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EFFECTIVE LOCAL FINITE GENERATION OF
MULTIPLIER IDEAL SHEAVES

by Dan POPOVICI

Abstract. — Let ϕ be a psh function on a bounded pseudoconvex open set Ω ⊂
Cn, and let I(mϕ) be the associated multiplier ideal sheaves,m ∈ N?. Motivated by
global geometric issues, we establish an effective version of the coherence property
of I(mϕ) as m → +∞. Namely, given any B b Ω, we estimate the asymptotic
growth rate in m of the number of generators of I(mϕ)|B over OΩ, as well as
the growth of the coefficients of sections in Γ(B, I(mϕ)) with respect to finitely
many generators globally defined on Ω. Our approach relies on proving asymptotic
integral estimates for Bergman kernels associated with singular weights. These
estimates extend to the singular case previous estimates obtained by Lindholm
and Berndtsson for Bergman kernels with smooth weights and are of independent
interest. In the final section, we estimate asymptotically the additivity defect of
multiplier ideal sheaves. As m → +∞, the decay rate of I(mϕ) is proved to be
almost linear if the singularities of ϕ are analytic.

Résumé. — Soit ϕ une fonction psh sur un ouvert pseudo-convexe borné Ω ⊂
Cn et soit I(mϕ) les faisceaux d’idéaux multiplicateurs associés, m ∈ N?. Motivé
par des considérations de géométrie globale, nous donnons une version effective de
la propriété de cohérence de I(mϕ) lorsque m → +∞. Étant donné B b Ω, nous
estimons la croissance asymptotique enm du nombre de générateurs duOΩ-module
I(mϕ)|B , ainsi que la croissance des coefficients des sections de Γ(B, I(mϕ)) par
rapport à un nombre fini de générateurs globalement définis sur Ω. Notre approche
consiste à démontrer des estimations intégrales asymptotiques pour des noyaux de
Bergman associés à des poids singuliers. Ces estimations généralisent au cas singu-
lier des estimations obtenues antérieurement par Lindholm et Berndtsson pour des
noyaux de Bergman à poids lisses et présentent un intérêt propre. Nous donnons
également des estimations asymptotiques pour le défaut d’additivité des faisceaux
d’idéaux multiplicateurs. Nous montrons que lorsque m→ +∞ le taux de décrois-
sance de I(mϕ) est presque linéaire si les singularités de ϕ sont analytiques.

Keywords: Bergman kernel, closed positive current, L2 estimates, multiplier ideal sheaf,
psh function, singular Hermitian metric, Stein manifold.
Math. classification: 32C35, 32U05, 32A36.
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1. Introduction

Let L be a holomorphic line bundle over a complex manifold X of com-
plex dimension n. Suppose L is equipped with a possibly singular Hermitian
metric h. This means that on each open subset of X on which L is trivial,
the metric is defined as h = e−ϕ for some local weight function ϕ which
is only assumed to be L1

loc with respect to the Lebesgue measure. The in-
duced metrics hm on the tensor power line bundles Lm are then defined by
the local weight functions mϕ, m ∈ N?.

In all that follows, the curvature current iΘh(L) of bidegree (1, 1) associ-
ated with (L, h) is assumed to be > 0 on X. Equivalently, the local weight
functions ϕ are assumed to be plurisubharmonic (psh). Following Nadel
([14]), one can associate with h a multiplier ideal sheaf I(h) ⊂ OX defined
as follows. If h = e−ϕ on a trivialising open set Ω ⊂ X for L, we set

I(h)|Ω = I(ϕ),

where the stalk I(ϕ)x at any point x ∈ Ω is defined as the set of germs
of holomorphic functions f ∈ OΩ, x such that |f |2 e−2ϕ is integrable with
respect to the Lebesgue measure in some local coordinates in a neigh-
bourhood of x. The prime objective of the present paper is to study the
variation of I(hm) (or equivalently of I(mϕ) on each trivialising open set
Ω) as m→ +∞.

The sequence of multiplier ideal sheaves I(hm) is easily seen to be non-
increasing as m → +∞. Indeed, to offset the possible non-integrability of
e−2mϕ near points x ∈ Ω where ϕ(x) = −∞ (singularities of the metric h),
holomorphic germs f ∈ I(mϕ)x may need to vanish to increasingly high
orders at x as m increases. On the other hand, the Demailly-Ein-Lazarsfeld
subadditivity property of multiplier ideal sheaves ([8]) implies that

I(hm) ⊂ I(h)m, (resp. I(mϕ) ⊂ I(ϕ)m), m ∈ N?,

while the inclusion is strict in general. In other words, I(hm) may decrease
more quickly than linearly as m → +∞. The main thrust of the ensuing
development is to obtain an effective control of the decay rate of I(hm) as
m→ +∞.

As the problems being dealt with are local in nature, we shall focus our
attention on psh functions ϕ defined on a bounded pseudoconvex open set
Ω b Cn. Examples of such functions are provided by the so-called psh
functions with analytic singularities, namely those psh functions that
can be locally written as

ϕ = c

2
log(|g1|2 + · · ·+ |gN |2) + C∞, (?)
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EFFECTIVE LOCAL FINITE GENERATION 1563

for some holomorphic functions g1, . . . , gN on Ω, and some constant c > 0.
The −∞-poles (or singularities) of ϕ are precisely the common zeroes of
g1, . . . , gN and they only depend, up to equivalence of singularities, on
the ideal sheaf generated by g1, . . . , gN . More generally, Ω may be any
Stein manifold of any complex dimension n. According to whether Ω is a
bounded pseudoconvex open subset of Cn or an arbitrary Stein manifold,
ω will denote the standard Kähler metric of Cn or a fixed Kähler metric
on Ω.

The issue of the decay rate of I(mϕ) is addressed in two ways.
First, let HΩ(mϕ) be the Hilbert space of holomorphic functions f on Ω

such that |f |2 e−2mϕ is integrable with respect to the Lebesgue measure on
Ω. It is well-known that the ideal sheaf I(mϕ) is coherent and generated as
an OΩ-module by an arbitrary orthonormal basis (σm, j)j∈N? of HΩ(mϕ)
([14], see also [[7], Lemma 4.4]). By the strong Noetherian property of
coherent sheaves, it is then generated, on every relatively compact open
subset Ω′ b Ω, by only finitely many σm, j ’s. Our first goal is to make
this local finite generation property effective; in other words, to estimate
the number Nm of generators needed, as well as the growth rate of the
(holomorphic function) coefficients appearing in the decomposition of an
arbitrary section of I(mϕ) on Ω′ as a finite linear combination of σm, j ’s,
as m→ +∞. The first set of results can be summed up as follows.

Theorem 1.1. — Let ϕ be a strictly psh function on a Stein manifold
Ω such that i∂∂̄ϕ > C0 ω for some constant C0 > 0. Let B′ b B b Ω
be any pair of relatively compact pseudoconvex domains in Ω. Then there
exists m0 = m0(C0) ∈ N and every point x ∈ B′ has a neighbourhood
B0 ⊂ B such that for every m > m0 the following property holds. Every
g ∈ HB(mϕ) admits, with respect to some suitable finitely many elements
σm, 1, . . . σm,Nm in a suitable orthonormal basis (σm, j)j∈N? of HΩ(mϕ), a
decomposition:

g(z) =
Nm∑
j=1

bm, j(z)σm, j(z), z ∈ B0,

with holomorphic functions bm, j on B0 satisfying:

sup
B0

Nm∑
j=1
|bm, j |2 6 C

∫
B

|g|2 e−2mϕ < +∞,

where the constant C > 0 and the size of the neighbourhood B0 depend
only on n = dimCΩ, Ω, B and B′, while m0 depends only on C0, n, Ω, B
and B′ (so they are all independent of ϕ and m); when Ω b Cn, they even
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1564 Dan POPOVICI

depend only on n (and C0 for m0), the diameters of Ω, B and the distance
d(B′, Ω \B).

Moreover, if ϕ has analytic singularities, then Nm 6 Cϕm
n for m � 1,

where Cϕ > 0 is a constant depending only on ϕ, B, and n.

This can be seen as a local counterpart to Siu’s effective version of the
global generation of multiplier ideal sheaves (cf. [17, Theorem 2.1]) which
was one of the steps in his proof of the invariance of the plurigenera under
projective deformations. Siu dealt with spaces of global sections of coher-
ent analytic sheaves over compact complex manifolds; these are always
finite dimensional. However, in the present case, the corresponding spaces
HΩ(mϕ) ⊂ Γ(Ω, I(mϕ)) of sections of I(mϕ) over a Stein manifold are
infinite dimensional. The thrust of our results is to reduce an infinite dimen-
sional situation to a finite dimensional one. To this end, the main idea is to
concentrate the L2 norms of holomorphic functions on a relatively compact
open subset of Ω by means of compact operators, the so-called Toeplitz con-
centration operators. The procedure involves appropriate choices of genera-
tors for HΩ(mϕ) and produces estimates derived from an asymptotic study
of Bergman kernels associated with singular weights mϕ as m→ +∞.

Second, to complement the Demailly-Ein-Lazarsfeld subadditivity prop-
erty [8], we obtain a superadditivity result showing that the variation of
I(mϕ), though not necessarily linear in m, is almost linear if the singular-
ities of ϕ are analytic. Namely, the following qualitative statement holds.

Theorem 1.2. — Let ϕ = c
2 log(|g1|2 + · · · + |gN |2) be a psh function

with analytic singularities on Ω ⊂ Cn (cf. (?)). Then, for every 0 < δ < 1,
we have:

I(mϕ)p ⊂ I(mp(1− δ)ϕ), for all m >
n+ 1
c δ

and p ∈ N?.

Recall that subadditivity means that I(mpϕ) ⊂ I(mϕ)p (cf. [8]). The-
orem 1.2 is only the qualitative version of a much stronger effective re-
sult obtained as Theorem 4.1. Specifically, given any sections f1, . . . , fp ∈
Γ(Ω, I(mϕ)) with e−2mϕ-weighted L2-norms equal to 1, the e−2mp(1−δ)ϕ-
weighted L2-norm of the product f1 · · · fp on any Ω′ b Ω is estimated and
shown to be finite. Hence f1 · · · fp ∈ Γ(Ω′, I(mp(1 − δ)ϕ)). This effective
result is partly motivated by the work [15] on singular Morse inequalities
where precise estimates of products f1 · · · fp and their derivatives on fixed-
size interior open subsets play a key role (cf. [15, Proposition 7.2]).

