are functions with the following properties:
• p(0) = pn, q(0) = qn, r(0) = rn.

• p(1) = −
∑n−1

1 pi, q(1) = −
∑n−1

1 qi, r(1) = −
∑n−1

1 ri.

Therefore, we get

ρt(µ) = (M(t), 2πan(p(t) + q(t) + r(t)) + 2πbn(p0 + q0 + r0), 2πanr(t) + 2πbnr0),

where M(t) = diag(e2πi(anp(t)+bnp0), e2πi(anq(t)+bnq0), e2πi(anr(t)+bnr0)).
And ρt(λ) = (N(t),−2πa1 · · · an−1(p(t) + q(t) + r(t)) + 2πc(p0 + q0 + r0),

−2πa1 · · · an−1r(t) + 2πcr0), where

N(t) = diag(e2πi(−a1···an−1p(t)+cp0), e2πi(−a1···an−1q(t)+cq0), e2πi(−a1···an−1r(t)+cr0)).

So, by Proposition 4.2, we can find a path of normal form u(2, 1)−valued
flat connections on X that is given near ∂X by

At = diag(2πi((anp(t)+bnp0)dx+(−a1 · · · an−1p(t)+cp0)dy), 2πi((anq(t)+
bnq0)dx+ (−a1 · · · an−1q(t) + cq0)dy), 2πi((anr(t) + bnr0)dx+

(−a1 · · · an−1r(t) + cr0)dy)).
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We now use Theorem 5.1 to compute the difference of Chern-Simons in-
variants:

cs(A1)− cs(A0) ≡ −1
2

∫ 1

0
(anc+ a1 · · · an−1bn)(p0ṗ(t) + q0q̇(t)) + r0ṙ(t))dt

= −1
2(anc+ a1 · · · an−1bn)(p0p(t) + q0q(t) + r0r(t))|10.

So we arrive at the following:

cs(A0) ≡ cs(A1)− 1
2(p0

n∑
i=1

pi + q0

n∑
i=1

qi + r0

n∑
i=1

ri)(6.3)

Now, by using (6.1) and (6.2), we can write

A1 = diag(2πi(−an
n−1∑
i=1

pi + bnp0)dx+ 2πi(a1 · · · an−1

n−1∑
i=1

si
ai

)dy, 2πi(−an
n−1∑
i=1

qi

+ bnq0)dx− 2πi(a1 · · · an−1

n−1∑
i=1

si
ai

)dy, 2πi(an
n−1∑
i=1

ri + bnr0)dx).

Let A′1 be a normal form flat connection on X which is gauge equiva-
lent to A1. Moreover, we assume that A′1 has the following form near the
boundary ∂X :

A′1 = diag(2πi(−an
∑n−1
i=1 pi + bnp0)dx, 2πi(−an

∑n−1
i=1 qi + bnq0)dx,

2πi(−an
∑n−1
i=1 ri + bnr0)dx).

Since a1 · · · an−1
∑n−1
i=1

si

ai
is an integer, by using Theorem 5.2, we find

that

cs(A1) ≡ cs(A′1)− 1
2(a1 · · · an−1

n−1∑
i=1

si
ai

)(−an
n−1∑
i=1

pi+(6.4)

bnp0 + an

n−1∑
i=1

qi − bnq0).

As the holonomy representation ρ′1 of the connection A′1 is abelian, it
factors through the projection map (X) → H1(X) ≡ Z. We find that
ρ′1(λ) equals to 1 and ρ′1(µ) equals to

(diag(e2πi(−an

∑n−1
i=1

pi+bnp0), e2πi(−an

∑n−1
i=1

qi+bnq0), e2πi(−an

∑n−1
i=1

ri+bnr0)),

−2πan
n−1∑
i=1

(pi + qi + ri) + 2πbn(p0 + q0 + r0),−2πan
n−1∑
i=1

ri + bnr0).

