Shushi HARASHITA

Generic Newton polygons of Ekedahl-Oort strata: Oort’s conjecture

<http://aif.cedram.org/item?id=AIF_2010__60_5_1787_0>
GENERIC NEWTON POLYGONS OF EKEDAHLL-OORT STRATA: OORT’S CONJECTURE

by Shushi HARASHITA

Dedicated to Professor Toshiyuki Katsura on his 60th birthday

Abstract. — We study the moduli space of principally polarized abelian varieties in positive characteristic. In this paper we determine the Newton polygon of any generic point of each Ekedahl-Oort stratum, by proving Oort’s conjecture on intersections of Newton polygon strata and Ekedahl-Oort strata. This result tells us a combinatorial algorithm determining the optimal upper bound of the Newton polygons of principally polarized abelian varieties with a given isomorphism type of p-kernel.

Résumé. — Nous étudions l’espace de modules de variétés abéliennes principalement polarisées en caractéristique positive. Dans cet article nous déterminons le polygone de Newton de tout point générique de chaque strate de Ekedahl-Oort, en prouvant la conjecture d’Oort sur les intersections de strates de polygone de Newton et de strates de Ekedahl-Oort. Ce résultat nous donne un algorithme combinatoire qui détermine la borne supérieure optimale des polygones de Newton de variétés abéliennes principalement polarisées avec un type de p-noyau donné.

1. Introduction

We fix once for all a rational prime p. For an abelian variety A over an algebraically closed field of characteristic p, we have two objects: the p-divisible group $A[p^\infty]$ and the p-kernel $A[p]$, a truncated Barsotti-Tate group of level one (BT$_1$). By the Dieudonné-Manin classification, the isogeny classes of p-divisible groups are classified by Newton polygons (cf. §2.2). On the other hand, the isomorphism classes of polarized BT$_1$’s are classified by final elements of the Weyl group W_g of the symplectic group Sp$_{2g}$ (cf. §4.2). For a BT$_1$ G, we write $G \simeq w$ if the isomorphism type of G is w. The following question is still open in general:

Keywords: Abelian varieties, the Newton polygon stratification, the Ekedahl-Oort stratification, Oort’s conjecture.
For a final element w of W_g, which Newton polygons can occur as the Newton polygons $\mathcal{N}(A)$ of principally polarized abelian varieties (A, η) with $A[p] \simeq w$?

A purpose of this paper is to give a combinatorial algorithm determining the optimal upper bound $b(w)$ of such Newton polygons. The precise definition of $b(w)$ is as follows: any (A, η) with $A[p] \simeq w$ satisfies $\mathcal{N}(A) \prec b(w)$ and there exists (A', η') satisfying $A'[p] \simeq w$ and $\mathcal{N}(A') = b(w)$. We shall explain below the non-trivial fact that $b(w)$ exists.

In order to accomplish the purpose above, we investigate some stratifications and foliations on the moduli space A_g of principally polarized abelian varieties of dimension g in characteristic p. For a symmetric Newton polygon ξ, we write W^0_ξ for the open Newton polygon stratum (cf. §2.2). For a final element w of W_g, let S_w be the Ekedahl-Oort stratum:

$$S_w = \{(A, \eta) \in A_g \mid A[p] \simeq w\}.$$

In §4.3 we will give a brief review of some known facts on the Ekedahl-Oort stratification. Among those, Oort showed that $S_w \neq \emptyset$ for every final element w of W and Ekedahl and van der Geer proved that S_w is irreducible if S_w is not contained in the supersingular locus. The generic Newton polygon $\xi(w)$ of S_w is defined to be the Newton polygon of the generic point of S_w if S_w is not contained in the supersingular locus and otherwise the supersingular Newton polygon. Since the Newton polygon goes down or stays w.r.t. \prec under any specialization (Grothendieck-Katz [15], Th. 2.3.1 on p. 143), we see that $\xi(w)$ fulfills the conditions defining $b(w)$; thus $b(w)$ exists and $\xi(w) = b(w)$.

Let Z_ξ be the central stream in A_g of the Newton polygon ξ (cf. §5.3) and let $\overline{S_w}$ denote the Zariski closure of S_w in A_g. We shall show

Main theorem. — For any final element w of W_g, we have $Z_\xi(w) \subset \overline{S_w}$.

The main theorem is closely related to [24], (6.9):

Oort’s conjecture. — If $W^0_\xi \cap S_w \neq \emptyset$, then $Z_\xi \subset \overline{S_w}$.

Indeed in [10], Cor. 3.7, it was proved that the main theorem and the conjecture are equivalent. Thus we obtain

Corollary 1.1. — Oort’s conjecture is true.

Here is another corollary. Let ξ be any symmetric Newton polygon with $Z_\xi \subset \overline{S_w}$. Since the Newton polygon of every point of Z_ξ is ξ and the generic Newton polygon of $\overline{S_w}$ is $\xi(w)$, we have $\xi \prec \xi(w)$ by Grothendieck-Katz. Hence the main theorem implies
Corollary 1.2. — $\xi(w)$ is the biggest element of the set $\{\xi \mid Z_\xi \subset S_w\}$ with respect to \prec.

This gives a purely combinatorial algorithm determining $\xi(w)$. Indeed we have $Z_\xi = S_{w_\xi}$ for a certain final element $w_\xi \in W$ (cf. §5.3), and there is an algorithm determining w_ξ for a concretely given ξ (see [10], Cor. 4.27); by using Wedhorn’s result in [28] (see Th. 4.7 below for a copy) and Rem. 4.8 we can check whether $Z_\xi \subset S_w$ for a concretely given ξ and w; thus it is possible to describe the set $\{\xi \mid Z_\xi \subset S_w\}$ for a given w; finally find the biggest element in the set, which exists and is equal to $\xi(w)$.

See [9] for a more effective algorithm determining the first slope of $\xi(w)$. We see a beautiful similarity between Cor. 1.2 and the result [7], Th. 5.4.11 of Goren and Oort in the case of Hilbert modular varieties over inert primes.

Let us explain the structure of this paper. The first five sections consist of preliminaries, where we recall some fundamental facts on p-divisible groups, F-zips, stratifications and foliations on A_g and we also prove some auxiliary results used later on. The heart of this paper is Section 6, where we show that, to prove the main theorem, it suffices to construct a certain family of p-divisible groups with constant Newton polygon and with constant p-kernel type (Th. 6.1), and then give the reader our idea on how to construct such a family. The remaining sections are devoted to realizing the construction. The key propositions for the construction are Prop. 7.13 and 8.6. In Prop. 7.13 we construct a non-trivial self-dual complex of F-zips and in Prop. 8.6 we lift such a self-dual complex of F-zips to a self-dual complex of displays.

Acknowledgments. I would like to thank Professor Frans Oort for many valuable suggestions. In particular this paper is based on an idea which I learned from him during my stay at Utrecht University. I thank him and Mathematical Institute at Utrecht University for hospitality and excellent working conditions. I am grateful to the anonymous referee for some valuable remarks. This research is supported by JSPS Research Fellowship for Young Scientists.

Notations.

- $\mathbb{N} = \mathbb{Z}_{>0}$ the set of natural numbers.
- For $m, n \in \mathbb{Z}_{\geq 0}$, we denote by $\gcd(m, n)$ the greatest common divisor, where for convenience we set $\gcd(m, 0) = \gcd(0, m) = m$ for $\forall m \in \mathbb{Z}_{\geq 0}$. We say that $m, n \in \mathbb{Z}_{\geq 0}$ are coprime if $\gcd(m, n) = 1$.
- For $x \in \mathbb{R}$, let $\lfloor x \rfloor$ be the biggest integer $\leq x$ and $\lceil x \rceil$ the smallest integer $\geq x$.

TOME 60 (2010), FASCICULE 5
• For an integral domain R, we denote by $\frac{R}{(R)}$ the fractional field of R.
• $W(R)$ the ring of Witt vectors with coordinates in R.
• \mathbb{W}_g the Weyl group of the symplectic group Sp_{2g}.
• $J\mathbb{W}$ the set of final elements in \mathbb{W}_g.
• Z^\vee the dual of an F-zip Z.
• G^\vee the Cartier dual of a commutative finite group scheme G.
• X^t the Serre dual of a p-divisible group X.
• M^t the dual Dieudonné module (display) of a Dieudonné module (display) M.
• A^t the dual abelian variety of an abelian variety A.
• A_g the moduli of principally polarized abelian varieties in characteristic p.
• $W_ξ$ the Newton polygon stratum for a symmetric Newton polygon $ξ$.
• $C_x, C_ξ$ the central leaf for $x \in A_g$ or a principally quasi-polarized p-divisible group $(X, ν)$.
• I_R the isogeny leaf for $x \in A_g$.
• $Z_ξ$ the central stream for a symmetric Newton polygon $ξ$.
• S_w the Ekedahl-Oort stratum for $w \in J\mathbb{W}$.
• $H(ξ)$ the minimal p-divisible group of $ξ$.
• $w_ξ$ the element of $J\mathbb{W}$ corresponding to the p-kernel of $H(ξ)$.
• $ξ(w)$ the generic Newton polygon of S_w for $w \in J\mathbb{W}$.

2. p-divisible groups

We start with reviewing the display theory (Zink [29]) on the classification of p-divisible groups. Also we recall the definition of Newton polygon stratification.

For a commutative ring R, let $W(R)$ denote the ring of Witt vectors with coordinates in R. Let $σ : x \mapsto σx$ be the Frobenius on $W(R)$ and let $τ : x \mapsto τx$ be the Verschiebung on $W(R)$. Put $I_R = τW(R)$ and $I_{R,n} = τ^n W(R)$ for $n \in \mathbb{N}$, which are ideals of $W(R)$.

2.1. Displays

First we briefly review the Dieudonné theory. Let K be a perfect field of characteristic p. Let E_K be the p-adic completion of the associative ring
\begin{equation}
W(K)[F, V]/(Fx - σx F, Vσx - xV, FV - p, VF - p, ∀x \in W(K)).
\end{equation}
A Dieudonné module over $W(K)$ is a left E_K-module which is finitely generated as a $W(K)$-module. The covariant Dieudonné theory says that there is a canonical categorical equivalence \mathbb{D} from the category of p-divisible groups (resp. p-torsion finite commutative group schemes) over K to the category of Dieudonné modules over $W(K)$ which are free as $W(K)$-modules (resp. of finite length). Note that \mathbb{D} satisfies $\mathbb{D}(G) = M(G^\vee)$ for a finite commutative group scheme G, where G^\vee is the Cartier dual of G and M is the contravariant Dieudonné functor (cf. [4], Chap. III). We write F and V for “Frobenius” and “Verschiebung” on commutative group schemes.

Zink [29] introduced the notion of display and classified formal p-divisible groups over very wide range of rings, generalizing the Dieudonné theory. For a $W(R)$-module P, we write $P^\sigma = W(R) \otimes_{W(\sigma)} W(R) P$.

Definition 2.1. — A display over R is a quadruple (P, Q, F, V^{-1}), where P is a finitely generated projective $W(R)$-module, $Q \subset P$ is a submodule and F and V^{-1} are $W(R)$-linear maps $F : P^\sigma \to P$ and $V^{-1} : Q^\sigma \to P$ such that

1. $I_R P \subset Q \subset P$ and there exists a decomposition $P = L \oplus T$ as $W(R)$-modules such that $Q = L \oplus I_R T$;
2. $V^{-1} : Q^\sigma \to P$ is an epimorphism;
3. For $x \in P$ and $w \in W(R)$ we have $V^{-1}(1 \otimes \tau w x) = w F(1 \otimes x)$;
4. (P, Q, F, V^{-1}) satisfies the V-nilpotence condition ([29], before Def. 11).

Zink showed [29], Th. 9:

Theorem 2.2. — Assume R is an excellent local ring or a ring of finite type over a field k of characteristic p. Then there is a canonical categorical equivalence from the category of displays over R to the category of formal p-divisible groups over R.

Remark 2.3. — Let X be a formal p-divisible group over a perfect field K. The display of X is given by the quadruple (M, VM, F, V^{-1}), where M is the Dieudonné module of X and the others are naturally defined by the F, V-operations on M.

2.2. The NP-stratification

A pair (m, n) of coprime non-negative integers is called a segment. For a series of segments $(m_i, n_i) \ (i = 1, \ldots, t)$ satisfying $\lambda_1 \leq \cdots \leq \lambda_t$ with
\[\lambda_i = m_i/(m_i + n_i), \text{ putting } P_j := (\sum_{i=1}^{j}(m_i + n_i), \sum_{i=1}^{j} m_i) \in \mathbb{R}^2 \text{ for } 0 \leq j \leq t, \text{ we denote by } \sum_i (m_i, n_i) \text{ the line graph in } \mathbb{R}^2 \text{ passing through } P_0, \ldots, P_t \text{ in this order. We call such a line graph a Newton polygon. } \lambda_i \text{ is called the last Newton slope. We say, for two Newton polygons } \xi, \xi' \text{ with the same end point, that } \xi' \prec \xi \text{ if no point of } \xi \text{ is below } \xi'. \text{ A Newton polygon } \sum_i (m_i, n_i) \text{ is said to be symmetric if } \lambda_i + \lambda_{t+1-i} = 1 \text{ for all } i = 1, \ldots, t. \text{ The symmetric Newton polygon } \sum_i (1, 1) \text{ is called supersingular.} \]

For a segment \((m, n)\), we define a \(p\)-divisible group \(G_{m,n}\) over \(\mathbb{F}_p\) by

\[\mathbb{D}(G_{m,n}) = E_{\mathbb{F}_p}/E_{\mathbb{F}_p}(\mathcal{F}^m - \mathcal{V}^n). \]

By the Dieudonné-Manin classification [18], for any \(p\)-divisible group \(X\) over a field \(K\) of characteristic \(p\), there is an isogeny over an algebraically closed field \(\Omega\) containing \(K\) from \(X\) to \(\bigoplus_{i=1}^{t} G_{m_i, n_i}\) for some finite set \(\{(m_i, n_i)\}\) of segments. Thus we get a Newton polygon \(\sum_i (m_i, n_i)\), which is denoted by \(\mathcal{N}(X)\). For an abelian variety \(A\), we have its Newton polygon \(\mathcal{N}(A) := \mathcal{N}(A[p^{\infty}])\). Note that \(\mathcal{N}(A)\) is symmetric.

For a symmetric Newton polygon \(\xi\) of height \(2g\), we define its \(NP\)-stratum by

\[\mathcal{W}_\xi = \{(A, \eta) \in \mathcal{A}_g | \mathcal{N}(A) \prec \xi\}. \]

Grothendieck and Katz ([15], Th. 2.3.1 on p. 143) proved that \(\mathcal{W}_\xi\) is closed in \(\mathcal{A}_g\); we consider this is a closed subscheme by giving it the induced reduced scheme structure. We also define the open \(NP\)-stratum by

\[\mathcal{W}_{\xi}^0 = \{(A, \eta) \in \mathcal{A}_g | \mathcal{N}(A) = \xi\}; \]

similarly we regard \(\mathcal{W}_{\xi}^0\) as a locally closed subscheme of \(\mathcal{A}_g\).

3. The first de Rham cohomology

Let \(S\) be a scheme of characteristic \(p\). Let \(f : A \rightarrow S\) be an abelian scheme over \(S\). Let \(F_S\) be the absolute Frobenius and let \(f^{(p)} : A^{(p)} \rightarrow S\) denote \(F_S \times f : S \times_{F_S,S} A \rightarrow S\). Let \(F : A \rightarrow A^{(p)}\) be the relative Frobenius. We consider the first de Rham cohomology sheaf \(N = H^1_{dR}(A/S)\), which is a locally free \(\mathcal{O}_S\)-module. Recall \(N\) is equipped with two canonical subsheaves \(C := f_*\Omega^1_{A/S}\) and \(D := R^1f_*^{(p)}(\mathcal{H}^0(F_*\Omega^{•}_{A/S}))\). The Cartier isomorphism induces canonical isomorphisms \(\varphi : (N/C)^{(p)} \rightarrow D\) and \(\tilde{\varphi} : C^{(p)} \rightarrow N/D\). If \(A\) has a principal polarization \(\eta\), it induces an alternating perfect pairing \(\langle \cdot , \cdot \rangle\) on \(N\). Thus from \((A, \eta)\) we have a polarized \(F\)-zip

\[Fz(A, \eta) := (N, C, D, \varphi, \tilde{\varphi}, \langle \cdot , \cdot \rangle). \]
We start with reviewing the abstract definition of (polarized) F-zips for the reader’s convenience. In this paper if we simply say (polarized) F-zip, it means (symplectic) F-zip of type with support contained in $\{0, 1\}$ in the terminology of [21] and [27].

3.1. F-zips

For an O_S-module M we write $M^{(p)} = F^*_S M$.

Definition 3.1. — An F-zip over S is a quintuple $Z = (N, C, D, \varphi, \dot{\varphi})$ consisting of locally free O_S-module N and O_S-submodules C, D of N which are locally direct summands of N, and O_S-linear isomorphisms

$$\varphi : (N/C)^{(p)} \to D, \quad \dot{\varphi} : C^{(p)} \to N/D.$$

If S is connected, we define the height of Z to be the rank of N and the type of Z to be a map from $\{0, 1\}$ to $\mathbb{Z}_{\geq 0}$ sending 0 to $\text{rk} D$ and 1 to $\text{rk} C$; we will simply write the type as $(\text{rk} D, \text{rk} C)$.

Definition 3.2. — Let $Z_1 = (N_1, C_1, D_1, \varphi_1, \dot{\varphi}_1)$ and $Z_2 = (N_2, C_2, D_2, \varphi_2, \dot{\varphi}_2)$ be two F-zips over S. The set $\text{Hom}_{O_S}(Z_1, Z_2)$ of homomorphisms as F-zips consists of elements μ of $\text{Hom}_{O_S}(N_1, N_2)$ such that

(1) $\mu(C_1) \subset C_2$ and $\mu(D_1) \subset D_2$,

(2) $\mu \circ \varphi_1 = \varphi_2 \circ \mu^{(p)}$ and $\mu \circ \dot{\varphi}_1 = \dot{\varphi}_2 \circ \mu^{(p)}$.

