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MINIMAL GRAPHS IN Hn × R AND Rn+1

by Ricardo SÀ EARP & Eric TOUBIANA (*)

Abstract. — We construct geometric barriers for minimal graphs in Hn × R.
We prove the existence and uniqueness of a solution of the vertical minimal

equation in the interior of a convex polyhedron in Hn extending continuously to the
interior of each face, taking infinite boundary data on one face and zero boundary
value data on the other faces.

In Hn × R, we solve the Dirichlet problem for the vertical minimal equation in
a C0 convex domain Ω ⊂ Hn taking arbitrarily continuous finite boundary and
asymptotic boundary data.

We prove the existence of another Scherk type hypersurface, given by the so-
lution of the vertical minimal equation in the interior of certain admissible poly-
hedron taking alternatively infinite values +∞ and −∞ on adjacent faces of this
polyhedron.

We establish analogous results for minimal graphs when the ambient is the
Euclidean space Rn+1.
Résumé. — Nous construisons des barrières géométriques dans Hn × R.
Nous prouvons l’existence et l’unicité d’une solution de l’équation du graphe

vertical minimal sur l’intérieur d’un polyhèdre convexe de Hn qui se prolonge sur
l’intérieur de chaque face, prenant la valeur infinie sur une face et la valeur zéro
sur les autres faces.

Dans Hn×R, nous résolvons le problème de Dirichlet pour l’équation du graphe
vertical minimal sur un domaine C0 convexe Ω ⊂ Hn prenant des données continues
arbitraires sur le bord fini et le bord asymptotique de Ω.

Nous prouvons l’existence d’une autre hypersurface de type Scherk, donnée par
la solution de l’équation du graphe vertical minimal sur l’intérieur d’un certain
polyhèdre admissible prenant alternativement les valeurs +∞ et −∞ sur les faces
adjacentes.

Nous établissons des resultats analogues pour des graphes minimaux dans Rn+1.

Keywords: Dirichlet problem, minimal equation, vertical graph, Perron process, barrier,
convex domain, asymptotic boundary, translation hypersurface, Scherk hypersurface.
Math. classification: 53C42, 35J25.
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1. Introduction

In Euclidean space, H. Jenkins and J. Serrin [12] showed that in a
bounded C2 domain D the Dirichlet problem for the minimal equation
in D is solved for C2 boundary data if and only if the boundary is mean
convex. The theorem also holds in the case that the boundary data is C0

(but the domain is still C2) by an approximation argument [10, Theorem
16.8]. On the other hand, the authors solved the Dirichlet problem in H3 for
the vertical minimal surface equation over a C0 convex domain Ω in ∂∞H3,

taking any prescribed continuous boundary data on ∂Ω [7]. There are also
in this context the general results proved by M. Anderson [1] and [2].
In this paper we study the vertical minimal equation equation in Hn×R

(Definition 3.1) in the same spirit of our previous work when n = 2 [8].
In that paper the authors have given a full description of the minimal
surfaces in H2 × R invariant by translations (cf. [6]). Afterwards, inspired
on this construction, P. Bérard and the first author [3] have given the
minimal translation hypersurfaces in Hn × R and they showed that the
geometric behavior is similar to the two dimensional case. There is also a
one parameter family of such hypersurfaces, denoted again by Md, d > 0.
For instance,M1 is a vertical graph over an open half-space of Hn bounded
by a geodesic hyperplane Π, taking infinite boundary value data on Π and
zero asymptotic boundary value data. We show that the hypersurface M1
provides a barrier to the Dirichlet problem at any point of the asymptotic
boundary of Ω. Moreover, we prove that the hypersurfacesMd (d < 1) give
a barrier to the Dirichlet problem at any strictly convex point of the finite
boundary of Ω.
We prove the existence and the uniqueness of rotational Scherk hyper-

surfaces in Hn ×R and we prove that these hypersurfaces give a barrier to
the Dirichlet problem at any convex point.
Given an admissible convex polyhedron (Definition 5.7), we prove the

existence and uniqueness of a solution of the vertical minimal equation in
int(P) extending continuously to the interior of each face, taking infinite
boundary value on one face and zero boundary value data on the other
faces. We call these minimal hypersurfaces in Hn × R by first Scherk type
(minimal) hypersurface. The hypersurface M1 above plays a crucial role in
the construction.
Using the rotational Scherk hypersurfaces as barriers, we solve the Dirich-

let problem for the minimal vertical equation in a bounded C0 convex do-
main Ω ⊂ Hn taking arbitrarily continuous boundary data. Furthermore,
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using the hypersurface M1 as well, we are able to solve the Dirichlet prob-
lem for the minimal vertical equation in a C0 convex domain Ω ⊂ Hn taking
arbitrarily continuous data along the finite and asymptotic boundary.
We prove the existence of another Scherk type hypersurface, that we

call Scherk second type hypersurfaces, given by the solution of the vertical
minimal equation in the interior of a certain polyhedron taking alternatively
infinite values +∞ and −∞ on adjacent faces of this polyhedron. Those
polyhedra may be chosen convex or non convex.
We establish also that the above results, except the statements involving

the asymptotic boundary, hold for minimal graphs in Rn × R = Rn+1.

Given a non convex admissible domain Ω ⊂ Hn and given certain geo-
metric conditions on the asymptotic boundary data Γ∞ ⊂ ∂∞Hn × R, we
prove the existence of a minimal graph in Hn×R whose finite boundary is
∂Ω and whose asymptotic boundary data is Γ∞.

A further interesting open problem is to prove a “Jenkins-Serrin” type
results in Hn × R. When n = 2 this task was carried out, for instance,
by B. Nelli and H. Rosenberg [14] or by L. Mazet, M. M. Rodriguez
and H. Rosenberg [13]. Recently, A. Coutant [5], under the supervision
of F. Pacard, has obtained Scherk type hypersurfaces in Rn+1 using a dif-
ferent approach.
The knowledge of the n-dimensional hyperbolic geometry is usefull in

this paper. The reader is referred to [9].
The authors are grateful to the referee for his valuable observations.

2. Minimal hypersurfaces invariant
by hyperbolic translations in Hn × R

We recall shortly the geometric description of the family Md of transla-
tion hypersurfaces. First consider a fixed geodesic hyperplane Π of Hn. Let
O ∈ Π be any fixed point and let γ ⊂ Hn be the complete geodesic through
O orthogonal to Π.
For any d > 0, the hypersurfaceMd is generated by a curve in the vertical

geodesic two-plane γ × R. The orbit of a point of the generating curve at
level t is the equidistant hypersurface of Π in Hn×{t} passing through this
point.
As we said in the introduction, for d = 1, the hypersurface M1 is a

complete non entire vertical graph over a half-space of Hn × {0} bounded
by Π, taking infinite value data on Π and zero asymptotic boundary value
data.

TOME 60 (2010), FASCICULE 7
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For any d < 1, the hypersurface Md is an entire vertical graph. For
d > 1, Md is a bi-graph over the exterior of an equidistant hypersurface in
Hn = Hn × {0}.
The generating curve of Md is given by the following explicit form:

(2.1) t = λ(ρ) =
∫ ρ

a

d√
cosh2n−2 u− d2

du, (a > 0)

where ρ denotes the signed distance on γ with respect to the point O. More
precisely: if d > 1 then a > 0 satisfies coshn−1(a) = d and ρ > a, if d = 1
then ρ > a > 0 and if d < 1 then a = 0 and ρ ∈ R. Observe that if d < 1
then λ is an odd function of ρ ∈ R.

It can be proved in the same way as in Proposition 2.1 of [8] that for any
ρ > 0 we have

(2.2) λ(ρ)→ +∞, if d→ 1 (d 6= 1). (Md - Property)

3. Vertical minimal equation in Hn × R

Definition 3.1 (Vertical graph). — Let Ω ⊂ M be a domain in a n-
dimensional Riemannian manifold M and let u : Ω → R be a C2 function
on Ω. A vertical graph in the product space M ×R is a set G = {(x, u(x)) |
x ∈ Ω}. We call u the height function.
Let X be a vector field tangent toM.We denote by ∇Mu and by divM X

the gradient of u and the divergence of X, respectively. We define WMu :=√
1 + ‖∇Mu‖2M .

The following proposition is straightforward but we will write it in a
suitable form to establish the reflection principle we need.

Proposition 3.2 (Mean curvature equation inM×R). — Assume that
the domain Ω ⊂ M in coordinates (x1, . . . , xn) is endowed by a conformal
metric λ2(x1, . . . , xn)

(
dx2

1 + · · ·+ dx2
n

)
. Let H be the mean curvature of

a vertical graph G. Then the height function u(x1, . . . , xn) satisfies the
following equation

nH = divM
(
∇Mu
WMu

)
:=Mc(u)

=
n∑
i=1

nλxiuxi

λ3
√

1 + λ−2‖∇u‖2Rn
+

n∑
i=1

∂

∂xi

(
λ−2 uxi√

1 + λ−2‖∇u‖2Rn

)
(Mean curvature equation).