So we can deform ρ′1 to the trivial representation. We now get a path of
flat connections A′t linking A′1 to the trivial connection whose Chern-Simons

TOME 61 (2011), FASCICULE 2



794 Khoi The VU

invariant is obviously zero. Applying Theorem 5.1 to the path

A′t = diag(2tπi(−an
n−1∑
i=1

pi + bnp0)dx, 2tπi(−an
n−1∑
i=1

qi + bnq0)dx,

2tπi(−an
∑n−1
i=1 ri + bnr0)dx), 0 6 t 6 1,

we find that cs(A′1) ≡ 0. Now combining this with (6.3) and (6.4), we get

cs(A0) ≡ −1
2a(

n−1∑
i=1

si
ai

)(−
n−1∑
i=1

pi + bn
an
p0 +

n−1∑
i=1

qi −
bn
an
q0)−

1
2 (p0

∑n
i=1 pi + q0

∑n
i=1 qi + r0

∑n
i=1 ri).

Using (6.1), we can rewrite this identity as follows:

cs(A0) ≡ −1
2a(

n−1∑
i=1

si
ai

)(−
n∑
i=1

pi +
n∑
i=1

qi + 2 sn
an

)−(6.5)

1
2 (p0

∑n
i=1 pi + q0

∑n
i=1 qi + r0

∑n
i=1 ri).

Step 2. Computation on the solid torus.
We denote the connection form corresponding to ρ|S by B0. Near the

boundary ∂X, B0 coincides with A0 and is given by

B0 = diag(2πi((anpn + bnp0)dx+ (−a1 · · · an−1pn + cp0)dy)), 2πi((anqn+

bnq0)dx+ (−a1 · · · an−1qn + cq0)dy)), 2πi(−a1 · · · an−1rn + cr0)dy).
Let B1 be a normal form flat connection on S which is gauge equivalent

to B0. Moreover, we assume that
B1 = diag(2πi(−a1 · · · an−1pn + cp0)dy, 2πi(−a1 · · · an−1qn+
cq0)dy, 2πi(−a1 · · · an−1rn + cr0)dy) near the boundary ∂X.
By (6.1), the numbers anpn + bnp0 = sn and anqn + bnq0 = −sn are

integers. So by applying Theorem 5.2, we find that

cs(B0) ≡ cs(B1) + 1
2sn(−a1 · · · an−1pn + cp0 + a1 · · · an−1qn − cq0).

Note that B1 is a connection form that corresponds to an abelian repre-
sentation. Moreover, B1 contains the dy terms only. Carrying out a similar
computation as we did for the connection A′1 in the previous step, we con-
clude that cs(B1) ≡ 0. Therefore we can write

cs(B0) ≡ 1
2a
sn
an

(−pn + p0

n−1∑
i=1

bi
ai

+ qn − q0

n−1∑
i=1

bi
ai

).
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Moreover, from (6.1) we deduce that

p0

n−1∑
i=1

bi
ai

=
n−1∑
i=1

si
ai
−
n−1∑
i=1

pi

and

q0

n−1∑
i=1

bi
ai

= −
n−1∑
i=1

si
ai
−
n−1∑
i=1

qi.

So we arrive at the following:

cs(B0) ≡ 1
2a
sn
an

(−
n∑
i=1

pi +
n∑
i=1

qi + 2
n−1∑
i=1

si
ai

).(6.6)

Now as Σ = X ∪ (−S), we see that cs(ρ) = cs(A0) − cs(B0). Note that
the term a sn

an

∑n−1
i=1

si

ai
, which appears in (6.5) and (6.6), is an integer and

therefore can be ignored. So we obtain the formula

cs(ρ) ≡ 1
2a(

n∑
i=1

pi

n∑
i=1

si
ai
−

n∑
i=1

qi

n∑
i=1

si
ai

)

− 1
2 (p0

∑n
i=1 pi + q0

∑n
i=1 qi + r0

∑n
i=1 ri).

It follows from (6.1) and (6.2) that
n∑
i=1

si
ai

=
n∑
i=1

pi + p0

a
= −

n∑
i=1

qi −
q0

a
and r0 = −a

n∑
i=1

ri.

So, finally, we arrive at the needed formula:

cs(ρ) ≡ 1
2a
(

(
n∑
i=1

pi)2 + (
n∑
i=1

qi)2 + (
n∑
i=1

ri)2

)
.