3.2. Polarized F-zips

For an O_S-module N, we write $N^\vee = \text{Hom}_{O_S}(N, O_S)$. A pairing $\langle , \rangle : N \otimes_{O_S} N \to O_S$ canonically induces a pairing on $N^{(p)}$:

$$\langle , \rangle^{(p)} : N^{(p)} \otimes_{O_S} N^{(p)} \to O_S^{(p)} \simeq O_S,$$

where the last isomorphism is defined by gluing the canonical isomorphisms $R \otimes_{\sigma, R} R \simeq R$ over affine open subschemes $\text{Spec}(R) \subset S$.

Definition 3.3. — Let $Z = (N, C, D, \varphi, \dot{\varphi})$ be an F-zip. A polarization on Z is a perfect alternating pairing on N:

$$\langle , \rangle : N \otimes_{O_S} N \to O_S$$

(“alternating” means $\langle z, z \rangle = 0$ for all $z \in N$) such that

(1) C and D are totally isotropic, and

(2) $\langle \varphi y, \varphi x \rangle = \langle y, x \rangle^{(p)}$ for $x \in N^{(p)}$ and $y \in C^{(p)}$. (The LHS makes sense by (1). See [21], (5.2) and [27], (2.3) for an equivalent condition.)

We call such a pair (Z, \langle , \rangle) a polarized F-zip.
3.3. The dual of an F-zip

Let Z be an F-zip $(N, C, D, \varphi, \dot{\varphi})$. We define the dual F-zip Z^\vee of Z by

$$ (N^\vee, (N/C)^\vee, (N/D)^\vee, (\varphi^\vee)^{-1}, (\dot{\varphi}^\vee)^{-1}). $$

Clearly a homomorphism $f : Z_1 \to Z_2$ induces a homomorphism $f^\vee : Z_2^\vee \to Z_1^\vee$ canonically. Note that a polarization \langle , \rangle on Z gives an isomorphism $Z \to Z^\vee$ of F-zips.

3.4. Truncated Barsotti-Tate groups of level one (BT_1)

Definition 3.4 ([13]). — Let S be an \mathbb{F}_p-scheme. A finite locally free commutative group scheme G over S is said to be a BT_1 if it is annihilated by p and $\text{Im}(V : G^{(p)} \to G) = \text{Ker}(F : G \to G^{(p)})$.

Note that the p-kernel of a p-divisible group is a BT_1. Let K be a perfect field. For a BT_1 G over K, putting $N = D(G)$ we have an F-zip

$$(3.2) \quad \text{fz}(G) := (N, VN, FN, F, V^{-1}).$$

Definition 3.5. — Assume K is perfect. Let G be a BT_1 over K. A symmetry of G is an isomorphism from G to its Cartier dual G^\vee. A symmetry ι is called a polarization if the bilinear form $\langle , \rangle : D(G) \otimes_K D(G) \to K$ induced by ι is alternating: $\langle x, x \rangle = 0$ for all $x \in D(G)$. A polarized BT_1 is a pair (G, ι) consisting of a BT_1 G and a polarization ι.

For a polarized BT_1 (G, ι) over K we have a polarized F-zip

$$(3.3) \quad \text{fz}(G, \iota) := (N, VN, FN, F, V^{-1}, \langle , \rangle),$$

where $N = D(G)$ and \langle , \rangle is the polarization induced by ι.

Remark 3.6. — Over a perfect field, fz makes a categorical equivalence from the category of (polarized) BT_1’s to that of (polarized) F-zips. Moreover if $Z = \text{fz}(G)$, then $Z^\vee = \text{fz}(G^\vee)$, where G^\vee is the Cartier dual of G.

3.5. Displays modulo I_R

In this subsection we show that the reduction modulo I_R of a display over R defines an F-zip over R.

Let $M = (P, Q, F, V^{-1})$ be a display over R. Put $N = P/I_R P$ and $C = Q/I_R P$.
Lemma 3.7. — \mathcal{F} induces an injective homomorphism $(N/C)^{(p)} \rightarrow N$.

Proof. — Let $P = L \oplus T$ be a normal decomposition. Then
\[C = Q/I_R P = (L \oplus I_R T)/(I_R L \oplus I_R T) = L/I_R L \]
and $N/C = T/I_R T$. Recall that the $W(R)$-linear homomorphism
\[(3.4) \quad \mathcal{V}^{-1} \oplus \mathcal{F} : \quad L^\sigma \oplus T^\sigma \longrightarrow P \]
is an isomorphism ([29], Lem. 9). Note that the map $W(R) \otimes_{\sigma, W(R)} T \rightarrow R \otimes_{\sigma, R} (T/I_R T)$ induces a canonical isomorphism from $(T^\sigma/I_R T^\sigma)$ to $(T/I_R T)^{(p)} = (N/C)^{(p)}$. Hence we have the injection $\mathcal{F} : (N/C)^{(p)} \rightarrow N$. □

We define a submodule D of N to be the image of the injection obtained in Lem. 3.7, namely D is the \mathcal{F}-image of T^σ in N. Note that D is independent of the choice of the normal decomposition.

Lemma 3.8. — \mathcal{V}^{-1} induces an isomorphism $C^{(p)} \rightarrow N/D$.

Proof. — Let $P = L \oplus T$ be a normal decomposition. Since C consists of classes of elements of L and D is the \mathcal{F}-image of T^σ, the isomorphism (3.4) shows that the composition
\[C^{(p)} \xrightarrow{\mathcal{V}^{-1}} N \xrightarrow{} N/D \]
is bijective. □

Thus from M we canonically obtain an F-zip $(N, C, D, \mathcal{F}, \mathcal{V}^{-1})$, which will be denoted by $M/I_R M$.

Next we consider the case that M is equipped with a principal quasi-polarization \langle, \rangle, where a quasi-polarization is a non-degenerate alternating bilinear form $\langle, \rangle : P \otimes_{W(R)} P \rightarrow W(R)$ such that
\[\tau \langle \mathcal{V}^{-1}(1 \otimes x), \mathcal{V}^{-1}(1 \otimes y) \rangle = \langle x, y \rangle \]
for $x, y \in Q$, and it is called principal if the bilinear form is perfect.

The principal quasi-polarization \langle, \rangle induces a perfect alternating bilinear form $\langle, \rangle : N \otimes_R N \rightarrow R$. The next lemma says that this is a polarization on $M/I_R M$.

Lemma 3.9. —

1. C and D are totally isotropic.
2. $\langle \varphi y, \varphi x \rangle = \langle y, x \rangle^{(p)}$ for $x \in N^{(p)}$ and $y \in C^{(p)}$.

TOME 60 (2010), FASCICULE 5
Proof. — (1) For \(x, y \in L\), we have \(\langle x, y \rangle = \tau \langle V^{-1}x, V^{-1}y \rangle \in I_R\). Since \(C\) is generated by classes of elements of \(L\), we have \(\langle C, C \rangle = 0\). For \(x, y \in T\), we have
\[
\tau \langle F(1 \otimes x), F(1 \otimes y) \rangle = \tau \langle V^{-1}(1 \otimes \tau 1x), V^{-1}(1 \otimes \tau 1y) \rangle = \langle \tau 1x, \tau 1y \rangle = (\tau 1)^2 \langle x, y \rangle.
\]
Hence \(\langle F(1 \otimes x), F(1 \otimes y) \rangle \in I_R\). Since \(D\) is the \(F\)-image of \(T^\sigma\) in \(N\), we have \(\langle D, D \rangle = 0\). Since \((\ , \)\) is perfect on \(N\), both of \(C\) and \(D\) have to be totally isotropic.

(2) This follows immediately from the fact \(\langle V^{-1}(1 \otimes y), F(1 \otimes x) \rangle = \sigma \langle y, x \rangle\) for every \(y \in Q\) and \(x \in P\), see \([29], (20)\) after Def. 18. □

Definition 3.10. — Let \(R\) be as in Th. 2.2. Let \(X\) be a (principally quasi-polarized) formal \(p\)-divisible group over \(R\) and let \(M\) be the associated (principally quasi-polarized) display obtained by Th. 2.2. The (polarized) \(F\)-zip of \(X\) is defined to be \(Fz(X) := M/I_RM\).

4. Classifying data of \(F\)-zips

In this section let \(k\) denote an algebraically closed field of characteristic \(p\). We recall the classification of (polarized) \(F\)-zips over \(k\). Originally the classification of \(BT_1\)'s is due to Kraft \([16]\), and that of polarized \(BT_1\)'s is due to Oort \([23]\). Now Moonen \([20]\) and Moonen-Wedhorn \([21]\) gave a more conceptual reinterpretation and a generalization by using Weyl groups.

Let \(G\) be a connected reductive group over \(k\). Let \(W = W_G\) be the Weyl group and \(I\) be its set of simple reflections. For a subset \(J \subset I\), we denote by \(W_J\) the subgroup of \(W\) generated by the elements of \(J\). Let \(JW\) be the set of \((J, \emptyset)\)-reduced elements of \(W\) \([2], Chap. IV, Ex. §1, 3\), which is a set of representatives of \(W_J \backslash W\). We call an element of \(JW\) a final element of \(W\) with respect to \(J\).

4.1. The unpolarized case

Let \(G = GL_h\). Let \(W\) be the Weyl group of \(G\). We identify \(W\) and \(\text{Aut}\{1, \ldots, h\}\) in the usual sense. Note that \(W\) is generated by simple reflections \(s_i = (i, i + 1)\); write \(I = \{s_1, \ldots, s_{h-1}\}\). Let us explain the classification of \(F\)-zips over \(k\) of type \((h_0, h_1)\) with \(h_0 + h_1 = h\).
Theorem 4.1 ([21], (4.4)). — There is a canonical bijection

\[\mathcal{E}^\text{un} : \{\text{F-zips over } k \text{ of type } (h_0, h_1)\} / \sim \xrightarrow{\sim} J^W, \]

where \(J = J_{(h_0, h_1)} \) is the parabolic type associated to \((h_0, h_1)\); explicitly \(J^W \) is described as \(\{w \in W \mid w^{-1}(1) < \cdots < w^{-1}(h_1), \ w^{-1}(h_1 + 1) < \cdots < w^{-1}(h)\} \) (see [21] (1.9)).

There are some equivalent classifying data of F-zips. First in order to explain the inverse map of \(\mathcal{E}^\text{un} \), we introduce final types. A final type of type \((h_0, h_1)\) is a pair \((B, \delta)\) consisting of a totally ordered finite set \(B \) and a map \(\delta : B \to \{0, 1\} \) with \(h_* = \# \{b \mid \delta(b) = *\} \) for \(* = 0, 1\). \(B = (B, \delta) \) and \(B' = (B', \delta') \) are isomorphic if there exists a bijection \(f \) from \(B \) to \(B' \) preserving order such that \(\delta = \delta' \circ f \). For a final type \((B, \delta)\), there exists a unique automorphism \(\pi = \pi_\delta \) of \(B \) such that \(\pi(b') > \pi(b) \Leftrightarrow \delta(b') > \delta(b) \) for any \(b' < b \), see [10], Lem. 4.3 (1). To \(w \in J^W \), we associate a final type \(B = (B, \delta) \) with \(B = \{b_1 < \cdots < b_h\} \) defined by \(\delta(b_i) = 1 \) if \(w(i) \leq h_1 \) and \(\delta(b_i) = 0 \) if \(w(i) > h_1 \). We have \(\pi(b_i) = b_{h_0+w(i)} \) for \(\delta(b_i) = 1 \) and \(\pi(b_i) = b_{w(i)-h_1} \) for \(\delta(b_i) = 0 \).

For \(w \in J^W \), we define an F-zip \(Z_w = (N, C, D, \varphi, \hat{\varphi}) \) over \(\mathbb{F}_p \) as follows. This gives the inverse map of \(\mathcal{E}^\text{un} \). Let \(B = (B, \delta) \) be the final type of \(w \). Write \(B = \{b_1 < \cdots < b_h\} \) and set \(\pi = \pi_\delta \). First \(N \) is an \(\mathbb{F}_p \)-vector space with basis indexed by \(b_1, \ldots, b_h \), simply say \(N = \bigoplus_{i=1}^h \mathbb{F}_p b_i \); and we define \(C = \bigoplus_{\delta(b_i)=1} \mathbb{F}_p b_i \) and \(D = \bigoplus_{\delta(b_i)=0} \mathbb{F}_p \pi(b_i) \) with \(\varphi \) and \(\hat{\varphi} \) given by

\[\varphi(b_i) := \pi(b_i) \quad \text{if} \quad \delta(b_i) = 0, \]

and

\[\hat{\varphi}(b_i) := \begin{cases} \pi(b_i) & \text{if} \quad \delta(b_i) = 1, \ \delta(\pi(b_i)) = 1, \\ -\pi(b_i) & \text{if} \quad \delta(b_i) = 1, \ \delta(\pi(b_i)) = 0. \end{cases} \]

Definition 4.2. — Let \(S' \) be an \(S \)-scheme. An F-zip \(Z \) over \(S \) is called \(S' \)-split of type \(w \) if \(Z \) is isomorphic to \(Z_w \) over \(S' \). We define a BT\(_1\) \(G_w \) over \(\mathbb{F}_p \) by \(\text{fix}(G_w) = Z_w \).

We will use another classifying datum. A final sequence of type \((h_0, h_1)\) is a map

\[\nu : \{0, \ldots, h\} \longrightarrow \{0, \ldots, h_0\} \]

such that \(\nu(0) = 0 \) and \(\nu(i - 1) \leq \nu(i) \leq \nu(i - 1) + 1 \) for \(i = 1, \ldots, h \). To \(w \in J^W \), we associate a final sequence \(\nu = \nu_w \) of type \((h_0, h_1)\) defined by \(\nu(i) = \sum_{j=1}^i (1 - \delta(b_j)) \), where \(\{(b_j), \delta\} \) is the final type of \(w \).

Note that the correspondences above give

\[J^W \simeq \{\text{final types of type } (h_0, h_1)\} / \sim \simeq \{\text{final sequences of type } (h_0, h_1)\}. \]
4.2. The polarized case

Let \(\mathbb{W} = \mathbb{W}_g \) be the Weyl group of \(\text{Sp}_{2g} \). We can identify \(\mathbb{W} \) in the usual way to

\[
\mathbb{W} = \{ w \in \text{Aut} \{ 1, \ldots, 2g \} \mid w(i) + w(2g + 1 - i) = 2g + 1 \}.
\]

Let \(I \) be the set of simple reflection \(\{ s_1, \ldots, s_g \} \), where

\[
s_i = \begin{cases} (i, i + 1) \cdot (2g - i, 2g + 1 - i) & \text{for } i < g, \\ (g, g + 1) & \text{for } i = g. \end{cases}
\]

Note that \(\mathbb{W} \) is generated by \(I \). Set \(J = I \setminus \{ s_g \} \). We know that \(\mathbb{W}_J \) and \(J\mathbb{W} \) are given by

\[
\mathbb{W}_J = \{ w \in \mathbb{W} \mid w(\{ 1, \ldots, g \}) = \{ 1, \ldots, g \} \},
\]

\[
J\mathbb{W} = \{ w \in \mathbb{W} \mid w^{-1}(i) < w^{-1}(j) \text{ for any } 1 \leq i < j \leq g \}.
\]

Theorem 4.3. — There is a canonical bijection

\[
\mathcal{E} : \{ \text{polarized } F\text{-zips over } k \} \sim \longrightarrow J\mathbb{W}.
\]

Remark 4.4. — In [23] Oort gave the classification in terms of polarized BT\(_1\)'s and elementary sequences defined below. The description in 4.3 is found in Moonen-Wedhorn [21], (5.4); also see Moonen [20] for \(p > 2 \).

Let \(B = (B, \delta) \) be a final type with \(B = \{ b_1 < \cdots < b_h \} \). The dual final type \(B^\vee = (B^\vee, \delta^\vee) \) is defined as \(B^\vee = \{ b_h^\vee < \cdots < b_1^\vee \} \) and \(\delta^\vee(b_i^\vee) = 1 - \delta(b_i) \). Put \(\pi = \pi_\delta \) and \(\pi^\vee = \pi_\delta^\vee \). Then we have \(\pi(b) = c \) if and only if \(\pi^\vee(b_i^\vee) = c^\vee \). We say \((B, \delta) \) to be symmetric if \((B, \delta) \) is isomorphic to \((B^\vee, \delta^\vee) \). If \(B \) is symmetric, then \(h \) is even and \(B \) is of type \((g, g) \) with \(h = 2g \).

To an element \(w \in J\mathbb{W} \), we associate a symmetric final type \((B, \delta) \) defined by \(B = \{ b_1 \leq \cdots \leq b_{2g} \} \and \delta(b_i) = 1 \text{ if } w(i) \leq g \text{ and } \delta(b_i) = 0 \text{ if } w(i) > g. \)

Similarly to the unpolarized case, \(\pi = \pi_\delta \) is given by \(\pi(b_i) = b_{g+w(i)} \) for \(\delta(b_i) = 1 \) and \(\pi(b_i) = b_{w(i)-g} \) for \(\delta(b_i) = 0. \)

For \(w \in J\mathbb{W} \), let \(Z_w = (\mathcal{N}, \mathcal{C}, \mathcal{D}, \varphi, \check{\varphi}) \) be the \(F\)-zip defined as in §4.1. We define a polarization \(\langle \ , \rangle_w \) on \(Z_w \) by

\[
\langle b_i, b_{2g+1-j} \rangle_w = \begin{cases} 1 & \text{if } i = j \text{ and } \delta(b_i) = 0, \\ -1 & \text{if } i = j \text{ and } \delta(b_i) = 1, \\ 0 & \text{if } i \neq j. \end{cases}
\]

Thus we have a polarized \(F\)-zip \((Z_w, \langle \ , \rangle_w) \), which will be written simply as \(Z_w \).
Definition 4.5. — Let S' be an S-scheme. For $w \in \mathcal{W}_g$, a polarized F-zip Z over S is called S'-split of type w if Z is isomorphic to Z_w over S' as polarized F-zips. We define a polarized $B T_1 G_w$ over \mathbb{F}_p by $f_*(G_w) = Z_w$. The local-local part of w is the final element (of \mathcal{W}_g' for some $g' \leq g$) related to the local-local factor of G_w.

