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EXCEPTIONAL SINGULAR Q-HOMOLOGY PLANES

by Karol PALKA (*)

Dedicated to the memory of my colleague and friend, Marcin Hauzer

Abstract. — We consider singular Q-acyclic surfaces with smooth locus of
non-general type. We prove that if the singularities are topologically rational then
the smooth locus is C1- or C∗-ruled or the surface is up to isomorphism one of two
exceptional surfaces of Kodaira dimension zero. For both exceptional surfaces the
Kodaira dimension of the smooth locus is zero and the singular locus consists of a
unique point of type A1 and A2 respectively.
Résumé. — On considère des surfaces Q-acycliques singulières dont la partie

lisse n’est pas de type général. On démontre que si les singularités sont topolo-
giquement rationnelles, alors soit la partie lisse est réglée par C1 ou C∗, soit la
surface est l’une de deux surfaces exceptionnelles de dimension de Kodaira zéro.
Pour les deux surfaces exceptionnelles, la dimension de Kodaira de la partie lisse
est zéro, il n’y a qu’un seul point singulier et la singularité est de type A1 ou A2,
respectivement.

We consider complex algebraic varieties.

1. Main result

Because of their homological similarity to C2 smooth Q-acyclic surfaces
serve as a class of test examples for working hypotheses as well for con-
jectures like cancellation problem or the Jacobian Conjecture, they appear
naturally also when studying exotic structures on Cn’s (see [15, §3.4] for
what is known about them).

Definition 1.1. — A surface is a Q-homology plane if it is normal and
Q-acyclic, i.e. H∗(−,Q) ∼= Q.

Keywords: Acyclic surface, homology plane, exceptional Q-homology plane.
Math. classification: 14R05, 14J17, 14J26.
(*) The author was supported by Polish Grant MNiSzW (N N201 2653 33).
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A singular Q-homology plane is logarithmic if and only if it has at most
quotient singularities, i.e. analytically it is locally of type C2/G for some
finite subgroup G < GL(2,C). Note that logarithmic Q-homology planes
are rational by [7, 21]. Singular Q-homology planes appear for example
as quotients of smooth ones by the actions of finite groups or as two-
dimensional quotients of Cn by the actions of reductive groups (cf. [13],
[5]). Let S′ be a Q-homology plane and let S0 be its smooth locus (S′ = S0
if S′ is smooth). Assume that S0 is not of general type, i.e. its Kodaira
dimension κ(S0) is smaller than two. The description of these surfaces
divides into three main cases depending on the properties of S0: (a) S0 is
C1-ruled, (b) S0 is C∗-ruled, (c) S0 is neither C1- nor C∗-ruled.
Definition 1.2. — A Q-homology plane whose smooth locus is not of

general type and is neither C1- nor C∗-ruled is exceptional.
For non-exceptional Q-homology planes the analysis reduces to the de-

scription of singular fibers of respective rulings using the Q-acyclicity.
Case (a) and part of case (b) (when S′ is logarithmic and the C∗-ruling
of S0 extends to a C∗-ruling of S′) have been done in [16]. The precise
classification and the rest of part (b) will be done in our forthcoming pa-
per. By general structure theorems for open surfaces an exceptional Q-
homology plane necessarily has κ(S0) = 0 (cf. [15, 2.1.1], [10, 2.3]). Up
to isomorphism there exist exactly three smooth exceptional Q-homology
planes called Y {3, 3, 3}, Y {2, 4, 4} and Y {2, 3, 6} (cf. [4, §8]). The classi-
fication of non-smooth exceptional Q-homology planes is the main goal of
this paper. We will do this under some mild assumption on singularities.
Definition 1.3. — A singular point on a normal surface is a topolog-

ically rational singularity if and only if there exists a resolution of this
surface with a rational tree as an exceptional divisor.
Notice that the singularity is topologically rational if and only if it is

quasirational (cf. [1]) and the dual graph of the respective exceptional locus
contains no loops. The class of topologically rational singularities includes
the class of rational singularities and is much broader than the class of the
quotient ones. Our main result is:
Theorem 1.4. — Up to isomorphism there are exactly two exceptional

singular Q-homology planes with at most topologically rational singulari-
ties. Both have Kodaira dimension zero and have unique singular points of
type A1 and A2 respectively.

One of the above surfaces comes from the famous dual Hesse configu-
ration (123, 94) of points and lines on P2 (not realizable in RP2) and the
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EXCEPTIONAL Q-HOMOLOGY PLANES 747

second one from a configuration which contains one line more than the
complete quadrangle (43, 62) (see 5.5 and 5.8). We want to emphasize that
having some topological results about general singular Q-homology planes
(which we obtain in a forthcoming paper) one can easily show that in the
above situation the assumption about topological rationality can be omit-
ted with no change for the thesis. However, it is not true that all singular
Q-homology planes have topologically rational singularities.
As for now there is no description of Q-homology planes with smooth

locus of general type. There are some partial results (see [22], [23, 24], [17],
[6], [13]).
The outline of the proof of the theorem is as follows. First with the help of

Bogomolov-Miyaoka-Yau inequality we show in section 3 that each smooth
rational curve contained in the snc-minimal smooth completion of S0 has at
least two common points with some connected component of the boundary
(i.e. it is not simple), which in particular shows that S0 is minimal in the
open sense (see [15, 2.3.11]). Let us write the boundary divisor as D + Ê,
where Ê is the reduced exceptional divisor of the resolution of S′. Using the
fact that κ(S0) = 0 and that the intersection matrix of D is not negative
definite we get some restrictions on the shape of D following from [4, 8.8].
In fact for smooth exceptional surfaces this would be enough to get the
description of them. However, in the singular case we need to obtain more
restrictions on D because we do not have much control over Ê. We do this
in section 4. In remaining ten cases we are able to find 0-curves inside D,
which give P1-rulings of the completion having nice properties. We analyze
singular fibers and sections of these rulings and we eliminate all but two
cases. Having enough information on the latter two rulings in section 5
we are able to construct two exceptional singular Q-homology planes and
prove their uniqueness. We compute their automorphism groups, the orders
of the first homology groups and show that they came from special line
arrangements on P2.

Having the theorem 1.4 one can infer that both singular exceptional
Q-homology planes can be described as quotients of the smooth excep-
tional ones, namely they are isomorphic to Y {3, 3, 3}/AutY {3, 3, 3} and
Y {2, 4, 4}/AutY {2, 4, 4} respectively, see [20] for details.

2. Preliminaries

For convenience we recall some facts from the theory of open algebraic
surfaces that we use more often, partially to fix the notation. The reader
is referred to [15] for details.

TOME 61 (2011), FASCICULE 2



748 Karol PALKA

2.1. Divisors

Let D =
∑n
i=1 miDi with Di distinct, irreducible and mi ∈ Q \ {0} be a

simple normal crossing (snc-) divisor on a smooth complete surface. Put

d(D) = det(−Q(D)),

where Q(D) is the intersection matrix of D, i.e. Q(D)i,j = mimjDi · Dj .
We define the reduction of D as D =

∑
Di and denote the number of

components of D by #D. By a component we always mean an irreducible
component. The numerical equivalence of divisors is denoted by ≡. We
write D > 0 for effective divisors and for Z-divisors linearly equivalent to
effective divisors. Two Q-divisors A,B are linearly equivalent if rA and rB
are linearly equivalent Z-divisors for some nonzero integer r. For a Q-divisor
D linearly equivalent to some effective Q-divisor we write D >Q 0.
The dual graph of D is a weighted one-dimensional simplicial complex

with one vertex vi of weight D2
i for each irreducible component Di of D

and one edge between vi and vj for each point of intersection of Di with
Dj . We say that D is a forest (tree) if SuppD is simply connected (and
connected). It is rational if all its components are rational. D is a chain if
it is connected and each component Di of D is non-branching, i.e. it has
the branching number βD(Di) = Di · (D − Di) not greater than two. A
tip is a component with βD 6 1. A chain D is admissible if it is rational
and D2

i 6 −2 for every i. A curve L is a (b)-curve if and only if L ∼= P1

and L2 = b. We say that D is a fork if it is a tree with a unique branching
component B and βD(B) = 3. Suppose R is a rational chain with some tip
R1 chosen. We write

R = [−R2
1,−R2

2, . . . ,−R2
r ],

where Ri’s are components of R ordered in such a way that Ri · Ri+1 = 1
for i = 1, . . . , r − 1 and we define d′(R) = d(R − R1) with d(0) := 1. Rt is
the same chain as R but considered with a reversed order. If R is a (−2)-
chain, i.e. R = [2, 2, . . . , 2], then we write R = [(r)], where r = #R. If R is
admissible we define

δ(R) = 1
d(R) , e(R) = d′(R)

d(R) , ẽ(R) = e(Rt).

If D is not a chain we define its maximal twigs as the rational chains of
maximal length with support contained in SuppD, which do not contain
branching components of D and contain a tip of D. Each twig is considered
with a natural linear order on the set of components for which its tip is
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the first component. If D is not an admissible chain we define its maximal
admissible twigs, say T1, . . . , Ts, analogously and put

δ(D) =
s∑
i=1

δ(Ti), e(D) =
s∑
i=1

e(Ti), ẽ(D) =
s∑
i=1

ẽ(Ti).