Here is an outline of our approach. In section 2, we recall the definition
of Toeplitz concentration operators and observe some basic properties. We
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EFFECTIVE LOCAL FINITE GENERATION 1565

then go on to use Hörmander’s L2 estimates ([10]) and Skoda’s L2 divi-
sion theorem ([18]) to prove an effective local finite generation property of
I(mϕ) which amounts to proving the first part of Theorem 1.1 regarding
generation.

In section 3, we complete the proof of Theorem 1.1 by estimating the
number Nm of generators of I(mϕ) needed on an interior ball B(x0, r0) b
Ω as m → +∞. To this purpose, we extend to the case of analytic singu-
larities the asymptotic integral estimates for Bergman kernels previously
obtained for smooth weight functions by Lindholm ([13]) and Berndts-
son ([2]). Namely, if (σm,j)j∈N? is any orthonormal basis of the singularly
weighted Bergman space HΩ(mϕ), the trace of the associated Bergman
kernel on the diagonal of Ω× Ω is defined as

(1.1) Bmϕ :=
+∞∑
j=0
|σm,j |2 on Ω,

the definition being independent of the orthonormal basis chosen. We ob-
tain, among other things, the following result.

Theorem 1.3. — Let ϕ be a psh function with analytic singularities on
Ω b Cn such that i∂∂̄ϕ > C0ω for some constant C0 > 0. Then, for any
relatively compact open subset B b Ω, we have:

(1.2) lim
m→+∞

n!
mn

∫
B

Bmϕ e
−2mϕ d Vn = 2n

πn

∫
B

(i∂∂̄ϕ)nac < +∞,

where d Vn denotes the Lebesgue measure in Cn and (i∂∂̄ϕ)ac stands for the
absolutely continuous part in the Lebesgue decomposition of the (complex
measure) coefficients of the current i∂∂̄ϕ with respect to the Lebesgue
measure.

This can be seen as the first step (giving the integral of the leading term)
towards a possible asymptotic expansion of the Bergman kernel associated
with singular weights that would parallel the Tian-Yau-Zelditch asymptotic
expansion obtained for smooth weights (cf. [19], [20], [21]).

The search for asymptotic integral estimates for singularly weighted
Bergman kernels leads naturally to defining an invariant for functions
ϕ ∈ PSH(Ω) that we find convenient to call the volume of ϕ on B b Ω
(see Definition 3.1 below). After noticing that a psh function ϕ with ar-
bitrary singularities may have infinite volume, section 3 goes on to prove
the finiteness of the volume for any ϕ with analytic singularities. We can
actually manage rather more by proving that the volume of ϕ on B equals
the Monge-Ampère mass of i∂∂̄ϕ on B in the case of analytic singularities

TOME 60 (2010), FASCICULE 5



1566 Dan POPOVICI

(Theorem 1.3 above). The Monge-Ampère mass is easily seen to be finite
in this case. The finiteness of the volume for ϕ with analytic singulatities
translates to the estimate Nm = O(mn) as m→ +∞.

Section 4 deals with the different but related issue of estimating the sub-
additivity defect of multiplier ideal sheaves. Demailly’s local approximation
of arbitrary psh functions by psh functions with analytic singularities ([6],
Proposition 3.1) is revisited to get improved effective estimates from above
on arbitrary fixed-sized interior subsets (Theorem 4.1). The key ingredi-
ent is again Skoda’s L2 division theorem. Theorem 1.2 then follows as a
corollary.

We now put these results in context. In [15], some of them are applied to
the global geometry of compact (not necessarily Kähler) complex manifolds
X to get singular Morse inequalities which extend Demailly’s holomorphic
Morse inequalities (cf. [5]) to arbitrary singular metrics. This leads to a
complete characterisation of the volume of a line bundle L in terms of all
(possibly singular) Hermitian metrics with positive curvature current that
one can define on L (see [15, Theorem 1.3]). A consequence of this is a new
metric characterisation of big line bundles, and implicitly of Moishezon
manifolds, that generalises previous results arisen from Siu’s resolution of
the Grauert-Riemenschneider conjecture. Since in the non-Kähler context
of [15] no background Hermitian metric ω of X is closed, one has to work
locally on coordinate patches. This strategy motivated in part some of the
local problems treated in the present paper.

2. Effective local finite generation

In this section we prove the first part of Theorem 1.1 regarding gen-
eration. What is at stake is to find appropriate choices of an orthonormal
basis ofHΩ(mϕ) and of finitely many local generators of I(mϕ) that satisfy
effective growth estimates as m→ +∞.

Let (Ω, ω) be a bounded pseudoconvex open subset of Cn or, more gen-
erally, a Stein manifold of complex dimension n with Kähler metric ω. Fix
a psh function ϕ on Ω. Let B b Ω be any relatively compact pseudoconvex
domain. Following [13] and [2] (themselves inspired by [12]), we consider
the following Toeplitz concentration operators for B:

TB,m : HΩ(mϕ)→ HΩ(mϕ), TB,m(f) = Pm(χB f), m ∈ N?,

where χB is the characteristic function of B and Pm : L2(Ω, e−2mϕ) →
HΩ(mϕ) is the orthogonal projection from the Hilbert space of (equiva-
lence classes of) measurable functions f for which |f |2 e−2mϕ is Lebesgue

ANNALES DE L’INSTITUT FOURIER



EFFECTIVE LOCAL FINITE GENERATION 1567

integrable on Ω, onto the closed subspace of holomorphic such functions.
It is easy to see that

TB,m(f) = χB f − u,
where u is the solution of the equation ∂̄u = ∂̄(χB f) of minimal e−2mϕ-
weighted L2-norm. Alternatively, if we consider the Bergman kernel:

Kmϕ : Ω× Ω→ C, Kmϕ(z, ζ) =
+∞∑
j=1

σm, j(z)σm, j(ζ),

its reproducing property shows the concentration operator to be also given
by

TB,m(f)(z) =
∫
B

Kmϕ(z, ζ) f(ζ) e−2mϕ(ζ) d Vn(ζ), z ∈ Ω,

where d Vn is the Lebesgue measure of Ω. Being defined by a square inte-
grable kernel, TB,m is a compact operator. Its eigenvalues λm, 1 > λm, 2 >
. . . lie in the open interval (0, 1). If f ∈ HΩ(mϕ) is an eigenvector of TB,m
corresponding to some eigenvalue λ, we see that 〈〈TB,m(f), f〉〉 = λ ||f ||2,
and implicitly:

λ =
∫
B
|f |2 e−2mϕ∫

Ω |f |2 e−2mϕ .

Therefore, f ∈ HΩ(mϕ) is an eigenvector of TB,m if and only if

f(z) =
∫

Ω |f |
2 e−2mϕ∫

B
|f |2 e−2mϕ

∫
B

Kmϕ(z, ζ) f(ζ) e−2mϕ(ζ) d Vn(ζ), z ∈ Ω,

which amounts to having:

f(z) =
∫

Ω |f |
2 e−2mϕ∫

B
|f |2 e−2mϕ

+∞∑
j=1

σm, j(z)
∫
B

f(ζ)σm, j(ζ) e−2mϕ(ζ) d Vn(ζ), z ∈ Ω.

On the other hand, every f ∈ HΩ(mϕ) has a Hilbert space decomposition
with Fourier coefficients:

f(z) =
+∞∑
j=1

(∫
Ω
f(ζ)σm, j(ζ) e−2mϕ(ζ) d Vn(ζ)

)
σm, j(z), z ∈ Ω.

The uniqueness of the decomposition into a linear combination of elements
in an orthonormal basis implies the following simple observation.

Lemma 2.1. — A function f ∈ HΩ(mϕ) is an eigenvector of TB,m if
and only if

1∫
Ω |f |2 e−2mϕ

∫
Ω
f σ̄m, j e

−2mϕ = 1∫
B
|f |2 e−2mϕ

∫
B

f σ̄m, j e
−2mϕ,

TOME 60 (2010), FASCICULE 5



1568 Dan POPOVICI

for every j > 1.

We shall now be studying the behaviour of the eigenvalues of TB,m as
m→ +∞. Let us fix an orthonormal basis (σm, j)j∈N? of HΩ(mϕ) made up
of eigenvectors of TB,m corresponding respectively to its eigenvalues λm, 1 >
λm, 2 > . . . listed non-increasingly. Let 0 < ε < 1 be a constant whose
choice will be made explicit later on. Since TB,m is a compact operator,
there are (if any) at most finitely many eigenvalues λm, 1 > λm, 2 > · · · >
λm,Nm > 1− ε. In other words,∫
B

|σm, 1|2 e−2mϕ > · · · >
∫
B

|σm,Nm |2 e−2mϕ > 1− ε >
∫
B

|σm, k|2 e−2mϕ,

for every k > Nm + 1.
Lemma 2.1 above shows, in particular, that the restrictions to B of the

σm, j ’s are still orthogonal to one another. If we let

(2.1) Bmϕ(z) := Kmϕ(z, z) =
+∞∑
j=1
|σm, j(z)|2 = sup

f∈B(1)
|f(z)|2, z ∈ Ω,

where B(1) is the unit ball in HΩ(mϕ), the traces of TB,m and T 2
B,m are

easily computed as:

Tr (TB,m) =
∫
B

Bmϕ(z) e−2mϕ(z) d Vn(z), and

Tr (T 2
B,m) =

∫
B×B
|Kmϕ(z, ζ)|2 e−2mϕ(z) e−2mϕ(ζ) d Vn(z) d Vn(ζ).

We now proceed to proving the first part of Theorem 1.1 by constructing
finitely many generators for the ideal sheaf I(mϕ) restricted to a smaller
domain allowing asymptotic growth estimates.

Definition 2.2. — Given 0 < δ < 1, a nonzero function f ∈ HΩ(mϕ)

is said to be δ-concentrated on B if
∫
B
|f |2 e−2mϕ∫

Ω |f |2 e−2mϕ > 1− δ.