�

We can use the above theorem to find all the possible values of the Chern-
Simons invariants if we know the representation space R∗(Σ). For a general
manifold, this space is hard to describe in details. Fortunately, for the
case of Seifert fibered homology spheres with three singular fibers, the
representation spaces have been studied in [14]. So we are able to find all
the possible values of the Chern-Simons invariants.
As an illustration, we present an example of the homology sphere

Σ(2, 3, 11). Its fundamental group has the following presentation:
(Σ(2, 3, 11)) = 〈x1, x2, x3, h| h central, x2

1h−1 = x3
2h = x11

3 h2 = x1x2x3 = 1〉.

By the computation in [14], we know that Σ(2, 3, 11) has five distinct irre-
ducible representations into PU(2, 1). For homological reason, each PU(2, 1)
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representation has a unique lift to a representation into the universal cov-
ering group G. By further computations, we obtain the following list of
representations into G.
1) ρ(x1) ∼ (diag(1,−1,−1), 0,−π), ρ(x2) ∼ (diag(1, e4πi/3, e2πi/3), 0, 2π

3 ),
ρ(x3) ∼ (diag(e12πi/11, e6πi/11, e4πi/11), 0, 4π

11 ), ρ(h) ∼ (I, 0,−2π).
2) ρ(x1) ∼ (diag(1,−1,−1), 0, π), ρ(x2) ∼ (diag(e2πi/3, 1, e4πi/3), 0,− 2π

3 )),
ρ(x3) ∼ (diag(e−12πi/11, e−6πi/11, e−4πi/11), 0,− 4π

11 ), ρ(h) ∼ (I, 0, 2π).
3) ρ(x1) ∼ (diag(−1,−1, 1), 0, 2π), ρ(x2) ∼ (diag(1, e4πi/3, e2πi/3), 0,− 4π

3 )),
ρ(x3) ∼ (diag(e−4πi/11, e−10πi/11, e−8πi/11), 0,− 8π

11 ), ρ(h) ∼ (I, 0, 4π).
4) ρ(x1) ∼ (diag(−1,−1, 1), 0,−2π), ρ(x2) ∼ (diag(e2πi/3, 1, e4πi/3), 0, 4π

3 )),
ρ(x3) ∼ (diag(e4πi/11, e10πi/11, e8πi/11), 0, 8π

11 ), ρ(h) ∼ (I, 0,−4π).
5) ρ(x1) ∼ (diag(−1,−1, 1), 0, 0), ρ(x2) ∼ (diag(e2πi/3, e4πi/3, 1), 0, 0),
ρ(x3) ∼ (diag(e−2πi/11, e2πi/11, 1), 0, 0), ρ(h) ∼ (I, 0, 0).
Using Theorem 6.1, we can find the Chern-Simons invariant of these

representations and list them below:
Representation 1 2 3 4 5
cs(ρ) mod Z 13

66
13
66

7
66

7
66

25
66

Therefore, we can deduce that the Burns-Epstein invariant, modulo an
integer, of any spherical CR structure on Σ(2, 3, 11) with irreducible holo-
nomy representation is one of the values above.

Remark 6.2. — Little is known about the problem of classification of
spherical CR structures on 3-manifolds. On Seifert fibered manifolds, the
only work done so far is the classification of the S1-invariant CR structures
by Kamishima and Tsuboi [12]. We do not know any example of a spherical
CR structure on Σ(2, 3, 11) whose holonomy is one of the representations
listed above.
Recently, Biquard and Herzlich [2] introduce an invariant ν for strictly

pseudoconvex 3-dimensional CR manifolds. They show that their invari-
ant agrees with three times the Burns-Epstein invariant up to a constant.
Furthermore, by relating the ν invariant to a kind of eta invariant, Bi-
quard, Herzlich and Rumin [1] are able to give an explicit formula for the
ν invariant of the transverse S1-invariant CR structure on a Seifert fibered
manifold. It would be interesting to work out the relationship between the
ν invariant, modulo an integer, and the metric Chern-Simons invariant.
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