A symmetric final sequence of length $2g$ is a final sequence of type (g, g) of length $2g$:

$$\psi : \{0, 1, \ldots, 2g\} \longrightarrow \{0, 1, \ldots, g\}$$

satisfying $\psi(2g - i) = g + \psi(i) - i$. An elementary sequence of length g is the restriction of a symmetric final sequence of length $2g$ to $\{1, \ldots, g\}$. Clearly to give an elementary sequence of length g is equivalent to giving a symmetric final sequence of length $2g$. For $w \in J\mathcal{W}$, we have a symmetric final sequence ψ_w defined by $\psi_w(i) = \sum_{j=1}^i (1 - \delta(b_j))$.

The correspondences above give $J\mathcal{W} \simeq \{\text{sym. final type of length } 2g\} \simeq \{\text{sym. final seq. of length } 2g\}$.

4.3. The Ekedahl-Oort stratification

The main reference for the Ekedahl-Oort stratification is [23]. For a formulation in terms of Weyl groups, see [5], [6] and [20].

For $w \in J\mathcal{W}$, the EO-stratum S_w is defined to be the subset of A_g consisting of points $y \in A_g$ where y comes over some field from a principally polarized abelian variety A_y such that $\mathcal{E}(f_*(A_y)) = w$, see [23], (5.11). As shown in [23], (3.2), S_w has a natural structure of a locally closed reduced subscheme of A_g.

Here are fundamental results on the Ekedahl-Oort stratification:

Theorem 4.6 ([23]). — Let w be any element of $J\mathcal{W}$.

1. S_w is not empty.
2. Every irreducible component of S_w has dimension $\ell(w)$, the length of w.
3. S_w is quasi-affine for every $w \in J\mathcal{W}$.
4. $S_{w'} \subset \overline{S_w}$ is equivalent to $S_{w'} \cap \overline{S_w} \neq \emptyset$.

Recently Wedhorn proved

Theorem 4.7 ([28]). — For any two $w, w' \in J\mathcal{W}$, we have $S_{w'} \subset \overline{S_w}$ if and only if there exists an element u of \mathcal{W}_J such that $u^{-1} \cdot w' \cdot (w_{0,J} \cdot u \cdot w_{0,J}) \leq w$ with respect to the Bruhat-Chevalley order \leq. Here $w_{0,J}$ is the element of \mathcal{W}_J sending i to $g + 1 - i$ for any $i = 1, \ldots, g$.

TOME 60 (2010), FASCICULE 5
Remark 4.8. — For $w \in \mathcal{W}$ and $1 \leq i, j \leq 2g$, we define $r_w(i,j) := \sharp\{a \leq i \mid w(a) \leq j\}$. It is known (cf. [5], §2.1 and [1], §3.3) that the Bruhat-Chevalley order is described as follows: for $w, w' \in \mathcal{W}$ we have $w' \leq w \iff r_{w'}(i,j) \geq r_w(i,j)$ for all $1 \leq i, j \leq 2g$.

Recall the result of Ekedahl and van der Geer:

Theorem 4.9 ([5], Th. 11.5). Let $w \in J\mathcal{W}$. If $\psi_w(\lfloor (g + 1)/2 \rfloor) \neq 0$, then S_w is irreducible.

Remark 4.10. Note that $\psi_w(\lfloor (g + 1)/2 \rfloor) = 0$ if and only if S_w is contained in the supersingular locus, see [3], (4.8), Step 2. Also see [9] for another proof and a generalization.

Definition 4.11. Let $\xi(w)$ denote the Newton polygon of the generic point of S_w if S_w is not contained in the supersingular locus and otherwise the supersingular Newton polygon. We call $\xi(w)$ the generic Newton polygon of S_w.

5. Foliations

We recall some known facts on the foliations (central leaves and isogeny leaves) and prove some new results we shall use later.

5.1. Minimal p-divisible groups

Firstly we review the theory of minimal p-divisible groups [25].

Definition 5.1. For non-negative integers m, n with $\gcd(m, n) = 1$, we define a p-divisible group $H_{m,n}$ over \mathbb{F}_p by

$$P_{m,n} := \mathbb{D}(H_{m,n}) = \bigoplus_{i=0}^{m+n-1} \mathbb{Z}_p e_i$$

with \mathcal{F}, \mathcal{V} operations:

$$\mathcal{F}e_i = e_{i+n} \quad \text{and} \quad \mathcal{V}e_i = e_{i+m} \quad \text{for} \quad \forall i \in \mathbb{Z}_{\geq 0},$$

where $e_i \ (i \in \mathbb{Z}_{\geq m+n})$ are defined as satisfying $e_{i+m+n} = pe_i$ for $i \in \mathbb{Z}_{\geq 0}$.

Let ϑ be the endomorphism defined by $\vartheta(x_i) = x_{i+1}$; then we have

$$\text{End}_{\mathbb{F}_p}(P_{m,n}) = \mathbb{Z}_p[\vartheta]/(\vartheta^{m+n} - p).$$
Let θ denote the endomorphism of $H_{m,n}$ corresponding to ϑ.

For an arbitrary perfect field K, the Dieudonné module $P_{m,n,K} = \mathbb{D}(H_{m,n} \otimes K)$ has a $W(K)$-basis $\{e_0, \ldots, e_{m+n-1}\}$ satisfying the equations (5.2), which is called a minimal basis of $P_{m,n,K}$; and e_0 (resp. e_{m+n-1}) is called the highest (resp. lowest) element.

For a Newton polygon $\xi = \sum_{l=1}^t (m_l, n_l)$, we write

$$H(\xi) = \bigoplus_{l=1}^t H_{m_l, n_l}$$

and

$$P(\xi) = \bigoplus_{l=1}^t P_{m_l, n_l}.$$

Note that the Newton polygon of $H(\xi)$ is equal to ξ.

Definition 5.2. — A p-divisible group X is called minimal if there exist a Newton polygon ξ and an isomorphism from X to $H(\xi)$ over an algebraically closed field. If a BT$_1$ G is isomorphic to $H(\xi)[p]$ over an algebraically closed field, we call G minimal, and also the F-zip $\text{fz}(G)$ and the final element of G are called minimal.

5.2. Central leaves

Let k be an algebraically closed field of characteristic p. Let (X, ι) be a principally quasi-polarized p-divisible group over k. The central leaf for (X, ι) is defined by

$$C_{(X, \iota)} = \{(A, \eta) \in \mathcal{A}_g \mid (A[p^\infty], \eta[p^\infty])_\Omega \simeq (X, \iota)_\Omega \text{ over some alg. closed field } \Omega\}.$$

For a geometric point $x \in \mathcal{A}_g$, let (A, η) be the associated principally polarized abelian variety; we set $C_x := C_{(A[p^\infty], \eta[p^\infty])}$. In [24], (3.3), it was proved that C_x is closed in \mathcal{W}_ξ^0 with $\xi = N(A)$; we consider this is a closed subscheme by giving it the induced reduced scheme structure.

The next proposition says $C_{(X, \iota)} \neq \emptyset$ for any principally quasi-polarized p-divisible group (X, ι). This result and the proof below are due to Oort (private communication).

Proposition 5.3. — Let (X, ι) be a principally quasi-polarized p-divisible group over k. Then there exists a principally polarized abelian variety (A, η) over k such that $(A[p^\infty], \eta[p^\infty]) \simeq (X, \iota)$.

To prove this, we need a lemma:

Lemma 5.4. — Let ξ be a symmetric Newton polygon. Let $\zeta^{(1)}$ and $\zeta^{(2)}$ be two quasi-polarizations on $H(\xi)_k$. For a sufficient large $n \geq 0$, we have $(p^n)^* \zeta^{(1)} = u^* \zeta^{(2)}$ for a certain isogeny $u : H(\xi)_k \to H(\xi)_k$.

TOME 60 (2010), FASCICULE 5
Proof. — Let I_r and Π_r be the quasi-polarizations on $H_{1,1}$ and $H_{1,1} \oplus H_{1,1}$ respectively defined in [24, 3.5] (also see [17, 6.1]), and let $\zeta_d(m, n)$ be the quasi-polarization on $H_{m,n} \oplus H_{n,m}$ defined in [24, 3.6]. Note that $p^*I_r = I_{r+2}$ and $p^*\Pi_r = \Pi_{r+2}$, and also $p^*\zeta_d(m, n) = \zeta_{d+2(m+n)}(m, n)$.

Write $\xi = s(1, 1) + \sum_i \{(m_i, n_i) + (m_i, n_i)\}$ with $m_i > n_i$ and $\gcd(m_i, n_i) = 1$. By [24, 3.7], $\zeta^{(*)}$ for $* = 1, 2$ is isomorphic to $\zeta^{(*)}(s, s) \oplus \bigoplus_i \zeta_d^{(*)}(m_i, n_i)$, where the first factor is a direct sum of some quasi-polarizations of types I_r and Π_r ($r \in \mathbb{Z}_{\geq 0}$).

Hence it suffices to show the supersingular case and the case of $\xi = (m, n) + (n, m)$ for $m > n$ with $\gcd(m, n) = 1$. For the supersingular case, the lemma follows from the fact that $F^*I_r = I_{r+1}$ and $F^*\Pi_r = \Pi_{r+1}$ and the fact that $u^*(I_r \oplus I_r) = \Pi_r$, where u is defined as follows: note that $I_r \oplus I_r$ is isomorphic to the quasi-polarization defined by $\langle x, Fy \rangle = p^r$ and $\langle x, Fx \rangle = \langle y, Fy \rangle = \langle x, y \rangle = 0$ on $P_{1,1}x \oplus P_{1,1}y$ ([17], §6.1, Remark); then u is the isogeny corresponding to the inclusion $P_{1,1}x \oplus P_{1,1}Fy \subset P_{1,1}x \oplus P_{1,1}y$.

The case $\xi = (m, n) + (n, m)$ follows from the fact that $v^*\zeta_d(m, n) = \zeta_{d+1}(m, n)$, where v is the isogeny $\theta \oplus \id : H_{m,n} \oplus H_{n,m} \to H_{m,n} \oplus H_{n,m}$. □

Proof of Prop. 5.3. — Put $\xi = \mathcal{N}(X)$. Since $\mathcal{W}_\xi^0 \neq \emptyset$, there exists a principally polarized abelian variety (A_1, η_1) over k such that $A_1[p^\infty]$ is isogenous to X over k. There exists an abelian variety A_2 over k with an isogeny $f : A_2 \to A_1$ such that $A_2[p^\infty]$ is minimal and $\deg(f)$ is a power of p. We have a polarization $\eta_2 := f^*\eta_1$ on A_2. Choose an isogeny $v : Y \to X$ with Y minimal and set $j = v^*i$. By Lem. 5.4, replacing f by $f \circ p^n : A_2 \to A_1$ for sufficient large n, we may assume that $\eta_2[p^\infty] = u^*j$ for a certain isogeny $u : A_2[p^\infty] \to Y$. Note that $\deg(\eta_2) = \deg(v)^2 \deg(u)^2$ and this is a power of p. Let $G := \operatorname{Ker}(v \circ u) \subset A_2$ and set $A = A_2/G$. Since G is isotropic, i.e., $\eta_2(G) = 0$, it follows from [22, Cor. on p. 231] that η_2 descends to a polarization η on A; clearly $\deg(\eta) = 1$. □

5.3. Central streams

Let ξ be a symmetric Newton polygon. By [24], Prop. 3.7, there exists a principal quasi-polarization r on $H(\xi)$, which is unique up to isomorphism of $H(\xi)$. Thus we have a central leaf $Z_\xi = \mathcal{C}_{(H(\xi), r)}$.

We call Z_ξ the central stream of the Newton polygon ξ.
Theorem 5.5 (Oort, [25]). — Let X be a p-divisible group over an algebraically closed field Ω. If $X[p] \simeq H(\xi)[p] \otimes \Omega$, then $X \simeq H(\xi) \otimes \Omega$.

Let w_{ξ} be the element of J_{W_ξ} corresponding to $(H(\xi)[p], \iota[p])$. Then Th. 5.5 implies

$$Z_{\xi} = S_{w_{\xi}}.$$

By Th. 4.9, Z_{ξ} is irreducible if ξ is not supersingular.

5.4. Isogeny leaves

Let k be an algebraically closed field. Let $x \in W_\xi^0(k)$. Oort defined the isogeny leaf I_x in W_ξ^0, see [24], (4.2), and showed that I_x is closed in W_ξ^0 and proper over k, see [24], (4.11).

Let R be an integral domain of finite type over k with $\dim(R) \geq 1$ and let m be a maximal ideal of R with $R/m = k$. Let X be a principally quasi-polarized p-divisible group over R with $X \otimes (R/m) \simeq A_x[p^\infty]$. Assume we are given a non-trivial family over R of isogenies as polarized p-divisible groups

$$\rho : (H(\xi), \zeta) \otimes R \longrightarrow X.$$

Let A_1 be a polarized abelian variety over k with isogeny $\tilde{\rho} : A_1 \to A_x$ such that $A_1[p^\infty] \simeq (H(\xi), \zeta)_k$ and $\tilde{\rho}[p^\infty] \simeq \rho \otimes (R/m)$. Set $G = \text{Ker} \rho$. Then we have a principally polarized abelian scheme $A = A_{1,R}/G$ over R (cf. [22, Cor. on p. 231]). Let T be the image of the induced morphism $\text{Spec}(R) \to A_g$.

Lemma 5.6. — $T \subset I_x$ and $\dim(T) > 0$.

Proof. — By definition T is an H_α-subscheme in A_g, see [24], (4.1). Hence $T \subset I_x$. Since ρ is non-trivial, $\dim(T) > 0$ follows from the rigidity of homomorphisms of p-divisible groups (cf. [29], Prop. 40).

6. Strategy

Now we explain how to prove the main theorem in §1.

6.1. Reduction of the problem

Let k be an algebraically closed field of characteristic p. In this subsection we prove that the main theorem follows from
Theorem 6.1. — Assume \(w \in J \mathbb{W} \) is not minimal. There exists a principally quasi-polarized \(p \)-divisible group \(X \) over a positive dimensional irreducible scheme \(S \) of finite type over \(k \) such that

1. there is a non-trivial family of isogenies of quasi-polarized \(p \)-divisible groups:
 \[
 (H(\xi(w)), \zeta) \times S \longrightarrow X
 \]
 for a certain quasi-polarization \(\zeta \) on \(H(\xi(w)) \), and

2. \(X \) is decomposed as \(X_{\text{et}} \oplus \mathcal{Y} \oplus X_{\text{et}}^t \) with an étale \(p \)-divisible group \(X_{\text{et}} \) over \(S \) and we have \(\mathcal{F}_z(\mathcal{Y}) \cong \mathbb{Z} \times S \) (see Def. 3.10 for the definition of \(\mathcal{F}_z(\mathcal{Y}) \)), where \(\mathcal{W} \) is the local-local part of \(w \) (see Def. 4.5).

The proof will occupy the rest of sections.

Remark 6.2. — This theorem can be seen as a complement to Oort’s theorem [25] (see Th. 5.5 above). His theorem implies that if \(w \) is minimal, then there is no such a family as in Th. 6.1. We also mention a relation to [26], (8.1), where Oort constructed, for any non-minimal \(w \), a positive dimensional non-trivial family of \(p \)-divisible groups with \(p \)-kernel type \(w \) and with constant Newton polygon which is the same as that of \(L(G_w) \), where \(L(G_w) \) is the \(p \)-divisible group introduced in [26], (2.5) (called the standard lift of \(G_w \)). However the Newton polygon of \(L(G_w) \) is not always equal to \(\xi(w) \) (e.g. \(w = (1, g + 1, \ldots, 2g - 1; 2, \ldots, g, 2g) \in J \mathbb{W} \) for \(g \geq 3 \)) and also [26] takes no account of quasi-polarizations.

Here is a corollary:

Corollary 6.3. — Assume \(w \in J \mathbb{W} \) is not minimal. Then for every geometric point \(x \) of \(\mathcal{W}_{\xi(w)}^0 \cap S_w \), a component of \(\mathcal{I}_x \cap S_w \) has dimension \(> 0 \).

Proof. — By Th. 6.1, Prop. 5.3 and Lem. 5.6, there exists a geometric point \(y \) of \(\mathcal{W}_{\xi(w)}^0 \cap S_w \) such that a component of \(\mathcal{I}_y \cap S_w \) has dimension \(> 0 \). Note that \(\mathcal{W}_{\xi(w)}^0 \cap S_w \) is open dense in \(S_w \) and therefore is regular (as a stack) because \(S_w \) is so. Let \(x \) be any geometric point of \(\mathcal{W}_{\xi(w)}^0 \cap S_w \). By definition the central leaf \(\mathcal{C}_x \) is contained in \(\mathcal{W}_{\xi(w)}^0 \cap S_w \). Since a component of \(\mathcal{I}_y \cap S_w \) has dimension \(> 0 \), we have \(\dim \mathcal{W}_{\xi(w)}^0 \cap S_w > \dim \mathcal{C}_x (= \dim \mathcal{C}_y) \); then [24], Th. 5.3 shows the corollary.

Using the corollary, we can prove the main theorem.