(3.1)
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Proof. — Consider in the conformal coordinates (x1, . . . , xn) the frame
field Xk = ∂

∂xk
, k = 1, . . . , n. Then the upper unit normal field N is given

by

N =
−λ−2

n∑
i=1

uxi
∂
∂xi

+ ∂
∂t√

1 + ‖∇u‖2M
= −∇Mu

WMu
+ 1
WMu

∂

∂t
.

We call Nh := −∇Mu
WMu

the horizontal component of N (lifting of a vector
field tangent to M). Now using the properties of the Riemannian connec-
tion, we infer that the divergence of N in the ambient space M×R is given
by divM×RN = divM Nh. On the other hand we have, divM×RN = −nH,
hence we obtain the first equation in the statement of the proposition.
Finally, the second equation follows from a simple derivation. �

From Proposition 3.2, we deduce the minimal vertical equation or simply
minimal equation in Hn × R (Mc(u) = 0). We observe that this equation
was obtained in a more general setting by Y.-L. Ou [15, Proposition 3.1].

Corollary 3.3 (Minimal equation in Hn × R). — Let us consider the
upper half-space model of hyperbolic space: Hn = {(x1, . . . , xn) ∈ Rn |
xn > 0}. If H = 0, then the height function u(x1, . . . , xn) of a vertical
minimal graph G satisfies the following equation

(3.2) Mc(u) := divRn

(
∇Rnu√

1 + x2
n(u2

x1
+ · · ·+ u2

xn)

)

+ (2− n)uxn
xn
√

(1 + x2
n(u2

x1
+ · · ·+ u2

xn)
= 0,

or equivalently
n∑
i=1

(
1 + x2

n(u2
x1

+ · · ·+ û2
xi + · · ·+ u2

xn)
)
uxixi

+
(2− n)

(
1 + x2

n(u2
x1

+ · · ·+ u2
xn)
)
uxn

xn
− 2x2

n

∑
i<k

uxiuxkuxixk

− xnuxn
(
u2
x1

+ · · ·+ u2
xn

)
= 0 (Minimal equation).

For example the hypersurfaces Md, d ∈ (0, 1), are entire vertical graphs
whose the height function satisfies Equation (3.2). Other examples are pro-
vided by the half part of the hypersurfaces Md, d > 1, and the half part of
the n-dimensional catenoid, [3] and [8].

Now we state the classical maximum principle and uniqueness for the
equation (3.2).

TOME 60 (2010), FASCICULE 7



2378 Ricardo SÀ EARP & Eric TOUBIANA

Remark 3.4 (Classical maximum principle). — Let Ω ⊂ Hn be a boun-
ded domain and let g1, g2 : ∂Ω → R be continuous functions satisfying
g1 6 g2. Let ui : Ω → R be a continuous extension of gi on Ω satisfying
the minimal equation (3.2) on Ω, i = 1, 2, then we have u1 6 u2 on Ω.
Consequently, setting g1 = g2, there is at most one continuous extension of
g1 on Ω satisfying the minimal surface equation (3.2) on Ω.
We will need also a maximum principle involving the asymptotic bound-

ary.
Let Ω ⊂ Hn be an unbounded domain and let g1, g2 : ∂Ω∪ ∂∞Ω→ R be

bounded functions satisfying g1 6 g2. Assume that g1 and g2 are continuous
on ∂Ω. Let ui : Ω ∪ ∂Ω→ R be a continuous extension of gi satisfying the
minimal equation (3.2) on Ω, i = 1, 2, such that for any p ∈ ∂∞Ω we have

lim sup
q→p

u1(q) 6 g1(p) 6 g2(p) 6 lim inf
q→p

u2(q),

then we have u1 6 u2 on Ω.
We observe that this maximum principle holds assuming the weaker

assumptions Mc(u1) > 0 and Mc(u2) 6 0 in Ω (instead of Mc(u1) =
Mc(u2) = 0).

We shall need in the sequel the following important result of J. Spruck.

Remark 3.5 (Spruck’s result on graphs in Hn ×R). — We remark that
among other pioneering and general results onH-graphs inM×R, J. Spruck
obtained interior a priori gradient estimates depending on a priori height
estimates and the distance to the boundary, [16, Theorem 1.1]. Combining
this with classical elliptic theory one obtains a compactness principle: any
bounded sequence (un) of solutions of Equation (3.2) on a domain Ω ⊂ Hn
admits a subsequence that converges uniformly on any compact subset of
Ω to a solution u of Equation (3.2) on Ω.

Lemma 3.6 (Reflection principle for minimal graphs in Hn×R). — Let
Ω ⊂ Hn be a domain whose boundary contains an open set VΠ of a geodesic
hyperplane Π of Hn. Assume that Ω is contained in one side of Π and that
∂Ω ∩Π = VΠ.

Let I be the reflection in Hn with respect to Π and let u : Ω → R
be a solution of the minimal equation (3.2) that is continuous up to VΠ
and taking zero boundary value data on VΠ. Then u can be analytically
extended across VΠ to a function ũ : Ω ∪ VΠ ∪ I(Ω) → R satisfying the
minimal equation (3.2), setting ũ = u(p), if p ∈ Ω ∪ VΠ and ũ = −u(I(p)),
if p ∈ I(Ω).

ANNALES DE L’INSTITUT FOURIER
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Proof. — Without loss of generality, we will consider the upper half-
space model for Hn. Let u : Ω ⊂ Hn → R be a C2 solution of the minimal
equation (3.2).
We first note that the proof of the assertion does not depend on the

choice of the geodesic hyperplane Π. Therefore, by applying an ambient
horizontal isometry to the minimal graph G, if necessary, we may assume
that, without loss of generality, Π = {(x1, x2 . . . , xn) ∈ Hn | x1 = 0} and
we assume that Ω ⊂ Π+ := {(x1, x2 . . . , xn) ∈ Hn | x1 > 0}.
Notice that setting w(x1, x2, . . . , xn) := −u(−x1, x2, . . . , xn) for any

(x1, . . . , xn) ∈ I(Ω), then it is simple to verify, on account of (3.2), that
w also satisfies the minimal equation on I(Ω). Now let p be an interior
point of VΠ and let Br(p) ⊂ Hn be a small ball around p of radius r
entirely contained in Ω ∪ VΠ ∪ I(Ω). Let ∂B+

r (p) := ∂Br(p) ∩ Π+ and
let f : ∂B+

r (p) → R be the restriction of u to ∂B+
r (p). We now extend

continuously f to the whole sphere ∂Br(p) of radius r by odd extension.
For simplicity we still denote this extension by f . We call v the mini-
mal extension of f on Br(p) given by Spruck [16, Theorem 1.5], and also
by the proof of Theorem 4.5-(1). Notice that the maximum principle en-
sures that v is the unique solution of the minimal equation in Br(p) tak-
ing the continuous boundary value data f at ∂Br(p). Therefore we have
v(−x1, x2, . . . , xn) = −v(x1, . . . , xn) for any (x1, . . . , xn) ∈ Br(p) and thus
v(0, x2, . . . , xn) = 0 for any (0, x2, . . . , xn) ∈ VΠ.

The maximum principle again guarantees that v coincides with u on
Ω ∩ Br(p), hence the existence of the minimal extension of f ensures the
desired analytic extension of u to Br(p). This completes the proof. �

4. Perron process for the minimal equation in Hn × R

The notions of subsolution, supersolution and barrier for equation (3.2)
are the same as in the two dimensional case, which is treated with details
by the authors in [7] and [8].

Definition 4.1 (Problem (P )). — In the product space Hn × R, we
consider the ball model for the hyperbolic plane Hn. Let Ω ⊂ Hn, be a
domain.
Let g : ∂Ω∪∂∞Ω→ R be a bounded function. We consider the Dirichlet

problem, say problem (P ), for the vertical minimal hypersurface equation
(3.2) taking at any point of ∂Ω ∪ ∂∞Ω prescribed boundary (finite and

TOME 60 (2010), FASCICULE 7
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asymptotic) value data g. More precisely,

(P )


u ∈ C2 (Ω) and M(u) = 0 in Ω,
for any p ∈ ∂Ω ∪ ∂∞Ω where g is continuous, u extends
continuously at p setting u(p) = g(p).

Now, let u : Ω ∪ ∂Ω→ R be a continuous function.
Let U ⊂ Ω be a closed round ball in Hn. We then define the continuous

function MU (u) on Ω ∪ ∂Ω by:

MU (u)(x)
{
u(x) if x ∈ Ω ∪ ∂Ω \ U
ũ(x) if x ∈ U

(4.1)

where ũ is the minimal extension of u|∂U on U given by Spruck [16, Theorem
1.5] and also by the proof of Theorem 4.5-(1).
We say that u is a subsolution (resp. supersolution) of (P ) if:

i) For any closed round ball U ⊂ Ω we have
u 6MU (u) (resp. u >MU (u)).

ii) u|∂Ω 6 g (resp. u|∂Ω > g).
iii) We have lim supq→p u(q) 6 g(p) (resp. lim infq→p u(q) > g(p)) for

any p ∈ ∂∞Ω.

Remark 4.2. — We now give some classical facts about subsolutions
and supersolutions (cf. [4], [7],[8]).

(1) It is easily seen that if u is C2 on Ω, the condition i) above is equiv-
alent toMc(u) > 0 for subsolution orMc(u) 6 0 for supersolution.