It is clear that σm, 1, . . . , σm,Nm are the only elements of the family
(σm, j)j∈N? that are ε-concentrated on B. Since the restrictions to B of
the σm, j ’s are still orthogonal to one another (cf. Lemma 2.1), any el-
ement f belonging to the subspace of HΩ(mϕ) which is generated by
σm, 1, . . . , σm,Nm is ε-concentrated on B. The following simple observation
shows that the converse is not far from being true.

Lemma 2.3. — Let f ∈ HΩ(mϕ) be ε2-concentrated on B. Then, there
is an element g in the subspace of HΩ(mϕ) generated by the ε-concentrated
σm, 1, . . . , σm,Nm such that

∫
Ω |f − g|

2 e−2mϕ < ε
∫

Ω |f |
2 e−2mϕ.
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EFFECTIVE LOCAL FINITE GENERATION 1569

Proof. — We may assume that
∫

Ω |f |
2 e−2mϕ = 1. Let f =

Nm∑
j=1

aj σm, j +

+∞∑
k=Nm+1

ak σm, k be the decomposition of f with respect to the chosen or-

thonormal basis of HΩ(mϕ), where aj , ak ∈ C. Then
+∞∑
j=1
|aj |2 = 1 and

∫
B

|f |2 e−2mϕ =
+∞∑
j=1
|aj |2

∫
B

|σm, j |2 e−2mϕ.

We then get:

∫
Ω\B
|f |2 e−2mϕ =

+∞∑
j=1
|aj |2

∫
Ω\B
|σm, j |2 e−2mϕ 6 ε2.

Since
∫

Ω\B |σm, k|
2 e−2mϕ > ε, for every k > Nm+1, we get

+∞∑
k=Nm+1

|ak|2 <

ε. If we set g :=
Nm∑
j=1

aj σm, j , the lemma is proved. �

This strongly suggests where to turn for the most likely choice of finitely
many local generators for I(mϕ). Indeed, we will now show that, if ε is
well chosen and m is large enough, the ideal sheaf I(mϕ) is generated, on
a relatively compact open subset, by σm, 1, . . . , σm,Nm , with an effective
control of the coefficients. We shall proceed inductively following an idea of
[17, Theorem 2.1] which uses Skoda’s L2 division theorem to get an effective
version of Nakayama’s Lemma. The crux is the following approximation
to order one of a local section of I(mϕ) by a finite linear combination of
σm, j ’s. As compared to [17], the new feature now is that only finitely many,
suitably chosen, elements in an orthonormal basis are used rather than the
whole basis.

Lemma 2.4. — Let ϕ be a psh function on Ω such that i∂∂̄ϕ > C0 ω

for some constant C0 > 0. Let B b Ω be any pseudoconvex domain and
x ∈ B′ b B any point in an arbitrary fixed relatively compact domain
B′ b B. Then there exist ε > 0 and m0 = m0(C0) ∈ N such that, for every
m > m0, the following property holds. Every g ∈ HB(mϕ) admits, with
respect to the (on B) ε-concentrated σm, j ’s and the standard holomorphic
coordinates z1, . . . , zn of Cn (or global holomorphic functions f1, . . . , fn on
Ω that define local coordinates about x if Ω is an arbitrary Stein manifold),

TOME 60 (2010), FASCICULE 5
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a decomposition:

g(z) =
Nm∑
j=1

cj σm, j(z) +
n∑
l=1

(zl − xl)hl(z), z ∈ B,

with some cj ∈ C satisfying
Nm∑
j=1
|cj |2 6 C

∫
B

|g|2 e−2mϕ and some holomor-

phic functions hl on B satisfying:

n∑
l=1

∫
B

|hl|2 e−2mϕ 6 C

∫
B

|g|2 e−2mϕ,

where the constant C > 0 depends only on n, Ω, B and B′. When B =
B(x, r) b Ω b Cn, C depends only on n, r and the diameter d of Ω; when
B′ b B b Ω b Cn are arbitrary pseudoconvex domains, C depends only
on n, the diameters of Ω, B and on the distance d(B′, Ω \B).

Proof. — We may assume that x = 0 and B = B(0, r) b Ω b Cn.
The minor changes to the arguments needed when B is not a ball or Ω is
an arbitrary Stein manifold will be specified at the end of the proof. Let
θ ∈ C∞(Ω), 0 6 θ 6 1, be a cut-off function such that Supp θ ⊂ B, θ ≡ 1
on some arbitrary ball B(0, r′) b B, and |∂̄θ| 6 3

r . Fix g ∈ HB(mϕ) such
that Cg :=

∫
B
|g|2 e−2mϕ < +∞. We use Hörmander’s L2 estimates ([10])

to solve the equation

∂̄u = ∂̄(θg) on Ω with weight mϕ(z) + (n+ 1) log |z|,

where |z|2 = |z1|2 + · · · + |zn|2. (If Ω is arbitrary Stein, |z| is replaced
with |f̃ | defined similarly from f̃j ∈ C∞(Ω) such that f̃j = fj on B and
Suppf̃j b Ω; if the fj ’s are bounded on Ω, simply replace |z|2 with |f |2 =
|f1|2 + · · ·+ |fn|2.) We get a solution u ∈ C∞(Ω) satisfying the estimate:

∫
Ω

|u|2

|z|2(n+1) e
−2mϕ 6

1
C0 m

∫
Ω

|∂̄θ|2 |g|2

|z|2(n+1) e
−2mϕ

6
9
r2

1
C0 m

∫
B\B(0,r′)

|g|2

|z|2(n+1) e
−2mϕ.(2.2)
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Put Fm := θg−u ∈ HΩ(mϕ) and get the decomposition g = Fm+(g−Fm)
on B. The above estimate for u implies:

(2.3)

∫
B

|g − Fm|2

|z|2(n+1) e−2mϕ 6 2
∫
B\B(0,r′)

|1− θ|2|g|2

|z|2(n+1) e−2mϕ

+ 2
∫
B

|u|2

|z|2(n+1) e
−2mϕ

6 C(r, r′, d)Cg,

with a constant C(r, r′, d) > 0 depending only on r, r′, and the diameter
d of Ω, if m is chosen so large that 1

C0 m
< 1.

We now apply Skoda’s L2 division theorem (cf. [18]) to obtain:

(2.4) g(z)− Fm(z) =
n∑
l=1

zl vl(z), z ∈ B,

for some holomorphic functions vl on B satisfying
n∑
l=1

∫
B

|vl|2

|z|2n
e−2mϕ 6

2C(r, r′, d)Cg. Since |z|2n 6 r2n for z ∈ B, we get:

(2.5)
n∑
l=1

∫
B

|vl|2 e−2mϕ 6 C1(r, r′, d)Cg,

where C1(r, r′, d) = 2 r2n C(r, r′, d). As for Fm, the obvious pointwise
inequality |Fm|2 6 2(|θ g|2 + |u|2), combined with estimate (2.2) for u,
gives: ∫

B

|Fm|2 e−2mϕ 6 C(r, r′, d)Cg,

after absorbing an extra d2(n+1) in the constant C(r, r′, d). On the other
hand, the factor 1

C0 m
in estimate (2.2) for u shows that if m is chosen large

enough, the L2 norm of u on Ω is very small compared to the L2 norm
of g on B. This is where the strict psh assumption on ϕ comes in. Since
Fm = g−u on B(0, r′) and Fm = −u on Ω \B, we get, for m large enough
and some constant C1 = C1(C0) > 0 independent of m:

1− C1

m
6

∫
B
|Fm|2 e−2mϕ∫

Ω |Fm|2 e−2mϕ < 1.

In other words, Fm is C1
m -concentrated on B. Fix some small ε > 0 whose

choice will be specified later. If mε is chosen such that C1
m < ε2 for m > mε,

then Fm is, in particular, ε2-concentrated on B. Then, Lemma 2.3 shows
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that in the decomposition:

Fm(z) =
Nm∑
j=1

aj σm, j(z) +
+∞∑

k=Nm+1
ak σm, k(z), z ∈ Ω,

of Fm with respect to the chosen orthonormal basis of HΩ(mϕ), we have:

(2.6)
+∞∑

k=Nm+1
|ak|2 6 C(r, r′, d) εCg,

Nm∑
j=1
|aj |2 6 C(r, r′, d)Cg.

If we set g1(z) :=
+∞∑

k=Nm+1
ak σm, k(z), (2.4) gives the decomposition:

(2.7) g(z) =
Nm∑
j=1

aj σm, j(z) +
n∑
l=1

zl vl(z) + g1(z), z ∈ B,

with an effective control of the aj ’s and vl’s (see (2.6) and (2.5)), and such
that:

(2.8)
∫
B

|g1|2 e−2mϕ 6
∫

Ω
|g1|2 e−2mϕ =

+∞∑
k=Nm+1

|ak|2 6 C(r, r′, d) εCg.

Thus, for every g ∈ HB(mϕ), formula (2.7) gives the required decom-
position of g up to an error term g1. Setting g1 = Q(g), we get a linear
operator Q : HB(mϕ)→ HB(mϕ) which, by the estimate (2.8), has norm
satisfying

(2.9) ||Q||2 6 C(r, r′, d) ε.

Now, if ε > 0 is chosen so small that C(r, r′, d) ε < 1, then I −Q is invert-
ible. Moreover, formula (2.7) gives for (I−Q)(g) the kind of decomposition
that we expect for g. Bringing these together, we see that if we start off with
an arbitrary g ∈ HB(mϕ), we get a g̃ ∈ HB(mϕ) such that g = (I−Q)(g̃),
by invertibility of I − Q. Furthermore, applying to g̃ the arguments that
have previously been applied to g, we get a decomposition analogous to
(2.7):

(2.10) g(z) = (I −Q)(g̃)(z) =
Nm∑
j=1

cj σm,j(z) +
n∑
l=1

zl hl(z), z ∈ B,

for some cj ∈ C and some holomorphic functions hl on B satisfying esti-
mates analogous to (2.6) and (2.5):

(2.11)
Nm∑
j=1
|cj |2 6 C(r, r′, d)Cg̃ ;

n∑
l=1

∫
B

|hl|2 e−2mϕ 6 C1(r, r′, d)Cg̃,
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where Cg̃ =
∫
B

|g̃|2 e−2mϕ = ||g̃||2 denotes the square-norm of g̃ in the

Hilbert space HB(mϕ). Furthermore, using (2.9), we can estimate Cg̃ in
terms of Cg:

(2.12) Cg̃ = ||(I −Q)−1g||2 = ||
+∞∑
j=0

Qj(g)||2 6

(+∞∑
j=0
||Qj(g)||

)2
6 C2 Cg,

where C2 :=
(+∞∑
j=0

(C(r, r′, d) ε)j/2
)2

< +∞. Thus decomposition (2.10)

alongside estimates (2.11) and (2.12) completes the proof of Lemma 2.4
in the case when Ω b Cn and B is a ball. When B is not a ball, r can
be taken to be the radius of the largest ball about x that is contained
in B. (This radius is of course larger than the distance d(B′, Ω \ B)).
The case of a general Stein manifold Ω follows in a similar way if global
functions f1, . . . , fn ∈ O(Ω) defining coordinates at x replace z1, . . . , zn
as Hörmander’s and Skoda’s L2 estimates apply on any Stein manifold Ω,
resp. any pseudoconvex B b Ω. �

As in [17], we can now run an induction argument using Lemma 2.4 re-
peatedly to get, at every step p, an approximation to order p of the original
local section g of I(mϕ) by a finite linear combination of σm, j ’s. The fol-
lowing is a slightly more precise rewording of the first part of Theorem 1.1.