Smooth pair (X,D) consists of a smooth complete (hence projective by
the result of Zariski) surface and a reduced snc-divisor on it. In this case
we write X − D for X \ SuppD. The divisor D is snc-minimal if after a
contraction of any (−1)-curve in D the direct image of D is not an snc-
divisor. A smooth pair (X,D) is snc-minimal if D is snc-minimal. The pair
(X,D) is a smooth completion of an open surface U if X −D = U .
If π : X ′ → X is a birational morphism then we write π−1(D) for the

preimage of D, which we define as π∗D, the reduced total transform of
D. A blowup with a center on an snc-divisor D is subdivisional for D
if the center belongs to two components of D, otherwise it is sprouting
for D. The sequence of blowups over D (i.e. with centers on D and on
its successive preimages) is subdivisional if all blowups are subdivisional
for the respective preimages of D. The composable sequence of blowups is
connected if the exceptional divisor of the composition contains a unique
(−1)-curve.

2.2. Rulings

We say that a surface X is P1-ruled (respectively C1-ruled, C∗-ruled,
C(n∗)-ruled) if there exists a curve B and a surjective morphism p : X → B

with a general fiber isomorphic to P1 (respectively to C1, C1 with one, C1

with n points deleted). We call also the C1-ruling an affine ruling. Clearly,
if X is normal then B can be assumed to be smooth.

Suppose that X is smooth and has a ruling as above. Then for some
smooth completion (X,D) this ruling can be extended to a P1-ruling p :
X → B, where B is a smooth completion of B. Let F be a fiber of p. An
irreducible curve C ⊆ X is called an n-section if F ·C = n. We will say just
section for a 1-section. C is horizontal if n > 0, otherwise it is vertical. If C
is vertical then it is called a D-component if C ⊆ D, otherwise it is called
an X-component. If the ruling is fixed we denote the divisor consisting
of horizontal components of D by Dh. The divisor is horizontal (vertical)
if all its components are horizontal (vertical). The completion (X,D) is
p-minimal if it is smooth and minimal with respect to the property that
the extension of p from X to X exists (the partial order is induced by
morphisms of pairs).

TOME 61 (2011), FASCICULE 2
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For a smooth pair (X,D) put X = X−D. Let π be a P1-ruling of X. Fol-
lowing [4] we define some characteristic numbers of the triple τ = (X,D, π):
hτ is the number of horizontal D-components, στ (F ) is the number of X-
components contained in F , ντ is the number of fibers contained in D.
Put

Στ =
∑
F*D

(στ (F )− 1).

If there is no danger of confusion we omit indices writing Σ (or ΣX) for
Στ , h for hτ , etc. If one contracts a vertical (−1)-curve and simultaneously
changes X and D for their images then the numbers b2(X)− b2(D)−Σ+ν

and h do not change (bi(X) = dimHi(X;Q)). This leads to the following
equation (cf. [4, 4.16]):

Σ = h+ ν + b2(X)− b2(D)− 2.(2.1)

Clearly, b2(X)− b2(D) depends only on X.
We now summarize some information about singular fibers of P1-rulings

(cf. [4, §4]). For a given ruling π and a vertical component C the multiplicity
µ(C) is the coefficient of C in π∗(π(C)).

Lemma 2.1. — Let F be a singular fiber of a P1-ruling of a smooth com-
plete surface. Then F is a rational snc-tree containing a (−1)-curve. Each
(−1)-curve of F intersects at most two other components of F . Successive
contractions of (−1)-curves contract F to a smooth 0-curve. In this process
the number of (−1)-curves can increase only in the last but one step, when
[2, 1, 2] contracts to [1, 1].

Suppose that F as above contains a unique (−1)-curve C. The sequence of
blowups recovering F from a smooth (0)-curve is connected. Let B1, . . . , Bn
be the branching components of F written in order in which they are pro-
duced in the sequence of blowups recovering F from a smooth (0)-curve
and let Bn+1 = C. We can write F as F = T1 +T2 + . . .+Tn+1, where the
divisors Ti are chains consisting of all components of F − T1 − . . . − Ti−1
created not later than Bi. We call Ti the i-th branch of F and say that F
is branched if i > 1.

Remark 2.2. — Let F and C be as above. Then µ(C) > 1 and there are
exactly two components of F having multiplicity one. They are tips of the
fiber and belong to the first branch. The connected component of F − C
not containing curves of multiplicity one is a chain. If µ(C) = 2 then either
F = [2, 1, 2] or C is a tip of F and then F − C is either a (−2)-chain or a
(−2)-fork with two tips as maximal twigs.

ANNALES DE L’INSTITUT FOURIER
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2.3. Zariski decomposition

Let (X,D) be a smooth pair. If it is almost minimal (cf. [15, 2.3.11])
and κ(X −D) > 0 then the Zariski decomposition of KX +D, where KX

stands for the canonical divisor on X, can be computed explicitly using a
bark of D. For non-connected D bark is a sum of barks of its connected
components, so we will assume D is connected. If D is an snc-minimal
resolution of a quotient singularity (i.e. D is an admissible chain or an
admissible fork, cf. [15, 2.3.4]) then we define BkD as a unique Q-divisor
with Supp BkD ⊆ D, such that

(KX +D − BkD) ·Di = 0 for each component Di ⊆ D.

In other case let T1, . . . , Ts be all the maximal admissible twigs of D.
(If κ(X − D) > 0 and D is snc-minimal then all maximal twigs of D
are admissible, cf. [4, 6.13]). We define BkD as a unique Q-divisor with
Supp BkD ⊆

⋃
Tj , such that

(KX +D − BkD) ·Di = 0 for each component Di ⊆
s⋃
j=1

Tj .

Suppose R is an admissible chain with some tip R1 chosen. Then we
define Bk(R,R1) as a unique Q-divisor with support contained in R, such
that

R1·Bk(R,R1)=−1 and Ri·Bk(R,R1)=0 for each component Ri ⊆ R−R1.

If there is no need to mention the tip explicitly (for example if R is an
admissible twig of some fixed divisor then its tip will be a default choice
for R1) we write Bk′R instead of Bk(R,R1).
(This notation does not occur in standard references, but we find it

useful). Now we can write BkD = Bk′ T1 + . . .+ Bk′ Ts. We recall here the
properties of BkD which we use later and refer the reader to [15, §2.3] for
details. We put D# = D − BkD.

Lemma 2.3. — Let (X,D) be a smooth pair. Write D =
∑
Di with Di

distinct irreducible and BkD =
∑
diDi. One has:

(i) 0 6 di 6 1 for each i, BkD is rational and Q(BkD) is negative
definite, unless BkD = 0,

(ii) if di = 1 for some i andD′ is a connected component ofD containing
Di then BkD′ = D′ and D′ consists of (−2)-curves,

(iii) Supp BkD consists of the supports of all maximal admissible twigs
of D and of all connected components of D which are either admis-
sible chains or admissible forks (see [15, 2.3.5]),

TOME 61 (2011), FASCICULE 2
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(iv) (KX +D#) · Z = 0 for every Z ⊆ Supp BkD,
(v) if (X,D) is almost minimal and κ(X −D) > 0 then (KX +D)− =

BkD.

We now state a version of Bogomolov-Miyaoka-Yau inequality proved by
Langer ([14, Corollary 5.2]), which generalizes the inequalities of Miyaoka
[18, Theorem 1.1] and Kobayashi [11, Theorem 2]. See [14, 3.4, §9] for a
definition of the orbifold Euler number χorb(X,D) and for computations
in special cases.

Proposition 2.4. — Let (X,D) be a normal projective surface together
with a Q-divisor D =

∑
miDi with 0 6 mi 6 1. Assume that the pair is

log-canonical and KX +D is pseudoeffective. Then

3χorb(X,D) + 1
4((KX +D)−)2 > (KX +D)2.

Corollary 2.5. — Let (X,D) be a smooth pair with κ(KX +D) > 0.
Then:

(i) 3χ(X −D) + 1
4((KX +D)−)2 > (KX +D)2.

(ii) For each connected component of D, which is a connected com-
ponent of BkD (hence contractible to a quotient singularity) de-
note by GP the local fundamental group of the respective singular
point P . Then

χ(X −D) +
∑
P

1
|GP |

>
1
3(KX +D#)2.

Proof. — According to [14, 7.6] if (X,D) is a pair as in 2.4 and D is
reduced then for a point P ∈ D the local orbifold numbers χorb(P ;X,D)
vanish, hence

χorb(X,D) = χ(X − SingX −D) +
∑

P∈SingX
χorb(P ;X,D).

This already proves (i), where X is smooth. Let π : (X,D) → (X ′, D′)
be a morphism contracting the connected components of BkD to quotient
singularities. Then by [15, 2.3.14.1] KX +D# ≡ π∗(KX′ +D′) and KX′ +
D′ = π∗(KX + D#), in particular KX′ + D′ is pseudoeffective because
(KX +D)− −BkD is effective by 2.3(iv) and the properties of the Zariski
decomposition of KX + D. We need to know χorb(P ;X ′, D′). If P 6∈ D′

then the preimage of P is a connected component of D (and of BkD) and
by [14, 7.1] we have χorb(P ;X ′, D′) = 1

|GP | . We have also χ(X ′−SingX ′−
D′) = χ(X −D). Since ((K ′X +D′)−)2 6 0, (ii) follows from 2.4 applied to
(X ′, D′). �
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Remark. — Part (ii) generalizes the Kobayashi inequality for the case
κ(X −D) = 0, 1, it is stronger than the original Miyaoka inequality (there
is no 1

4N
2 term, using the notation of [18, Theorem 1.1]). If κ(X −D) = 2

then to get the original Kobayashi inequality one applies 2.4 to the strongly
minimal model of (X,D) (cf. [15, 2.4.12, 2.6.6]).

2.4. Other useful results

As a consequence of elementary properties of determinants one gets the
following result.