(2) As usual if u and v are two subsolutions (resp. supersolutions) of
(P ) then sup(u, v) (resp. inf(u, v)) again is a subsolution (resp. su-
persolution).

(3) Also if u is a subsolution (resp. supersolution) and U ⊂ Ω is a closed
round ball then MU (u) is again a subsolution (resp. supersolution).

(4) Let φ (resp. u) be a supersolution (resp. a subsolution) of problem
(P ), then we have u 6 φ on Ω. Moreover, for any closed round ball
U ⊂ Ω we have u 6MU (u) 6MU (φ) 6 φ.

Definition 4.3 (Barriers). — We consider the Dirichlet problem (P ),
see Definition 4.1. Let p ∈ ∂Ω ∪ ∂∞Ω be a boundary point where g is
continuous.

(1) • Assume first that p ∈ ∂Ω. Suppose that for any M > 0 and for
any k ∈ N there is an open neighborhood Nk of p in Hn and a
function ω+

k (resp. ω−k ) in C2(Nk ∩ Ω) ∩ C0(Nk ∩ Ω) such that

ANNALES DE L’INSTITUT FOURIER
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i) ω+
k (x)|∂Ω∩Nk > g(x) and ω+

k (x)|∂Nk∩Ω >M

(resp. ω−k (x)|∂Ω∩Nk 6 g(x) and ω−k (x)|∂Nk∩Ω 6 −M).
ii) Mc(ω+

k ) 6 0 (resp.Mc(ω−k ) > 0) in Nk ∩ Ω.
iii) limk→+∞ ω+

k (p) = g(p) (resp. limk→+∞ ω−k (p) = g(p)).
• If p ∈ ∂∞Ω, then we choose for Nk an open set of Hn containing
a half-space with p in its asymptotic boundary. We recall that a
half-space is a connected component of Hn \ Π for any geodesic
hyperplane Π. Then the functions ω+

k and ω−k are in C2(Nk ∩Ω) ∩
C0(Nk ∩ Ω)and satisfy:
i) ω+

k (x)|∂Ω∩Nk > g(x) and ω+
k (x)|∂Nk∩Ω >M

(resp. ω−k (x)|∂Ω∩Nk 6 g(x) and ω−k (x)|∂Nk∩Ω 6 −M).
ii) For any x ∈ ∂∞(Ω∩Nk) we have lim infy→x ω+

k (y) > g(x) (for
y ∈ Nk ∩ Ω) (resp. lim supy→x ω−k (y) > g(x)).

iii) Mc(ω+
k ) 6 0 (resp.Mc(ω−k ) > 0) in Nk ∩ Ω.

iv) limk→+∞
(
lim infq→p ω+

k (q)
)

= g(p) and
limk→+∞

(
lim supq→p ω−k (q)

)
= g(p).

(2) Suppose that p ∈ ∂Ω and that there exists a supersolution φ (resp.
a subsolution η) in C2(Ω) ∩ C0(Ω) such that φ(p) = g(p) (resp.
η(p) = g(p)).

In both cases (1) or (2) we say that p admits an upper barrier (ω+
k , k ∈ N

or φ) (resp. lower barrier ω−k , k ∈ N or η) for the problem (P ). If p admits
an upper and a lower barrier we say more shortly that p admits a barrier.

Definition 4.4 (C0 convex domains).
(1) We say that a C0 domain Ω is convex at p ∈ ∂Ω, if a neighborhood

of p in Ω lies in one side of some geodesic hyperplane of Hn passing
through p.

(2) We say that a C0 domain Ω is strictly convex at p ∈ ∂Ω if a neigh-
borhood Up ⊂ Ω of p in Ω lies in one side of some geodesic hyper-
plane Π of Hn passing through p and if Up ∩Π = {p}.

We are then able to state the following result.

Theorem 4.5 (Perron process). — Let Ω ⊂ Hn be a domain and let
g : ∂Ω∪∂∞Ω→ R be a bounded function. Let φ be a bounded supersolution
of the Dirichlet problem (P ), for example the constant function φ ≡ sup g.
Set Sφ = {ϕ, subsolution of (P ), ϕ 6 φ}. We define for each x ∈ Ω

u(x) = sup
ϕ∈Sφ

ϕ(x).

(Observe that Sφ 6= ∅ since the constant function ϕ ≡ inf g belongs to Sφ).

TOME 60 (2010), FASCICULE 7
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We have the following:
(1) The function u is C2 on Ω and satisfies the vertical minimal equa-

tion (3.2).
(2) Let p ∈ ∂∞Ω be an asymptotic boundary point where g is continu-

ous. Then p admits a barrier and therefore u extends continuously
at p setting u(p) = g(p); that is, if (qm) is a sequence in Hn such
that qm → p, then u(qm) → g(p). In particular, if g is continuous
on ∂∞Ω then the asymptotic boundary of the graph of u is the
restriction of the graph of g to ∂∞Ω.

(3) Let p ∈ ∂Ω be a finite boundary point where g is continuous. Sup-
pose that p admits a barrier. Then the solution u extends continu-
ously at p setting u(p) = g(p).

(4) If ∂Ω is C0 strictly convex at p then u extends continuously at p
setting u(p) = g(p).

Proof. — The proof of (1) follows as in [7, Theorem 3.4]. We will give
now some details. To obtain the solution u we need a compactness principle
and we also need that for any y ∈ Ω there exists a round closed ball B ⊂ Ω
such that y ∈ int(B) and such that the Dirichlet problem (P ) can be solved
on B for any continuous boundary data on ∂B.
The compactness principle was shown by Spruck, see [16]. The resolution

of the Dirichlet problem on B may also be encountered in [16], neverthe-
less we give some details for an alternative proof. Working in the half space
model of Hn, B can be seen as an Euclidean ball centered at y of radius
R > 0. Assume first that h is a C2,α function on ∂B. Observe that the eigen-
values of the symmetric matrix of the coefficients of uxixj in Equation (3.2)
are 1 and (WMu)2 = 1 + x2

n(u2
x1

+ · · · + u2
xn), the last with multiplicity

n − 1. Therefore, if R is small enough, then the equation (3.2) satisfies
the structure conditions (14.33) in [10, Chapter 14]. Thus Corollary 14.5
in [10] shows that there exist a priori boundary gradient estimates. Then
the classical elliptic theory provides a C2,α solution of (P ), see for example
[10, Chapter 11]. Finally, for continuous boundary data h on ∂B, we use
an approximation argument.
Let us proceed the proof of the assertion (2). Let p ∈ ∂∞Ω, we want

to show that the minimal hypersurface M1 provides an upper and a lower
barrier at p. Let k ∈ N∗, since g is continuous at p, there exists a neighbor-
hood U of p in Hn ∪ ∂∞Hn such that for any q ∈

(
∂Ω∪ ∂∞Ω

)
∩U we have

g(p)− 1/2k < g(q) < g(p) + 1/2k.
Let Π be a geodesic hyperplane such that Π ⊂ U and such that the con-

nected component of Hn \Π lying entirely in U contains p in its asymptotic
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boundary. We choose an equidistant hypersurface Πk of Π in the same con-
nected component of Hn \ Π. We denote by Nk the connected component
of Hn \Πk containing p in its asymptotic boundary.
We can choose Πk such that there exist two copies M+

1 and M−1 of M1
satisfying:

• M+
1 takes the asymptotic boundary value data g(p) + 1/2k on

∂∞Nk, the value data +∞ on Π and a finite value data A >

max
(
g(p) + 1/2k, supΩ φ

)
on Πk.

• M−1 takes the asymptotic boundary value data g(p) − 1/2k on
∂∞Nk, the value data −∞ on Π and a finite value data B < inf g
on Πk.

Let us denote by ω+
k (resp. ω−k ) the function on Nk ∩ Ω whose graph is

the copy M+
1 (resp. M−1 ) of M1. We extend ω−k on Ω setting ω−k (q) = B

for any q ∈ Ω \ Nk, keeping the same notation.

Claim 4.6. — ω−k ∈ Sφ, that is ω
−
k is a subsolution such that ω−k 6 φ.

Claim 4.7. — For any subsolution ϕ ∈ Sφ we have ϕ|Nk∩Ω 6 ω
+
k .

We assume momentarily that the two claims hold. We then have for any
q ∈ Nk ∩ Ω: ω−k (q) 6 u(q) (since ω−k ∈ Sφ and by the very definition of u)
and ϕ(q) 6 ω+

k (q) for any subsolution ϕ ∈ Sφ. We deduce that

ω−k (q) 6 u(q) 6 ω+
k (q)

for any q ∈ Nk ∩ Ω and for any k ∈ N∗. The rest of the argument is
straightforward but we will provide the details for the readers convenience.
We thus have for any q ∈ Nk ∩ Ω:

ω−k (q)−
(
g(p)− 1

2k
)
− 1

2k 6 u(q)− g(p) 6 ω+
k (q)−

(
g(p) + 1

2k
)
+ 1

2k .

Let (qm) be a sequence in Ω such that qm → p. By construction, for m big
enough we have qm ∈ Nk ∩ Ω and

|ω+
k (qm)−

(
g(p) + 1

2k
)
| 6 1

2k , |ω−k (qm)−
(
g(p)− 1

2k
)
| 6 1

2k .