Proof of (Cor. 6.3 ⇒ Main theorem). — If \(w \) is minimal, then \(\mathcal{Z}_{\xi(w)} = S_w \); hence the main theorem is obviously true. Assume \(w \) is not minimal. Assume the main theorem is true for all \(w' \) with \(S_{w'} \subsetneq S_w \). (The smallest case w.r.t. \(\subset \) is the superspecial case \(w = \text{id} \) and in this case \(w \) is minimal.)
According to Cor. 6.3 there exists a geometric point \(x \) of \(\mathcal{W}^0_{\xi(w)} \cap \mathcal{S}_w \) such that a component of \(\mathcal{I}_x \cap \mathcal{S}_w \) has dimension \(> 0 \). Since \(\mathcal{I}_x \) is proper and \(\mathcal{S}_w \) is quasi-affine, there exists \(w' \) with \(\mathcal{S}_w' \subset \mathcal{S}_w \) such that \(\mathcal{S}_w' \cap \mathcal{I}_x \neq \emptyset \). Clearly \(\mathcal{S}_w' \subset \mathcal{S}_w \) implies \(\xi(w') \prec \xi(w) \), and from \(\mathcal{I}_x \subset \mathcal{W}^0_{\xi(w)} \) and \(\mathcal{S}_w' \cap \mathcal{I}_x \neq \emptyset \) we have \(\xi(w) \prec \xi(w') \); hence we obtain \(\xi(w) = \xi(w') \). By the hypothesis of induction, we have \(\mathcal{Z}_{\xi(w')} \subset \mathcal{S}_w' \). Then \(\mathcal{Z}_{\xi(w)} = \mathcal{Z}_{\xi(w')} \subset \mathcal{S}_w' \subset \mathcal{S}_w \). □

6.2. Outline of the proof of Th. 6.1

Let us explain the strategy of our proof of Th. 6.1. Let \(w \in \mathcal{J}, \mathcal{W} \) and assume \(w \) is not minimal. If \(\xi(w) \) is supersingular, \(\mathcal{C}_x \) consists of points for any \(x \in \mathcal{W}_{\xi(w)} \); then \(\mathcal{I}_x \cap \mathcal{S}_w \) is positive dimensional (because \(w \neq \text{id} \)); hence there is nothing to prove; from now on we assume \(\xi(w) \) is not supersingular.

Write

\[
\xi(w) = \sum_{l=1}^{t} (m_l, n_l)
\]

with \(\lambda_1 \leq \cdots \leq \lambda_t \), where \(\lambda_l = m_l/(m_l + n_l) \). Put \((d, c) = (m_1, n_1) = (n_t, m_t) \). Since \(\xi(w) \) is not supersingular, we have \(t \geq 2 \) and \(c > d \).

Take a geometric point \(x : \text{Spec}(k) \to \mathcal{W}^0_{\xi(w)} \cap \mathcal{S}_w \). Let \((A, \eta) \) be the principally polarized abelian variety at \(x \) and set \(X = A[p^\infty] \). From the composition of an embedding \(\iota : \mathbb{D}(X) \to M(\xi(w))_k \) and the natural projection \(\text{pr} : M(\xi(w))_k \to M_{d,c,k} \), we have a homomorphism \(X \to X_1 \), where \(X_1 \) is the \(p \)-divisible group corresponding to the image of \(\text{pr} \circ \iota \). The homomorphism \(X \to X_1 \) makes a self-dual complex over \(k \):

\[
\begin{array}{cccccc}
0 & \longrightarrow & X_1^t & \longrightarrow & X & \longrightarrow & X_1 & \longrightarrow & 0.
\end{array}
\]

This induces a self-dual complex of \(F \)-zips over \(k \):

\[
\begin{array}{cccccc}
C_0^* : & 0 & \longrightarrow & \mathcal{Z}_1^\vee & \overset{f_0^\vee}{\longrightarrow} & \mathcal{Z} & \overset{f}{\longrightarrow} & \mathcal{Z}_1 & \longrightarrow & 0.
\end{array}
\]

The proof consists of four steps. The first step is to prove that \(X_1 \) is a minimal \(p \)-divisible group, see the next subsection (Prop. 6.4). This is necessary for the remaining steps. As the second step we shall extend \(C_0^* \) to a non-trivial self-dual complex of \(F \)-zips

\[
\begin{array}{cccccc}
C^* : & 0 & \longrightarrow & \mathcal{Z}_{1,S}^\vee & \overset{f^\vee}{\longrightarrow} & \mathcal{Z}_S & \overset{f}{\longrightarrow} & \mathcal{Z}_{1,S} & \longrightarrow & 0.
\end{array}
\]

over some positive-dimensional smooth scheme \(S \) over \(k \) (see Prop. 7.13 for more precise statement. We remark that the \(F \)-zips are constant and only
the homomorphism moves). The third step is to extend C^\bullet to a self-dual complex of p-divisible groups

$$(6.4) \quad \mathcal{D}^\bullet : \quad 0 \longrightarrow X_{1, S'}^1 \longrightarrow \mathcal{X} \longrightarrow X_{1, S'} \longrightarrow 0$$

after some base extension $S' \to S$. This is done in Prop. 8.6. Finally, based on this construction of \mathcal{X} from C_0^\bullet, we find a family required in Th. 6.1 (see §8.4).

6.3. Minimality of X_1

Let X_1 be as in §6.2. We prove

Proposition 6.4. — X_1 is isomorphic to $H_{d, c} \otimes k$.

For this, we recall the results of [9] and [11] on the optimal upper bound of the last Newton slopes of (principally quasi-polarized) p-divisible groups with given isomorphism type of p-kernel.

Let ν be a final sequence of length h. We define

$$\Psi : \quad \{1, \ldots, h\} \longrightarrow \{1, \ldots, h\}$$

by sending i to $\nu(i)$ if $\nu(i) \neq 0$ and $\nu(h) + i$ if $\nu(i) = 0$. We get a non-empty subset

$$\Sigma := \bigcap_{j=1}^\infty \operatorname{Im} \Psi^j$$

of the set $\{1, \ldots, h\}$. Set $\Sigma' := \Sigma \cap \{1, 2, \ldots, \nu(h)\}$. Then we define

$$(6.5) \quad \rho_\nu = \sharp \Sigma'/\sharp \Sigma.$$

Theorem 6.5 ([9]). — Let $w \in J^W$ and let ν be the (symmetric) final sequence ψ_w of w. Then the last slope of $\xi(w)$ is equal to ρ_ν.

Next we recall an unpolarized analogue of Th. 6.5. Let G_ν be a BT$_1$ over \mathbb{F}_p with final sequence ν.

Theorem 6.6 ([11], Cor. 1.3 and 5.4). —

(1) The optimal upper bound of the last Newton slopes of p-divisible groups with given final sequence ν is equal to ρ_ν.

$$(2) \quad \rho_\nu = \max \{m/(m + n) \mid H_{m, n}[p]_\Omega \to G_{\nu, \Omega} \text{ for some alg. closed field } \Omega \}.$$
Proof of Prop. 6.4. — It suffices to prove that the final sequence of $X_1^i[p]$ is $\nu_{c,d}$. Let ν be the (symmetric) final sequence of $X[p]$. By the construction of X, the last slope of $\xi(w)$ is ρ_v, i.e., $\rho_v = c/(c+d)$. Let ν' be the final sequence of $X_1^i[p]$. Since $X_1^i[p] \hookrightarrow X[p]$, i.e., $G_{\nu',k} \hookrightarrow G_{\nu,k}$, we have $\rho_{\nu'} \leq \rho_v$ by Th. 6.5 and Th. 6.6 (2). By the construction of X_1, the (last) Newton slope of X_1^i is ω_{ν}; hence we have $\rho_{\nu'} \leq \rho_{\nu}$ by Th. 6.6 (1) for ν'. Thus $\rho_{\nu'} = \rho_v$. Then Th. 6.6 (2) implies that there exists an injection $H_{c,d}[p]\Omega \hookrightarrow G_{\nu',\Omega}$ for some $\Omega = \overline{\Omega}$. Since $H_{c,d}[p]$ and $G_{\nu'}$ have the same rank ($= c + d$), we obtain $H_{c,d}[p]\Omega \simeq G_{\nu',\Omega}$, namely $\nu_{c,d} = \nu'$.

7. The space of homomorphisms of F-zips

The aim of this section is to prove Prop. 7.13, where we construct a non-trivial family of complexes of F-zips as in (6.3). For this, we start with describing the space of homomorphisms between F-zips.

7.1. Slices and strings

It is known (see [26], §2 and also [20], §4) that every homomorphism of F-zips can be described in terms of slices and strings. We write here the definition of slices and strings by making use of final types.

Definition 7.1. — Let $B_1 = (B_1, \delta_1)$ and $B_2 = (B_2, \delta_2)$ be final types and set $\pi_1 = \pi_{\delta_1}$ and $\pi_2 = \pi_{\delta_2}$.

1. A finite slice ω is a subset of $B_1 \times B_2$ of the form

 \[
 \omega = \{(\pi_1^i(s_1), \pi_2^i(s_2)) \mid 1 \leq i \leq \ell \} \quad \text{with} \quad |\omega| = \ell
 \]

 for $s_1 \in B_1$ and $s_2 \in B_2$ satisfying
 (a) $\delta_1^{-1}(s_1) = 1$ and $\delta_2^{-1}(s_2) = 0$,
 (b) $\delta_1^{-1}(\pi_1^i(s_1)) = \delta_2^{-1}(\pi_2^i(s_2))$ for all $1 \leq i \leq \ell$ and
 (c) $\delta_1^{-1}(\pi_1^i(s_1)) = 0$ and $\delta_2^{-1}(\pi_2^i(s_2)) = 1$.

 We denote by $\Omega_{\text{fin}} = \Omega_{\text{fin}}(B_1, B_2)$ the set of finite slices of B_1 and B_2.

2. An infinite slice ω is a subset of $B_1 \times B_2$ of the form

 \[
 \omega = \{(\pi_1^i(s_1), \pi_2^i(s_2)) \mid 1 \leq i \leq \ell \} \quad \text{with} \quad |\omega| = \ell
 \]

 for $s_1 \in B_1$ and $s_2 \in B_2$ satisfying
 (a) $s_1 = \pi_1^1(s_1)$ and $s_2 = \pi_2^1(s_2)$,
 (b) $\delta_1^{-1}(\pi_1^i(s_1)) = \delta_2^{-1}(\pi_2^i(s_2))$ for all $1 \leq i < \ell$.

TOME 60 (2010), FASCICULE 5
We denote by $\Omega_\infty = \Omega_\infty(B_1, B_2)$ the set of infinite slices of B_1 and B_2.

Set $\Omega = \Omega(B_1, B_2) := \Omega_\text{fin} \cup \Omega_\infty$.

To a slice ω, we associate the subgroup scheme \mathbb{K}_ω of the additive group \mathbb{G}_a over \mathbb{F}_p defined by

$$
\mathbb{K}_\omega = \begin{cases}
\mathbb{G}_a & \text{if } \omega \in \Omega_\text{fin}, \\
\ker(F^{[\omega]} - \text{id} : \mathbb{G}_a \to \mathbb{G}_a) & \text{if } \omega \in \Omega_\infty.
\end{cases}
$$

Let S be an \mathbb{F}_p-scheme. Let $\omega = \{(\pi_1^s(s_1), \pi_2^s(s_2)) \mid 1 \leq i \leq \ell\}$ be a slice with $|\omega| = \ell$. For an element $r \in \omega$, we denote by $\varepsilon(r) (= \varepsilon_\omega(r))$ the integer ε with $0 \leq \varepsilon < \ell$ satisfying $r = (\pi_1^{\varepsilon+1}(s_1), \pi_2^{\varepsilon+1}(s_2))$. For $a \in \mathbb{K}_\omega(S)$, we define a map

$$
\text{st}_{\omega, a} : B_1 \times B_2 \to \mathbb{K}_\omega(S)
$$

by sending $r \in \omega$ to $a^{b^s(r)}$ and $r \notin \omega$ to 0.

Lemma 7.2. — Let w_1 and w_2 be elements of $J_1W_{GL_{h_1}}$ and $J_2W_{GL_{h_2}}$ respectively. Let Z_1 and Z_2 be the split F-zips over \mathbb{F}_p of type w_1 and w_2 respectively. Then the functor, from the category of \mathbb{F}_p-schemes to the category of sets, sending S to $\text{Hom}_S(Z_1, Z_2)$ is represented by a scheme $\text{Hom}(Z_1, Z_2)$ over \mathbb{F}_p, which has a canonical commutative group scheme structure. Moreover there is an isomorphism as group schemes over \mathbb{F}_p:

$$
\Phi : \bigoplus_{\omega \in \Omega} \mathbb{K}_\omega \overset{\sim}{\longrightarrow} \text{Hom}(Z_1, Z_2).
$$

Proof. — For $* = 1, 2$, let $B_* = (B_*, \delta_*)$ be the final types of w_*. We write $B_* = (B_*^{(s)})_{1 \leq i \leq h_*}$ with $B_*^{(s)} = \{b_1^{(s)} < \cdots < b_{h_*}^{(s)}\}$. Set $\pi_* = \pi_{\delta_*}$ and define $\varpi_*(i)$ ($1 \leq i \leq h_*)$ by $\pi_*(b_i) = b_{\varpi_*(i)}$. Also write $Z_* = (N_*, C_*, D_*, \varphi_*, \varphi_*^{-1})$ with $N_* = \bigoplus_{i=1}^{h_*} \mathbb{F}_p b_i^{(s)}$ as defined in §4.1. Let S be any \mathbb{F}_p-scheme. An O_S-homomorphism $\mu : N_{1,S} \to N_{2,S}$, say

$$
\mu(b_i^{(1)}) = \sum_j r_{i,j} b_j^{(2)} \quad \text{with} \quad r_{i,j} \in \Gamma(S, O_S),
$$
gives an element of $\text{Hom}_S(Z_1, Z_2)$ if and only if

$$
\begin{align*}
0 & \text{ if } \delta(b_i^{(1)}) = 1 \text{ and } \delta(b_i^{(2)}) = 0, \\
0 & \text{ if } \delta(b_i^{(1)}) = 0 \text{ and } \delta(b_i^{(2)}) = 1, \\
0 & \text{ if } r_{i,j} \neq 0 \text{ and } t_{\varpi_1(i), \varpi_2(j)} \neq 0.
\end{align*}
$$

Here note that the first equation is a paraphrase of $\mu(C_1) \subset C_2$ and the second is a paraphrase of $\mu(D_1) \subset D_2$, and the third is a paraphrase of
\(\mu \circ \varphi_1 = \varphi_2 \circ \mu^{(p)}\) or \(\mu \circ \varphi_1 = \varphi_2 \circ \mu^{(p)}\). Clearly (7.5) is equivalent to that \(r_{i,j}\) is of the form

\[\sum_{\omega \in \Omega} st_{\omega,a}(b_{i,j}) \]

for a certain \(a \in \mathbb{K}_\omega(S)\), where \(b_{i,j} = (b_{i}^{(1)}, b_{j}^{(2)}) \in B_1 \times B_2\).

Definition 7.3. — We retain the notation of Lem. 7.2. Let \(pr_\omega\) be the projection \(\bigoplus \mathbb{K}_\omega \rightarrow \mathbb{K}_\omega\). Let \(f : Z_{1,S} \rightarrow Z_{2,S}\) be a homomorphism of \(F\)-zips. For a slice \(\omega\), the element \(pr_\omega \circ \Phi^{-1}(f)\) of \(G_a(S)\) is called the string of \(f\) at \(\omega\). An element of \(\{\omega \in \Omega(B_1,B_2) \mid pr_\omega \circ \Phi^{-1}(f) \neq 0\}\) is said to be one of the slices defining \(f\) or simply a slice defining \(f\).

7.2. Duality

Let \(Z\) be an \(F\)-zip and let \(\mathcal{B} = (B, \delta)\) be the final type of \(Z\). Then the final type of \(Z'\) (cf. §3.3) is canonically \(\mathcal{B}' = (B', \delta')\) (cf. §4.2).

Let \(N_1, N_2, B_1\) and \(B_2\) be as in § 7.1. Let \(\omega\) be a slice in \(\Omega(B_1, B_2)\). We define \(\omega' \in \Omega(B_2', B_1')\) by

\[\omega' = \{(b_2', b_1') \mid (b_1, b_2) \in \omega\}. \]

Let \(Z_1\) and \(Z_2\) be as in Lem. 7.2. Clearly we have a commutative diagram:

\[
\begin{array}{ccc}
\bigoplus_{\omega \in \Omega(B_1,B_2)} \mathbb{K}_\omega & \longrightarrow & \bigoplus_{\omega' \in \Omega(B_2', B_1')} \mathbb{K}_{\omega'} \\
\downarrow & & \downarrow \\
v : \text{Hom}(Z_1, Z_2) & \longrightarrow & \text{Hom}(Z_2', Z_1'),
\end{array}
\]

where the vertical maps are obtained in Lem. 7.2 and the top horizontal map sends \(a \in \mathbb{K}_\omega\) to \(a \in \mathbb{K}_{\omega'}\). Here we note \(\mathbb{K}_\omega = \mathbb{K}_{\omega'}\).

7.3. Top and bottom elements

As introduced in [20], 4.14, for a final type \(\mathcal{B} = (B, \delta)\) we define the set \(\text{Top}(\mathcal{B})\) of *top elements* and the set \(\text{Bot}(\mathcal{B})\) of *bottom elements* by

\[
\text{Top}(\mathcal{B}) = \{t \in B \mid \delta(\pi^{-1}(t)) = 1, \delta(t) = 0\},
\]

\[
\text{Bot}(\mathcal{B}) = \{b \in B \mid \delta(\pi^{-1}(b)) = 0, \delta(b) = 1\}.
\]
For any $\omega \in \Omega_{\text{fin}}(B_1, B_2)$. Then obviously we have $\omega_{t,b} \in \Omega_{\text{fin}}(B_1, B_2)$.

Let m, n be coprime non-negative integers and let $B_{m,n} = (B_{m,n}, \delta_{m,n})$ be the final type of the minimal BT$_1$ $H_{m,n}[p]$. If we write $B_{m,n} = \{b_1 < \cdots < b_{m+n}\}$, then we have $\delta_{m,n}(b_i) = 1$ for $1 \leq i \leq n$ and $\delta_{m,n}(b_i) = 0$ for $n < i \leq m+n$ (cf. [10], §4.5). Let $\pi_{m,n}$ be the automorphism of $B_{m,n}$ associated with $\delta_{m,n}$. Then we have the commutative diagram

$$
\begin{array}{ccc}
B_{m,n} & \longrightarrow & \mathbb{Z}/(m+n)\mathbb{Z} \\
\pi_{m,n} \downarrow & & \downarrow m \\
B_{m,n} & \longrightarrow & \mathbb{Z}/(m+n)\mathbb{Z},
\end{array}
$$

where the horizontal maps send b_i to the class of $i - 1$.