Lemma 2.6. — ([13, 2.1.1]). Let D be a reduced snc-tree.
(i) Let C be a component ofD and letD1, D2, . . . , Dk be the connected

components of D−C. If Ci is the component of Di meeting C then

d(D) = −C2
∏
i

d(Di)−
∑
i

d(Di − Ci)
∏
i 6=j

d(Dj).

(ii) Let D = D1 +D2, where D1, D2 are connected and intersect in one
point. Let C1 ⊆ D1, C2 ⊆ D2 be the intersecting components, then

d(D) = d(D1)d(D2)− d(D1 − C1)d(D2 − C2).

Remark. — If D is an snc-divisor then d(D) is invariant under blowup,
i.e. if (X,D) is a smooth pair and σ : X ′→X is a blowup, then d(σ−1(D))=
d(D). For trees this follows from 2.6 by induction on #D.

Lemma 2.7. — Let A and B be some Q-divisors, such that A + B is
effective and Q(B) is negative definite. If A · Bi = 0 for each irreducible
component Bi of B then A is effective.

Proof. — We can assume that A and B are Z-divisors and B is effective
and nonzero. Write B =

∑
biBi for some positive integers bi and irre-

ducible components Bi of B. Choose b′i ∈ N, such that the sum
∑
b′i is the

smallest possible among divisors
∑
b′iBi, such that A+

∑
b′iBi is effective.

If b′i > 0 for some i then (A +
∑
b′iBi) · (

∑
b′iBi) = (

∑
b′iBi)2 < 0 by the

assumptions. Hence Supp(A +
∑
b′iBi) contains some Bi, a contradiction

with the definition of b′i. Thus A is effective. �

Lemma 2.8. — Let X0 be a smooth part of X ′\D′, where D′ is a divisor
on an affine surfaceX ′. Let (Xm, Dm) be the almost minimal model of some
smooth completion of X0. Then the almost minimal model Xm − Dm of
X0 is an open subset of X0 and χ(Xm −Dm) 6 χ(X0).

TOME 61 (2011), FASCICULE 2
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Proof. — Let ε : X → X ′ be a resolution with snc-minimal exceptional
divisor and let (X,D) be a smooth completion of X. Since X ′ is affine, D
is connected and Q(D) is not negative definite. Let D′′ ⊆ X be the closure
of ε−1(D′) and let E be the part of the exceptional divisor with support
equal to ε−1(Sing(X ′ − D′)). Blowing on D′′ if necessary we can assume
that (X,D + D′′ + E) is a smooth completion of X0. Moreover, D + D′′

is connected. Consider the process of producing an almost minimal model
(Xm, Dm) of (X,D+D′′+E), it goes by contractions of special (−1)-curves,
so-called log-exceptional curves of the first kind (cf. [15, 2.4.3]). Notice that
in the process the divisor D′ + D′′ cannot be contracted, because Q(D)
is not negative definite. By the properties of a log-exceptional curve not
contained in the boundary its contraction causes a subtraction of a curve
with χ = 1 or χ = 0 from X0. Contractions of (−1)-curves contained in the
boundary divisor do not affect X0, unless some connected component of the
boundary is eventually contracted to a smooth point which does not belong
to the proper image of the boundary divisor. Then this point adds to the
almost minimal model of X0. Affiness of X ′ implies that a log-exceptional
curve not contained in E intersects the image of D, so the above cannot
happen for connected components of E. �

3. Basic properties of S′

We now fix the notation for the rest of the paper. Let S′ be an exceptional
singular Q-homology plane, i.e. its smooth locus S0 has κ(S0) 6= 2 and is
neither C1- nor C∗-ruled. As was explained in section 1, this implies κ(S0) =
0. Let ε : S → S′ be a resolution having an snc-divisor as the exceptional
locus and let (S,D) be a smooth completion of S. By the definition of
the logarithmic Kodaira dimension κ(S′) = κ(S) = κ(KS +D), where KS

stands for the canonical divisor on S. Let {p1, . . . , pq} be the singular locus
of S′ and let Êi = ε−1(pi). We assume that Ê = Ê1 + Ê2 + . . . + Êq is
snc-minimal. The intersection matrix Q(Ê) is negative definite. We write
Hi(X,A) for Hi(X,A;Q) and bi(X,A) for dimHi(X,A;Q).

Lemma 3.1. — Let i : D ∪ Ê → S be the inclusion. The following
properties hold:

(i) H2(i) : H2(D ∪ Ê)→ H2(S) is an isomorphism,
(ii) S′ is rational,
(iii) D is a rational tree,
(iv) ΣS0 = h+ ν − 2 and ν 6 1,
(v) S′ is affine.
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Proof. — (i) Let Tub(Ê) be a sum of tubular neighborhoods of Êi’s in
S (see [19] for the construction) and let M be the boundary of the closure
of Tub(Ê). We can assume that M is a disjoint sum of closed oriented
3-manifolds. There exists a deformation retraction Tub(Ê) → Ê, so by
excision Hj(S0,M) = Hj(S, Tub(Ê)) = Hj(S, Ê) and since for j > 1 we
have Hj(S, Ê) = Hj(S′) = 0, we get bj(S0) = bj(M) for j > 1. In fact
b1(S0) also equals b1(M) because H1(S0,M) = H1(S, Ê) = Qq−1 and then
H0(M) → H1(S0,M) is an epimorphism. By [19] b1(M) = b1(Ê) = 0, so
each connected component of M is a Q-homology sphere by the Poincare
duality. We conclude that bj(S0) = 0 for j = 1, 2. Now by the Lefschetz
duality Hj(S,D∪Ê) = H4−j(S0), hence H2(S,D∪Ê) = H3(S,D∪Ê) = 0.
It follows from the exact sequence of the pair (S,D ∪ Ê) that H2(i) is an
isomorphism.
(ii) Since H2(i) is an isomorphism, the exact sequence of the pair (S,D∪

Ê) gives that H3(S)→ H3(S,D ∪ Ê) is an isomorphism. Therefore by the
Lefschetz duality b1(S) = b3(S) = b3(S,D∪Ê) = b1(S0) = 0. Now if κ(S) =
−∞ then S is birational to a P1-fibration over some complete curve B. From
the homotopy exact sequence of a fibration we know that b1(B) = b1(S),
so B ∼= P1, hence S is rational. Suppose κ(S) > 0. Since κ(S) 6 κ(S0) = 0,
we see that κ(S) = κ(S) = κ(S0) = 0. We now prove that Q(D) is negative
definite. We can assume that (S,D) is almost minimal. Then by 2.3(v)
KS + D# = (KS + D)+ ≡ 0 and KS >Q 0, so D# = 0 because D# is
effective. Thus D = BkD, and we are done by 2.3(i). By (i) we get a
contradiction with the Hodge index theorem.
(iii) Since H2(S,D ∪ Ê) = 0, the exact sequence of the pair (S,D ∪ Ê)

gives the injectivity of H1(D ∪ Ê) → H1(S), so b1(D) = 0 by (ii). In the
proof of (i) we have shown that b1(S,D ∪ Ê) = b3(M), so since M is a
disjoint sum of b0(Ê) three-dimensional manifolds, we get b1(S,D ∪ Ê) =
b0(Ê). Now the exact sequence of a pair (S, d ∪ Ê) gives b0(D ∪ Ê) =
b1(S,D ∪ Ê) + b0(S) = b0(Ê) + 1, hence D is connected.

(iv) The first equation is a consequence of (2.1) and (i). If ν > 1 then the
numerical equivalence of fibers of a P1-ruling gives a numerical dependence
of components of D + Ê in NS(S)⊗Q, where NS(S) is the Neron-Severi
group of S. This contradicts (i).
(v) Since H2(i) is an epimorphism by (i) and since D is connected by

(iii), Fujita’s argument from the proof of [4, 2.4(3)] works.
�

Remark. — From 3.1(i) and the Hodge index theorem we get d(D+Ê) <
0, so d(D) < 0.
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Lemma 3.2. — Every irreducible curve L*D∪Ê satisfies κ(S0 − L)=2.

Proof. — Suppose κ(S0 − L) = 1. Since S0 does not contain complete
curves, [10, 2.3] implies that S0 − L is C∗-ruled. S0 is not C∗-ruled, so it
is affine-ruled and we get κ(S0) = −∞ by the easy addition theorem ([8,
Theorem 10.4]), a contradiction. Suppose κ(S0−L) = 0. By 3.1(i) H2(S,Q)
is generated by cycles contained in D ∪ Ê, hence NS(S)⊗Q is generated
by the components of D + Ê. Since S is rational, we get Pic(S0)⊗Q = 0,
so there exists a rational function f on S0, such that (f) = kL for some
k > 0. We get a morphism f : S0 − L → C∗. If S0 − L → B → C∗
is its Stein factorization then κ(B) > κ(C∗) = 0 and 0 > κ(Fb) + κ(B)
for a fiber Fb over a generic b ∈ B by Kawamata addition theorem ([9]).
Since S0 − L is not affine ruled, we get κ(Fb) = 0, i.e. f is a C∗-ruling, a
contradiction. �

Definition 3.3. — Let (X,B) be a smooth pair. A curve C ⊆ X is
a simple curve on (X,B) if and only if C ∼= P1 and C has at most one
common point with each connected component of B.

Corollary 3.4. — There is no simple curve on (S,D + Ê). If D is
snc-minimal then the pair (S,D + Ê) is almost minimal.