We then have |u(qm)− g(p)| 6 1/k for m big enough, hence u(qm)→ g(p).
We conclude therefore that u extends continuously at p setting u(p) = g(p).

Let us prove Claim 4.6. By construction, ω−k is continuous on Ω and
satisfies ω−k |∂Ω 6 g and lim supy→p ω−k (y) 6 g(p) (y ∈ Ω) for any p ∈ ∂∞Ω.
It is straightforward to show that for any closed round ball U ⊂ Ω we have
MU (ω−k ) > ω−k , see (4.1) in Definition 4.1. Hence ω−k is a subsolution of our
Dirichlet problem (P ). Observe that we have ω−k 6 φ, see Remark 4.2-(4),
thus ω−k ∈ Sφ as desired.
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The proof of Claim 4.7 can be accomplished in the same way as the proof
of Claim 4.6, but we give another proof as follows. Let ϕ ∈ Sφ. Assume by
contradiction that sup|Nk∩Ω(ϕ−ω+

k ) > 0. Since ϕ and ω+
k are bounded on

Nk∩Ω we have sup|Nk∩Ω(ϕ−ω+
k ) < +∞. Let (qm) be a sequence in Nk∩Ω

such that (ϕ−ω+
k )(qm)→ sup|Nk∩Ω(ϕ−ω+

k ). Let q ∈ Nk ∩ Ω∪∂∞(Nk∩Ω)
be any limit point of this sequence. Since

ϕ 6 φ < A = ω+
k

on Πk and
ϕ 6 g < g(p) + 1/2k 6 ω+

k

on ∂Ω ∩Nk, we must have

q ∈ Ω ∩Nk or q ∈ ∂∞Nk.

The first possibility is discarded by the maximum principle. The second
possibility is also discarded since ω+

k > g(p) + 1/2k on Nk and ϕ(qm) <
g(p) + 1/2k if qm ∈ Nk ∩ Ω is close enough of ∂Ω ∪ ∂∞Ω.

We conclude that ω+
k (resp. ω−k ) is an upper (resp. a lower) barrier at

any asymptotic point of Ω in the sense of Definition 4.3-(1).
We remark that the proof of the assertion (3) is analogous to the proof

of the assertion (2), see also [7, Theorem 3.4].
Finally, the proof of the assertion (4) is a consequence of the following.

Claim. — The family Md, d ∈ (0, 1), provides a barrier at any bound-
ary point where Ω is strictly convex and g is continuous.

We proceed the proof of the claim as follows. We choose the ball model
for Hn and we may assume that p = 0. As p is a strictly convex point, there
is a geodesic hyperplane Π ⊂ Hn such that, locally, we have:

Π ∩ ∂Ω = {0} and, locally, Ω lies in one side, say Π+, of Π.

Let M > 0 and k ∈ N∗. We now construct a upper barrier at 0. Let
E(ρ) be the equidistant hypersurface to Π at distance ρ lying in Π+. Let
E+(ρ) be the connected component of Hn \ E(ρ) that contains 0. We call
N the connected component of E+(ρ) ∩ Ω such that 0 ∈ N . Consider the
hypersurfaces Md, d < 1, given by equation (2.1). We choose ρ > 0 such
that g(q) 6 g(0) + 1/k on N ∩ ∂Ω.

Using the Md-Property (2.2), we may choose d near 1, 0 < d < 1, such
that λ(ρ) > M − (g(0)− 1/k). We set w+

k to be the function on N whose
the graph is (a piece of) the vertical translated copy of Md by g(0) + 1/k.
Clearly, the functions w+

k are continuous up to the boundary of N and
give a upper barrier at p in the sense of Definition 4.3-(1). In the same
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way we can construct a lower barrier at p. This completes the proof of the
theorem. �

5. Scherk type minimal hypersurfaces in Hn × R

Definition 5.1 (Special rotational domain). — Let γ, L ⊂ Hn be two
complete geodesic lines with L orthogonal to γ at some point B ∈ γ ∩ L.
Using the half-space model for Hn, we can assume that γ is the vertical
geodesic such that ∂∞γ = {0,∞}. We call P ⊂ Hn the geodesic two-plane
containing L and γ. We choose A0 ∈ (0, B) ⊂ γ and A1 ∈ L \ γ and we
denote by α ⊂ P the euclidean segment joining A0 and A1. Therefore the
hypersurface Σ generated by rotating α with respect to γ has the following
properties.

(1) int(Σ) is smooth except at point A0.
(2) Σ is strictly convex in hyperbolic meaning and convex in euclidean

meaning.
(3) int(Σ) \ {A0} is transversal to the Killing field generated by the

translations along γ.

Consequently Σ lies in the mean convex side of the domain of Hn whose
boundary is the hyperbolic cylinder with axis γ and passing through A1.
Let us call Π ⊂ Hn the geodesic hyperplane orthogonal to γ and passing
through B. Observe that the boundary of Σ is a n−2 dimensional geodesic
sphere of Π centered at B.

We denote by UΣ ⊂ Π the open geodesic ball centered at B whose
boundary is the boundary of Σ. We call DΣ ⊂ Hn the closed domain whose
boundary is UΣ ∪ Σ. Observe that ∂DΣ is strictly convex at any point of
Σ and convex at any point of UΣ. Such a domain will be called a special
rotational domain.

Proposition 5.2. — Let DΣ ⊂ Hn be a special rotational domain. For
any number t ∈ R, there is a unique solution vt of the vertical minimal
equation in int(DΣ) which extends continuously to int(Σ) ∪ UΣ, taking
prescribed zero boundary value data on the interior of Σ and prescribed
boundary value data t on UΣ.
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More precisely, for any t ∈ R, the following Dirichlet problem (Pt) admits
a unique solution vt.

(Pt)


M(u) = 0 in int(DΣ),
u = 0 on int(Σ),
u = t on UΣ,

u ∈ C2 (int(DΣ)) ∩ C0 (DΣ \ ∂Σ) .

Furthermore, the solutions vt are strictly increasing with respect to t and
satisfy 0 < vt < t on int(DΣ).

Proof. — Before beginning the proof of the existence part of the state-
ment, we would like to remark that, as the ambient space has dimension
n (arbitrary), we cannot use classical Plateau type arguments to obtain a
regular minimal hypersurface in Hn × R whose boundary is

(
Σ × {0}

)
∪(

UΣ × {t}
)
∪
(
∂Σ× [0, t]

)
.

We are not able to apply directly Perron process (Theorem 4.5) to solve
this Dirichlet problem. For this reason, in order to prove the existence part
of our statement, we need to consider an auxiliary Dirichlet problem, as
follows.
We can assume that t > 0. For k ∈ N∗ we set

Vk := {p ∈ Σ | dist (p,Π) 6 1
k
},

where we recall that Π ⊂ Hn is the geodesic hyperplane containing UΣ and
where dist means the distance in Hn.
We choose a translated copy Mdk of the hypersurface Md, see section 2,

with dk < 1, given by a function λk(ρ) satisfying λk(0) = t and λk(1/k) 6
−1. Since λk is an odd function for dk ∈ (0, 1), the Md-Property (2.2)
insures that such a Mdk exists for dk < 1 close enough to 1. Then we
choose a continuous function fk : Vk → [0, t] such that

(1) fk = t on ∂Σ = Vk ∩Π.
(2) fk = 0 on ∂Vk ∩ int(Σ).
(3) The graph of fk stands above the hypersurfaceMdk , that is fk > λk

on Vk.
Now we define a function gk : ∂DΣ → [0, t] setting:

gk(p) =


0 if p ∈ Σ \ Vk,
fk if p ∈ Vk,
t if p ∈ UΣ.
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Note that gk is a continuous function on ∂DΣ. Then we consider an auxiliary
Dirichlet problem (P̂k) as follows:

(P̂k)


M(u) = 0 in int(DΣ),
u = gk on ∂DΣ,

u ∈ C2 (int(DΣ)) ∩ C0 (DΣ) .