Lemma 7.4. — For any $l \in \mathbb{Z}_{\geq 0}$ we have

$$
\delta_{m,n}(\pi_{m,n}^i(b_1)) = \begin{cases}
1 & \text{for } \left[\frac{m+n}{m} l \right] \leq i < \left[\frac{m+n}{m} l + \frac{n}{m} \right], \\
0 & \text{for } \left[\frac{m+n}{m} l + \frac{n}{m} \right] \leq i < \left[\frac{m+n}{m} (l+1) \right],
\end{cases}
$$

if $m \neq 0$, and $\delta_{m,n}(\pi_{m,n}^i(b_1)) = 1$ for all i if $m = 0$.

Proof. — Since $\delta_{m,n}(\pi_{m,n}^i(b_1)) = 1 \Leftrightarrow (m+n)l + 1 \leq 1 + mi \leq (m+n)l + n$, we have the lemma. \(\square\)

Corollary 7.5. — If $m > n$, then $\delta_{m,n}(s) = 1$ implies $\delta_{m,n}(\pi_{m,n}(s)) = 0$. If $m < n$, then $\delta_{m,n}(s) = 0$ implies $\delta_{m,n}(\pi_{m,n}(s)) = 1$.

Lemma 7.6. — Let (m, n) and (d, c) be pairs of coprime non-negative integers with $d/(c+d) < 1/2 < m/(m+n)$. Then we have

1. $\Omega_{\infty}(B_{m,n}, B_{d,c}) = \emptyset$,
2. $\Omega_{\text{fin}}(B_{m,n}, B_{d,c}) = \{\omega_{t,b} \mid (t, b) \in \text{Top}(B_{m,n}) \times \text{Bot}(B_{d,c})\}$.

Proof. — (1) Obvious. (2) Let $\delta_1 = \delta_{m,n}$ and $\delta_2 = \delta_{d,c}$ and set $\pi_1 = \pi_{m,n}$ and $\pi_2 = \pi_{d,c}$. Let ω be any element of $\Omega_{\text{fin}}(B_{m,n}, B_{d,c})$. Write $\omega = \{(\pi_1^i(s_1), \pi_2^i(s_2)) \mid 1 \leq i \leq \ell\}$ as in (7.1). By definition we have $\delta_1(s_1) = 1$ and $\delta_2(s_2) = 0$. Then Cor. 7.5 says that $\delta_1(\pi_1(s_1)) = 0$ and $\delta_2(\pi_2(s_2)) = 1$. Thus $\ell = 1$ has to hold, namely $\omega = \omega_{t,b}$ with $t = \pi_1(s_1)$ and $b = \pi_2(s_2)$. \(\square\)

7.4. Remarks on endomorphisms of an F-zip

Let k be an algebraically closed field. Let Z be an F-zip over k and let $B = (B, \delta)$ be the final type related to Z.

Annales de l'Institut Fourier
Lemma 7.7. — Let \(\omega \in \Omega(B, B) \). Assume \((b, b) \in \omega\) for a certain \(b \in B \). Then \(\omega \) is an infinite slice.

Proof. — Let \(b \) be an element of \(B \) such that \((b, b) \in \omega\). Then it is clear from the definition of slices that \((\pi^i(b), \pi^i(b)) \in \omega\) for all \(i = 1, 2, \ldots \). This means \(\omega \in \Omega_\infty(B, B) \). □

Lemma 7.8. — Let \(\omega_1, \ldots, \omega_n \in \Omega(B, B) \) and let \(a_i \) be a non-zero element of \(K_{\omega_i}(k) \) for \(i = 1, \ldots, n \). We denote by \(f_i \) the endomorphism \(Z \to Z \) defined by \((\omega_i, a_i)\). Let \(\omega \) be a slice defining \(f_1 \circ \cdots \circ f_n \) (see Def. 7.3). If \(\omega \in \Omega_\infty(B, B) \), then \(\omega_i \in \Omega_\infty(B, B) \) for all \(1 \leq i \leq n \).

Proof. — Clearly \(K_\omega \) contains \(K_{\omega_1} \cdots K_{\omega_n} (\subset G_a) \); hence we have \(K_\omega \supset K_{\omega_i} \). If \(\omega \) is an infinite slice, then \(K_\omega \) is finite; hence \(K_{\omega_i} \) is finite. This means that \(\omega_i \) is an infinite slice. □

7.5. A self-dual complex of \(F \)-zips

Let \(Z = (N, C, D, \varphi, \dot{\varphi}) \) and \(Z_1 = (N_1, C_1, D_1, \varphi_1, \dot{\varphi}_1) \) be \(F \)-zips. Let \(\mu : Z \to Z_1 \) be a homomorphism of \(F \)-zips. Write \(\mu_N : N \to N_1 \) and let \(\mu_C : C \to C_1 \) and \(\mu_D : D \to D_1 \) be the restrictions of \(\mu_N \) to \(C \) and \(D \) respectively.

Definition 7.9. —

1. A homomorphism \(\mu : Z \to Z_1 \) is called strictly surjective if \(\mu_N \) and \(\mu_C \) are surjective.
2. A homomorphism \(\mu : Z \to Z_1 \) is called strictly injective if the dual \(\mu^\vee : Z^\vee \to Z_1^\vee \) is strictly surjective.

Remark 7.10. — Note that the surjectivity of \(\mu_N \) implies that \(\mu_D \) and \(\mu_C^{(p)} \) are surjective.

Lemma 7.11. — Let \(\mu : Z \to Z_1 \) be a homomorphism of \(F \)-zips over \(S \). The set of points of \(S \) where \(\mu \) is strictly surjective (resp. strictly injective) is an open subset of \(S \).

Proof. — It is enough to show the “strictly surjective” case. It suffices to show the case that \(S \) is affine. Apply [19], Th. 4.10 (i) to the cokernels of \(\mu_N \) and \(\mu_C \). □

For a strictly surjective homomorphism \(\mu : Z \to Z_1 \), we set \(N_2 = \text{Ker}(\mu : N \to N_1) \) with \(C_2 = \text{Ker}(\mu : C \to C_1) \) and \(D_2 = \text{Ker}(\mu : D \to D_1) \).
Then since \(N_1 \) and \(C_1 \) are locally free, there exist isomorphisms \(\varphi_2 : (N_2/C_2)^{(p)} \to D_2 \) and \(\dot{\varphi} : C_2^{(p)} \to N_2/D_2 \) commuting diagrams of \(\mathcal{O}_S \)-modules

\[
\begin{array}{cccccc}
0 & \rightarrow & (N_2/C_2)^{(p)} & \rightarrow & (N/C)^{(p)} & \rightarrow & (N_1/C_1)^{(p)} & \rightarrow & 0 \\
\downarrow \varphi_2 & \cong & \downarrow \varphi & \cong & \downarrow \varphi_1 & \cong & \\
0 & \rightarrow & D_2 & \rightarrow & D & \rightarrow & D_1 & \rightarrow & 0
\end{array}
\]

and

\[
\begin{array}{cccccc}
0 & \rightarrow & C_2^{(p)} & \rightarrow & C^{(p)} & \rightarrow & C_1^{(p)} & \rightarrow & 0 \\
\downarrow \dot{\varphi}_2 & \cong & \downarrow \dot{\varphi} & \cong & \downarrow \dot{\varphi}_1 & \cong & \\
0 & \rightarrow & N_2/D_2 & \rightarrow & N/D & \rightarrow & N_1/D_1 & \rightarrow & 0,
\end{array}
\]

where the all horizontal complexes are exact. Thus we have an \(F \)-zip \(Z_2 = (N_2, C_2, D_2, \varphi_2, \dot{\varphi}_2) \), which is called the kernel of \(\mu \), denoted by \(\text{Ker}(\mu) \). (If \(\mu \) is not strictly surjective, we may not get an \(F \)-zip “\(\text{Ker}(\mu) \)”. Similarly for a strictly injective homomorphism \(\nu \), we have its cokernel \(\text{Coker}(\nu) := \text{Ker}(\nu^\vee) \).

Definition 7.12. — Let \(Z \) be a polarized \(F \)-zip and \(Z_1 \) be an \(F \)-zip. A sequence of homomorphisms of \(F \)-zips of the form

\[
\begin{array}{cccccc}
C^* : & 0 & \rightarrow & Z_1^\vee & \rightarrow & Z & \rightarrow & Z_1 & \rightarrow & 0
\end{array}
\]

is called a self-dual complex if

1. \(f \circ f^\vee : N_1^\vee \to N_1 \) is zero,
2. \(f \) is strictly surjective.

For a self-dual complex \(C^* \) as above, we can define the first cohomology \(H^1(C^*) \) by \(\text{Coker}(f^\vee : Z_1^\vee \to \text{Ker}(f)) \). One can check that \(H^1(C^*) \) is a polarized \(F \)-zip.

7.6. Constructing a non-trivial family of self-dual complexes of \(F \)-zips

Let \(k \) be an algebraically closed field of characteristic \(p \). Let

\[
Z_1 = (N_1, C_1, D_1, \varphi_1, \dot{\varphi}_1)
\]

be an \(F \)-zip over \(k \). Let \(B_1 \) be the final type of \(Z_1 \) (cf. §4.1). Assume

\[
(7.8) \quad \Omega(B_1^\vee, B_1) = \{ \omega_{t,b} \mid t \in \text{Top}(B_1^\vee), b \in \text{Bot}(B_1) \};
\]

for example \(Z_1 = fz(H_{d,c}[p]_k) \) with \(c > d \), see Lem. 7.6.
Proposition 7.13. — Let Z be a polarized F-zip $(N, C, D, \varphi, \hat{\varphi}, \langle \cdot, \cdot \rangle)$ with self-dual complex of F-zips over k:

$$
\begin{array}{cccc}
C_0^* : & 0 & \longrightarrow & Z_1^\vee \\
& f_0^\vee & \longrightarrow & Z \\
& f_0 & \longrightarrow & Z_1 \\
& \longrightarrow & 0.
\end{array}
$$

Assume C_0^* has no splitting. Then there exists a self-dual complex

$$
\begin{array}{cccc}
C^* : & 0 & \longrightarrow & Z_1^\vee, S \\
& f^\vee & \longrightarrow & Z_S \\
& f & \longrightarrow & Z_{1, S} \\
& \longrightarrow & 0
\end{array}
$$

over S smooth of finite type over k of relative dimension ≥ 1 with a section $\text{Spec } k \to S$ such that

1. $C^* \otimes k \simeq C_0^*$.
2. C^* is “non-trivial”, i.e., $f^\vee \neq \kappa \circ f_{0, S}^\vee$ for any automorphism κ of the polarized F-zip Z_S.

Proof. — Let $B_\ast = (B_\ast, \delta_\ast)$ be the symmetric final type of Z_\ast and set $\pi_\ast = \pi_{\delta_\ast}$ for $\ast = 0, 1$. Let $\{\omega_i\}$ be the set of the slices defining f_0 and let a_i be the string of f_0 at ω_i (see Def. 7.3). By the assumption that C_0^* has no splitting, we have $\omega_i \in \Omega_{\text{fin}}(B, B_1)$. Note that $\Phi^{-1}(f_0^\vee)$ is given by

$$(a_i) \in \bigoplus_i K_{\omega_i^\vee}(k).$$

Write $\omega_i = \{(\pi_i^a(b_i), \pi_i^c(c_i)) | 1 \leq v \leq l_i\}$ and put $s_i = \pi(b_i)$ and $e_i = \pi^c(b_i)$. Let pr denote the projection $B \times B_1 \to B$ and pr^\vee denote the projection $B_1^\vee \times B \to B$. First we prove

Claim 7.14. — Every element of $\text{pr}^\vee(\omega_j^\vee) \cap \text{pr}(\omega_i)$ is of the form: $e_j^\vee = s_i$ or $s_j^\vee = e_i$.

Proof of Claim 7.14. — By the assumption (7.8), the composition $Z_1^\vee \to Z \to Z_1$ constructed by $a_j \in K_{\omega_j^\vee}$ and $a_i \in K_{\omega_i^\vee}$ has to be defined by slices of the form $\omega_{l, b}$ for some $(t, b) \in \text{Top}(B_1^\vee) \times \text{Bot}(B_1)$. Then any element of $\text{pr}^\vee(\omega_j^\vee) \cap \text{pr}(\omega_i)$ should be of the form: $e_j^\vee = s_i$ or $s_j^\vee = e_i$.

We say $\omega_i \sim \omega_j$ if $\text{pr}(\omega_i) \cap \text{pr}(\omega_j) \neq \emptyset$. Write $U = \{\omega_i\}/ \sim$. Let $[\omega_i]$ denote the class of ω_i, i.e., $[\omega_i] = \{\omega_j | \omega_j \sim \omega_i\}$. For $u \in U$, we define a subset of B by

$$B_u = \bigcup_{\omega_i \in u} \text{pr}(\omega_i);$$

then we can write $B_u = \{s_u, \pi(s_u), \cdots, \pi^d(u)(s_u)\}$ for a certain $s_u \in B$ and $d(u) \in \mathbb{Z}_{\geq 0}$; we put $e_u := \pi^d(u)(s_u)$ for any $\omega_i \in u$, we define d_i by

\begin{equation}
\pi^{d_i}(s_u) = s_i \quad (0 \leq d_i \leq d(u)).
\end{equation}

Let $P(a, b)$ be the property

$$\exists \omega_i \in [\omega_a], \exists \omega_j \in [\omega_b], e_i \in \text{pr}^\vee(\omega_j^\vee) \cap \text{pr}(\omega_i).$$
Set \(U_+ = \{ [\omega_a] \mid \exists b, P(a,b) \} \) and \(U_- = \{ [\omega_b] \mid \exists a, P(a,b) \} \). Since for all \(a \in U_+ \) there exists a unique \(b \) such that \(P(a,b) \) holds, and for all \(b \in U_- \) there exists a unique \(a \) such that \(P(a,b) \) holds, we have the bijection

\[
\gamma : U_+ \xrightarrow{\sim} U_-
\]

sending \([\omega_a]\) to \([\omega_b]\) satisfying \(P(a,b) \).

Let \(u \in U_+ \). If \(u \neq \gamma(u) \) we have

\[
B_u \cap B'_{\gamma(u)} = \{ e_u = s^\gamma_{\gamma(u)} \}, \quad B_{\gamma(u)} \cap B'_u = \{ e^\gamma_u = s_{\gamma(u)} \},
\]

and otherwise

\[
B_u \cap B'_{\gamma(u)} = \{ e_u = s^\gamma_{\gamma(u)}; e^\gamma_u = s_{\gamma(u)} \}.
\]

Moreover for any \((v,v') \in U \times U \) we have \(B_v \cap B'_{v'} = \emptyset \) if \((v,v') \neq (u,\gamma(u)), (\gamma(u), u) \) for any \(u \in U_+ \).

Consider the parameter space \(k[t_u|u \in U] \). Write \(t = (t_u) \) and let \(f_t \) be the homomorphism \(Z \to Z_1 \) obtained by \((t^{\omega_i}_u, a_i) \in \bigoplus_i \mathbb{K}_{\omega_i} \), see (7.9) for the definition of \(d_i \). By the assumption (7.8), \(f_t \circ f^\gamma_t \) is given by strings \(c_{t,b}(t) \) at \(\omega_{t,b} \)'s. Thus \(f_t \circ f^\gamma_t = 0 \) if and only if

\[
c_{t,b}(t) = 0 \quad \text{for all } t, b.
\]

\[\square\]

Claim 7.15. — The equations (7.11) in \(t \) are linear in \(\{ t^d_{\gamma(u)} \}_{u \in U_+} \) without any constant term.

Proof of Claim 7.15. — For \(v \in U \), let \(f_{t,v} \) denote the \((\bigoplus_{\omega_i \in v} \mathbb{K}_{\omega_i}) \)-part of \(f_t \); then we can write \(f_t = \sum f_{t,v} \). Note that \(c_{t,b}(t) \) is the sum of \(\omega_{t,b} \)-coefficients of \(f_{t,v} \circ f^\gamma_{t,v'} \) for (i) \((v,v') = (u,\gamma(u)) \) and (ii) \((v,v') = (\gamma(u), u) \) with \(u \in U_+ \). The both contributions of \(f_{t,v} \circ f^\gamma_{t,v'} \) at (i) \(e_u = s^\gamma_{\gamma(u)} \) and at (ii) \(e^\gamma_u = s_{\gamma(u)} \) are of the same form: \(\text{const} \cdot t^d_{\gamma(u)} \). Thus we have Claim 7.15. \[\square\]

Let \(x \) be a new parameter. Put \(\mathcal{R} = k[x, 1/x] \) if \(U_+ \neq \emptyset \) and \(\mathcal{R} = k \) if \(U_+ = \emptyset \). Since \(t_u = 1 \) is a solution of (7.11), any solution of \(\{ t^d_{\gamma(u)} t_{\gamma(u)} = x \}_{u \in U_+} \) gives a solution of (7.11) by Claim 7.15. We put

\[
S' := \text{Spec } \mathcal{R}[t_u \mid u \in U]/(t^d_{\gamma(u)} t_{\gamma(u)} = x \mid u \in U_+)
\]

and take as \(S \) the open part of \(S' \) where \(f_t \) is strictly surjective (see Lem. 7.11). Of course the required section \(\text{Spec } k \to S \) is defined by sending \(x \) and \(t_u \) to 1.
It remains to show that S is smooth over k of relative dimension ≥ 1. It suffices to show S' is smooth over $k[x,1/x]$ in the case that $U_+ \neq \emptyset$. We can decompose U_+ as

$$U_+ = \bigcup_l \{ u_l, \gamma(u_l), \ldots, \gamma^{n_l-1}(u_l) \}$$

such that (A) $u_l \notin U_-$ and $\gamma^{n_l}(u_l) \notin U_+$ or (B) $\gamma^{n_l}(u_l) = u_l$. Since a fiber product of smooth morphisms is smooth (cf. [8], 17.3.3), it suffices to consider the simultaneous equations $t^{|\omega(x)|}_{u_l} = x$ for $u \in \{u_l, \gamma(u_l), \ldots, \gamma^{n_l}(u_l)\}$ for each l. Note that $t_{\gamma^i}(u_l)$ for $i \geq 1$ is uniquely determined by x and t_{u_l}. Case (A): We have no equation in t_{u_l}. Case (B): Put $r_i = \sum_{j=i}^{n_l-1} d(\gamma^j(u_l))$ for $0 \leq i < n_l$ with $r_{n_l} = 0$. We have a unique equation in t_{u_l}:

$$p^{r_0}_{u_l} (-1)^{n_l} = x \sum_{i=1}^{n_l} (-1)^i p^{r_i}.$$

This is an étale equation outside $x = 0$.