Proof. — Let L be a simple curve on (S,D+Ê). Since S′ is affine, L∩D 6=
∅. Let (Xm, Bm) be the almost minimal model of some smooth completion
of S0 − L and let (Xm, Bm) → (Xr, Br) be the morphism contracting the
connected components of BkBm. Denote the local fundamental group of
a singular point P ∈ Sing(Xr − Br) by GP . By 2.8 Xm − Bm is an open
subset of S0 − L satisfying χ(Xm − Bm) 6 χ(S0 − L). Since (Xm, Bm) is
almost minimal, by 2.3(v) (KXm + Bm)+ ≡ KXm + B#

m, so by 2.5(ii) and
3.2 χ(Xm − Bm) +

∑ 1
|GP | > 0. Put s = |L ∩ Ê|. The matrix Q(D) is not

negative definite, so |Sing(Xr −Br)| 6 q − s. This gives
∑ 1
|GP | 6

q−s
2 , so

χ(S0 − L) > χ(Xm − Bm) > −
∑ 1
|GP | >

s−q
2 . We compute χ(S0 − L) =

χ(S0) − χ(L) + |L ∩ D| + s = 1 − q + s − 2 + |L ∩ D|, hence |L ∩ D| =
χ(S0 − L) + 1 + q − s > q−s

2 + 1, so |L ∩ D| > 1, a contradiction. Since
log-exceptional curves of the first kind not contained in D ∪ Ê are simple,
(S,D + Ê) is almost minimal. �

By 3.1(iii) D is a rational tree and since Q(D) is not negative definite,
if it is snc-minimal then by [4, 8.8] it is of one of the following types:

(Y): a fork with three maximal admissible twigs and δ(D) = 1,
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(H): has dual graph

−2 · · · · · −2

−2 −2

,

(X): has dual graph

−2

−2 · −2

−2

We will frequently use the fact that, as a consequence of the Riemann-
Roch theorem, on a complete rational surface a (0)-curve (and hence any
rational tree which contracts to a (0)-curve) induces a P1-ruling with this
curve as one of the fibers.

4. Rulings of S0 with ν > 0

From now on we assume that D is snc-minimal.

Lemma 4.1. — Let D0 ⊆ D be a component of D meeting some maxi-
mal twig of D and such that D2

0 > 0. Let σ : (S̃, D̃)→ (S,D) be modifica-
tion over D obtained by blowing up successively in the point of intersection
of D0 with the preimage of this maximal twig until D2

0 = 0. Let π : S̃ → P1

be the induced P1-ruling with D0 as a fiber. Then a component of a fiber
is an S0-component if and only if it is exceptional.

Proof. — Denote the maximal twig of D as above by T . Let L be an S0-
component of some fiber. We have κ(S0) = 0, so (KS +D+ Ê)+ ≡ 0 by [4,
6.11] and thenKS+D+Ê ≡ BkD+Bk Ê by 3.4 and 2.3(v). The sequence of
blowups defining σ is subdivisional for D, so K

S̃
+D̃+Ê ≡ σ∗ BkD+Bk Ê

and L2 = −2 − L · K
S̃

= −2 + L · (D̃ − σ∗ BkD) + L · (Ê − Bk Ê) >
−2 + L · (D̃ − σ∗ BkD). Since D0 * Supp BkD by 2.3(i) and each of
the blowups is sprouting for the respective preimages of T , by 2.3(ii) the
coefficients of components of D̃ in σ∗ BkD are smaller than one. Thus
L2 > −2 because L · D̃ > 0, so we are done. �
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Remark. — Notice that no fiber of a P1-ruling of S̃ can be contained in
Ê, otherwise D̃ would be vertical, so S′ would contain complete curves.

The following lemma, which is a generalization of arguments from [12,
6.2] allows to bound from below the self-intersection of one of the branching
components of D having four maximal twigs.

Lemma 4.2. — Let T be an snc-minimal divisor with two branching
components B, B′ and such that βT (B) = βT (B′) = 3. Let T1, T2 and
T3, T4 be the maximal twigs of T intersecting B and B′ respectively. If
Q(T − B − B′) is negative definite, ẽ(T1) + ẽ(T2) 6 −B2 − 1 and ẽ(T3) +
ẽ(T4) 6 −B′2−1 then either Q(T ) is negative definite or d(T ) = 0 and then
T −T1−T2−T3−T4 is a (−2)-chain and ẽ(T1)+ ẽ(T2) = ẽ(T3)+ ẽ(T4) = 1.

Proof. — Write T −T1−T2−T3−T4 = B1 +B2 + . . .+Bt with B1 = B

and Bt = B′. Define T0 = B2 + . . .+Bt−1 and di = d(D(i)), where D(i) =
T3+T4+Bt+Bt−1+. . .+Bi. By 2.6(i) d2 = d(T3)d(T4)d(T0)(−B2

t −ẽ(T3)−
ẽ(T4)− ẽ(T0)) > d(T3)d(T4)d(T0)(1− ẽ(T0)) > 0, so D(2) is negative definite
by Sylvester’s theorem. We now prove that d2 > d3. Notice that B2

i 6 −2
for each i, so by 2.6 for i = 2, . . . , t− 1 we get di− di+1 = (−B2

i − 2)di+1 +
di+1 − di+2 > di+1 − di+2. We have dt − dt+1 = d(T3)d(T4)(−B2

t − ẽ(T3)−
ẽ(T4) − 1) > 0, so we are done. By 2.6(i) d(T ) = d2d(T1)d(T2)(−B2

1 −
d3
d2
− ẽ(T1)− ẽ(T2)) > d2d(T1)d(T2)(−B2

1− ẽ(T1)− ẽ(T2)−1) > 0. Hence by
Sylvester’s theorem if d(T ) 6= 0 then Q(T ) is negative definite. On the other
hand, if d(T ) = 0 then all the weak inequalities above become equalities
and the thesis follows. �

From now on we denote the maximal twigs of D by T1, . . . , Ts. If D has
only one branching component we denote it by B.

Lemma 4.3. — D can be only of type (X) or (Y). If it is of type (X)
then −1 6 B2 6 0. If it is of type (Y) then B2 = −1 and the triple
(d(T1), d(T2), d(T3)) is up to permutation one of the following: (3, 3, 3),
(2, 3, 6), (2, 4, 4).

Proof. — In case (H) let B,B′ be the branching components of D. The
chain D − T1 − T2 − T3 − T4 −B −B′ is admissible, otherwise after some
subdivisional modification of D it contains a (0)-curve, hence gives a C∗-
ruling of S0, which contradicts our assumptions about S0. Since Q(D) is
not negative definite and d(D) 6= 0, by 4.2 we can assume that B2 >
−1. Assume T1 and T2 meet B. Blow up on the intersection of B with
D − T1 − T2 −B until B2 = −1. We have T 2

1 = T 2
2 = −2, so T1 + 2B + T2

gives a C∗-ruling of S0, a contradiction. Thus only types (X) and (Y)
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remain. We have d(D) < 0, so by 2.6 −B2 + δ(D) <
∑s
i=1

d′(T t
i )+1

d(Ti) 6 s.
For both types we obtain B2 > −1.
In case (Y) we have δ(D) = 1 by definition, so we need only to prove

that B2 = −1. Suppose B2 > 0 in case (X) or B2 > 0 in case (Y). Let
σ : (S̃, D̃)→ (S,D) be the modification obtained by blowing up the point of
intersection of T1 with B until B2 = 0. Consider the P1-ruling of S̃ given by
B. We see that D̃ contains no vertical (−1)-curves. The divisor Dh consists
of three or four sections of the ruling. Put Dv = D̃−Dh−B. Notice that if
some section intersects a vertical component V then µ(V ) = 1 and it does
not intersect any other component lying in the fiber containing V . By 4.1
the S0-components of singular fibers are exceptional.

Let F be a fiber containing some connected component of Ê (Ê is ver-
tical, because B · Ê = 0). If F contains some D̃-components then there
exists a chain of S0-components in F connecting Ê ∩ F with some D̃-
component of F . In fact this chain consists of a unique (−1)-curve L,
since all S0-components are (−1)-curves and two of them cannot meet.
By 3.4 Dh ·L > 0, so µ(L) = 1, a contradiction. Therefore there are no D̃-
components in F , hence each S0-component intersects Dh, so it has µ = 1.
We have #Dh 6 4, so from 3.4 it follows that there are exactly two S0-
components in F , each intersecting two components of Dh. This eliminates
the case (Y). Notice that it follows also that these two (−1)-curves are tips
of F , which by 2.1 implies that Ê ∩ F is a (−2)-chain between them.
Consider the case (X). We have Dv 6= 0, because B2 > 0. The divisor

Dv is a chain and by the definition of σ can be written as Dv = D0 +D1 +
. . . + Dn, where D2

0 = −3, n > 0 and D2
i = −2 for every 1 6 i 6 n. Let

F ′ be a fiber containing Dv. By 3.4 the connectedness of Dv implies that
each (−1)-curve of F ′ intersects Dh. In particular, the (−1)-curves, and
hence all components of F ′ have µ = 1. It follows that Ê ∩ F ′ = ∅. We
have K ·Dv = 1 and K · F ′ = −2, so there are exactly three (−1)-curves
in F ′, call them L2, L3 and L4. We have σ(F ′) = 3, σ(F ) = 2 and Σ = 3
by 3.1(iv), so any other singular fiber has σ = 1. However, the unique
(−1)-curve of such a fiber has µ > 1, so cannot intersect Dh, hence cannot
intersect D̃, which is impossible. Thus F and F ′ are the only singular fibers,
which implies that Ê is connected. Since µ(Li) = 1 and F ′ cannot contain
a (0)-curve as a proper subdivisor, we get that one of the Li’s, say L4,
intersects Dn and two others intersect D0 (it is possible that n = 0). Each
Li intersects exactly one Tj , so by renaming Li’s we can assume that for
i = 2, 3, 4 we have Li · Ti = 1. The remaining section contained in Dh, call
it T ′1, is a (−1)-curve and intersects Dn. Let M2 be the (−1)-curve of F
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intersected by T4. Denote the second (−1)-curve of F byM1. If T ′1 ·M2 > 0
then the contraction of F −M2 + F ′ − L4 does not touch T4 and touches
T ′1 once, so the images of T4 and T ′1 are disjoint sections of a P1-ruling of a
Hirzebruch surface and have self-intersections −2 and 0. This is impossible,
so we infer that T ′1 ·M2 = 0 and T ′1 ·M1 = 1. Now by symmetry we can
assume that T2 intersects M2 and T3 intersects M1. The contraction of
F −M1 + F ′ − L3 does not touch T3 and touches T ′1 exactly n + 1 times.
Thus as above we get a P1-ruling of a Hirzebruch surface with two disjoint
sections having self-intersections −2 and n. It follows from the properties
of a Hirzebruch surface that n = 2. Now observe that T4 + 2L4 + D2 and
T3 + 2L3 +D0 +L2 are disjoint (0)-divisors, so they are fibers of the same
P1-ruling of S̃. This contradicts the fact that T2 intersects the second one
and not the first one. �

Proposition 4.4. — Let S0 be the smooth locus of an exceptional sin-
gular Q-homology plane S′. If S′ has at most topologically rational sin-
gularities then κ(S′) = κ(S0) = 0 and S′ has a unique singular point.
Moreover, either

(i) S′ (hence S0) is C∗∗-ruled, its singularity is of type A1 and its snc-
minimal boundary D is a fork with branching (−1)-curve and three
maximal twigs: [2], [2, 2, 2] and [2, 2, 2] (cf. 5.2) or

(ii) S′ (hence S0) is C∗∗∗-ruled, its singularity is of type A2 and its
snc-minimal boundary D is a fork with branching (−1)-curve and
three maximal twigs: [2, 2], [2, 2] and [2, 2]. (cf. 5.4).

Proof. — We check easily that admissible chains with d(−) equal to 2, 3
or 6 have only one component or consist of (−2)-curves, so by 4.3 we have
only thirteen cases to consider:

(X0) Ti = [2] for i = 1, 2, 3, 4 and B2 = 0,

(X1) Ti = [2] for i = 1, 2, 3, 4 and B2 = −1,

D is of type (Y) with B2 = −1 and:

(Y1a) T1 = [3], T2 = [3], T3 = [3],

(Y1b) T1 = [3], T2 = [3], T3 = [2, 2],

(Y1c) T1 = [3], T2 = [2, 2], T3 = [2, 2],

(Y1d) T1 = [2, 2], T2 = [2, 2], T3 = [2, 2],

(Y2a) T1 = [2], T2 = [4], T3 = [4],

(Y2b) T1 = [2], T2 = [4], T3 = [2, 2, 2],
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(Y2c) T1 = [2], T2 = [2, 2, 2], T3 = [2, 2, 2],

(Y3a) T1 = [2], T2 = [3], T3 = [6],

(Y3b) T1 = [2], T2 = [3], T3 = [2, 2, 2, 2, 2],

(Y3c) T1 = [2], T2 = [2, 2], T3 = [6],

(Y3d) T1 = [2], T2 = [2, 2], T3 = [2, 2, 2, 2, 2].

Write each Ti as Ti = Ti,1 + Ti,2 + . . . + Ti,ki
, where Ti,1 is a tip of D.

In cases (Y1a), (Y2a) and (Y3a) we compute d(D) = 0, which contradicts
3.1(i). In each other case we specify a P1-ruling π : S → P1 with ν > 0
defined by some (0)-divisor F∞ with support in D. By 3.1(iv) we have
Σ = #Dh− 1. Below we list the quadruples (F∞, F ·D,Σ, Dv), where F is
the generic fiber and Dv = D − F∞ −Dh.

(X0) (B, 4, 3, 0),

(X1) (T1 + 2B + T2, 4, 1, 0),

(Y1b) (T1 + 3B + 2T3,2 + T3,1, 3, 0, 0),

(Y1c) (T1 + 3B + 2T3,2 + T3,1, 3, 0, T2,1),

(Y1d) (T1,2 + 2B + T3,2, 4, 2, T2,1),

(Y2b) (T1 + 2B + T3,3, 3, 1, T3,1),

(Y2c) (T1 + 2B + T3,3, 3, 1, T3,1 + T2,1 + T2,2),

(Y3b) (T1 + 2B + T3,5, 3, 1, T3,1 + T3,2 + T3,3),

(Y3c) (T1 + 2B + T2,2, 3, 1, 0),

(Y3d) (T1 + 2B + T3,5, 3, 1, T2,1 + T3,1 + T3,2 + T3,3).

Notice that Dv has at most two connected components and each of
them is a chain of (−2)-curves. Let F be some singular fiber of π. The
S0-components of F are (−1)-curves by 4.1, denote them by Li, i =
1, . . . , σ(F ). We use 3.4 repeatedly.

Claim 1. — Every S0-component intersects Dh.

Suppose L is an S0-component, such that L ·Dh = 0. Then L intersects
two D-components by 3.4 and these are (−2)-curves, so F = [2, 1, 2]. Both
these D-components must be tips of D. Since L · Dh = 0 and ν > 0, we
obtain F ·D = 2, otherwise D would contain a loop. This is a contradiction.

Claim 2. — If µ(Li) > 1 for some i then σ(F ) = 1 and µ(L1) = 2.
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Suppose σ(F ) > 2 and µ(L1) > 1. L1 intersects some D-component of
F , otherwise Dh · L1 > 2 and Dh · F > Dh · (µ(L1)L1 + L2) > 4, which is
impossible. Thus Dv∩F 6= ∅ and we get 4 > Dh ·F > Dh · (µ(L1)L1 +Dv∩
F+µ(L2)L2) > 2+Dh·(Dv∩F )+Dh·µ(L2)L2, so by (1) µ(L2) = Dh·L2 = 1
and Dv ∩F is connected. Moreover, σ(F ) = 2. We get L2 ·Dv > 0, because
L2 cannot be simple. Since Dv is a (−2)-chain and µ(L2) = 1, L2 intersects
Dv in a tip, so F = [1, (k), 1] for some k > 0 (recall that [(k)] is a chain
consisting of k (−2)-curves). This contradicts µ(L1) > 1.
Suppose σ(F ) = 1 and µ(L1) > 2. Since Dh · L1 > 0, Dh contains an

n-section with n > 2, which is possible only for (Y1b) or (Y1c). Then
FD = 3, so Dh(F −L1) = 0, hence there are no D-components in F . Thus
L1 is simple, a contradiction.

Claim 3. — If σ(F ) > 1 then F = [1, (k), 1] for some k > 0. If σ(F ) = 1
then in cases other than (X1) F = [2, 1, 2] and F contains a D-component.

If σ(F ) > 1 then all Li’s are tips of F by (2). Suppose σ(F ) > 2. Then
there are some D-components in F , otherwise F ·D > 6 by 3.4. The divisor
F −

∑
i Li is connected and contains a D-component, so there are no Ê-

components in F . Since Dv consists of (−2)-curves, we get −2 = KS · F =∑
iKS ·Li = −σ(F ), a contradiction. Thus σ(F ) = 2 and both (−1)-curves

have multiplicities one by (2), so F = [1, (k), 1] for some k > 0.
Assume σ(F ) = 1 and consider cases different from (X1). We have

µ(L1) = 2 by (2). There are some D-components in F , otherwise by 3.4 L
would meet two 2-sections contained in Dh, which is possible in case (X1)
only. Suppose F is branched. Then by 2.2 L1 is a tip of F and F − L1 is
one of the connected components of Dv, hence it must be [2, 2, 2], which is
possible for (Y3b) only. In this case Dv is connected, F ·D = 3 and Σ = 1.
In particular, there exists a fiber F ′ with σ(F ′) = 2 and it does not have
any D-components, so both S0-components of F ′ meet Dh at least twice,
which contradicts F ·D = 3. Thus F is a chain, so F = [2, 1, 2].

Claim 4. — κ(S) = 0 and KS +D# ≡ 0.

By (2), (3) and 2.2 every singular fiber consists of (−1)- and (−2)-curves.
Ê is vertical, hence consist of (−2)-curves, so by 2.7 κ(S) = κ(S0) = 0.
The pair (S,D + Ê) is almost minimal, so by 2.3(v) KS +D# + Ê# ≡ 0.
By 2.7 KS +D# >Q 0, so Ê = Bk Ê and KS +D# ≡ 0.

Claim 5. — Cases other than (X0), (X1), (Y1d) and (Y2c) are impos-
sible. #Ê = 8−B2 −#D.
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By (4) we have KS ·BkD = K2
S

+KS ·D, so KS ·BkD ∈ Z. This excludes
(Y1b), (Y1c), (Y2b), (Y3b) and (Y3c). In the remaining cases (X0), (X1),
(Y1d), (Y2c) and (Y3d) the maximal twigs of D are (−2)-chains, so by (4)
KS · (KS +B) = 0. Since S is rational, we have χ(S) = 2 + #D + #Ê by
3.1(i) and then the Noether formula gives 12 = K2

S
+ 2 + #D + #Ê, so

#Ê = 8−B2 −#D. For (Y3d) we get #Ê = 0, a contradiction.

Claim 6. — Ê is connected. Case (X0) is impossible.