Theorem 2.5. — Given a psh function ϕ on Ω such that i∂∂̄ϕ > C0 ω

and having fixed a pair of pseudoconvex domains B′ b B b Ω, there exist
ε > 0, m0 = m0(C0) ∈ N and every point x ∈ B′ has a neighbourhood
B0 ⊂ B such that for every m > m0 the following property holds. Ev-
ery g ∈ HB(mϕ) admits, with respect to the ε-concentrated σm, j ’s in an
orthonormal basis of HΩ(mϕ) consisting of eigenvectors of TB,m, a decom-
position:

g(z) =
Nm∑
j=1

bm, j(z)σm, j(z), z ∈ B0,

with some holomorphic functions bm, j on B0 satisfying:

sup
B0

Nm∑
j=1
|bm, j |2 6 C

∫
B

|g|2 e−2mϕ < +∞,

where the constant C > 0, the size of the neighbourhood B0 and ε depend
only on n, Ω, B and B′, while m0 depends only on C0, n, Ω, B and B′ (so
C, the size of B0, ε and m0 are all independent of ϕ and m). When Ω b Cn,
all the above dependencies on Ω, B and B′ reduce to dependencies only on
the diameters of Ω, B and on the distance d(B′, Ω \B).
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Proof. — As in Lemma 2.4, we may assume that B = B(0, r) b Ω b Cn.
Fix ε > 0 as in Lemma 2.4 associated with an arbitrary fixed open ball
B(0, r′) b B(0, r). Let g ∈ HB(mϕ) with Cg :=

∫
B
|g|2 e−2mϕ < +∞.

Lemma 2.4 gives a decomposition g(z) =
Nm∑
j=1

aj σm, j(z) +
n∑

l1=1
zl1 hl1(z) for

every z ∈ B(0, r), with coefficients under control. We now apply Lemma
2.4 again to every function hl1 , l1 = 1, . . . , n, and get:

hl1(z) =
Nm∑
j=1

aj, l1 σm, j(z) +
n∑

l2=1
zl2 hl1, l2(z), z ∈ B(0, r),

with constant coefficients aj, l1 ∈ C, satisfying:

n∑
l1=1

Nm∑
j=1
|aj, l1 |2 6 C

n∑
l1=1

∫
B

|hl1 |2 e−2mϕ 6 C2 Cg,

and holomorphic functions hl1, l2 on B, satisfying:
n∑

l1=1

n∑
l2=1

∫
B

|hl1, l2 |2 e−2mϕ 6 C

n∑
l1=1

∫
B

|hl1 |2 e−2mϕ 6 C2 Cg.

We thus obtain, after p applications of Lemma 2.4, the decomposition:

g(z) =
Nm∑
j=1

(
aj +

p−1∑
ν=1

n∑
l1,..., lν=1

aj, l1,..., lν zl1 . . . zlν

)
σm, j(z)

+
n∑

l1,..., lp=1
zl1 . . . zlp vl1,..., lp(z),

for every z ∈ B(0, r), with coefficients aj, l1,..., lν=1 ∈ C and vl1,..., lp ∈
O(B(0, r)), satisfying the estimates:

n∑
l1,..., lν=1

Nm∑
j=1
|aj, l1,..., lν |2 6 Cν+1 Cg, ν = 1, . . . , p− 1,

n∑
l1,..., lp=1

∫
B

|vl1,..., lp |2 e−2mϕ 6 Cp Cg.

We now set bm, j(z) := aj+
+∞∑
ν=1

n∑
l1,..., lν=1

aj, l1,..., lν zl1 . . . zlν , for j=1, . . . , Nm,

and will prove that the series defining bm, j converges to a holomorphic
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function on some smaller ball B0 := B(0, r0) and that, with an appropri-
ate choice of r0 depending only on r and the diameter d of Ω, we have:

sup
B(0, r0)

Nm∑
j=1
|bm, j |2 6

1
(1− r/d)2 C Cg.

Since sup
B(0, r0)

|zl1 . . . zlν |2 6 r2ν
0 , we get, for every 1 6 ν < +∞ and every

z ∈ B(0, r0), the estimate:
Nm∑
j=1

∣∣∣∣ n∑
l1,..., lν=1

aj, l1,..., lν zl1 . . . zlν

∣∣∣∣2 6 r2ν
0

Nm∑
j=1

( n∑
l1,..., lν=1

|aj, l1,..., lν |
)2

6 r2ν
0 nν

Nm∑
j=1

n∑
l1,..., lν=1

|aj, l1,..., lν |2 6

(
nC r2

0

)ν
C Cg =

(
r

d

)2ν
C Cg,

if we choose r0 = r

d

1√
nC

. This choice of r0 is merely an example, the

convergence of the series defining bm, j is guaranteed whenever nC r2
0 < 1,

so any r0 > 0 such that r0 < 1/
√
nC would do. As C > 0 is the constant

of Lemma 2.4, it only depends on n, r and d, hence so does r0. Thus B0
is independent of ϕ and m. To get convergence of the series defining bm, j ,
set:

Fν, j :=
n∑

l1,..., lν=1
aj, l1,..., lν zl1 . . . zlν , for ν > 1 and j = 1, . . . , Nm,

F0, j = aj , for j = 1, . . . , Nm.

Thus bm, j =
+∞∑
ν=0

Fν, j , for j = 1, . . . , Nm, so we have:

Nm∑
j=1
|bm, j |2 6

Nm∑
j=1

( +∞∑
ν=0
|Fν,j |

)2
=
∑
ν1,ν2

Nm∑
j=1
|Fν1,j | |Fν2,j |,

and, as
Nm∑
j=1
|Fν1,j | |Fν2,j | 6

(
Nm∑
j=1
|Fν1,j |2

)1/2( Nm∑
j=1
|Fν2,j |2

)1/2
, we finally

get:( Nm∑
j=1
|bm, j |2

) 1
2

6
+∞∑
ν=0

( Nm∑
j=1
|Fν, j |2

) 1
2

6
+∞∑
ν=0

(
r

d

)ν√
C Cg =

√
C Cg

1− r/d
,

at every point in B(0, r0). If we absorb the denominator in the constant
C > 0, the proof is complete. �

The first part of Theorem 1.1 stated in the Introduction is thus proved.
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Corollary 2.6. — Under the hypotheses of Theorem 2.5, the following
estimate holds:

+∞∑
j=1
|σm, j(z)|2 6 C

Nm∑
j=1
|σm, j(z)|2, z ∈ B0,

where C > 0 is a constant independent of ϕ and m as in Theorem 2.5.

Proof. — As
+∞∑
j=1
|σm, j(z)|2 = sup

g∈B̄m(1)
|g(z)|2, where B̄m(1) is the closed

unit ball in HΩ(mϕ), and as every g ∈ B̄m(1) has a decomposition on B0 as
in Theorem 2.5, the estimate follows from the Cauchy-Schwarz inequality.

�

3. Volume of psh functions

In this section we will obtain the estimate Nm = O(mn) for the asymp-
totic growth rate, as m → +∞, of the number Nm of local generators of
I(mϕ) when ϕ is assumed to have analytic singularities. This will com-
plete the proof of Theorem 1.1. The method will be to prove asymptotic
estimates of independent interest for the Bergman kernel associated with
singular psh weight functions ϕ with analytic singularities.

Fix B b Ω b Cn pseudoconvex domains and ϕ a psh function on Ω.
The arguments of this section also apply to the case of an arbitrary Stein
manifold Ω. Recall that the generators σm, 1, . . . , σm,Nm of I(mϕ) on the
smaller domain B were chosen in the previous section as eigenvectors of
TB,m corresponding to the (finitely many) eigenvalues λm, 1, . . . , λm,Nm
that are > 1−ε for a suitable 0 < ε < 1. They form part of an orthonormal
basis (σm, j)j∈N? ofHΩ(mϕ) and

∫
B
|σm, j |2 e−2mϕ equals the corresponding

eigenvalue λm, j for all j ∈ N?. The obvious relations

(3.1)
∫
B

Bmϕ e
−2mϕ d Vn =

+∞∑
j=1

λm, j >
Nm∑
j=1

λm, j > (1− ε)Nm

reduce the problem of estimating Nm to that of estimating∫
B

Bmϕ e
−2mϕ d Vn as m→ +∞.

Bearing in mind the analogy with the L2 volume of a line bundle defined
on a compact complex manifold in terms of global sections and charac-
terised in terms of curvature currents (see e.g. [3], [15]), we are naturally
led to set the following.
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Definition 3.1. — The volume on B b Ω of a psh function ϕ on Ω b
Cn is defined as

vB(ϕ) := lim sup
m→+∞

n!
mn

∫
B

Bmϕ e
−2mϕ d Vn,

where d Vn is the Lebesgue measure of Cn.