Observe that the hypersurface Mdk provides a lower barrier at any point
of UΣ and that at such a point the constant function ω+ ≡ t is an upper
barrier in the sense of Definition 4.3-(2). Furthermore, ∂DΣ is C0 strictly
convex at any other point, that is at any point of Σ. Therefore the hy-
persurfaces Md, d < 1, provide a barrier at these points, see the proof of
Theorem 4.5-(4). Thus, any point of ∂DΣ has a barrier. Applying Perron
Process (Theorem 4.5), considering the set of subsolutions to problem (P̂k)
below the constant supersolution identically equal to t, we find a solution
wk of the Dirichlet problem (P̂k). Observe that the zero function is a sub-
solution of (P̂k). Therefore we have 0 6 wk 6 t for any k > 0.
Using the reflection principle with respect to Π (Lemma 3.6), it follows

that each point of UΣ can be considered as an interior point of the do-
main of a function, denoted again by wk, satisfying the minimal equation,
bounded below by 0 and bounded above by 2t. Observe that this estimate
is independent of k > 0.
Consequently, using the compactness principle, we can find a subsequence

that converges to a function vt ∈ C2(int(DΣ))∩C0(int(DΣ)∪UΣ) satisfying
the minimal equation M(vt) = 0 and such that vt(p) = t at any p ∈ UΣ.
Since any point of int(Σ) has a barrier the function vt extends continuously
there, setting vt(p) = 0 at any p ∈ int(Σ). We have therefore proved the
existence of a solution vt of the Dirichlet problem (Pt). Observe that by
construction we have 0 < vt < t on int(DΣ).
Let us prove now uniqueness of the solution of (Pt). Let u and v be two

solutions of the Dirichlet problem (Pt). We will adapt the proof of [11,
Theorem 2.2] to our situation.
We are going to use the notations of Definition 5.1. Let us recall that P

is the geodesic two-plane containing the geodesic lines γ and L. Let ε > 0
and let us call cε ⊂ P the intersection of the circle or radius ε centered
at A1 with the compact subset of P delimited by γ, L and the euclidean
segment α. We denote by Cε ⊂ Hn the compact hypersurface obtained by
rotating cε with respect to γ. Let Vε be the n − 1 volume of Cε. Observe
that Vε → 0 when ε→ 0. From now the arguments follow as in [11], so we
just sketch the proof.
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For N > 0 large we define

ϕ =


N − ε if u− v > N
u− v − ε if ε < u− v < N

0 if u− v 6 ε

Let us call Dε the connected component of DΣ \ Cε containing A0 (we
have Dε → DΣ when ε → 0). Observe that ϕ ≡ 0 along ∂Dε \ Cε. So
that, applying the divergence theorem and using the fact that u and v are
solutions of the minimal graph equation, we obtain∫

Cε

ϕ

〈
∇u
WMu

− ∇v
WMv

, ν

〉
ds =

∫
Dε

〈
∇ϕ, ∇u

WMu
− ∇v
WMv

〉
dV

where ν is the exterior normal to ∂Cε. It is shown in [11, Lemma 2.1]
that

〈
∇u−∇v, ∇uWMu

− ∇v
WMv

〉
> 0 with equality at a point if, and only if,

∇u = ∇v. Therefore

0 6
∫
Dε

〈
∇ϕ, ∇u

WMu
− ∇v
WMv

〉
dV =

∫
Cε

ϕ

〈
∇u
WMu

− ∇v
WMv

, ν

〉
ds

6 2NVε

Letting ε → 0, we get that ∇u ≡ ∇v in the set where 0 < u − v < N .
Letting N → +∞ we obtain that ∇u ≡ ∇v in the set {u > v}. Assume that
int{u > v} 6= ∅, then there exists a constant λ > 0 such that u = v + λ on
an open subset of DΣ. By analyticity we deduce that u = v+λ everywhere
on DΣ\∂Σ, which is absurd since u = v on ∂DΣ\∂Σ. Therefore we get that
int{u > v} = ∅, that is u 6 v on DΣ \ ∂Σ. The same argument shows also
that v 6 u on DΣ \ ∂Σ. Therefore u = v and the proof of the uniqueness
of the solution of Dirichlet problem (Pt) is completed.
At last, let us prove that the family {vt} of the solutions of Dirichlet

problem (Pt) is strictly increasing on t. We could adapt the same arguments
of [11, Theorem 2.2] as before, but we will give another proof.
Let 0 < t1 < t2 and let v1 and v2 be the solutions of the Dirichlet

problems (Pt1) and (Pt2) respectively. Let p be a fixed arbitrary point in
the interior of DΣ.

For ε small enough consider a ε-translated copy of the graph of v1 along
γ in the orientation A0 → B. This graph is given by a function vε1 over
a translated copy DΣ(ε) of DΣ. Taking into account the properties on Σ
stated in Definition 5.1, we have DΣ(ε) ∩ Σ = ∅. We may assume that ε is
chosen small so that p belongs to int(DΣ(ε)). Since 0 < v1 < t1 on intDΣ,
we get that vε1 is less than v2 along the boundary of DΣ ∩ DΣ(ε). Using

ANNALES DE L’INSTITUT FOURIER



MINIMAL 2389

maximum principle we deduce that vε1(p) < v2(p), for ε small enough, since
vε1 < v2 along ∂

(
DΣ ∩ DΣ(ε)

)
. Thus letting ε → 0 we have therefore that

v1(p) 6 v2(p), this accomplishes the proof. �

Theorem 5.3 (Rotational Scherk hypersurface). — Let DΣ ⊂ Hn be
a special rotational domain. There is a unique solution v of the vertical
minimal equation in int(DΣ) which extends continuously to int(Σ), taking
prescribed zero boundary value data and taking boundary value∞ for any
approach to UΣ.

More precisely, the following Dirichlet problem (P ) admits a unique so-
lution v∞.

(P )


M(u) = 0 in int(DΣ),
u = 0 on int(Σ),
u = +∞ on UΣ,

u ∈ C2 (int(DΣ)) ∩ C0 (DΣ \ UΣ
)
.

We call the graph of v in Hn × R a rotational Scherk hypersurface.

Proof. — First, we will prove the existence part of the Theorem. We
consider the family of functions vt, t > 0, given by Proposition 5.8. Recall
that Π ⊂ Hn is the totally geodesic hyperplane containing UΣ. We consider
a suitable copy of M1 (see section 2) as barrier as follows: choose M1 such
that M1 is a graph of a function u1 whose domain is the component of
Hn \ Π that contains DΣ, with u1 taking boundary value data +∞ on Π
and taking zero asymptotic boundary value data. By applying maximum
principle we have that u1(p) > vt(p) for all p ∈ DΣ and all t > 0.

Using compactness principle we obtain that a subsequence of the family
converges uniformly on any compact subsets of int(DΣ) to a solution v∞ of
the minimal equation. Since the family is strictly increasing v∞ takes the
value +∞ on UΣ. That is, for any sequence (qk) in int(DΣ) converging to
some point of UΣ we have v∞(qk)→ +∞.
Let p ∈ int(Σ), since ∂DΣ is C0 strictly convex at p, the hypersurfaces

Md, d < 1, provide a barrier at p, see the proof of Theorem 4.5-(4). Con-
sequently v∞ extends continuously at p setting v∞(p) = 0. Therefore v∞
is a solution of the Dirichlet problem (P ).
The proof of uniqueness of v∞ proceeds in the same way as the proof of

the monotonicity of the family {vt} in Proposition 5.2. This completes the
proof of the Theorem. �

Theorem 5.4 (Barrier at a C0 convex point). — Let Ω ⊂ Hn be a
domain and let p0 ∈ ∂Ω be a boundary point where Ω is C0 convex. Then
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for any bounded data g : ∂Ω ∪ ∂∞Ω → R continuous at p0, the family of
rotational Scherk hypersurfaces provides a barrier at p0 for the Dirichlet
problem (P ). In particular, in Theorem 4.5-(4) the assumption C0 strictly
convex can be replaced by C0 convex.

Proof. — We use the same notations as in the definition of a special
rotational domain, Definition 5.1.

We will prove that the rotational Scherk hypersurfaces with −∞ bound-
ary data on the boundary part UΣ provide an upper barrier at p0. For the
lower barrier the construction is similar.
Let DΣ be a special rotational domain. Let ω be the height function of

the rotational Scherk hypersurface S taking −∞ boundary data on UΣ and
0 boundary data on the interior of Σ, given by Theorem 5.3.

Claim 5.5. — ω is decreasing along the oriented geodesic segment [A0,

B] ⊂ γ (going from A0 to B).

Claim 5.6. — LetD be any point on the open geodesic segment (A0, B),
and let β ⊂ DΣ be a geodesic segment issuing from D, ending at some point
C ∈ int(Σ) and orthogonal to [A0, B] at D.
Then ω is increasing along β = [D,C], oriented from D to C.

We first prove the theorem assuming that the two claims hold.
Let D ∈ (A0, B) and let ΠD ⊂ Hn be the geodesic hyperplane through

D orthogonal to the geodesic segment [A0, B]. Let D+
Σ be the connected

component ofDΣ\ΠD containing the point A0. Let q be any point belonging
to the closure of D+

Σ . The claims ensure that ω(q) > ω(D).
Let p0 ∈ ∂Ω be a C0 convex point and let g be a bounded data continuous

at p0. Let M > 0 be any positive real number. It suffices to show that for
any k ∈ N∗ there is an open neighborhood Nk of p0 in Hn and a function
ω+
k in C2(Nk ∩ Ω) ∩ C0(Nk ∩ Ω) such that

i) ω+
k (x)|∂Ω∩Nk > g(x) and ω+

k (x)|∂Nk∩Ω >M ,
ii) M(ω+

k ) = 0 in Nk ∩ Ω,
iii) ω+

k (p0) = g(p0) + 1/k.
By continuity there exists ε > 0 such that for any p ∈ ∂Ω with dist(p, p0)

< ε we have g(p) < g(p0) + 1/k.
By assumption there exist a geodesic hyperplane Πp0 through p0 and

an open neighborhood W ⊂ Πp0 of p0 such that W ∩ Ω = ∅. We set
Ωε = {p ∈ Ω | dist(p0, p) < ε}. Up to choosing ε small enough, we can
assume that Ωε is entirely contained in a component of Hn \Πp0 . Let γ be
the geodesic through p0 orthogonal to Πp0 .
We choose a special rotational domain DΣ such that:

ANNALES DE L’INSTITUT FOURIER



MINIMAL 2391

• the hyperplane Π is orthogonal to γ, (recall that UΣ ⊂ Π)
• the diameter of DΣ is lesser than ε

4 ,
• Ω ∩ UΣ = ∅,
• A0 ∈ γ, dist(p0, A0) < ε

8 and A0 belongs to the same component of
Hn \Πp0 than Ωε.