Notice that 2.5(ii) gives 0 6 χ(S0) +
∑
P

1
|GP | 6 1− q+ q

2 , so if Ê is not
connected then q = 2 and |GP1 | = |GP2 | = 2, hence Ê1 and Ê2 are (−2)-
curves. In cases (X1) and (X0) we have #Ê = 3−B2 > 3 by (5) and in case
(Y2c) #Ê = 1, so Ê is connected. Consider the case (Y1d). Suppose there
exists a singular fiber F with σ(F ) = 1. By (3) F = [2, 1, 2] and there is
a D-component in F , so Dv = T2,1 ⊆ F and F contains an Ê-component.
It follows that the sections T1,1 and T3,1 intersect L1, a contradiction with
F ·D 6 4. Since Σ = 2, by (3) there are only two singular fibers and they
are of type [1, (k), 1], so Ê is connected because Dv 6= 0.
Suppose that the case (X0) occurs. Since Σ = 3, there is a singular fiber

F with σ(F ) > 1, hence by (3) F = [1, (k), 1] for some k > 0. It is easy
to see that for every such fiber k > 0. Indeed, we know that Dv = 0 and
L1, L2 are not simple, so each is intersected by precisely two sections from
Dh, so if H1, H2 ⊆ Dh intersect L1 then k = 0 implies that H1 + 2L1 +H2
gives a C∗-ruling of S0, a contradiction. Since Ê is connected, we see that
there is only one fiber with σ > 1. This contradicts Σ = 3.

Claim 7. — Case (X1) is impossible.

Suppose the case (X1) occurs. We have Σ = 1, so by (3) there is a fiber
F1 = [1, (k), 1] with k > 0. Suppose k > 0. We have Dv = 0, so Ê ⊆ F1
by (6) and F∞ and F1 are the only singular fibers. By (5) we can write
F1 = L1 + E1 + E2 + E3 + E4 + L2. Notice that Dh consists of two 2-
sections, T3 and T4, and by 3.4 Dh intersects F1 − Ê in four points. If L1
intersects both 2-sections then the contraction of F∞−T2 +F1−L1 touches
T3 seven times, so the image of T3 is a smooth 2-section on a Hirzebruch
surface with self-intersection 5, a contradiction. Thus L1 intersects only
one component of Dh, say T3, hence L2 intersects T4. After the contraction
of F∞ − T1 + F1 − L1 the surface becomes a Hirzebruch surface and the
images of the 2-sections, T ′3 and T ′4, satisfy T ′3·T ′4 = 2, T ′23 = 0 and T ′24 = 20.
However, T ′3−T ′4 ≡ αF for some α ∈ Z and a generic fiber F , because T ′3 and
T ′4 are 2-sections. Thus (T ′3−T ′4)2 = 0, which is a contradiction. Thus k = 0
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and Ê ⊆ F0, where F0 is a singular fiber with σ(F0) = 1. By (5) and (1) Ê is
a (−2)-fork with four components. Let M be the (−1)-curve of F0. Denote
the Ê-component intersectingM by E0 and the branching component of Ê
by E1. Consider a new P1-ruling of S given by the (0)-divisor T3 +2M+T4.
For this ruling we have Σ = 0. Let F ′ be a fiber containing Ê −E0. There
is exactly one (−1)-curve U ⊆ F ′, which is the unique S0-component of
F ′. Notice that now the only possible D-components of F ′ are T1 and
T2, which are (−2)-curves. Since U intersects some Ê-component of F ′,
which is also a (−2)-curve, U cannot intersect other (−2)-curves than F ′,
otherwise F ′ = [2, 1, 2], which is not the case. We conclude that F ′ has no
D-components, hence U intersects E1 and µ(E1) = µ(U) = 2. It follows
that E0 intersects F ′ only in E1 and B intersects U in one point. Thus U
is a simple curve on (S,D + Ê), a contradiction. �

Remark 4.5. — Let us notice that up to isomorphism there exist exactly
three smooth exceptional Q-homology planes (see [4, 8.64] or [15, 4.4.4] for
their construction). They are called: Y {3, 3, 3}, Y {2, 4, 4} and Y {2, 3, 6},
where the boundary of Y {d1, d2, d3} is a fork

T1 −b T2

T3

with d(Ti) = di (surfaces of type H[−k, k] considered in the above refer-
ences are C∗-ruled). More precisely, (b, T1, T2, T3) is equal to
(1, [2, 2], [2, 2], [2, 2]) in case Y {3, 3, 3}, to (0, [2], [2, 2, 2], [2, 2, 2]) in case
Y {2, 4, 4} and to (1, [2], [2, 2], [2, 2, 2, 2, 2]) in case Y {2, 3, 6}.
Trying to follow this notation we will denote a singular exceptional Q-

homology plane admitting a boundary as above by SY {d1, d2, d2}. It fol-
lows from the above proposition that the only possibilities are SY {3, 3, 3}
(ruling (Y1d)) with (b, T1, T2, T3) = (1, [2, 2], [2, 2], [2, 2]) and Ê = [2, 2] and
SY {2, 4, 4} (ruling (Y2c)) with (b, T1, T2, T3) = (1, [2], [2, 2, 2], [2, 2, 2]) and
Ê = [2].

5. Constructions

We now find a more precise description of rulings of type (Y2c) and (Y1d)
and then use it to construct exceptional singular Q-homology planes of type
SY {2, 4, 4} and SY {3, 3, 3} respectively (cf. 4.5). We produce Aut(S,D +
Ê) -equivariant contractions θ : S → P2.
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Lemma 5.1. — In the case (Y2c) there are three singular fibers (see
Fig. 5.1): F∞ = T1 + 2B + T3,3, F1 = L1 + T2,2 + T2,1 + L2 and F0 =
T3,1 +M + Ê, where Ê = [2] and L1, L2,M are (−1)-curves. The 2-section
T2,3 meets L2 and L1 ·T3,2 = 1. There is a morphism θ : S → P1 contracting
B+T1 +M +T3,1 +T3,2 +M ′+T2,1 +T2,2, where M ′ is some (−1)-curve,
such that θ(T3,3) and θ(T2,3) are smooth conics tangent at θ(B), meeting
at θ(T2,1) and θ(T3,1) and θ(Ê) is a smooth conic, such that for i = 1, 2
θ(Ê) intersects θ(Ti,3) in θ(Ti,1) with multiplicity three (see Fig. 5.3).

Proof. — We use the facts showed in the proof of 4.4. We have Σ = 1,
so by (3) there exists a fiber F1 = [1, (k), 1] with k > 0 and this is a unique
fiber with σ > 1. Since Dv 6= 0, F1 cannot be the only singular fiber, so
there exists a singular fiber F0 with σ(F0) = 1. We have F0 = [2, 1, 2] by
(3). We have #Ê = 1, #Dv = 3 and Dv has two connected components, so
k = 2 and F0 contains Ê and one D-component. Besides F∞ there are no
more singular fibers. Notice that T2,3 is a 2-section intersecting the unique
(−1)-curve of F0, call it M , in a branching point of π|T2,3 . Let L1 ⊂ F1
be the (−1)-curve meeting T2,2. Suppose L1 meets the 2-section T2,3 too.
Then L2, the second (−1)-curve of F1, meets T2,1 and T3,2. The contraction
of F∞−T3,3 +F1−T2,2 +F0−T3,1 touches T2,3 five times, so the image of
T2,3 is a 2-section on a Hirzebruch surface having self-intersection 3, which
is impossible. Hence L1 meets T3,2. LetM ′ be an exceptional component of
a P1-ruling of S induced by T1 + 2B+T2,3, such that M ′ · Ê > 0. Since the
structure of fibers and sections is analogous,M ′·T2,1 = M ′·T3,3 = M ·Ê = 1
and M ′ does not intersect any other component of D (see Fig. 5.2). Thus
the chains M + T3,1 + T3,2, B + T1, M ′ + T2,1 + T2,2 are disjoint and we
can define θ : S → P2 as their contraction. Then θ(T2,3), θ(T3,3) and θ(Ê)
are smooth conics with prescribed properties. �

Figure 5.1. (Y2c), ruling Figure 5.2. (Y2c), contraction
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Construction 5.2. — Let T2,3 ⊆ P2 be a smooth conic and (P1, P2, P3)
a triple of distinct points on it. This choice is unique up to an automor-
phism of P2. There is a unique pair of smooth conics (Ê, T3,3), such that
P2, P3 ∈ T3,3 ∩ Ê, T3,3 is tangent to T2,3 at P1 and Ê intersects Ti,3 with
multiplicity three at Pi for i = 2, 3 (see Fig. 5.3). (This can be seen as
follows. Suppose T2,3 = {2yz = y2−x2}, P1 = (0, 0, 1), P2 = (1,−1, 0) and
P3 = (1, 1, 0). Then the family of conics T3,3(u) through P2, P3 and tangent
to T2,3 at P1 is one-dimensional: T3,3(u) = {uyz = y2 − x2}. The family
of conics Ê(v) through P2 and P3, intersecting T2,3 at P2 with multiplicity
three is one-dimensional too: Ê(v) = {v(y2 − x2 − 2yz) = z2 − yz − xz}.
The condition for intersection at P3 implies (u, v) = (−2, 1

2 ).) We use the
same names for divisors and their birational transforms. Blow up three
times over P2 on the intersection of T2,3 with Ê and denote the subsequent
exceptional curves by T3,2, T3,1 and M , similarly blow up three times over
P3 on the intersection of T3,3 with Ê and denote the subsequent excep-
tional curves by T2,2, T2,1 and M ′. Then blow up twice over P1 so that the
birational transforms of T3,3 and T2,3 do not meet, denote the exceptional
curves by T1 and B. Denote the resulting complete surface by S. Define
D = T3,1 +T3,2 +T3,3 +T2,1 +T2,2 +T2,3 +T1 +B, S = S−D and S′ = S/Ê.
Clearly, D is a fork with δ(D) = 1, B2 = −1 and other components of D
are (−2)-curves.