By the strong Noetherian property, the coherent sheaf I(mϕ) is gener-
ated on B b Ω by finitely many σm, j ’s. Thus Bm e−2mϕ is integrable on
B b Ω since it is dominated there by a constant multiple of a finite sum∑
|σm, j |2 e−2mϕ. The volume vB(ϕ) compares the growth rate of the finite

quantities
∫
B
Bmϕ e

−2mϕ d Vn with that of mn as m→ +∞.
While vB(ϕ) is always non-negative, the volume of a psh function with

arbitrary singularities may be infinite. The following example is an apt illus-
tration. Let ϕ be a psh function on Ω such that ϕ is C∞ in the complement
of an analytic subset V ⊂ Ω. As the discussion of the Lindholm-Berndtsson
results in the smooth setting (see Theorem 3.4 below) and their extension
to the singular setting (see beginning of the proof of Theorem 3.5 below)
will show, there is a pointwise convergence on Ω \ V :

n!
mn

Bmϕ e
−2mϕ −→ 2n

πn
(i∂∂̄ϕ)n, as m→ +∞.

Hence, using Fatou’s Lemma, we get

lim inf
m→+∞

n!
mn

∫
B\V

Bmϕ e
−2mϕ d Vn >

2n

πn

∫
B\V

(i∂∂̄ϕ)n.

Now, the examples of Kiselman in [11, p.141-143] and that of Shiffman and
Taylor in [16, p.451-453] produce psh functions ϕ on a domain Ω ⊂ Cn
which are smooth outside an analytic subset V ⊂ Ω and for which the
Monge-Ampère mass in the right-hand side above is infinite even if B is
indefinitely shrunk about the singular set V . As Bm e−2mϕ is integrable on
B b Ω, its integral on B equals the integral on B \ V since V is Lebesgue
negligible. The volume vB(ϕ) of such a function ϕ is clearly infinite.

However, this section will focus on proving that the volume vB(ϕ) of a
psh function with analytic singularities is always finite.

Let us now make the very simple observation that the addition of a
pluriharmonic function or of a psh function with divisorial singularities of
integral coefficients does not affect the volume.

Remark 3.2. — If ϕ is any psh function, ψ is any pluriharmonic function,
and g is any holomorphic function on a simply connected domain Ω b Cn,
then:

Bmϕ e
−2mϕ = Bm(ϕ+ψ) e

−2m(ϕ+ψ) = Bm(ϕ+p log |g|) e
−2m(ϕ+p log |g|),
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at every point of Ω for every m, p ∈ N. Implicitly,

vB(ϕ) = vB(ϕ+ ψ) = vB(ϕ+ p log |g|), p ∈ N.

Proof. — Any f ∈ O(Ω) satisfies

1 =
∫

Ω
|f |2 e−2m(ϕ+p log |g|) =

∫
Ω

|f |2

|gmp|2
e−2mϕ

if and only if f = gmp h for some h ∈ O(Ω) which satisfies
∫

Ω |h|
2 e−2mϕ =

1. Taking supremum over all such f and h in |f |2 = |gmp|2 |h|2 and using
(2.1), we get Bm(ϕ+p log |g|) = |gmp|2 Bmϕ = e2mp log |g|Bmϕ.

As ψ is pluriharmonic, there exists a holomorphic function u on Ω such
that ψ = Reu. Hence e−2mψ = |e−2mu|. The same argument as above
shows that any f satisfying

∫
Ω |f |

2 e−2m(ϕ+ψ) = 1 must be divisible by emu.
Hence Bm(ϕ+ψ) = |emu|2 Bmϕ = e2mψ Bmϕ. The proof is complete. �

There is a global-to-local issue in that Bmϕ is defined on the whole Ω
while vB(ϕ) only involves integration on the smaller B b Ω. In passing
from Bergman kernels defined on larger sets to Bergman kernels defined on
smaller sets, we shall need the following comparison lemma.

Lemma 3.3. — If U b Ω is a pseudoconvex open subset, the Bergman
kernels associated with the weight mϕ on Ω and respectively U :

Bmϕ,Ω :=
+∞∑
k=0
|σm, k|2, Bmϕ,U :=

+∞∑
k=0
|µm, k|2,

defined by orthonormal bases (σm, k)k∈N and (µm, k)k∈N of the Hilbert
spaces HΩ(mϕ) and respectively HU (mϕ|U ), can be compared, for every
m ∈ N, as:

Bmϕ,Ω 6 Bmϕ,U 6 Cn, d, r Bmϕ,Ω on any U0 b U b Ω,

where Cn, d, r > 0 is a constant depending only on n, the diameter d of Ω,
and the distance r > 0 between the boundaries of U0 and U .

Proof. — As the restriction to U defines an injection of the unit ball of
HΩ(mϕ) into the unit ball of HB(mϕ), the former inequality follows from
(2.1). For the latter inequality, fix x ∈ U0 and let f ∈ O(U) such that∫
U
|f |2 e−2mϕ = 1 be an arbitrary element in the unit sphere of HU (mϕ).

We use Hörmander’s L2 estimates ([10]) to construct a holomorphic func-
tion F ∈ HΩ(mϕ) such that F (x) = f(x) and∫

Ω

|F |2 e−2mϕ 6 2
(

1 + Cn
d2n e2d2

r2(n+1)

) ∫
U

|f |2 e−2mϕ = Cn, d, r.
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This is done by solving the equation:

∂̄u = ∂̄(θ f) on Ω

with a cut-off function θ ∈ C∞(Cn), Supp θ b U , θ ≡ 1 on U0 b U , and
with the strictly psh weight mϕ + n log |z − x| + |z − x|2. There exists a
C∞ solution u satisfying the estimate:∫

Ω

|u|2

|z − x|2n
e−2mϕ e−2|z−x|2 6 2

∫
Ω

|∂̄θ|2 |f |2

|z − x|2n
e−2mϕ e−2|z−x|2 .

Due to the non-integrability of |z − x|−2n near x, we have u(x) = 0. Thus
F is obtained as:

F := θ f − u ∈ O(Ω).
Now F/

√
Cn, d, r belongs to the unit ball of HΩ(mϕ), and we get:

|f(x)|2 = |F (x)|2 6 Cn, d, r Bmϕ,Ω(x),

which proves the latter inequality by taking the supremum over all f in the
unit sphere of HU (mϕ). �

We now begin the study of the finiteness of the volume vB(ϕ) of psh
functions with analytic singularities. The outcome will be an asymptotic
control of the number Nm of generators of I(mϕ) on B. We take our cue
from the following asymptotic estimates of the Bergman kernel associated
with a smooth ϕ, due to N. Lindholm (cf. Theorems 10, 11, and 13 in [13]),
and subsequently rewritten in a slightly different setting by B.Berndtsson
(cf. Theorems 2.3, 2.4, and 3.1 in [2]). Compare also [1]. The standard
Kähler form on Cn will be denoted throughout by ω. Clearly, d Vn = ωn/n!.

Theorem 3.4. — (Lindholm, Berndtsson) Let ϕ be a C∞ psh function
such that i∂∂̄ϕ > C0 ω on Ω b Cn for some constant C0 > 0. Then, for
any B b Ω:

(a) vB(ϕ) = lim
m→+∞

n!
mn

∫
B

Bmϕ(z) e−2mϕ(z) d Vn(z) = 2n

πn

∫
B

(i∂∂̄ϕ)n;

(b) the sequence of measures on Ω× Ω defined as
n!
mn
|Kmϕ(z, ζ)|2 e−2mϕ(z) e−2mϕ(ζ) d Vn(z) d Vn(ζ)

converges to 2n

πn
(i∂∂̄ϕ)n∧ [∆] in the weak topology of measures, as

m → +∞, where [∆] is the current of integration on the diagonal
of Ω× Ω;

(c) finally, lim
m→+∞

n!
mn

+∞∑
j=1

λm, j= lim
m→+∞

n!
mn

+∞∑
j=1

λ2
m, j= 2n

πn

∫
B

(i∂∂̄ϕ)n,
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and since λm, 1 > · · · > λm,Nm > 1− ε > λm, k, for k > Nm + 1, we get:

lim
m→+∞

n!
mn

Nm = 2n

πn

∫
B

(i∂∂̄ϕ)n and lim
m→+∞

n!
mn

+∞∑
k=Nm+1

λm, k = 0.

We now single out the major steps in the proof given to this theorem in
[2, p. 4-6], as they will be subsequently adapted to a more general context.
The proof of (a) in [2] hinges on two facts. First, if λ1, . . . , λn are the
eigenvalues of i∂∂̄ϕ with respect to ω, the following pointwise convergence
is established:

(3.2) lim
m→+∞

n!
mn

Bmϕ(z) e−2mϕ(z) = 2n

πn
λ1(z) . . . λn(z), z ∈ Ω.

The mean value inequality gives the upper estimate of the left-hand side
by the right-hand side. The converse estimate is obtained by means of
Hörmander’s L2 estimates. These are local procedures carried out on small
balls about x, and the desired estimates are obtained in the limit while
shrinking the balls to x.

Second, the mean value inequality further gives the following uniform
estimate on a relatively compact open subset:

(3.3) 0 < n!
mn

Bmϕ(z) e−2mϕ(z) 6 C
2n

πn
λ1(z) . . . λn(z), z ∈ B,

if m is large enough, for a constant C > 0 independent of m. Uniformity
can be achieved as ϕ is C∞ and B is relatively compact. One can then
conclude by dominated convergence.

We will now prove that Theorem 3.4 is still essentially valid if we allow
analytic singularities for ϕ (see definition (?) in the Introduction), provided
the current i∂∂̄ϕ is replaced throughout by its absolutely continuous part
(i∂∂̄ϕ)ac in the Lebesgue decomposition of its measure coefficients (into an
absolutely continuous part and a singular part w.r.t. Lebesgue measure).
We clearly have (i∂∂̄ϕ)ac = i∂∂̄ϕ if ϕ is C∞. Hence (i∂∂̄ϕ)nac = λ1 . . . λn ω

n

in the complement of the singular set of ϕ.
We will split the analysis of the analytic singularity case into two steps

according to whether the coefficient of these singularities is an integer or
not.

(a) Analytic singularities with an integral coefficient

In this case, we have a complete analogue of Theorem 3.4.

Theorem 3.5. — Let ϕ = p
2 log(|g1|2 + · · ·+ |gN |2) + u for some holo-

morphic functions g1, . . . , gN , some p ∈ N, and some C∞ function u on
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Ω b Cn. Assume i∂∂̄ϕ > C0 ω for some constant C0 > 0. Then, for B b Ω,
we have:

(a) vB(ϕ) = lim
m→+∞

n!
mn

∫
B

Bmϕ e
−2mϕ d Vn = 2n

πn

∫
B

(i∂∂̄ϕ)nac < +∞.