Finally let us show that C^* satisfies the property (2). First note that the set of slices defining f^γ is the same as the set of slices defining f^γ_0. Assume an element κ of $\text{Aut}(Z_S)$ satisfied $f^\gamma = \kappa \circ f^\gamma_0$. Let $U = \{ b \in \text{Bot}(U) \mid \exists \omega_i, \exists b' \in \text{Bot}(U'), (b', b) \in \omega^\gamma \}$. It follows from the construction of f that for any $b \in U$ there exists a “moving” slice ω' defining κ such that $\exists b_+ \in U$, $(b_+, b) \in \omega'$, where we say ω' is moving if the image of the string $\text{Spec}(S) \to \mathbb{G}_a$ of κ at ω' (Def. 7.3) is positive dimensional. In this case we write $\omega': b_+ \to b$. Then there exists at least one “cycle”:

$$b_0 = b_N \xrightarrow{\omega_{N-1}} \cdots \xrightarrow{\omega'_1} b_2 \xrightarrow{\omega'_1} b_1 \xrightarrow{\omega'_0} b_0,$$

where b_i are some elements of U for $0 \leq i < N$ and ω'_i are some moving slices defining κ with $(b_{i+1}, b_i) \in \omega'_i$ for $0 \leq i < N$. Then by Lem. 7.7 and 7.8, ω'_i has to be an infinite slice. On the other hand if ω'_i is moving, then ω'_i has to be a finite slice. This is a contradiction. \qed

8. A lifting to a self-dual complex of displays

The purpose of this section is to prove Prop. 8.6, where we construct a lifting of a family of self-dual complexes of F-zips (e.g., C constructed in Prop. 7.13) to a family of self-dual complexes of displays. For the construction we need to solve some equations in Witt vectors. Hence we start with preparing some lemmas to solve such equations.
8.1. Lemmas

Let Λ be a commutative ring of characteristic p.

Lemma 8.1. Let $\Lambda' = \Lambda[x_0, \ldots, x_n]$. Write $x = (x_0, \ldots, x_n) \in W_n(\Lambda')$. For $a = (a_0, \ldots, a_n)$ and $b \in W_n(\Lambda)$ and for $c \in \mathbb{Z}_{\geq 0}$, the equation $a \cdot \sigma^c x - x = b$ in $W_n(\Lambda')$ is described as simultaneous equations in Λ' of the form

$$a^p_0 x^p_0 - x_0 = P_i(x_0, \ldots, x_{i-1}) \quad (0 \leq i \leq n)$$

for some $P_i \in \Lambda[x_0, \ldots, x_{i-1}]$.

Proof. Let $\mathcal{R} = \mathbb{Z}[X_0, \ldots, X_n, Y_0, \ldots, Y_n]$ be the ring of polynomials in $2(n+1)$ variables. Let $X = (X_0, \ldots, X_n) \in W_n(\mathcal{R})$ and $Y = (Y_0, \ldots, Y_n) \in W_n(\mathcal{R})$. Since the i-th entry of $X + Y \in W_n(\mathcal{R})$ is written as $\sigma_i(X_0, \ldots, X_i; Y_0, \ldots, Y_i)$ for some polynomial σ_i with coefficients in \mathbb{Z}, we have

$$X^p_0 + \cdots + p^i X_i + Y^p_0 + \cdots + p^i Y_i = \sigma_0(X_0; Y_0)^p + \cdots + p^i \sigma_i(X_0, \ldots, X_i; Y_0, \ldots, Y_i).$$

Hence $\sigma_i(X_0, \ldots, X_i; Y_0, \ldots, Y_i)$ has to be of the form

$$X_i + Y_i + Q_i(X_0, \ldots, X_{i-1}, Y_0, \ldots, Y_{i-1})$$

for a certain polynomial Q_i with coefficients in \mathbb{Z}.

The i-th entry of XY is written as $\pi_i(X_0, \ldots, X_i; Y_0, \ldots, Y_i)$ for some polynomial π_i with coefficients in \mathbb{Z}. We have

$$(X^p_0 + \cdots + p^i X_i)(Y^p_0 + \cdots + p^i Y_i) = \pi_0(X_0; Y_0)^p + \cdots + p^i \pi_i(X_0, \ldots, X_i; Y_0, \ldots, Y_i).$$

Since the characteristic of Λ is p, the x_i-coefficient of $\pi_i(x_0, \ldots, x_i; y_0, \ldots, y_i)$ is y_0^p for the elements (x_0, \ldots, x_n) and (y_0, \ldots, y_n) of $W_n(\Lambda')$. \square

Lemma 8.2. Let Γ be a finite set. Let $\gamma : \Gamma \to \Gamma$ be a map. Let $c_i \in \mathbb{Z}_{\geq 0}$ and $a^{(i)}, b^{(i)} \in W_n(\Lambda)$ for $i \in \Gamma$. There exists a finite Λ-algebra R such that $\text{Spec}(R) \to \text{Spec}(\Lambda)$ is surjective and there exists a solution $(x^{(i)})$ $(i \in \Gamma, x^{(i)} \in W_n(R))$ of the simultaneous equations

$$a^{(i)} \cdot \sigma^{c_i} x^{(\gamma(i))} - x^{(i)} = b^{(i)}.$$
Proof. — Let \(\Gamma' = \bigcap_{r \in \mathbb{N}} \text{Im} \gamma^r \). Then \(\gamma \) induces a bijective map \(\gamma : \Gamma' \to \Gamma' \). Then \(\Gamma' \) is divided into \(\gamma \)-cycles. Let \(J \) be a \(\gamma \)-cycle in \(\Gamma' \). First we solve the equations (8.1) only for \(i \in J \). Let \(j_0 \in J \) and set \(j_r = \gamma^r(j_0) \). Write \(\xi_r = x(j_r) \) and put \(\alpha_r = a(j_r) \) and \(\beta_r = b(j_r) \) and \(\sigma_r = \sigma^{(j_r)} \). Then our equations are written as

\[
\alpha_r \cdot \sigma_r \xi_{r+1} - \xi_r = \beta_r.
\]

For \(0 \leq r \leq |J| \) we put

\[
(8.3) \quad \rho_r = \prod_{l=0}^{r-1} \sigma_l \quad \text{and} \quad A_r = \prod_{l=0}^{r-1} \rho_l \alpha_l
\]

with \(\rho_0 = 1 \) and \(A_0 = 1 \), and for \(0 \leq r < |J| \) we set

\[
(8.4) \quad B_r = A_r \cdot \rho_r \beta_r.
\]

Then we have \(A_{r+1} \cdot \rho_{r+1} \xi_{r+1} - A_r \cdot \rho_r \xi_r = B_r \); hence

\[
(8.5) \quad A_{|J|} \cdot \rho_{|J|} \xi_0 - \xi_0 = \sum_{0 \leq r < |J|} B_r.
\]

By Lem. 8.1, there is a finite \(\Lambda \)-algebra \(R' \) such that \(\text{Spec}(R') \to \text{Spec}(\Lambda) \) is surjective and we have a solution \(\xi_0 \in W_n(R') \) of (8.5). From (8.2) we can find a finite \(\Lambda \)-algebra \(R'' \) with surjective \(\text{Spec}(R'') \to \text{Spec}(\Lambda) \) such that the remaining \(\xi_i \) are in \(W_n(R'') \). Doing the same thing for the other \(\gamma \)-cycles in \(\Gamma' \) successively, we get a finite \(\Lambda \)-algebra \(R \) with surjective \(\text{Spec}(R) \to \text{Spec}(\Lambda) \) such that we have a solution \((x(i)) \) of the equations (8.1) for \(i \in \Gamma' \).

For \(i \in \Gamma \setminus \Gamma' \), there is a unique sequence \((i, \gamma(i), \ldots, \gamma^l(i)) \) satisfying \(\gamma^l(i) \in \Gamma' \) and \(\gamma^r(i) \not\in \Gamma' \) for \(r < l \). By the descending induction on \(r \), we obtain a solution \(x(\gamma^r(i)) \) of (8.1).

\(\square \)

Remark 8.3. — Lem. 8.2 holds also for \(c_i \in \mathbb{Z}_{\geq 0} \) if for every \(\gamma \)-cycle \(J \) in \(\Gamma \) satisfying \(\rho_{|J|} = \text{id} \), there exists a solution of (8.5): \((A_{|J|} - 1)\xi_0 = \sum_{0 \leq r < |J|} B_r \).

Let \(W_Q(\Lambda) = W(\Lambda) \otimes_\mathbb{Z} \mathbb{Q} \). Note that \(W_Q(\Lambda) = \lim_{\longrightarrow \mathbb{n}} W(\Lambda) \otimes_{\mathbb{Z}_p} (1/p^n)\mathbb{Z}_p \).

Corollary 8.4. — Assume \(\Lambda \) is of finite type over a perfect field \(k \). Let \(n \) be a non-negative integer. Let \(\Gamma \) be a finite set with a map \(\gamma : \Gamma \to \Gamma \). Let \(c_i \in \mathbb{Z}_{\geq 0} \) and \(a^{(i)}, b^{(i)} \in W(\Lambda) \) for \(i \in \Gamma \). There exists a finite \(\Lambda \)-algebra \(R' \) such that \(\text{Spec}(R') \to \text{Spec}(\Lambda) \) is surjective and there exists a solution \((x^{(i)}) (i \in \Gamma, x^{(i)} \in W_Q(R')/I_{R', n}) \) of the simultaneous equations

\[
(8.6) \quad a^{(i)} \cdot \sigma^{c_i} x^{(\gamma(i))} - x^{(i)} \equiv b^{(i)} \pmod{I_{R', n}}.
\]
Proof. — Let m be a non-negative integer such that $a^{(i)}, b^{(i)} \in W(\Lambda) \otimes_{\mathbb{Z}_p} (1/p^{m})\mathbb{Z}_p$ for all $i \in \Gamma$. Let R be the finite Λ-algebra obtained in Lem. 8.2 for $p^{m}a^{(i)}, p^{m}b^{(i)}$ modulo $I_{R,m+n}$; then there exist $y^{(i)} \in W(R)$ for $i \in \Gamma$ such that

$$p^{m}a^{(i)} \cdot \sigma^{\epsilon_i} y^{(\gamma(i))} - y^{(i)} \equiv p^{m}b^{(i)} \pmod{I_{R,m+n}}.$$

Note that R is of finite type over k. There exists a finite R-algebra R' such that $(R')^{p^{m}} = R$ and $\text{Spec}(R') \to \text{Spec}(R)$ is surjective. Then we have $I_{R,m+n} = p^{m}I_{R',n}$; hence $(x^{(i)}) = (p^{-m}y^{(i)})$ is a solution of (8.6).

Remark 8.5. — Cor. 8.4 holds even for $c_i \in \mathbb{Z}_{\geq 0}$ if there exists a finite Λ-algebra R'' with surjective $\text{Spec}(R'') \to \text{Spec}(\Lambda)$ such that there is a solution of (8.6) for $i \in \Gamma' = \bigcap_{r \in \mathbb{N}} \text{Im} \gamma^r$. See the last paragraph in the proof of Lem. 8.2.

8.2. Minimal displays

Let ξ be a Newton polygon without the étale segment $(0, 1)$. We denote by $M(\xi)$ the display over \mathbb{F}_p of the minimal p-divisible group $H(\xi)$ (§5.1). Write $M(\xi) = (P(\xi), Q(\xi), F, V^{-1})$. Remark that $P(\xi)$ here is canonically identified with that at (5.3).

For later use, we need to describe $M(\xi)$ explicitly for the cases $\xi = (d, c)$ and (c, d) for $\gcd(c, d) = 1$ and $c > d > 0$. We write $M_{c,d} = M((c, d))$ and $P_{c,d} = P((c, d))$, etc. First we introduce a “good” basis of $P_{c,d}$ and a normal decomposition $P_{c,d} = L_{c,d} \oplus T_{c,d}$, which defines $Q_{c,d} = L_{c,d} \oplus I_{p}T_{c,d}$. Let $\{e_0, \ldots, e_{c+d-1}\}$ be a minimal basis of $P_{c,d}$ (see §5.1). Let $\alpha(e_i)$ denote the largest integer α such that $i + \alpha d < c + d$, namely $\alpha(e_i) = [(c + d - i)/d]$. Note that $\alpha(e_i) \geq 1$ for all $i < c$. We set $x_0 = e_0$ and define inductively x_i ($i \in \mathbb{N}$) by

$$x_{i+1} = V^{-1}F^{\alpha_i}x_i \quad \text{with} \quad \alpha_i := \alpha(x_i).$$

Note that $x_{i+d} = x_i$ and $\{x_i \mid i \in \mathbb{Z}/d\mathbb{Z}\} = \{e_0, \ldots, e_{d-1}\}$; then we have $|\alpha_i - \alpha_j| \leq 1$ for all $i, j \in \mathbb{Z}/d\mathbb{Z}$. Clearly $M_{c,d}$ is given by

$$P_{c,d} = \bigoplus_{i \in \mathbb{Z}/d\mathbb{Z}} \bigoplus_{s=0}^{\alpha_i} \mathbb{Z}_pF^sx_i$$

with normal decomposition $P_{c,d} = L_{c,d} \oplus T_{c,d}$ defined by

$$L_{c,d} = \bigoplus_{i \in \mathbb{Z}/d\mathbb{Z}} \mathbb{Z}_pF^{\alpha_i}x_i \quad \text{and} \quad T_{c,d} = \bigoplus_{i \in \mathbb{Z}/d\mathbb{Z}} \bigoplus_{s=0}^{\alpha_i-1} \mathbb{Z}_pF^sx_i.$$
Similarly $M_{d,c}$ is given by

$$P_{d,c} = \bigoplus_{i \in \mathbb{Z}/d\mathbb{Z}} \mathbb{Z}_p \mathcal{V}^{-s} y_i$$

with normal decomposition $P_{d,c} = L_{d,c} \oplus T_{d,c}$ defined by

$$L_{d,c} = \bigoplus_{i \in \mathbb{Z}/d\mathbb{Z}} \mathbb{Z}_p \mathcal{V}^{-s} y_i \quad \text{and} \quad T_{d,c} = \bigoplus_{i \in \mathbb{Z}/d\mathbb{Z}} \mathbb{Z}_p \mathcal{V}^{-\alpha_i} y_i.$$

We define an alternating bilinear form $(\ , \)$ on $P_{c,d} \oplus P_{d,c}$ by $(P_{c,d}, P_{c,d}) = 0$ and $(P_{d,c}, P_{d,c}) = 0$, and

$$(\mathcal{F}^k x_i, \mathcal{V}^{-l} y_j) = \delta_{ij} \delta_{kl}.$$

Clearly $(\ , \)$ gives a principal quasi-polarization on $M_{c,d} \oplus M_{d,c}$.

8.3. Construction of a lifting of a self-dual complex of F-zips

Let $\xi = \sum_{i=1}^{t} (m_i, n_i)$ be a symmetric Newton polygon with $\lambda_1 \leq \cdots \leq \lambda_t$, where $\lambda_i = m_i / (m_i + n_i)$. Put $\xi' = \sum_{i=2}^{t} (m_i, n_i)$ and set $(d, c) := (m_1, n_1)$. We assume $c > d > 0$. Let $M_{c,d} = (P_{c,d}, Q_{c,d}, \mathcal{F}, \mathcal{V}^{-1})$ and $M_{d,c} = (P_{d,c}, Q_{d,c}, \mathcal{F}, \mathcal{V}^{-1})$ be the minimal displays, which were explicitly described in the previous subsection; hence we will freely use the notation in §8.2.

Let Λ be a commutative ring of finite type over a perfect field k. Put $M_1 = (M_{d,c})_{\Lambda}$ and set $Z_1 = M_1 / I_{\Lambda} M_1$; then $Z_1^\vee = M_1^\vee / I_{\Lambda} M_1^\vee$ with $M_1^\vee = (M_{c,d})_{\Lambda}$. For any display $(P, Q, \mathcal{F}, \mathcal{V}^{-1})$ over Λ, let $-\mathcal{F}$ denote the natural projection $P \rightarrow P / I_{\Lambda} P$. Let $Z = (N, C, D, \varphi, \dot{\varphi}, (\ , \))$ be a polarized F-zip over Λ and f be a strictly surjective homomorphism $Z \rightarrow Z_1$ making a self-dual complex

$$(8.8) \quad C^\bullet : \quad 0 \longrightarrow Z_1^\vee \xrightarrow{f^\vee} Z \xrightarrow{f} Z_1 \longrightarrow 0.$$

The following is a key proposition in this paper, where for any lifting of $H^1(C^\bullet)$ to a display we construct a lifting of C^\bullet to a self-dual complex of displays. The original idea of the construction is found in [17], §7.