Figure 5.3. (Y2c), after contraction

Lemma 5.3. — In the case (Y1d) there are three singular fibers (see
Fig. 5.4): F∞ = T1,2 + 2B + T3,2, F1 = L1 + E1 + E2 + L2 and F2 =
M + T2,1 + L3, where Ê = E1 + E2 = [2, 2] and L1, L2, L3,M are (−1)-
curves. T3,1 ·M = T3,1 ·L1 = 1, T1,1 ·L2 = T1,1 ·M = 1, T2,2 ·L1 = T2,2 ·L2 =
T2,2 ·L3 = 1 and T2,2∩T2,1 6= T2,2∩L3. There exists a morphism θ : S → P2
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contracting the divisor B +M + L1 + L2 + L′1 + L′2 + L′′1 + L′′2 consisting
of disjoint (−1)-curves, such that the image of T1,2 + T2,2 + T3,2 is a triple
of lines intersecting in θ(B) and the image of T1,1 + T2,1 + T3,1 is a triple
of lines intersecting in θ(M) (see Fig. 5.6). Moreover, θ(T1,2) ∩ θ(T2,1),
θ(T2,2) ∩ θ(T3,1), θ(T3,2) ∩ θ(T1,1) lie on a line θ(E1) and θ(T1,2) ∩ θ(T3,1),
θ(T2,2) ∩ θ(T1,1), θ(T3,2) ∩ θ(T2,1) lie on a line θ(E2).

Figure 5.4. (Y1d), ruling Figure 5.5. (Y1d), contraction

Proof. — We have Σ = 2, so by (3) there exist fibers F1 = [1, (k1), 1],
F2 = [1, (k2), 1] with k1, k2 > 0. Since Ê = [2, 2] by (5) and singular
fibers with σ = 1 are of type [2, 1, 2], we can assume that Ê ⊆ F1 and
k1 = 2. Since Dv is connected, there are no more singular fibers besides
F∞, hence T2,1 ⊆ F2 and k2 = 1. Let M ⊆ F2 be the (−1)-curve not
intersecting T2,2. By 3.4 T1,1 + T3,1 intersects M , so by symmetry we can
assume that T3,1 does. Let L1 be the (−1)-curve of F1 intersecting T3,1.
The contraction of F∞−T3,2 +F1−L1 +F2−M does not touch T3,1 and the
images of T3,1 and T1,1 are two disjoint sections on a Hirzebruch surface,
hence the image of T1,1 must have self-intersection 2 and we infer that
the contraction touches T1,1 exactly four times. Since k2 = 2, it follows
that T1,1 does not intersect L1 and intersects M (see Fig. 5.4). Clearly,
the analogous rulings of S induced by F ′∞ = T1,2 + 2B + T2,2 or F ′′∞ =
T2,2+2B+T3,2 have analogous structure of singular fibers and configuration
of special horizontal components. Denote the (−1)-curves of the fibers of
these rulings containing Ê as L′1, L′2 and L′′1 , L′′2 respectively. It is easy to
see that L1, L

′
1, L
′′
1 , L2, L

′
2, L
′′
2 are disjoint. For example, for i = 1, 2 we have

Li · F ′∞ = 1, so Li · (L′1 + L′2) = 0. Let ω : S → S̃ be the contraction of all
these exceptional curves. For any i, j, k ∈ {1, 2} we have ω(Ti,1)·ω(Tj,2) = 1,
ω(Ti,j)2 = 0 and ω(Ek)2 = 1. We see also that ω(Ek) meets each Ti,j once
and only in points being images of curves contracted by ω (see Fig. 5.5).
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Now since b2(S̃) = b2(S) − 6 = 3, the P1-ruling p̃ : S̃ → P1 induced
by ω(T1,2) has only one singular fiber F̃ = [1, 1]. Furthermore, M is not
touched by ω and ω(T1,2) ·M = 0, so F̃ = M +N , where N is a birational
transform of some S0-component (see Fig. 5.5). We have ω(Ti,j)·N = 0 and
B · N = 1. If we define θ as the composition of ω with the contraction of
B+M then the properties of θ stated in the thesis follow (see Fig. 5.6). �

Figure 5.6. (Y1d), after contraction

Construction 5.4. — Let P1 =[0, 1, 1], P2 =[1, 1, 0], Q1 =[1, 0, 0], Q2 =
[0, 0, 1] be points in P2

(x,y,z). The lines Q1P1, Q1P2, Q2P1 and Q2P2 have
equations y = z, z = 0, x = 0 and x = y. Put P3 = [1, ε, ε − 1], where
ε = −ζ for some primitive third root of unity ζ. Then the points Q1P1 ∩
Q2P2 = [1, 1, 1], Q1P2 ∩Q2P3 = [ε, ε− 1, 0], Q1P3 ∩Q2P1 = [0, 1, ε] lie on
a line E2 = {(1 − ε)x + εy = z} and the points Q1P1 ∩ Q2P3 = [1, ε, ε],
Q1P2∩Q2P1 = [0, 1, 0], Q1P3∩Q2P2 = [1, 1, ε] lie on a line E1 = {z = εx}.
Blow once inQ1 andQ2 and denote the exceptional curve of the first blowup
by B. Blow once in each of the six points of intersection of lines QiPj with
E1 + E2. Let D be the divisor consisting of the proper transforms of B
and of lines QiPj . Denote the resulting surface by S and put S = S \ D,
S′ = S/Ê, where Ê = E1+E2. Clearly, D is a fork with δ(D) = 1, B2 = −1
and D −B + Ê consists of (−2)-curves.

Remark 5.5. — Notice that the points Q3 = E1∩E2 = [1, 1+ε, ε], P1 =
[0, 1, 1], P2 = [1, 1, 0] and P3 = [1, ε, ε−1] lie on a common line L : y = x+z.
Then the set of twelve points

⋃3
i=1{Qi, Pi} ∪ (E1 ∪E2) ∩

⋃3
i,j=1 Ti,j (with

Ti,j as on the picture 5.6) and of nine lines
⋃2
i,j=1{Ti,j} ∪ {E1, E2, L} is a

famous dual Hesse configuration (123, 94), which is dual to the configuration
of nine flexes on a smooth cubic and lines joining them (cf. [2] and [3]).
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Recall that (ab, cd)-configuration is a configuration of a points and c lines,
such that each point lies on b lines and each line contains d points. This
configuration has the property that each point belongs to three lines, so by
the projective dual of the Sylvester-Gallai theorem, it cannot be realized
in RP2.

We now prove the theorem 1.4.

Proof. — It follows from 4.4 (or rather from its proof) that S′ is of type
SY {2, 4, 4} or SY {3, 3, 3} (cf. 4.5). If S′ is of type SY {2, 4, 4} then the
analysis of the ruling (Y2c) of S done in 5.1 implies that it can be con-
structed as in 5.2. The construction was determined uniquely by a choice
of a smooth conic in P2 and an ordered triple of distinct points on it,
hence S′ of type SY {2, 4, 4} is unique up to isomorphism. Clearly, the sur-
faces S′ of type SY {2, 4, 4} and of type SY {3, 3, 3} are non-isomorphic,
because their singularities are of different type. We now prove that if
S′ is of type SY {3, 3, 3} then it can be constructed as in 5.4. Let θ :
S → P2 be as in 5.3, put Q1 = θ(B), Q2 = θ(M), P1 = θ(T1,2 ∩ T1,1)
and P2 = θ(T3,2 ∩ T3,1), we can assume that their coordinates are as in
5.4. Since P3 = θ(T2,2 ∩ T2,1) 6∈ P1Q2, we can write P3 = [1, ε, u] for
some ε, u ∈ C. The condition of collinearity of θ(T1,2) ∩ θ(T2,1) = [1, ε, ε],
θ(T2,2) ∩ θ(T3,1) = [ε, ε, u], θ(T3,2) ∩ θ(T1,1) = [0, 1, 0] implies u = ε2

and the condition of collinearity of θ(T1,2) ∩ θ(T3,1) = [1, 1, 1], θ(T2,2) ∩
θ(T1,1) = [0, ε, u], θ(T3,2) ∩ θ(T2,1) = [1, ε, 0] implies ε2 − ε + 1 = 0, hence
−ε is a primitive third root of unity. Therefore for a fixed choice of points
P1, P2, Q1, Q2 there are two choices for P3, denote them by P3 and P ′3. The
construction was determined uniquely by a choice of a quadruple of distinct
points in P2 and a primitive third root of unity, hence up to isomorphism
there are at most two surfaces S′ of type SY {3, 3, 3}. For (P1, P2, Q1, Q2)
fixed the collinearity conditions determine the set {P3, P

′
3}. Moreover, the

role of P1 and P2 is symmetric, so the quadruples (P1, P2, Q1, Q2) and
(P2, P1, Q1, Q2) determine the same set {P3, P

′
3}. The automorphism σ ∈

AutP2 given by 1 −1 0
0 −1 0
0 −1 1


fixes Q1 and Q2 and changes P1 with P2. Since σ changes P3 with P ′3, we
conclude that the choices of P3 and P ′3 are equivalent.
We now check that constructions 5.4 and 5.2 result with singular Q-

homology planes with prescribed properties. In each case we have b1(S) = 0,
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b2(S) = 9 and since d(D) 6= 0, the components of D + Ê are inde-
pendent in NS(S) ⊗ Q, hence H2(D + Ê) → H2(S) is an isomorphism.
The homology exact sequence of a pair (S,D) and the Lefschetz dual-
ity give b1(S) = b3(S) = b4(S) = 0 and b2(S) = #Ê. We know that
H2(Ê)→ H2(S) is a monomorphism, so the homology exact sequence of a
pair (S, Ê) gives that S′ is Q-acyclic. The exceptional divisors Ê are resolu-
tions of singular points of type A1 and A2 respectively, so the constructed
S′’s are normal. We check easily that in both cases KS + D# intersects
trivially with all components of D+ Ê, hence KS +D# ≡ 0 by 3.1(i). Then
κ(S) = κ(S0) = 0 by 2.7.