(b) the analogue of (b) in Theorem 3.4 holds, with convergence to

2n

πn
(i∂∂̄ϕ)nac ∧ [∆]

in the weak topology of measures;
(c) the analogue of (c) in Theorem 3.4 holds, with

lim
m→+∞

n!
mn

Nm = 2n

πn

∫
B

(i∂∂̄ϕ)nac < +∞.

A key standard observation in this new setting (see, e.g. [3]) is that
(i∂∂̄ϕ)nac is of locally finite mass, and thus the integrals involving (i∂∂̄ϕ)nac
above are finite. Indeed, we can resolve the analytic singularities of ϕ by
blowing up the ideal sheaf I generated as an OΩ-module by g1, . . . , gN .
According to Hironaka, there exists a proper modification µ : Ω̃ → Ω,
arising as a locally finite sequence of smooth-centred blow-ups, such that
µ?I = O(−E) for an effective divisor E on Ω̃. We thus get the following
Zariski decomposition (the same as Siu’s decomposition in this case) of the
pull-back current:

µ?(i∂∂̄ϕ) = α+ c [E], onΩ̃,

with a C∞ closed (1, 1)-form α > 0, where [E] stands for the E-supported
current of integration on E. If

V := {g1 = · · · = gN = 0}

is the singular set of ϕ, we clearly have
∫
B

(i∂∂̄ϕ)nac =
∫
µ−1(B) α

n, and this
quantity is finite since the smooth volume form αn has locally finite mass.
If λ1, . . . , λn are the eigenvalues of i∂∂̄ϕ with respect to ω on Ω \ V , this
means that the product λ1 . . . λn is integrable on B \ V .

Proof of Theorem 3.5. — The overall idea is to run Berndtsson’s proof
of the smooth case (cf. [2], p. 4-6) on Ω \ V where ϕ is C∞. The pointwise
convergence (3.2) still holds at points x ∈ Ω \ V . Indeed, the mean value
inequality still applies on small balls about x that are contained in Ω \ V ,
while Hörmander’s L2 estimates apply even to singular weights ϕ on Ω
under the strict psh assumption that has been made.
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The main difficulty stems from the uniform estimate (3.3) not being im-
mediately clear near the singular set V . We claim, however, that the anal-
ogous uniform upper estimate does hold outside the singular set, namely:

(3.4) 0 < n!
mn

Bmϕ(z) e−2mϕ(z) 6 C
2n

πn
λ1(z) . . . λn(z), z ∈ B \ V,

if m is large enough, for a constant C > 0 independent of m.
Once this is proved, as λ1(z) . . . λn(z) is integrable on B \ V by the key

standard observation above, (a) follows by dominated convergence as in
the smooth case.

The proof of (b) in [2] (p. 6-7) can be repeated on Ω \ V and extended
across V in a similar way. Explicitly, what we have to prove is that for
every compactly supported continuous function g on Ω× Ω, we have:

lim
m→+∞

n!
mn

∫
Ω×Ω

g(z, ζ) |Kmϕ(z, ζ)|2 e−2mϕ(z) e−2mϕ(ζ) d Vn(z) d Vn(ζ)

= 2n

πn

∫
Ω\V

g(z, z) (i∂∂̄ϕ)n(z).

Again, (i∂∂̄ϕ)nac having locally finite mass on Ω implies the well-definedness
of (i∂∂̄ϕ)nac∧ [∆] as a complex measure on Ω×Ω. If M := sup |g|, we notice
that:∣∣∣∣ n!

mn

∫
Ω

g(z, ζ) |Kmϕ(z, ζ)|2 e−2mϕ(z) e−2mϕ(ζ) d Vn(z)
∣∣∣∣

6 M
n!
mn

∫
Ω

|Kmϕ(z, ζ)|2 e−2mϕ(z) e−2mϕ(ζ) d Vn(z)

= M
n!
mn

Bmϕ(ζ) e−2mϕ(ζ) 6 2M 2n

πn
λ1(ζ) . . . λn(ζ), ζ ∈ Ω \ V,

where the equality above follows from the reproducing property of the
Bergman kernel, and the last expression is locally integrable on Ω \ V by
the key standard observation above. By dominated convergence, it is then
enough to prove that:

lim
m→+∞

n!
mn

∫
Ω

g(z, ζ) |Kmϕ(z, ζ)|2 e−2mϕ(z) e−2mϕ(ζ) d Vn(z)

= 2n

πn
g(ζ, ζ)λ1(ζ) . . . λn(ζ), ζ ∈ Ω \ V.

To this end, we can repeat Berndtsson’s arguments showing the Bergman
kernel to decay rapidly off the diagonal, namely that for every ε > 0 and
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every ζ ∈ Ω \ V , we have:

lim
m→+∞

1
mn

∫
|z−ζ|>ε

|Kmϕ(z, ζ)|2 e−2mϕ(z) e−2mϕ(ζ) d Vn(z) = 0.

The reproducing property of the Bergman kernel then leads to (b). Point
(c) is an easy consequence of (a) and (b).

The whole proof of Theorem 3.5 thus boils down to establishing the
uniform upper estimate (3.4). We will proceed in several steps.

Step 1. Assume ϕ = ψ + log |g| on Ω, for some g ∈ O(Ω) such that div g
is a normal crossing divisor, and for some smooth and strictly psh ψ on Ω.
Then V = {g = 0} and i∂∂̄ϕ = i∂∂̄ψ on Ω \ V . By Remark 3.2 we have:

n!
mn

Bmϕ e
−2mϕ = n!

mn
Bmψ e

−2mψ, on Ω.

This last expression satisfies the uniform upper estimate claimed in (3.4)
on B b Ω thanks to the Berndtsson-Lindholm inequality (3.3) applied to
the smooth function ψ.

Step 2. Assume ϕ has locally divisorial singularities; namely, every point
in Ω has a neighbourhood on which ϕ = ψ + log |g| for some holomor-
phic function g such that div g has normal crossings, and for some smooth
strictly psh function ψ.

Let U b Ω be a pseudoconvex such neighbourhood. By Lemma 3.3 above,
we get:

n!
mn

Bmϕ e
−2mϕ 6

n!
mn

Bmϕ,U e
−2mϕ = n!

mn
Bmψ,U e

−2mψ, on U.

The last term satisfies the uniform upper estimate claimed in (3.4) on U \V
thanks again to the smooth case applied to ψ|U and its associated Bergman
kernels Bmψ,U . The resulting constant C > 0 depends on U , but we get a
constant independent of m for the estimate on B \ V after taking a finite
covering of B̄ by such open sets U .

Step 3. Assume ϕ = p
2 log(|g1|2 + · · ·+ |gN |2) +u on Ω, for some holomor-

phic functions g1, . . . , gN and some smooth function u.
Let J := (g1, . . . , gN ) ⊂ OΩ be the ideal sheaf generated by g1, . . . , gN ,

and let µ : Ω̃→ Ω be a proper modification such that

µ? J = O(−E),

Ω̃ is a smooth manifold, and E is an effective normal crossing divisor on
Ω̃. We still denote by HΩ̃(mϕ ◦ µ) the Hilbert space of global holomorphic

TOME 60 (2010), FASCICULE 5



1584 Dan POPOVICI

functions f on Ω̃ such that |f |2 e−2mϕ◦µ is integrable with respect to the
Lebesgue measure on Ω̃. The (global) Bergman kernel Bmϕ◦µ is defined as
in (1.1) by any orthonormal basis of HΩ̃(mϕ ◦ µ), m ∈ N?.

We may assume, without loss of generality, that the Jacobian Jµ of µ
is globally defined on Ω̃. Otherwise we can cover Ω̃ by a fixed finite col-
lection (Ũj)j=1,...,N , with N independent of m, of open subsets contained
in coordinate patches and we can work separately on each Ũj . Lemma 3.3
above shows that the Bergman kernels Bmϕ◦µ defined by global holomor-
phic functions in HΩ̃(mϕ ◦µ) are only distorted from those Bmϕ◦µ defined
by local holomorphic functions in each HŨj (mϕ ◦ µ) by insignificant con-
stants Cn, d, r independent of m. The fact that, in general, Jµ is not a global
function on Ω̃ but a section of the line bundle (associated with) O(E) plays
no role here. Remark 3.2 shows that the expressions Bmϕ◦µ e−2mϕ◦µ are
unaffected by the addition to the weight ϕ ◦ µ of terms such as p log |h|,
where h is a locally defined holomorphic function representing Jµ in a local
trivialisation of O(E). Thus, switching from a Ũj to another Ũk introduces
only distortions by constants independent of m. With these reductions in
place, a change of variable shows that, for each σm, j , we have:

1 =
∫
Ω

|σm, j |2 e−2mϕ d Vn =
∫

Ω\V

|σm, j |2 e−2mϕ d Vn

=
∫

Ω̃\SuppE

|σm, j ◦ µ|2 |Jµ|2 e−2mϕ◦µ dṼn

=
∫
Ω̃

|σm, j ◦ µ|2 |Jµ|2 e−2mϕ◦µ dṼn,

for a suitable volume form d Ṽn on Ω̃. The actual choice of a smooth volume
form on Ω̃ is immaterial since smooth volume forms are comparable on local
coordinate patches and Ω̃ can be covered by finitely many such patches
independent ofm. A change of volume form would only distort the Bergman
kernels by constants independent of m, hence irrelevant as m → +∞. We
get

Bmϕ◦µ = |Jµ|2 Bmϕ ◦ µ.
Thus, proving the upper estimate claimed in (3.4) amounts to proving:

(3.5) n!
mn

Bmϕ◦µ e
−2mϕ◦µ 6 C

2n

πn
|Jµ|2 λ1 ◦ µ . . . λn ◦ µ,

on µ−1(B) \ SuppE, since µ defines an isomorphism between Ω̃ \ SuppE
and Ω \ V , and Jµ does not vanish on Ω̃ \ SuppE. If λ̃1, . . . , λ̃n are the
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eigenvalues of i∂∂̄(ϕ◦µ) (calculated on each coordinate open subset Ũj⊂ Ω̃
with respect to the standard Kähler form of Ũj defined by the coordinates),
it can easily be seen that

|Jµ|2 λ1 ◦ µ . . . λn ◦ µ = λ̃1 . . . λ̃n.