Proposition 8.6. — Let M' be any principally quasi-polarized display over Λ with $M' / I_{\Lambda} M' \simeq H^1(C^\bullet)$. Let $\langle \ , \ \rangle'$ be a quasi-polarization on the minimal display $M(\xi')$. Assume we are given an isogeny

$$(8.9) \quad (M(\xi'), \langle \ , \ \rangle')_{\Lambda} \xrightarrow{\rho'} M'$$

TOME 50 (2010), FASCICULE 5
as quasi-polarized displays. Then for a finite surjective morphism
\(\text{Spec}(R) \rightarrow \text{Spec}(\Lambda) \), there exist a principally quasi-polarized display \(\mathcal{M} \)
over \(R \) with an isogeny of quasi-polarized displays
\[
\begin{align*}
(8.10) & \quad (M(\xi), \langle , \rangle)_{R} \xrightarrow{\rho} \mathcal{M} \\
\end{align*}
\]
for a certain polarization \(\langle , \rangle \) on \(M(\xi) \) and an isomorphism \(\kappa : M/I_{R}M \rightarrow Z_{R} \) and a surjective homomorphism \(\phi : M \rightarrow M_{1} \) making a self-dual complex
\[
\mathcal{D}^{\bullet} : 0 \longrightarrow M_{1,R}^{t} \xrightarrow{\phi^{t}} \mathcal{M} \xrightarrow{\phi} M_{1,R} \longrightarrow 0
\]
such that
(1) \(H^{1}(\mathcal{D}^{\bullet}) \simeq M'_{R} \),
(2) we have a commutative diagram
\[
\begin{array}{c}
M_{1,R}^{t} \xrightarrow{\phi^{t}} \mathcal{M} \\
\big| \\
(M_{c,d})_{R} \xrightarrow{c} M(\xi)_{R}
\end{array}
\]
(3) we have a commutative diagram
\[
\begin{align*}
\mathcal{D}^{\bullet} : 0 & \longrightarrow M_{1,R}^{t}/I_{R}M_{1,R}^{t} \xrightarrow{\overline{\phi}^{t}} \mathcal{M}/I_{R}M \xrightarrow{\overline{\phi}} M_{1,R}/I_{R}M_{1,R} \longrightarrow 0 \\
& \downarrow \simeq \\
C_{R}^{\bullet} : 0 & \longrightarrow Z_{1,R}^{\vee} \xrightarrow{f^{\vee}} Z_{R} \xrightarrow{f} Z_{1,R} \longrightarrow 0.
\end{align*}
\]
Moreover, assume that with respect to a section \(\text{Spec}(k) \rightarrow \text{Spec}(\Lambda) \)

(i) we can write \(Z \) and \(M' \) as \(Z_{k} \otimes \Lambda \) and \(M'_{k} \otimes \Lambda \) respectively,
(ii) \(\rho' \) is a trivial family,
(iii) \(C^{\bullet} \) is non-trivial (see Prop. 7.13, (2) for the definition);
then \(\rho \) is a non-trivial family.

Proof. — We are given a complex
\[
(8.11) \quad C^{\bullet} : 0 \longrightarrow N_{1}^{\vee} \xrightarrow{f^{\vee}} N \xrightarrow{f} N_{1} \longrightarrow 0
\]
and \(H^{1}(C^{\bullet}) \simeq N' \). A technical lemma (Lem. 8.7 below) shows that for a
finite surjective morphism \(\text{Spec}(\Lambda') \rightarrow \text{Spec}(\Lambda) \), there exists a lift \(\overline{v}_{i,s} \in N_{\Lambda'}^{s}y_{i} \) \((i \in \mathbb{Z}/d\mathbb{Z}, 0 \leq s \leq \alpha_{i})\) such that \(\overline{v}_{i,s} \in C_{\Lambda'}^{t} \) \((s < \alpha_{i})\) and
\[
\phi^{-1}(\overline{v}_{i,s+1}) = 1 \otimes \overline{v}_{i,s} \quad \text{for} \quad 0 \leq s < \alpha_{i}, \quad \text{and}
\]
(8.12) \quad \langle \overline{v}_{i,s}, \overline{v}_{i,s'} \rangle = 0

ANNALES DE L’INSTITUT FOURIER
for all $i,i' \in \mathbb{Z}/d\mathbb{Z}$ and for all $0 \leq s \leq \alpha_i$ and $0 \leq s' \leq \alpha_i'$. We replace Λ by Λ'. For any $\bar{z} \in \Lambda'$, let $\overline{u}(\bar{z})$ be an element of $\text{Ker } f$ uniquely determined by $(\overline{u}(\bar{z}) \mod N_1^\nu) = \bar{z}$ and

$$\langle \overline{u}(\bar{z}), \nu_{i,s} \rangle = 0 \quad \text{for } \forall i \in \mathbb{Z}/d\mathbb{Z}, \ 0 \leq \forall s \leq \alpha_i.$$

Thus we have generators of \mathbb{N}:

$$\{\nu_{i,s} \mid 1 \leq i \leq d, 0 \leq s \leq \alpha_i\}, \ \overline{u}(\bar{z}) (\bar{z} \in \Lambda'),$$

We define $\bar{z}_i \in \Lambda'$ ($i \in \mathbb{Z}/d\mathbb{Z}$) by

$$\bar{z}_i = \varphi(1 \otimes \nu_{i-1,\alpha_{i-1}}) - \nu_{i,0} \mod N_1^\nu;$$

then we can write

$$\varphi(1 \otimes \nu_{i-1,\alpha_{i-1}}) - \nu_{i,0} = \overline{u}(\bar{z}_i) + \sum_{j \in \mathbb{Z}/d\mathbb{Z}, s=0}^{s<\alpha_i} d_{i,j,s} \mathcal{F}^s x_j,$$

for some $d_{i,j,s} \in \Lambda$. By (8.12) and (8.13), we have

$$d_{i,j,s} = \langle \varphi(1 \otimes \nu_{i-1,\alpha_{i-1}}), \nu_{j,s} \rangle.$$

If $s > 0$, then we have

$$d_{i,j,s} = \langle (1 \otimes \nu_{i-1,\alpha_{i-1}}), \varphi^{-1}(\nu_{j,s}) \rangle (p) = \langle (1 \otimes \nu_{i-1,\alpha_{i-1}}), 1 \otimes \nu_{j,s-1} \rangle (p) = 0.$$

Put $d_{i,j} := d_{i,j,0}$, namely

$$d_{i,j} := \langle \varphi(1 \otimes \nu_{i-1,\alpha_{i-1}}), \nu_{j,0} \rangle.$$

Note that all relations involved with $\{\nu_{i,s}\}$ are generated by $\varphi^{-1}(\nu_{i,s+1}) = 1 \otimes \nu_{i,s}$ for $0 \leq s < \alpha_i$ and the relations of the form

$$\varphi(1 \otimes \nu_{i-1,\alpha_{i-1}}) - \nu_{i,0} = \overline{u}(\bar{z}_i) + \sum_{j \in \mathbb{Z}/d\mathbb{Z}, d_{i,j,s}} d_{i,j,s} x_j.$$

For later use, we show

$$d_{i,j} = \overline{d}_{i,j,i} - \overline{\nu}_{i,j},$$

where the pairing on the second term is on Λ'. Indeed

$$d_{i,j} = \langle \varphi(1 \otimes \nu_{i-1,\alpha_{i-1}}), \nu_{j,0} \rangle = \overline{d}_{i,j,i} - \langle \varphi(1 \otimes \nu_{i-1,\alpha_{i-1}}), \overline{u}(\bar{z}_j) \rangle.$$

By (8.14), (8.13) and the fact $\langle N_1^\nu, \overline{u}(\bar{z}_j) \rangle = 0$, this is equal to $\overline{d}_{j,i} - \langle \bar{z}_i, \overline{u}(\bar{z}_j) \rangle$, which is also equal to $\overline{d}_{j,i} - \langle \bar{z}_i, \bar{z}_j \rangle$, since $\langle \bar{z}_i, N_1^\nu \rangle = 0$.

Let R be a “sufficient large” Λ-algebra determined later. We define a projective $W_{\mathbb{Q}}(R)$-module

$$\mathbb{P}_R = P(\xi)_R \otimes \mathbb{Q} \quad \text{with } P(\xi) = P_{c,d} \oplus P(\xi') \oplus P_{d,e}.$$
Note that \mathbb{P}_R is equipped with an alternating form $\langle \cdot, \cdot \rangle$ induced by $\langle \cdot, \cdot \rangle$ on $P_{c,d} \oplus P_{d,c}$ and $\langle \cdot, \cdot \rangle'$ on $P(\xi')$. We also have $W_\mathbb{Q}(R)$-linear homomorphisms $\mathcal{F} : \mathbb{P}_R^* \to \mathbb{P}_R$ and $\mathcal{V}^{-1} : \mathbb{P}_R^* \to \mathbb{P}_R$ with $\mathbb{P}_R^* = W_\mathbb{Q}(R) \otimes_{\mathbb{Q}, W_\mathbb{Q}(R)} \mathbb{P}_R$. Put
\begin{equation}
F(*) := \mathcal{F}(1 \otimes *) \quad \text{and} \quad V^{-1}(*) := \mathcal{V}^{-1}(1 \otimes *),
\end{equation}
and for $s \in \mathbb{N}$ we inductively define $F^s(*)$ and $V^{-s}(*)$ by $F^s(*) = F(1 \otimes F^{s-1}(*))$ and $V^{-s}(*) = V^{-1}(1 \otimes V^{-(s-1)}(*))$ respectively. We write
\[
\mathbb{P}_R = \bigoplus_{l=1}^{t-1} \mathbb{P}_R^{(l)} \quad \text{with} \quad \mathbb{P}_R^{(l)} = P_{m_1,n_1,R} \otimes \mathbb{Q}
\]
and set
\[
\mathbb{P}'_R = \bigoplus_{l=2}^{t-1} \mathbb{P}_R^{(l)}.
\]

For $2 \leq l \leq t - 1$, let $e_0^{(l)}, \ldots, e_{m_1+n_1-1}^{(l)}$ be a minimal basis of P_{m_1,n_1}. Write $M' = (P', Q', \mathcal{F}, V^{-1}, \langle \cdot, \cdot \rangle')$. Note that P' is in \mathbb{P}_R.

Let us define a principally quasi-polarized display
\[
\mathcal{M} = (\mathcal{P}, Q', \mathcal{F}, V^{-1}, \langle \cdot, \cdot \rangle').
\]

We will define \mathcal{P} to be a submodule of \mathbb{P}_R generated by $P_{c,d}$ and some elements
\[
\begin{cases}
V^{-s}v_i \in \mathbb{P}_R & (1 \leq i \leq d \text{ and } 0 \leq s \leq \alpha_i), \\
u(z) \in \mathbb{P}_R^{(l)} \oplus \mathbb{P}'_R & (z \in P')
\end{cases}
\]
of the form $v_i = y_i + \sum_{l=2}^{t} A_i^{(l)}$ with $A_i^{(l)} \in \mathbb{P}_R^{(l)}$ and $u(z) = z + B(z)$ with $B(z) \in \mathbb{P}_R^{(l)}$, where $A_i^{(l)}$ and $B(z)$ will be chosen later such that \mathcal{M} has the required properties.

Let $z_i \in P' \ (i \in \mathbb{Z}/d\mathbb{Z})$ be a lift of \overline{z}_i defined in (8.14) and we write
\[
z_i = \sum_{l=2}^{t-1} z_i^{(l)} \in \mathbb{P}_R^{(l)}.
\]
Put $v_i' = y_i + \sum_{l=2}^{t-1} A_i^{(l)}$. Write
\[
A_i^{(l)} = \sum_{j=0}^{m_1+n_1-1} a_{ij}^{(l)} e_j^{(l)}, \quad a_{ij}^{(l)} \in W_\mathbb{Q}(R) \quad \text{for} \ 2 \leq l < t.
\]

We define $a_{ij}^{(l)}$ ($i \in \mathbb{Z}/d\mathbb{Z}, 0 \leq j < m_1+n_1, 2 \leq l < t$) as satisfying
\begin{equation}
\begin{cases}
FV^{-\alpha_{i-1}}v_{i-1}' - v_i' = z_i & \text{for } 1 \leq i < d, \\
FV^{-\alpha_{d-1}}v_{d-1}' - v_0' \equiv z_d \pmod{I_{R,n}P(\xi'_R)}
\end{cases}
\end{equation}
for a sufficient large $n \in \mathbb{N}$ (OK. if $n > \alpha_i$ for all $i \in \mathbb{Z}/d\mathbb{Z}$). Setting
\[
U_{j,i} = (FV^{-\alpha_{j-1}}) \cdots (FV^{-\alpha_{i+1}})(FV^{-\alpha_i}) \quad (0 \leq i < j \leq d),
\]
we obtain the equation

\[(8.21) \quad U_{d,0}A^{(l)}_0 - A^{(l)}_0 \equiv \sum_{i=1}^{d} U_{d,i}z^{(l)}_i \pmod{I_{R,n}P_{m_1,n_1,R}}.\]

Comparing the \(e_j^{(l)}\)-coefficients of the both sides of (8.21) for each \(0 \leq j < m_l + n_l\), we have simultaneous equations as in Cor. 8.4. Hence we can choose a finite \(\Lambda\)-algebra \(R\) with surjection \(\text{Spec}(R) \to \text{Spec}(\Lambda)\) such that there is a solution \(\{a^{(l)}_{0,j}\} (2 \leq l \leq t-1)\) of (8.21). We define \(a^{(l)}_{ij} \in W_Q(R)\) for \(i > 0\) by

\[v'_i := U_{i,0}v'_0 - \sum_{j=1}^{i} U_{i,j}z_j.\]

Then \(v'_i (i \in \mathbb{Z}/d\mathbb{Z})\) satisfy (8.20).

We determine \(B(z)\) uniquely by the equations:

\[(8.22) \quad \langle u(z), V^{-s}v'_i \rangle = 0\]

for \(i \in \mathbb{Z}/d\mathbb{Z}\) and \(0 \leq s \leq \alpha_i\).

For each \(0 \leq i \leq j < d\), we choose a lift \(d_{i,j} \in W(\Lambda)\) of \(\overline{d}_{i,j}\) and for \(0 \leq j < i < d\) we set

\[(8.23) \quad d_{i,j} = d_{j,i} - \langle z_i, z_j \rangle,\]

where the pairing of the second term is on \(P'\). By (8.17) we see that \(d_{i,j}\) are lifts of \(\overline{d}_{i,j}\) even for \(0 \leq j < i < d\).

We define \(A_i^{(l)}\) for every \(i \in \mathbb{Z}/d\mathbb{Z}\) as satisfying the equations:

\[(A) \quad \langle v_i, V^{-s}v_j \rangle \equiv 0 \pmod{I_{R,n}} \text{ for } i, j \in \mathbb{Z}/d\mathbb{Z}, 0 \leq s \leq \alpha_j,\]

\[(B) \quad \langle FV^{-\alpha_{i-1}}v_{i-1}, v_j \rangle \equiv d_{i,j} \pmod{I_{R,n}} \text{ for } 0 \leq i \leq j < d.\]

Before solving this collection of equations, we give some remarks. First from (A) and (3.5) we have

\[(8.24) \quad \langle V^{-s}v_i, V^{-s'}v_{i'} \rangle \equiv 0 \pmod{I_R}\]

for \(i, i' \in \mathbb{Z}/d\mathbb{Z}, 0 \leq s \leq \alpha_i 0 \leq s' \leq \alpha_{i'}\). Secondly we claim that (A) and (B) imply

\[(8.25) \quad \langle FV^{-\alpha_{i-1}}v_{i-1}, v_j \rangle \equiv d_{i,j} \pmod{I_R} \text{ for all } i, j \in \mathbb{Z}/d\mathbb{Z}.\]

Indeed by (A) and (8.22) we have

\[FV^{-\alpha_{i-1}}v_{i-1} - v_i \equiv u(z_i) + \sum_{j \in \mathbb{Z}/d\mathbb{Z}} d'_{i,j}x_j \pmod{I_{R,n}P(\xi)}\]
with \(d'_{i,j} := \langle FV^{-\alpha_i-1}v_{i-1}, v_j \rangle \). It suffices to show \(d'_{i,j} \equiv d'_{j,i} \equiv d'_{j,\bar{i}} \equiv 0 \) (mod \(I_R \)). By (3.5), (8.20) and (8.22) we have

\[
d'_{i,j} \equiv \langle FV^{-\alpha_i-1}v_{i-1}, FV^{-\alpha_j-1}v_{j-1} - u(z_j) - \sum_{k \in \mathbb{Z}/d\mathbb{Z}} d'_{j,k}x_k \rangle \quad \text{(mod \(I_R, n \))}
\]

\[
\equiv d'_{j,i} - \langle FV^{-\alpha_i-1}v_{i-1}, u(z_j) \rangle \equiv d'_{j,i} - \langle z_i, z_j \rangle \quad \text{(mod \(I_R \)).}
\]

Write

\[
A^{(i)}_i = \sum_{j \in \mathbb{Z}/d\mathbb{Z}, 0 \leq s \leq \alpha_j} \xi_{i,j,s} F^s x_j.
\]

Let us rewrite (A) and (B) by using \(\{ \xi_{i,j,s} \} \). Since \(V^sx_i = V^{s-1}F^{\alpha_i-1}x_{i-1} = p^{s-1}F^{\alpha_i-1-s+1}x_{i-1} \) for \(s \geq 1 \), (A) is translated as

\[
p^{e(s)} \cdot \sigma^x \xi_{i,j,s} - \xi_{i,j,s} \equiv \beta_{i,j,s} \quad \text{(mod \(I_R, n \)),}
\]

where \(\gamma(i,j,s) = (j,i-1, \alpha_{i-1} - 1 + s) \) and \(e(s) = 1 - s \) for \(s \geq 1 \) and \(\gamma(i,j,0) = (j,i,0) \) and \(e(0) = 0 \), and \(\beta_{i,j,s} \) is a constant \(\langle v_{i-1} - v_j, \sigma^x (v_{i-1} - v_j) \rangle \).

Note that \(\beta_{i,j,0} + \beta_{j,i,0} = 0 \).

Since \(F^{-1}V^{\alpha_i-1}x_{j-1} \) is equal to \(p^{\alpha_i-1}F^{\alpha_j-1-\alpha_{i-1}+1}x_{j-1} \) if \(\alpha_{i-1} \leq \alpha_{j-1} \) and to \(p^{\alpha_i-2}F^{\alpha_j-2}x_{j-2} \) if \(\alpha_{i-1} > \alpha_{j-1} \) (here we used \(|\alpha_{j-1} - \alpha_{i-1}| \leq 1 \)), (B) is translated as

\[
p^{e'(j,i,0)} \cdot \sigma^x \gamma'_{i,j,0} - \xi_{j,i,0} \equiv \beta'_{i,j} \quad \text{(mod \(I_R, n \))}
\]

with a constant \(\beta'_{i,j} \) (determined by \(d_{i,j} \) and \(A^{(i)}_i \)'s), where \(\gamma'(j,i,0) = (i-1, j-1, \alpha_{j-1} - \alpha_{i-1}) \) and \(e'(j,i,0) = -\alpha_{i-1} \) for \(\alpha_{i-1} \leq \alpha_{j-1} \), and \(\gamma'(j,i,0) = (i-1, j-2, \alpha_{j-2}) \) and \(e'(j,i,0) = -\alpha_{j-2} \) for \(\alpha_{i-1} > \alpha_{j-1} \).