Let M ′ > max{M, g(p0) + 1/k}. We consider the rotational Scherk
hypersurface (graph of ω) taking M ′ boundary value data on the inte-
rior of Σ and −∞ on UΣ. By continuity, there exists a point p1 ∈ γ

where ω(p1) = g(p0) + 1/k. Up to a horizontal translation along γ send-
ing p1 to p0, we may assume that ω(p0) = g(p0) + 1/k. Then we set
Nk = int(DΣ)∩Ω and ω+

k = ω|Nk , the restriction of ω to Nk. Therefore we
have ω+

k (x)|∂Nk∩Ω = M ′ >M , furthermore Claim 5.5 and Claim 5.6 show
that ω+

k (x)|∂Ω∩Nk > g(p0) + 1/k > g(x), as desired.
We now proceed to the proof of Claim 5.5. Let p1, p2 ∈ (A0, B) with

p1 < p2, we want to show that ω(p1) > ω(p2). Let p3 ∈ (p1, p2) be the
middle point of p1 and p2 and let Πp3 ⊂ Hn be the geodesic hyperplane
through p3 orthogonal to (A0, B). We denote by σ the reflection in Hn with
respect to Πp3 . Let D+

Σ be the connected component of DΣ \Πp3 containing
A0 and let D−Σ be the other component. We denote by S+ the part of the
rotational Scherk hypersurface which is a graph over D+

Σ . Observe that
the definition of a special rotational domain ensures that σ(D+

Σ ) ∩ Σ = ∅.
Hence a part of σ(S+) is the graph of a function v over a partW of D−Σ such
that v > ω on ∂W . We conclude therefore with the aid of the maximum
principle that v > ω on W . This shows that ω(p1) > ω(p2) as desired.
Now let us prove Claim 5.6. Let q1, q2 ∈ [D,C] with q1 < q2, we want to

show that ω(q1) 6 ω(q2). Let q3 ∈ (q1, q2) be the middle point of q1 and
q2 and let Πq3 be the geodesic hyperplane through q3 orthogonal to [D,C].
Let σ be the reflection in Hn with respect to Πq3 . Let D−Σ be the connected
component of DΣ \Πq3 containing A0 and let D+

Σ be the other component.
Assertion. If UΣ∩Πq3 6= ∅ then there exists a point X0 ∈ UΣ∩D+

Σ such
that σ(X0) 6∈ DΣ.
We assume this assertion for a while. If UΣ ∩ Πq3 6= ∅ then for any

Z ∈ UΣ ∩ D+
Σ , with Z 6∈ Πq3 , we have σ(Z) 6∈ DΣ. Indeed, if not, since

σ(X0) 6∈ DΣ, we would find by continuity a point Y ∈ UΣ ∩ D+
Σ , with

Y 6∈ Πq3 , such that σ(Y ) ∈ Π and σ(Y ) 6= Y . Therefore the geodesic
segment [Y, σ(Y )] is globally invariant with respect to σ. Thus [Y, σ(Y )]
is orthogonal to Πq3 and therefore Π is also orthogonal to Πq3 . Hence, we
conclude that the whole hyperplane Π is invariant by the reflection σ, which
contradicts the assertion.
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We denote by Σ− the connected component of Σ \ Πq3 which contains
A0 and we denote by Σ+ the other component.
Observe that for any p ∈ Σ+ we have σ(p) 6∈ Σ−. Indeed, assume first

that p lies in the euclidean segment α ⊂ P (see Definition 5.1). By con-
struction, σ(p) belongs to the equidistant curve Ep ⊂ P , passing through p,
of the geodesic line Γ containing the segment [D,C]. Recall that Γ and Ep
have the same asymptotic boundary. Furthermore, Ep is symmetric with
respect to any geodesic hyperplane orthogonal to Γ. Since DΣ is symmetric
with respect to the geodesic hyperplane through D orthogonal to Γ, we
have that σ(p) 6∈ Σ−. Assume now that p ∈ Σ+ \ α. Let us denote by V
the 3-dimensional geodesic submanifold of Hn containing p and the geo-
desic two-plane P . Let HD ⊂ Hn be the geodesic hyperplane through D

orthogonal to the geodesic Γ. Then the symmetric of p with respect to HD,
denoted by p∗, is the same than the symmetric of p in V with respect to
the geodesic two-plane V ∩HD. As before, σ(p) belongs to the equidistant
curve Ep ⊂ P , passing through p, of the geodesic line Γ. Furthermore Ep is
symmetric with respect to the geodesic hyperplanes HD and Πq3 . Now Ep
is an arc of circle passing through p with the same asymptotic boundary
than Γ. As DΣ ∩ V is a compact part of an euclidean cone we get that
Ep ∩ Σ = {p, p∗}. Since σ(p) 6= p∗, we conclude that σ(p) 6∈ Σ−.

Thus the reflected of ∂D+
Σ by σ does not have any intersection with Σ−.

We denote by S+ the part of the rotational Scherk hypersurface which is
a graph over D+

Σ . Hence a part of σ(S+) is the graph of a function v over
the domain W = σ(D+

Σ )∩D−Σ such that v > ω on ∂W . We now are able to
conclude the proof of Claim 5.6, assuming the assertion, by applying the
maximum principle, to infer that ω(q2) > ω(q1).
Finally, if UΣ ∩Πq3 = ∅ by a similar and simpler argument we complete

the proof of Claim 5.6.
To prove the assertion, let us denote by PC ⊂ Hn the geodesic two-plane

containing the geodesic segments [A0, B] and [D,C]. Thus PC is orthogonal
to Πq3 , since it contains [D,C], and is orthogonal to Π, since it contains
[A0, B]. We consider the open geodesic segment γ1 = PC ∩ UΣ and the
geodesic line γ2 = PC ∩Πq3 . Assume that UΣ ∩Πq3 6= ∅. Then, since PC is
orthogonal to Π and to Πq3 we have γ2 ∩ UΣ 6= ∅. Therefore γ2 intersects
γ1 at some point {z} = γ1 ∩ γ2.

Observe that the points D, q3, z and B define a geodesic quadrilateral
Q in PC with right angles at vertices B,D and q3. Therefore the interior
angle of Q at z is strictly smaller than π/2. Let us denote by γ+

1 ⊂ γ1 the
connected component of γ1 \ {z} which does not contain B. Observe that
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γ+
1 ⊂ UΣ ∩ D+

Σ . Let s be the reflection in PC with respect to γ2. Then
s(γ+

1 ) does not have intersection with DΣ, s(γ+
1 ) ∩ DΣ = ∅. Since PC is

orthogonal to Πq3 we have that s(γ+
1 ) = σ(γ+

1 ). Therefore for any X ∈ γ+
1

we have σ(X) 6∈ DΣ as claimed, this completes the proof. �

Definition 5.7 (Independent points and admissible polyhedra).
(1) We say that n+ 1 points A0, . . . , An in Hn are independent if there

is no geodesic hyperplane containing these points. If A0, . . . , An in
Hn are independent then we remark that any choice of n points
among them determines a unique geodesic hyperplane of Hn.

(2) Let A0, . . . , An be n+1 independent points in Hn. We call Πi the ge-
odesic hyperplane containing these points excepted Ai, i = 0, . . . , n
and we call Π+

i the closed half-space bounded by Πi and containing
Ai. Then the intersection of these half-spaces is a polyhedron P:
the convex closure of A0, . . . , An. The boundary of P consists of
n+ 1 closed faces Fi ⊂ Πi, the face Fi contains in its boundary all
the points A0, . . . , An excepted Ai. We call such a polyhedron an
admissible polyhedron.

Corollary 5.8. — Let P be an admissible polyhedron. For any num-
ber t ∈ R, there is a unique solution vt of the vertical minimal equation
in int(P) which extends continuously to ∂P \ ∂F0, taking prescribed zero
boundary value data on F1 \ ∂F0, . . . , Fn \ ∂F0 and prescribed boundary
value t on int(F0). More precisely, for any t ∈ R, the following Dirichlet
problem (Pt) admits a unique solution vt.

(Pt)


M(u) = 0 in int(P),
u = 0 on Fj \ ∂F0, j = 1, . . . , n,
u = t on int(F0),
u ∈ C2 (int(P)) ∩ C0 (P \ ∂F0) .

Furthermore, the solutions vt are strictly increasing with respect to t and
satisfy 0 < vt < t on int(P).

Proof. — The existence part of the statement is a consequence of Theo-
rem 5.4.