The divisor E can be locally represented as E = div g, for some locally
defined holomorphic function g. We then get, locally on Ω̃:

ϕ ◦µ = p

2
log
(∣∣∣∣g1 ◦ µ

g

∣∣∣∣2 + · · ·+
∣∣∣∣gN ◦ µg

∣∣∣∣2)+u ◦µ+ log |gp| = ψ+ log |gp|,

where ψ is a smooth psh function. Thus ϕ ◦ µ has locally divisorial singu-
larities like the weight functions considered in Step 2. Although ϕ◦µ is psh
on Ω̃, it is strictly psh only in the complement of the support of E as the
Jacobian Jµ vanishes along SuppE. Nonetheless, this causes no trouble ow-
ing to the assumption that i∂∂̄ϕ > C0 ω on the whole set Ω for a constant
C0 > 0. Indeed, this assumption implies that λj(x) > C0 > 0 for every x

in the complement in Ω of the singular set V = {g1 = · · · = gN = 0} of
ϕ. Having fixed an arbitrary point x ∈ Ω \ V , the mean value inequality
method described in [2, p. 3-4], can be applied on a small ball of radius
cm/
√
m about x to yield:

(3.6) n!
mn

Bmϕ(x) e−2mϕ(x) 6
1 + εm

πn
n∏
j=1

(1− e−c2
m λj(x))

λ1(x) . . . λn(x),

where the constants cm > 0 have been chosen such that cm → +∞ and
c3
m/
√
m → 0 when m → +∞, while εm := ec

3
m/
√
m − 1 → 0. (In [2],

m is labelled as k). The fact that ϕ is not smooth on the whole of Ω is
not a problem here since the change of variable procedure described above
reduces integrals on balls in Ω involving ϕ to integrals on open subsets of
Ω̃ involving ψ, the latter function being smooth. Remark 3.2 allows one to
replace mϕ ◦ µ with mψ.

Now, since λj(x) > C0 > 0 for every x ∈ Ω \ V , we see that c2
m λj(x) >

c2
m C0 > C ′ > 0 for some constant C ′ > 0, if m is large enough. Thus,

the coefficient of λ1(x) . . . λn(x) in the above formula (3.6) is uniformly
bounded above by some constant C ′′ > 0, proving the uniform estimate
claimed in (3.4). This completes the proof of Theorem 3.5. �

(b) Analytic singularities with arbitrary coefficients

Let us first consider the case of divisorial singularities with non-integral
coefficients. For the sake of simplicity, we assume that our domains are

TOME 60 (2010), FASCICULE 5



1586 Dan POPOVICI

polydiscs, Ω = Dn and B = Dn
1−ε, where D (respectively D1−ε) is the unit

disc (respectively the disc of radius 1 − ε) in C. We begin by considering
the following toric situation.

Proposition 3.6. — Assume that ϕ(z) = ψ(z) + c1 log |z1| + · · · +
cn log |zn|, with ψ(z) = ψ1(z1) + · · · + ψn(zn) for some C∞ functions ψj
on C depending only on |zj | respectively, and some constants cj > 0, j =
1, . . . , n. If i∂∂̄ϕ > C0 ω for some C0 > 0, then:

vB(ψ +
n∑
j=1

cj log |zj |) = vB(ψ) = 2n

πn

∫
B

(i∂∂̄ψ)n < +∞.

Proof. — By Remark 3.2, we have:

(3.7) Bmϕ e
−2mϕ = Bmψ+Σ{mcj} log |zj | e

−2(mψ+Σ{mcj} log |zj |),

where { · } stands for the fractional part. The same identity holds with
m{cj} in place of {mcj}. Thus we may assume, without loss of generality,
that 0 6 cj < 1 for j = 1, . . . , n.

Of the two equalities in the statement of the Proposition, only the former
needs a proof. The latter equality follows from Theorem 3.4 for smooth
functions. To begin with, we shall prove that:

(3.8)
∫
B

Bmϕ e
−2mϕ d Vn >

∫
B

Bmψ e
−2mψ d Vn, for every m ∈ N?,

which clearly implies that

(3.9) vB(ψ +
n∑
j=1

cj log |zj |) > vB(ψ).

Fix m ∈ N?, and let aj := {mcj} for j = 1, . . . , n. Since aj = {mcj} < 1
for every j = 1, . . . , n, the exponential

e−2mψ−2{mc1} log |z1|−···−2{mcn} log |zn|

is easily seen to be locally integrable. Indeed, by Fubini’s theorem, the
integral is a product of integrals depending each on one complex variable.
Thus all the monomials zα = zα1

1 . . . zαnn , α = (α1, . . . , αn) ∈ Nn, form a
complete orthogonal set of HΩ(mψ+{mc1} log |z1|+ · · ·+{mcn} log |zn|).
This set becomes an orthonormal basis after each monomial is normalised
to have norm 1. As aj = {mcj}, in view of (3.7) we get:

Bmϕ e
−2mϕ =

+∞∑
α1,..., αn=0

n∏
j=1

|zj |2(αj−aj) e−2mψj∫
D

|zj |2(αj−aj) e−2mψj(zj) d V1(zj)
,
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where d V1 denotes the Lebesgue measure on C. As ψ is smooth, there is
an analogous formula for mψ:

Bmψ e
−2mψ =

+∞∑
α1,..., αn=0

n∏
j=1

|zj |2αj e−2mψj∫
D

|zj |2αj e−2mψj(zj) d V1(zj)
.

Inequality (3.8) will follow from Fubini’s theorem if we can prove that, for
every j = 1, . . . , n, we have:

(3.10)

∫
D1−ε

|zj |2(αj−aj) e−2mψj d V1(zj)∫
D

|zj |2(αj−aj) e−2mψj d V1(zj)
>

∫
D1−ε

|zj |2αj e−2mψj d V1(zj)∫
D

|zj |2αj e−2mψj d V1(zj)
.

Taking polar coordinates zj = rj ρj , 0 6 rj 6 1, ρj ∈ S1, we are then
reduced to proving that, given a C∞ function u > 0 and a constant 0 6
c < 1, we have:∫ 1−ε

0
x2k+1 u(x) 1

x2c dx∫ 1

0
x2k+1 u(x) 1

x2c dx

>

∫ 1−ε

0
x2k+1 u(x) dx∫ 1

0
x2k+1 u(x) dx

.

Writing
∫ 1

0 =
∫ 1−ε

0 +
∫ 1

1−ε, this is seen to be equivalent to:

∫ 1−ε

0
x2k+1 u(x) 1

x2c dx∫ 1−ε

0
x2k+1 u(x) dx

>

∫ 1

1−ε
x2k+1 u(x) 1

x2c dx∫ 1

1−ε
x2k+1 u(x) dx

,

which is clear since the left-hand side is > 1
(1−ε)2c , and the right-hand side

is 6 1
(1−ε)2c . Inequalities (3.8) and (3.9) are thus proved.

We shall now prove that:

(3.11) vB(ψ +
n∑
j=1

cj log |zj |) 6 vB(ψ +
n∑
j=1

log |zj |).

Let v(z) := ψ(z)+log |z1|+ · · ·+log |zn|. Again thanks to Fubini’s theorem,
the monomials zα = zα1

1 . . . zαnn , with α1, . . . , αn > m, form a complete
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orthogonal system of HΩ(mv). Therefore,

Bmv(z) e−2mv(z) =
+∞∑

α1,...,αn=m

|z1|2(α1−m) . . . |zn|2(αn−m)∫
Ω
|z1|2(α1−m) . . . |zn|2(αn−m) e−2mψ(z)

e−2mψ(z)

=
+∞∑

α1,...,αn=1

|z1|2(α1−1) . . . |zn|2(αn−1)∫
Ω
|z1|2(α1−1) . . . |zn|2(αn−1) e−2mψ(z)

e−2mψ(z)

=
+∞∑

α1,...,αn=1

n∏
j=1

|zj |2(αj−1) e−2mψj(zj)∫
D

|zj |2(αj−1) e−2mψj(zj) d V1(zj)
,

which entails:
1
mn

∫
B

Bmv(z) e−2mv(z) d Vn(z)

= 1
mn

n∏
j=1

+∞∑
αj=1

∫
D1−ε

|zj |2(αj−1) e−2mψj(zj) d V1(zj)∫
D

|zj |2(αj−1) e−2mψj(zj) d V1(zj)

>
1
mn

n∏
j=1

 +∞∑
αj=0

∫
D1−ε

|zj |2(αj−cj) e−2mψj(zj) d V1(zj)∫
D

|zj |2(αj−cj) e−2mψj(zj) d V1(zj)

−

∫
D1−ε

|zj |−2cj e−2mψj(zj) d V1(zj)∫
D

|zj |−2cj e−2mψj(zj) d V1(zj)



>
1
mn

n∏
j=1

 +∞∑
αj=0

∫
D1−ε

|zj |2(αj−cj) e−2mψj(zj) d V1(zj)∫
D

|zj |2(αj−cj) e−2mψj(zj) d V1(zj)
− 1


>

1
mn

∫
B

Bmϕ e
−2mϕ d Vn −

1
m

n∑
k=1

1
mn−1

∫
Dn−1

1−ε

Bmuk e
−2muk d Vn−1

+ 1
m2

∑
k1, k2

1
mn−2

∫
Dn−2

1−ε

Bmuk1, k2
e−2muk, k2 d Vn−2 − · · ·+

(−1)n

mn
,

where we have denoted uk(z1, . . . , ẑk, . . . zn) := ϕ(z)− ψk(zk)− ck log |zk|,
and the analogous expressions when several indices are missing. The k-
dimensional Lebesgue measure has been denoted d Vk. Note that as we
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assume 0 6 cj < 1, the first inequality above is implied by estimate (3.10)
with αj replaced with αj − cj , and cj replaced with 1− cj .

We can thus run an induction on the dimension n. If we assume the
finiteness of the volume for psh functions of the form under consideration
defined in less than n variables, all the terms appearing on the right-hand
side, except the first one, tend to 0 as m→ +∞. Inequality (3.11) is then
what we get in the limit.

Now, by Remark 3.2

vB(ψ) = vB(ψ +
n∑
j=1

log |zj |),

which, alongside inequalities (3.9) and (3.11), completes the proof. �

We can now round off the study of the finiteness of the volume of a psh
function in the case of general analytic singularities with arbitrary (not
necessarily integral) coefficients.