By applying Cor. 8.4 to (8.26) for \(0 \leq i < j < d \) and \(s > 0 \) and for \(0 \leq i < j \) and \(s = 0 \) and (8.27) for \(0 \leq i < j < d \), we can choose \(R \) with finite surjective morphism \(\text{Spec}(R) \to \text{Spec}(A) \) such that there exists a solution of the simultaneous equations. Now we have finished defining \(\mathcal{P} \).

In order to define \(\mathcal{Q} \), it suffices to define a normal decomposition \(\mathcal{P} = L \oplus T \); then \(\mathcal{Q} = L \oplus I_RT \). Let \(\mathcal{P}' = L' \oplus T' \) be a normal decomposition of \(\mathcal{P}' \). We define \(L \) to be the submodule of \(\mathcal{P} \) generated by \(L_{c,d}, u(z) \) \((z \in \mathcal{L}')\), \(V^{-s}v_i \) \((0 \leq s < \alpha_i)\) and \(T \) to be the submodule of \(\mathcal{P} \) generated by \(T_{c,d}, u(z) \) \((z \in \mathcal{L}')\), \(V^{-\alpha_i}v_i \). We have to show that \((\mathcal{P}, \mathcal{Q}, \mathcal{F}, \mathcal{V}^{-1}, \langle \cdot, \cdot \rangle|_{\mathcal{P}}) \) is a principally quasi-polarized display. It suffices to check that

(a) \(\mathcal{V}^{-1} \) induces a well-defined surjective map \(\mathcal{V}^{-1} : \mathcal{Q}^\sigma \to \mathcal{P} \) and

(b) \(\langle \cdot, \cdot \rangle|_{\mathcal{P}} \) is a perfect pairing on \(\mathcal{P} \).

(b) follows immediately from (8.22) and (8.24). (a) In order to show that \(\mathcal{V}^{-1} : \mathcal{Q}^\sigma \to \mathcal{P} \) is well-defined, it suffices to show that the elements \(V^{-1}u(z) \)
(z ∈ L') and \(V^{-1}(\tau_1 \cdot u(z)) (z ∈ P') \) of \(\mathbb{P}_R \) are in \(\mathcal{P} \). For \(V^{-1}u(z) (z ∈ L') \), it is enough to show that
\[
V^{-1}u(z) - u(V^{-1}z) ≡ 0 \pmod{P_{c,d,R}} \quad \text{for} \quad z ∈ L'.
\]
This is equivalent to \(\langle V^{-1}u(z) - u(V^{-1}z), V^{-s}v_j' \rangle ∈ W(R) \). Since
\[
\langle V^{-1}u(z) - u(V^{-1}z), V^{-s}v_j' \rangle = \langle V^{-1}u(z), V^{-s}v_j' \rangle,
\]
it suffices to check that
\[
\langle V^{-1}u(z), V^{-s}v_j' \rangle ∈ W(R).
\]
For \(s > 0 \), (8.29) follows from
\[
τ \langle V^{-1}u(z), V^{-s}v_j' \rangle = \langle u(z), V^{-s+1}v_j' \rangle = 0.
\]
For \(s = 0 \), from (8.20) we have
\[
\langle V^{-1}u(z), V^{-s}v_j' \rangle ≡ \langle V^{-1}u(z), FV^{-α_j-1}v_j' \rangle \pmod{W(R)}
\]
and the RHS of (8.30) is equal to \(σ \langle u(z), V^{-α_j-1}v_j' \rangle = 0 \). Hence (8.29) holds also for \(s = 0 \). Similarly one can show that \(V^{-1}(\tau_1 \cdot u(z)) = Fu(z) \) is in \(\mathcal{P} \) for all \(z ∈ P' \) by checking
\[
Fu(z) - u(Fz) ≡ 0 \pmod{P_{c,d,R}}
\]
in the same way as the proof of (8.28). Thus \(V^{-1} : Q^σ → \mathcal{P} \) is well-defined. Since clearly \(V^{-1} : Q^σ → \mathcal{P} \) is surjective, we obtain (a).

Let us see that \(\mathcal{M} = (\mathcal{P}, Q, F, V^{-1}, \langle , , \rangle) \) satisfies the required properties. The condition (2) is obviously fulfilled. We define the homomorphism \(\mathcal{P} → M_1 \) by sending \(V^{-s}v_i \) to \(V^{-s}y_i \) and \(u(z) (z ∈ P') \) and \(\mathcal{F}^sx_i \) to \(0 \), and the homomorphism \(\tilde{κ} : \mathcal{P} → N \) by sending \(V^{-s}v_i \) to \(v_{i,s} \) and \(u(z) \) to \(u(\tau) \) and \(\mathcal{F}^sx_i \) to \(\mathcal{F}^sx_i \). Then \(H^1(\mathcal{D}^\bullet) \) is generated by \(u(z) (z ∈ P') \); by (8.28) and (8.31) the homomorphism \(H^1(\mathcal{D}^\bullet) → M_R' \) sending \(u(z) \) to \(z \) is an isomorphism, i.e., we obtain (1). Next let us show that \(κ \) is an isomorphism. This follows from the construction of \(\mathcal{M} \); indeed compare (8.16)&(8.20) and (8.13)&(8.22) and (8.12)&(8.24) and (8.15)&(8.25) respectively, and note that these equations determine the isomorphism classes of \(Z_R \) and \(M/I_R M \) respectively. The last property (3) is obviously satisfied.

Finally let us show the last assertion. We assume that \(\rho : M(\xi)_R → \mathcal{M} \) is trivial and show that \(\mathcal{C}^\bullet \) is trivial. By the assumption we can write \(\rho = ρ_{0,R} \), where \(ρ_0 = ρ_k : M(\xi)_k → M \) with \(M := M_k \) and \(\mathcal{M} = M_R \). Write \(ϕ_0 = ϕ_k \) and \(f_0 = f_k \), and \(κ_0 = κ_k \). By the property (2), we have \(f^\gamma = f^\gamma_{0,R} \). According to (3), we obtain \(f^\gamma = \tilde{κ} \circ f^\gamma_{0,R} \) with \(\tilde{κ} = κ \circ κ^{-1}_{0,R} ∈ \text{Aut}(Z_R) \). Then by definition \(\mathcal{C}^\bullet \) is trivial (see Prop. 7.13, (2)).
LEMMA 8.7. — There exist a finite surjective morphism \(\text{Spec}(R) \to \text{Spec}(\Lambda) \) and elements \(u_{i,s} \) of \(N_R \) \((i \in \mathbb{Z}/d\mathbb{Z}, 0 \leq s \leq \alpha_i) \) with \(u_{i,s} \in C_R \) \((i \in \mathbb{Z}/d\mathbb{Z}, 0 \leq s < \alpha_i) \) such that \(f(u_{i,s}) = \overline{V}^{-s}y_i \) and \(\phi^{-1}(u_{i,s+1}) = 1 \otimes u_{i,s} \) and \(\langle u_{i,s}, u_{i',s'} \rangle = 0 \) for all \(i, i' \in \mathbb{Z}/d\mathbb{Z} \) and for all \(0 \leq s \leq \alpha_i \) and \(0 \leq s' \leq \alpha_i' \).

Proof. — There exists a finite \(\Lambda \)-algebra \(\Lambda' \) such that \((\Lambda')^p_{\max_i \{\alpha_i\}} = \Lambda \). It is possible to choose elements \(\phi' \) of \(N_{\Lambda'} \) such that \(f(\phi'(i,s)) = \overline{V}^{-s}y_i \) and \(\phi^{-1}(\phi'(i,s+1)) = 1 \otimes \phi'(i,s) \). Over an \(\Lambda' \)-algebra \(R' \) determined later, we will find \(\phi' \) of the form

\[
\phi'_{i,s} = \begin{cases}
\phi_{i,s}^0 + \sum_{j \in \mathbb{Z}/d\mathbb{Z}} \sum_{0 \leq k \leq \alpha_j} a_{i,j,k} \cdot \phi^k \overline{x}_j & \text{for } s = \alpha_i, \\
\phi_{i,s+1}^0 + \sum_{j \in \mathbb{Z}/d\mathbb{Z}} b_{i,j} \cdot \phi^{-1} \overline{x}_j & \text{for } s = \alpha_i - 1, \\
\phi_{i,s}^0 & \text{for } s < \alpha_i - 1,
\end{cases}
\]

where \(a_{i,j,k} \) and \(b_{i,j} \) are elements of \(R' \) with

\[
b_{i,j}^0 = a_{i,j,0}.
\]

These \(u_{i,s} \) satisfy the two properties \(f(u_{i,s}) = \overline{V}^{-s}y_i \) and \(\phi^{-1}(u_{i,s+1}) = 1 \otimes u_{i,s} \).

Using \(\phi^{-1} \overline{x}_j = \phi^{\alpha_j-1} \overline{x}_{j-1} \), the condition \(\langle u_{i,s}, u_{i,j\alpha_j} \rangle = 0 \) is written as

\[
\begin{cases}
an_{j,i,\alpha_i} - a_{i,j,\alpha_j} = \langle u_{i,s}, u_{j\alpha_j} \rangle & \text{for } s = \alpha_i, \\
an_{j,i,\alpha_i-1} - b_{i,j+1} = \langle u_{i,s-1}, u_{j\alpha_j} \rangle & \text{for } s = \alpha_i - 1, \\
an_{j,i,s} = \langle u_{i,s}, u_{j\alpha_j} \rangle & \text{for } s < \alpha_i - 1.
\end{cases}
\]

Thus using (8.32) we regard (8.33) as simultaneous equations in \(a_{i,j,s} \) \((i, j \in \mathbb{Z}/d\mathbb{Z}, 0 < s \leq \alpha_j) \) and \(b_{i,j} \) \((i, j \in \mathbb{Z}/d\mathbb{Z}) \). By Lem. 8.2 and Rem. 8.3 there exists \(R' \) with finite surjective morphism \(\text{Spec}(R') \to \text{Spec}(\Lambda') \) such that there exists a solution of the simultaneous equations. Finally we can choose \(R' \)-algebra \(R \) with finite surjective morphism \(\text{Spec}(R) \to \text{Spec}(R') \) such that \(u_{i,s} \in C_R \) \((i \in \mathbb{Z}/d\mathbb{Z}, 0 \leq s \leq \alpha_i) \). Then for \(0 \leq s < \alpha_i \) and \(0 \leq \alpha_i < \alpha_i' \) we have \(\langle u_{i,s}, u_{i',s'} \rangle = 0 \).

Here is a corollary to Prop. 8.6.

COROLLARY 8.8. — Let \(C^* \) be as in (8.8). Assume \(\Lambda = k \). Let \(w \) be the final element related to \(Z \) and let \(w' \) be the final element related to \(H^1(C^*) \). Then we have \((d, c) + \xi(w') + (c, d) < \xi(w) \).
Proof. — Let M' be a principally quasi-polarized display with Newton polygon $\xi(w')$. Apply Prop. 8.6 to this M', we obtain a principally quasi-polarized display M with Newton polygon $(d,c) + (c,d) \prec \xi(w)$. By the definition of $\xi(w)$, we have $(d,c) + (c,d) \prec \xi(w)$. □

8.4. Proof of Th. 6.1

We use the notation of §6.2. Let C_{0}^{\bullet} be as in (6.2). Put $Z_{0}' = H^{1}(C_{0}^{\bullet})$, which is a polarized F-zip. Let w_{0}' be the final element of Z_{0}'. Then

Lemma 8.9. — $(d,c) + (c,d) = \xi(w_{0}')$.

Proof. — By Cor. 8.8, we have $(d,c) + (c,d) \prec \xi(w_{0}')$. Let X' be the H^{1} of the complex (6.1). Clearly $F_{z}(X') = Z_{0}'$. By the definition of $\xi(w_{0}')$, we have $N(X') \prec \xi(w_{0}')$. Hence $\xi(w) = N(X) = (d,c) + (c,d) \prec (d,c) + (c,d) \prec \xi(w_{0}')$. □

We say C_{0}^{\bullet} splits if there exists a splitting g_{0} of f_{0} so that g_{0} and g_{0}' make an isomorphism between Z and $Z_{1}' \oplus Z_{0}' \oplus Z_{1}$ as polarized F-zips. If $(c,d) = (1,0)$, then C_{0}^{\bullet} splits. Hence in the non-split case, we have $d > 0$.

We show Th. 6.1 by induction on g. The proof is divided into three cases.

Split case. Assume that C_{0}^{\bullet} splits. Let w_{1} be the final element of $X_{1}[p] \times X_{1}'[p]$ and let w_{0}' be the final element of $Z_{0}'[p]$. Recall the assumptions: w is not minimal and C_{0}^{\bullet} splits. Then w_{0}' is not minimal, since w_{1} is minimal (Prop. 6.4). Then by the hypothesis of the induction (i.e., Th. 6.1 for the lower dimensional case), there exists a non-trivial isogeny

$$H(\xi(w_{0}')) \times S \longrightarrow X'$$

over S of finite type over k with $\dim S > 0$ satisfying the three properties in Th. 6.1 for a certain section $\text{Spec}(k) \rightarrow S$. Since $\xi(w) = \xi(w_{1}) + \xi(w_{0}')$ (Lem. 8.9), the principally quasi-polarized p-divisible group $X := X_{1,S}^{t} \oplus X' \oplus X_{1,S}$ over S satisfies the properties in Th. 6.1.

Non-split case (I). Assume that C_{0}^{\bullet} does not split and that Z_{0}' is not minimal. By the hypothesis of induction (i.e., Th. 6.1 for the lower dimensional case), there exists a non-trivial family of isogenies

$$\bigoplus_{l=2}^{t-1} H_{m_{l},n_{l}} \otimes R' \longrightarrow X'$$
over R' such that $Fz(\mathcal{X}') \simeq Z_{w'_0} \otimes R'$. Then by Prop. 8.6 there exists a non-trivial family of self-dual complexes

$$
0 \longrightarrow X'_1 \longrightarrow \mathcal{X} \longrightarrow X_1 \longrightarrow 0
$$

over R of finite type over k with surjection $\text{Spec}(R) \to \text{Spec}(R')$ and a non-trivial family of isogenies

$$
\bigoplus_{l=1}^t H_{m_l,n_l} \otimes R \longrightarrow \mathcal{X}
$$

such that $Fz(\mathcal{X}) \simeq Z_w \otimes R$.

Non-split case (II). Assume that \mathcal{C}_0^* does not split and that Z'_0 is minimal. Set $w'_0 = E(Z'_0)$. Then w'_0 is the minimal final element of Newton polygon $\xi' = \sum_{l=2}^{t-1} (m_l,n_l)$. By Prop. 7.13 we have a non-trivial family over a ring R' of finite type over k:

$$
\mathcal{C}^* : 0 \longrightarrow Z'_{1,R'} \longrightarrow Z_{R'} \longrightarrow Z_{1,R'} \longrightarrow 0
$$

such that $\mathcal{C}^* \otimes k = \mathcal{C}_0^*$. If necessary, we shrink R' so that R' will be irreducible of dimension > 0 and $\{E(H^1(\mathcal{C})_s)|s \in \text{Spec}(R')\}$ will consist of at most two final elements, say w'_0 at a special point and w' at the generic point.

Case $w' = w'_0$: In this case for a faithfully flat finite extension $R' \to R''$ we have $H^1(\mathcal{C}^*) \otimes R' \simeq Fz(H(\xi')) \otimes R''$ (see [21], Cor. 5.4). Set $\mathcal{X}' = H(\xi') \otimes R''$. By Prop. 8.6, there exists a non-trivial family over R of finite type over k with some surjection $\text{Spec}(R) \to \text{Spec}(R'')$:

$$
\mathcal{D}^* : 0 \longrightarrow X'_1 \longrightarrow \mathcal{X} \longrightarrow X_1 \longrightarrow 0
$$

(satisfying $H^1(\mathcal{D}^*) = \mathcal{X}'$) with non-trivial family of isogenies

$$
\bigoplus_{l=1}^t H_{m_l,n_l} \otimes R \longrightarrow \mathcal{X}
$$

such that $Fz(\mathcal{X}) \simeq Z_R$.

Case $w' \neq w'_0$: First we prove

Lemma 8.10. — $\xi(w'_0) = \xi(w')$.

Proof. — By [27], (4.11) we have $\xi(w'_0) \prec \xi(w')$. On the other hand, since $(d,c) + \xi(w') + (c,d) \prec \xi(w)$ by Cor. 8.8 and $(d,c) + \xi(w'_0) + (c,d) = \xi(w)$ by Lem. 8.9, we have $\xi(w') \prec \xi(w'_0)$. □
This lemma and $w' \neq w'_0$ imply that w' is not minimal. Take a point $x' \in (W_{\xi(w')} \cap S_{w'})(k)$ and let A' be the associated principally polarized abelian variety. Put $Y' = A'[p^\infty]$. Applying Prop. 8.6 to $C^* \otimes_{R'} k'$ for an algebraically closed field k' containing R', there exists a self-dual complex over k'

\[
0 \longrightarrow X^t_{1,k'} \longrightarrow Y \longrightarrow X_{1,k'} \longrightarrow 0
\]

with $N(Y) = \xi(w)$ and $E(F_z(Y)) = w$ such that the first cohomology of (8.34) is $Y^t_{k'}$. Replacing X by Y, we can reduce to the non-split case (I).

BIBLIOGRAPHY

Manuscrit reçu le 13 mars 2008,
accepté le 5 juin 2009.

Shushi HARASHITA
Yokohama National University
Graduate School of Environment and Information Sciences
79-7 Tokiwadai, Hodogaya-ku
Yokohama 240-8501(Japan)
harasita@ynu.ac.jp