The uniqueness is proved in the same way as in Proposition 5.2.
To prove the monotonicity of the family {vt} we consider a point q ∈

int(F0). Notice that ∂P is transversal to the Killing field generated by
translations along the geodesic line γ containing A0 and q. Then the proof
proceeds as in the proof of Proposition 5.2. �
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Using the above proposition we are able to construct a Scherk type min-
imal hypersurface in Hn × R.

Theorem 5.9 (First Scherk type hypersurface in Hn × R). — Let P
be an admissible convex polyhedron. There is a unique solution v∞ of
the minimal equation in int(P) extending continuously up to ∂P \ F0,
taking prescribed zero boundary value data on F1 \ ∂F0, . . . , Fn \ ∂F0 and
prescribed boundary value ∞ for any approach to int(F0). More precisely,
we prove existence and uniqueness of the following Dirichlet problem (P∞):

(P∞)


M(u) = 0 in int(P),
u = 0 on Fj \ ∂F0, j = 1, . . . , n,
u =∞ on int(F0),
u ∈ C2 (int(P)) ∩ C0 (P \ F0) .

Proof. — With the aid of Theorem 5.4 we may use the rotational Scherk
hypersurfaces as barrier. Therefore, we obtain for any t ∈ R a solution
vt of the vertical minimal equation in int(P) which extends continuously
to ∂P \ ∂F0, taking prescribed zero boundary value data on ∂P \ F0 and
prescribed boundary value t on int(F0). Now letting t→∞ as in the proof
of Theorem 5.3 we have that a subsequence of the family {vt} converges
to a solution as desired, taking into account that the rotational Scherk
hypersurfaces give a barrier at any point of P.
The uniqueness is obtained as in the proof of the monotonicity of the

family {vt} in Proposition 5.2, see also the proof of Corollary 5.8. �

Theorem 5.10 (Second Scherk type hypersurface in Hn × R). — For
any k ∈ N, k > 2, there exists a family of polyhedron Pk with 2n−1k

faces and a solution wk of the vertical minimal equation in intPk taking
alternatively infinite values +∞ and −∞ on adjacent faces of Pk. Moreover,
the polyhedron Pk can be chosen to be convex and can also be chosen to
be non convex.

Proof. — Let us fix a point A0 in Hn. Let {e1, . . . , en} be a positively
oriented orthornormal basis of TA0Hn. For k > 2 we set u := sin(π/k)e1 +
cos(π/k)e2. Let γ+

j , j = 2, . . . , n and γ+
u be the oriented half geodesics

issuing from A0 and tangent to e2, . . . , en and to u, respectively. Now we
choose an interior point A1 on γ+

u and an interior point Aj on γ+
j , j =

2, . . . , n. Therefore, A0, A1, . . . , An are independent points of Hn. Let P̃
be the polyhedron determined by these points. The faces are denoted by
F0, . . . , Fn, with the convention that the face Fj does not contain the vertex
Aj , j = 0, . . . , n.
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Let Πi the totally geodesic hyperplane containing the face Fi. Observe
that:

(1) F1 and F2 make an interior angle equal to π/k.
(2) Fj ⊥ F1, Fj ⊥ F2, j = 3, . . . , n.
(3) Fj ⊥ Fk, j, k = 3, . . . , n (j 6= k).

Therefore, the reflections in Hn with respect to the geodesic hyperplanes
Π1 and Π2 leave the other geodesic hyperplanes Πj , j = 3, . . . , n globally
invariant. The first step of the construction of the polyhedron Pk is the
following: Doing reflection about F2 we obtain another polyhedron with
faces F ∗1 (the symmetric of F1 about F2), and faces F̃j containing Fj ,
F̃j ⊂ Πj , j = 3, . . . , n. Notice that in the process the face F2 disappears
and the interior angle between the faces F1 and F ∗1 is 2π/k. Furthermore,
the reflection of F0 about F2 generates another face F 1

0 .

Continuing this process doing reflections with respect to F ∗1 and so on,
we obtain a new polyhedron P+ with faces F̂j ⊂ Πj , j = 3, . . . , n, F̂j
containing F̃j , and 2k faces issuing from the successive reflections of F0.
Notice that both faces F1 and F2 disappear at the end of the process, that
is P+ does not contain any face in the hyperplane Π1 or Π2.

Next, let us perform the reflections about Π3. Doing this the face F3
disappears and we get a new polyhedron with 2 · 2k faces issuing from F0
and a face in each Πj , j = 4, . . . , n, by Property (3). Each such face contains
F̂j , j = 4, . . . , n. Continuing this process doing reflections on Π4, . . . ,Πn

we finally get a polyhedron Pk with 2n−1 · k faces, each one issuing from
F0.

Now we discuss the convexity of Pk. Let P ⊂ Hn be the geodesic two-
plane containing the points A0, A1 and A2. Let Γ ⊂ P be the geodesic
polygon obtained by the reflection of the segment [A0, A1] with respect to
[A0, A2] and so on. Thus Γ is a polygon with 2k sides and 2k vertices, among
them A1 and A2, and A0 is an interior point of Γ. Then, the polyhedron
Pk is convex if, and only if, the polygon Γ is convex too. For example,
if d(A0, A1) = d(A0, A2) we get that Γ is a regular polygon and then is
convex. On the other hand, if d(A0, A1) is much bigger than d(A0, A2)
then Γ is non convex.
Now, considering the polyhedron P̃ of the beginning, with the aid of

Theorem 5.9, we are able to solve the Dirichlet problem of the minimal
equation taking +∞ value data on F0 and zero value data on Fj \ F0,
j = 1, . . . , n. Using the reflection principle on the faces, in each step of the
preceding process, we obtain at the end of the process a solution of the
minimal equation on intPk, taking alternatively infinite values +∞ and
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−∞ on adjacent faces of Pk, as desired. This accomplishes the proof of the
theorem. �

The following theorem are consequence of the previous results.

Theorem 5.11 (Dirichlet problem for the minimal equation in Hn × R
on a C0 bounded convex domain taking continuous boundary data). —
Let Ω be a C0 bounded convex domain and let g : ∂Ω→ R be a continuous
function.
Then, g admits a unique continuous extension u : Ω∪∂Ω→ R satisfying

the vertical minimal hypersurface equation (3.2) on Ω.

Proof. — The proof is a consequence of the Perron process (Theorem 4.5)
and the construction of barriers at any convex point of a C0 domain, using
rotational Scherk hypersurfaces (Theorem 5.4). Uniqueness follows from
the maximum principle. �

Theorem 5.12 (Dirichlet problem for the minimal equation in Hn × R
on a C0 convex domain taking continuous finite and asymptotic boundary
data). — Let Ω ⊂ Hn be a C0 convex domain and let g : ∂Ω ∪ ∂∞Ω→ R
be a continuous function.
Then g admits a unique continuous extension u : Ω ∪ ∂Ω ∪ ∂∞Ω → R

satisfying the vertical minimal hypersurface equation (3.2) on Ω.

Proof. — Notice that working in the ball model of hyperbolic space, we
have that g is a continuous function on a compact set, hence g is bounded.
Therefore there exist supersolutions and subsolutions for the Dirichlet prob-
lem. The proof is a consequence of the Perron process (Theorem 4.5) and
the constructions of barriers, using the rotational Scherk hypersurfaces
(Theorem 5.4) at any point of ∂Ω, and using M1 at any point of ∂∞Ω
(Theorem 4.5-(2)). Uniqueness follows from the maximum principle. �

6. Existence of minimal graphs over non convex
admissible domains

We will establish some existence of minimal graphs on certain admis-
sible domains and certain asymptotic boundary, in the same way as in
[8, Theorem 5.1 and Theorem 5.2]. The proofs are the same as in the
two-dimensional situation, using the n-dimensional catenoids and the n-
dimensional translation hypersurfaces Md obtained for n > 3 in [3]. There-
fore we will just state the related definitions and the theorems without
proof.
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Definition 6.1 (Admissible unbounded domains in Hn). — Let Ω ⊂
Hn be an unbounded domain. We say that Ω is an admissible domain if each
connected component C0 of ∂Ω satisfies the Exterior sphere of (uniform)
radius ρ condition, that is, at any point p ∈ C0 there exists a sphere Sρ of
radius ρ such that p ∈ C0 ∩ Sρ and intSρ ∩ Ω = ∅.
If Ω is an unbounded admissible domain then we denote by ρΩ the supre-

mum of the set of these ρ.

Let us write down a formula obtained in [3] that is useful in the sequel.
Let t = λ(a, ρ), ρ > a, be the height function of the upper half-catenoid in
Hn×R. Then as ρ goes to infinity λ(a, ρ) goes to R(a) where R(a) is given
by

R(a) := sinh(a)
∫ ∞

1

(
sinh2(a)s2 + 1

)−1/2(
s2n−2 − 1

)−1/2
ds.

Furthermore, the function R increases from 0 to π/(2n−2) when a increases
from 0 to∞. This means that the catenoids in the family have finite height
bounded from above by π/(n − 1) ([3, Proposition 3.2]). We set f(ρ) :=
R(ρ).

Theorem 6.2. — Let Ω ⊂ Hn be an admissible unbounded domain. Let
g : ∂Ω ∪ ∂∞Ω → R be a continuous function taking zero boundary value
data on ∂Ω. Let Γ∞ ⊂ ∂∞Hn × R be the graph of g restricted to ∂∞Ω.
If the height function t of Γ∞ satisfies −f(ρΩ) 6 t 6 f(ρΩ), then there

exists a vertical minimal graph over Ω with finite boundary ∂Ω and asymp-
totic boundary Γ∞.