Suppose that the smooth locus S0 admits a C∗-ruling. There exists a
modification (S̃, D̃ + Ẽ) → (S,D + Ê) over D + Ê, such that this rul-
ing extends to a P1-ruling π : S̃ → P1. We can assume that D̃ + Ẽ

is π-minimal. We have κ(S′) 6= −∞, so there are no sections contained
in Ẽ, hence Ẽ = Ê. The divisor D does not contain components with
non-negative self-intersection, which implies that this property holds for
D̃ too. Suppose #D̃h = 1. We have ν = 1 by 3.1(iv), so there exists a
fiber F∞ ⊆ D̃. Since D̃ is simply connected, F∞ can intersect Dh only
in a branching point of π|D̃h

, hence by π-minimality F∞ = [2, 1, 2]. The
contractions minimalizing D̃ cannot contract components of F∞, hence
D contains two (−2)-tips as maximal twigs, a contradiction. Therefore
we can write D̃h = D0 + D∞ and we have Σ = ν 6 1 by 3.1(iv). If
ν > 0 then D0 + D∞ intersects the fiber contained in D̃ in two different
points, so this fiber is smooth by the π-minimality of D̃, which contra-
dicts the fact that all components of D̃ have negative self-intersection.
Thus Σ = ν = 0. Now κ(S0) = 0 implies that F · (KS + D̃ + Ê)− =
F · (K

S̃
+ D̃ + Ê) = 0, so D0 and D∞ are not contained in maximal

twigs of D̃, because are not contained in Supp(K
S̃

+ D̃ + Ê)−. The di-
visor D̃ is simply connected, so there exists a unique fiber F0, such that
F0 ∩ D̃ is connected. By the π-minimality of D̃ other singular fibers are
chains intersected by D0 and D∞ in tips. It follows that there are at
least two such fibers, otherwise D0 and D∞ would be contained in max-
imal twigs of D̃. This implies that D0 and D∞ are branching in D̃ and
since exceptional components of D̃ can appear only in F0, after the snc-
minimalization of D̃ the images of D0 and D∞ are branching in D, a
contradiction. �

Corollary 5.6. — AutSY {3, 3, 3} ∼= Z3 and AutSY {2, 4, 4} ∼= Z2.
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Proof. — Let η be an automorphism of a surface S′ = SY {3, 3, 3} or
SY {2, 4, 4}. Since D + Ê does not contain curves with non-negative self-
intersection, η|S0 extends to η ∈ Aut(S,D + Ê).

Suppose S′ = SY {3, 3, 3}. We proved that S′ can be constructed as in
5.4, so we can assume that θ : S → P2 maps B to Q1 andM to Q2 and maps
the set of nodes of D−B to the fixed set of three points {P1, P2, P3} ⊆ P2

(we showed in the proof of the main theorem that Q1, Q2, P1, P2 can be
fixed arbitrarily and then up to an automorphism of P2 fixing Q1, Q2 and
{P1, P2} there is only one choice for P3). Notice that η fixes B and M and
acts on {L1, L

′
1, L2, L

′
2, L3, L

′
3}, hence descends to η̃ ∈ AutP2 = θ(S) fixing

Q1, Q2 and {P1, P2, P3}. The automorphism of P2 is defined uniquely by
specifying the images of four points in a general position, so AutS′ < S3.
However, σ defined in the proof of 1.4, which fixes Q1, Q2 and exchanges P1
with P2, does not fix P3, hence AutS′ < Z3. We conclude that AutS′ ∼= Z3
with the generator in the coordinates as before given by (x, y, z) → (x −
y,−εy,−εy + z), where ε = −ζ for some primitive third root of unity ζ.
Suppose S′ = SY {2, 4, 4}. We proved that S′ can be constructed as in

5.2. Since η permutes M with M ′ and T2,i with T3,i for i = 1, 2, 3, by the
definition of the contraction θ : S → P2 it descends to η̃ ∈ AutP2 fixing
P1, {P2, P3} and {T2,3, T3,3}. Notice that if η(T2,3) = T2,3 then, since η
fixes Ê and Ê is tangent to T2,3 only at P2, η fixes each Pi, hence is an
identity. It follows that if η is non-trivial then η(T2,3) = T3,3. Moreover,
AutS′ < Z2. In fact AutS′ ∼= Z2, with the generator (for conics and points
as in 5.2) given by (x, y, z)→ (x,−y, z). �

Remark 5.7. — Let MD and M be the 3-dimensional manifolds, which
are boundaries of closures of tubular neighborhoods of D and Ê in S.
By [19] we compute that H1(MD,Z) ∼= Z16 ⊕ Z2, H1(M,Z) ∼= Z2 for
SY {2, 4, 4} and H1(MD,Z) ∼= Z9 ⊕ Z3, H1(M,Z) ∼= Z3 for SY {3, 3, 3}.
Having this it in not difficult to prove that |H1(SY {2, 4, 4},Z)| = 4 and
|H1(SY {3, 3, 3},Z)| = 3.

In view of the results of [22] it is an interesting question if the contraction
θ : S → P2 can be chosen so that θ∗D+θ∗Ê is a sum of lines. This is clearly
so for SY {3, 3, 3} (cf. 5.1) and is also possible for SY {2, 4, 4}. Let S be an
snc-minimal completion of a resolution of SY {2, 4, 4}. We denote the twigs
of D as before, i.e. T1 = [2], T2 = [2, 2, 2], T3 = [2, 2, 2]. Let π′ : S → P1 be
a P1-ruling induced by a 0-curve T2,3 + 2B + T3,3. Let L1, L2, M and M ′
be (−1)-curves on S as defined in 5.1.
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Lemma 5.8. — The ruling π′ defined above has three singular fibers
besides F∞ = T2,3 + 2B + T3,3 (see Fig. 5.7): F0 = U2 + Ê + U3, F1 =
U1 + L1 and F2 = T2,1 + U4 + T3,1, where Ê = [2] and U1, U2, U3, U4
are (−1)-curves. We have T1 · U2 = T1 · U3 = T1 · U4 = 1, T1 · U1 = 2
and T2,2 · U2 = T3,2 · U3 = 1. The morphism θ′ : S → P2 contracting
B + M + M ′ + L1 + U1 + U4 + U2 + T3,2 + L2 maps D + Ê into a set of
lines. Namely, θ′(T2,3), θ′(T1) and θ′(T3,3) are lines intersecting in θ′(B),
θ′(T2,3), θ′(Ê) and θ′(T3,1) are lines intersecting in θ′(M) and θ′(T2,1) is a
line through θ′(T3,3) ∩ θ′(E) = θ′(M ′) and θ′(T3,1) ∩ θ′(T1) = θ′(U4) (see
Fig. 5.8).

Figure 5.7. SY {2, 4, 4}, ruling π′ Figure 5.8. SY {2, 4, 4}, image of θ′

Proof. — In the proof of 4.4 we have shown that KS + D# ≡ 0. Let U
be an S0-component of some singular fiber of π′. Since U ·D# > 0, we have
U ·KS < 0, so U is a (−1)-curve. Then U ·D# = 1, so computing BkD we
get 2U ·Dh+U ·(T2,1+T3,1) = 4. Let F2 be a fiber containing T2,1 and let U4
be the S0-component intersecting it. Then, since U4 ·(T2,1+T3,1) is even and
since F2 is a tree, we get U4 · T3,1 > 0, so in fact U4 · T2,1 = U4 · T3,1 = 1.
Moreover, F 2 = T2,1 + U4 + T3,1 and U4 · Dh = 2, which implies that
U4, having multiplicity 2, intersects the 2-section T1. It follows that all
remaining S0-components U have U ·Dh = 2. Since L1 · Ê = 0 (cf. Fig. 5.1)
and the fiber F1 containing L1 has noD-components, L1 intersects some S0-
component U1, so F1 = L1+U1. We have L1 ·T3,2 = L1 ·T2,2 = 1, so U1 ·T1 =
2. The fiber F0 containing Ê has no D-components, so F0 = U1 +Ê+U2 for
some (−1)-curves U1, U2. By 3.1(iv) ΣS0 = 2 for π′, so there are no more
singular fibers. Recall that U2 ·Dh = U3 ·Dh = 2. It follows that each of U2
and U3 intersects some 1-section contained in D, because if, say, T1 ·U2 = 0
then the contraction of F∞ − T3,3 + F0 − U2 + U1 + F 2 − T3,1 does not
touch T3,2 and touches T2,2 twice, which would result with disjoint 0- and
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(−2)-curves as sections on a Hirzebruch surface. One can easily check that
the divisors B+L1 +U4 +U2 +T3,2 andM+M ′+L2 do not intersect, which
implies that the contraction of G = B+L1 +U4 +U2 +T3,2 +M +M ′+L2

defines a morphism θ′ : S → P2. Each component of D+Ê not contained in
G has the intersection number with G equal to three, hence each maps to
a line in P2 and the configuration of lines can be checked to be the one on
the picture 5.8. In particular, taking out any of the lines θ′(T2,1), θ′(T2,2)
or θ′(T2,3) we get complete quadrangle configurations (43, 62). �
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