Furthermore, there is no such minimal graph, if ∂Ω is compact and the
height function t of Γ∞ satisfies |t| > π/(2n− 2).

Definition 6.3 (E-admissible unbounded domains in Hn). — Let Ω be
an unbounded domain in Hn and let ∂Ω be its boundary. We say that Ω
is an E-admissible domain if there exists r > 0 such that each point of ∂Ω
satisfies the exterior equidistant hypersurface of (uniform) mean curvature
tanh r condition; that is, at any point p ∈ ∂Ω there exists an equidistant
hypersurface Er of a geodesic hyperplane, of mean curvature tanh r (with
respect to the exterior unit normal to Ω at p), with p ∈ ∂Ω ∩ Er and
Er ∩ Ω = ∅.

If Ω is an unbounded E-admissible domain then we denote by rΩ > 0 the
infimum of the set of these r. If Ω is a convex E-admissible domain then
rΩ = 0.

Thus every E-admissible domain is an admissible domain.
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If Ω is a convex domain then Ω is an E-admissible domain.
If each connected component C0 of ∂Ω is an equidistant hypersurface

then Ω is an E-admissible (maybe non convex) domain.
Let us write down again some formulas extracted from [3]. Up to a verti-

cal translation, the height t = µ+(a, ρ) of the translation hypersurface Md,
d > 1, is given by

µ+(a, ρ) = cosh(a)
∫ cosh(ρ)/ cosh(a)

1
(s2n−2 − 1)−1/2 (cosh2(a)s2 − 1)−1/2 ds.

These integrals converge at s = 1 and when ρ→ +∞, with limit value

T (a) := cosh(a)
∫ ∞

1
(s2n−2 − 1)−1/2 (cosh2(a)s2 − 1)−1/2 ds.

T is a decreasing function of a, which tends to infinity when a tends to zero
(when d > 1 tends to 1) and to π/(2n− 2) when a (or d) tends to infinity
([3, Equations 3.55, 3.56, 3.57]).
We set H(r) := T (r).

Theorem 6.4. — Let Ω ⊂ Hn be an E-admissible unbounded domain.
Let g : ∂Ω∪∂∞Ω→ R be a continuous function taking zero boundary value
data on ∂Ω. Let Γ∞ ⊂ ∂∞Hn × R be the graph of g restricted to ∂∞Ω.
If the height function t of Γ∞ satisfies −H(rΩ) 6 t 6 H(rΩ), then

there exists a vertical minimal graph over Ω with finite boundary ∂Ω and
asymptotic boundary Γ∞.

7. Minimal graphs in Rn+1 = Rn × R

We will write-down in this section some natural extensions of the previous
constructions to obtain minimal graphs in the n + 1- Euclidean space.
The proof of the related results for minimal graphs in Rn+1 are mutatis
mutandis the same as in Hn × R, but simpler. So we will just summarize
them.
The dictionary to perform the understanding of the structure of the

proofs is as follows: The hypersurface corresponding to the family Md (d <
1) to provide barriers at a strictly convex point for minimal solutions when
the ambient space is Hn × R is the family of hyperplanes in Rn+1. The
hypersurface corresponding to M1 to get height estimates at a compact set
in the domain Ω is now the family of n-dimensional catenoids.

The reflection principle for minimal graphs in Euclidean space can be
proved in the same way as in Lemma 3.6. Finally we note that the Perron
process is classical in Euclidean space.

ANNALES DE L’INSTITUT FOURIER



MINIMAL 2399

We now consider special rotational domain in Rn. The definition is anal-
ogous to Definition 5.1. Now the curve γ is a straight line and we choose
a smooth curve α ⊂ P joining A0 and A1 such that the hypersurface Σ
generated by rotating α with respect to γ has the following properties.

(1) Σ is smooth except possibly at point A0.
(2) Σ is strictly convex.
(3) int(Σ) \ {A0} is transversal to the parallel lines to γ.
We recall the minimal equation in Rn+1:

div
(
∇u
W (u)

)
:=

n∑
i=1

∂

∂xi

(
uxi√

1 + ‖∇u‖2Rn

)
= 0

(just make λ = 1 and H = 0 in Equation (3.1)). Explicitly, we have that
the minimal equation in Rn+1 is given by

n∑
i=1

(
1 + (u2

x1
+ · · ·+ û2

xi + · · ·+ u2
xn)
)
uxixi − 2

∑
i<k

uxiuxkuxixk = 0.

Theorem 7.1 (Rotational Scherk hypersurface). — Let DΣ ⊂ Rn be
a special rotational domain. There is a unique solution v of the vertical
minimal equation in int(DΣ) which extends continuously to int(Σ), taking
prescribed zero boundary value and taking prescribed boundary value ∞
for any approach to UΣ.
More precisely, the following Dirichlet problem admits a unique solu-

tion v. 

n∑
i=1

∂
∂xi

(
uxi√

1+‖∇u‖2
Rn

)
= 0 on int(DΣ),

u = 0 on int(Σ),
u = +∞ on UΣ,

u ∈ C2 (int(DΣ)) ∩ C0 (DΣ \ UΣ
)
.

We call the graph of v in Rn+1 a rotational Scherk hypersurface.

Proof. — We first solve the auxiliary Dirichlet problem (Pt) taking zero
boundary value data on the interior of Σ and prescribed boundary value
t on UΣ, in the same way as in the Proposition 5.2. On account that the
family of n-dimensional catenoids provides an upper and lower barrier to a
solution over any compact set of int(DΣ), letting t→∞ we get the desired
solution.
Uniqueness is shown in the same way as the proof of monotonicity in

Proposition 5.2. �
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We observe that this result was also obtained by A. Coutant [5] using a
different approach.

Theorem 7.2 (Barrier at a C0 convex point). — Let Ω ⊂ Rn be a
domain and let p0 ∈ ∂Ω be a boundary point where Ω is C0 convex. Then
for any bounded data g : ∂Ω→ R continuous at p0 the family of rotational
Scherk hypersurfaces provides a barrier at p0.

Proof. — The proof is the same, but simpler, as the proof of Theorem 5.4.
More precisely the proofs of the analogous of Claim 5.5 and 5.6 are simpler,
passing first by the solution vt of the related auxiliary Dirichlet problem
(Pt). �

Corollary 7.3 (Rotational Scherk hypersurface). — Let DΣ ⊂ Rn be
a special rotational domain generated by a segment α of a straight line.
Then:

(1) There is a unique solution v of the vertical minimal equation in
int(DΣ) which extends continuously to int(Σ) ∪ UΣ, taking pre-
scribed zero boundary value data on the interior of Σ and prescribed
boundary value ∞ on UΣ.
We also call the graph of v in Rn+1 a rotational Scherk hyper-

surface.
(2) Let Ω ⊂ Rn be a domain and let p0 ∈ ∂Ω be a boundary point where

Ω is C0 convex. Then for any bounded data g : ∂Ω→ R continuous
at p0 the family of rotational Scherk hypersurfaces given in the first
statement provides a barrier at p0.

We define the notion of admissible polyhedron in Rn in the same way
as in hyperbolic space, see Definition 5.7. The following result is proved in
the same way as in Theorem 5.9.

Theorem 7.4 (First Scherk type hypersurface in Rn+1). — Let P be
an admissible convex polyhedron in Rn. There is a unique solution v∞ of
the vertical minimal equation in int(P) extending continuously to ∂P \F0,
taking prescribed zero boundary value data on F1 \ ∂F0, . . . , Fn \ ∂F0 and
prescribed boundary value +∞ for any approach to int(F0).More precisely,
we prove existence and uniqueness of the following Dirichlet problem (P∞):

(P∞)



n∑
i=1

∂
∂xi

(
uxi√

1+‖∇u‖2
Rn

)
= 0 on int(P),

u = 0 on Fj \ ∂F0, j = 1, . . . , n,
u = +∞ on int(F0),
u ∈ C2 (int(P)) ∩ C0 (P \ F0) .
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We remark that the above result is also obtained by A. Coutant [5].
Next theorem can be proved exactly as in Theorem 5.10.

Theorem 7.5 (Second Scherk type hypersurface in Rn+1). — For any
k ∈ N, k > 2, there exists a family of polyhedron Pk with 2n−1k faces and
a solution wk of the vertical minimal equation in intPk taking alternatively
infinite values +∞ and −∞ on adjacent faces of Pk. Moreover, the poly-
hedron Pk can be chosen to be convex and can also be chosen to be non
convex.

Remark 7.6. — When the ambient space is R4 with the aid of Theo-
rem 7.5 we have a solution of the minimal equation in the interior of an oc-
tahedron in R3 taking alternatively infinite values +∞ and −∞ on adjacent
faces. Indeed, using the notations of the proof of Theorem 5.10, we set k = 2
and we choose A1, A2 and A3 so that d(A1, A2) = d(A1, A3) = d(A2, A3).
Thus the polyhedron P2 obtained is an octahedron.
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