Proposition 3.7. — Let ϕ = c
2 log(|g1|2 + · · · + |gN |2) + u, for some

holomorphic functions g1, . . . , gN , some c > 0, and some C∞ function u on
Ω b Cn. Assume i∂∂̄ϕ > C0 ω for some constant C0 > 0. Then:

vB(ϕ) := lim sup
m→+∞

n!
mn

∫
B

Bmϕ e
−2mϕ d Vn < +∞.

Proof. — Let J = (g1, . . . , gN ) ⊂ OΩ, and let µ : Ω̃ → Ω be a proper
modification such that Ω̃ is smooth and µ? J = O(−E) for an effective
normal crossing divisor E on Ω̃. The change of variable formula shows, as
at Step 3 in the proof of Theorem 3.5, that

vB(ϕ) = vµ−1(B)(ϕ ◦ µ).

If we cover µ−1(B) by finitely many open polydiscs Uk such that E = divgk
on Uk and use the comparison Lemma 3.3 on the behaviour of Bergman
kernels under restrictions, we see that:

vµ−1(B)(ϕ ◦ µ) 6
∑
k

vUk(ϕ ◦ µ|Uk).

Now, the singularities of ϕ ◦ µ|Uk are concentrated along the divisor E. As
E has normal crossings, the singular part of ϕ ◦ µ|Uk can be written in the
form

c1 log |w1|+ · · ·+ cn log |wn|,
for constants c1, . . . , cn > 0 and local holomorphic coordinates w1, . . . , wn
on Uk ⊂ Ω̃. The smooth part ψ of ϕ ◦ µ|Uk can be handled as follows. Fix
any point x ∈ Uk and choose local coordinates w about x. After possibly
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adding a harmonic function to ψ, we can write ψ = ψ0 + o(|w|2) near x,
where ψ0 =

∑
cjk wjw̄k with some constant coefficients cjk. By Remark

3.2, Bmψ e−2mψ is unaffected by the addition of a harmonic function. So
is, obviously, i∂∂̄ψ. After possibly changing coordinates, ψ0 can be diago-
nalised as ψ0 =

∑
λj |wj |2, where λ1, . . . , λn are the eigenvalues of i∂∂̄ψ at

x = w(0). As the distance between ψ and ψ0 is under control, the previous
Proposition 3.6 can be applied to

∑
λj |wj |2 +c1 log |w1|+ · · ·+cn log |wn|

to give vUk(ϕ ◦ µ|Uk) < +∞ for every k. This completes the proof. �

Summing up, we have proved that the volume of a psh function with an-
alytic singularities is finite. As already explained, this implies the following
estimate for the number Nm of local generators of I(mϕ):

(3.12) lim sup
m→+∞

n!
mn

Nm 6
vB(ϕ)
1− ε

< +∞, if ϕ has analytic singularities.

The last statement of Theorem 1.1 in the Introduction is thus proved.

4. Approximations of psh functions and multiplier ideal
sheaves

We now turn to the second part of the paper which discusses the inde-
pendent but related question of how far multiplier ideal sheaves I(hm) =
I(mϕ) are from behaving additively when m → +∞. As pointed out in
the Introduction, we will show that for metrics h = e−ϕ with analytic sin-
gularities, I(hm) comes arbitrarily close to an additive decay rate provided
that m is chosen large enough. The main concern is to obtain an effective
asymptotic control of the subadditivity defect. We will cast this result in
the language of approximations of plurisubharmonic functions.

A by now classical result of Demailly’s ([6], Proposition 3.1.) states that
a psh function ϕ with arbitrary singularities can be approximated by psh
functions ϕm with analytic singularities (cf. (?)) constructed as

(4.1) ϕm(z) = 1
2m

log
+∞∑
j=1
|σm, j(z)|2 = sup

f∈B̄m(1)

1
m

log |f(z)|, z ∈ Ω,

where (σm, j)j∈N? is an arbitrary orthonormal basis and B̄m(1) is the unit
ball of the Hilbert space HΩ(mϕ) considered in the previous sections. We
even have

(4.2) ϕ(z)− C1

m
6 ϕm(z) 6 sup

|ζ−z|<r
ϕ(ζ) + 1

m
log(C2

rn
),
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for every z ∈ Ω and every r < d(z, ∂Ω). The lower estimate is a consequence
of the Ohsawa-Takegoshi L2 extension theorem. The upper estimate is far
easier, coming from an application of the submean value inequality sat-
isfied by squares of absolute values of holomorphic functions. Our aim is
to improve the upper estimate by replacing the supremum by a pointwise
upper bound which affords a much better understanding of singularities.
This is not possible for an arbitrary ϕ, but the following proposition shows
it to be possible if ϕ is assumed to have analytic singularities.

Theorem 4.1. — Let Ω b Cn be a bounded pseudoconvex open set
and let ϕ = c

2 log(|g1|2 + · · ·+ |gN |2) be a plurisubharmonic function with
analytic singularities on Ω. If Ω′ b Ω′′ b Ω are any relatively compact open
subsets, then for every 0 < δ < 1 and every m > n+1

c δ we have:

ϕm(z) 6 (1− δ)ϕ(z) + c δ logA+ log(Cn Cm)
2m

, z ∈ Ω′,

where Cm = mc−n if mc is an integer and Cm = mc−n
mc−[mc] if mc is not an

integer. We also denote A := max{sup
Ω′′

√
|g1|2 + · · ·+ |gN |2, 1} and Cn > 0

is a constant depending only on Ω′, Ω′′ and n (while [ ] is the round-down).

Remark 4.2. — (a) The upper bound given in Theorem 4.1, combined
with Demailly’s lower bound of (4.2), implies that ϕ and its approxima-
tions ϕm have the same −∞ poles on Ω′ if m is large enough. Only the
Lelong numbers may be slightly different up to an arbitrarily small δ > 0
when m � 1. Since the set of poles of an arbitrary psh function ϕ is not
necessarily analytic, whereas the polar set of ϕm is always analytic, we see
that some analyticity assumption on ϕ is necessary. We may ask for the
weakest assumption on ϕ under which Theorem 4.1 holds.

(b) A similar estimate was noticed in [9, 2.2]. While that estimate applies
to the larger class of psh functions ϕ for which eϕ is Hölder continuous, it
is non-effective as it only holds on a small ball of uncontrollable size and
with an uncontrollable constant. Our main concern here is effectiveness.
A crucial application of a variant of Theorem 4.1 above in [15] makes an
essential use of effective estimates on fixed-size open balls to obtain a new
regularisation theorem for (1, 1)-currents with controlled Monge-Ampère
masses. Moreover, the present approach seems rather flexible as, besides
effectiveness, it can also yield estimates for the derivatives of the σm, j ’s up
to any pregiven order (see [15, Proposition 7.2.]).
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Proof. — Fix 0 < δ < 1. Let m > n+1
c δ and let f be an arbitrary holo-

morphic function on Ω such that

(4.3)
∫

Ω
|f |2 e−2mϕ = 1 ⇔

∫
Ω

|f |2

(|g1|2 + · · ·+ |gN |2)mc
= 1.

We clearly have mc > n + 1. If mc /∈ N, set q := [mc] − n > 1 and ε :=
mc−[mc] = {mc} > 0. If mc ∈ N, then mc > n+2; set q := mc−n−1 > 1
and ε = 1. In both cases we have

(4.4) mc = n+ q + ε, 0 < ε 6 1.

Notice that the optimal choice of the integer q (= number of gi’s used in
products dividing f below) is the largest possible, so choosing q = mc− n
and ε = 0 when mc ∈ N would appear preferable, but the present form of
Skoda’s theorem (see below) requires ε > 0. If the L2 estimates in Skoda’s
division theorem can be improved to allow the choice ε = 0, then our result
would hold for m > n

c δ when mc ∈ N. However, the requirement m > n+1
c δ

is optimal when mc /∈ N.
By Skoda’s L2 division theorem ([18]) applied in the form given in [6,

Corollary A.5.], there exist holomorphic functions hi1,...,iq on Ω for all multi-
indices (i1, . . . , iq) ∈ {1, . . . , N}q such that:

f(z) =
N∑

i1,...,iq=1
hi1,...,iq (z) gi1(z) . . . giq (z), z ∈ Ω,

and
N∑

i1,...,iq=1

∫
Ω

|hi1,...,iq |2

(|g1|2 + · · ·+ |gN |2)mc−q
6
q + ε

ε

∫
Ω

|f |2

(|g1|2 + · · ·+ |gN |2)mc

= q + ε

ε
:= Cm,

where Cm > 0 is the constant specified in the statement. Set |g|2 := |g1|2 +
· · ·+ |gN |2. As Ω′′ satisfies Ω′ b Ω′′ b Ω, we get, for every z ∈ Ω′:

|f(z)|2 6 |g(z)|2q
N∑

i1,...,iq=1
|hi1,...,iq (z)|2

6 Cn |g(z)|2q
N∑

i1,...,iq=1

∫
Ω′′

|hi1,...,iq |2

(|g1|2 + · · ·+ |gN |2)mc−q
|g|2(mc−q)

6 Cn Cm (sup
Ω′′
|g|)2(mc−q) |g(z)|2q 6 Cn CmA

2(mc−q) |g(z)|2q,

ANNALES DE L’INSTITUT FOURIER



EFFECTIVE LOCAL FINITE GENERATION 1593

where Cn > 0 is the constant involved in the submean value inequality
applied to every |hi1,...,iq |2 at z (thus depending only on Ω′, Ω′′ and n, but
independent of m) and recall that A = max{sup

Ω′′
|g|, 1}. Hence we get:

|f(z)|2 e−2m(1−δ)ϕ(z) 6 Cn CmA
2(mc−q) |g(z)|2q

|g(z)|2mc(1−δ)

= Cn CmA
2(mc−q) |g(z)|2(q−mc+mcδ), z ∈ Ω′.

Nowm has been chosen such thatmcδ > n+1 and the choice of q guarantees
that n+1 > mc−q = n+ε (the inequality is strict if mc /∈ N, while equality
holds otherwise). Thus mcδ > mc− q, hence the exponent 2(q−mc+mcδ)
above is nonnegative and we finally get:

|f(z)|2 e−2m(1−δ)ϕ(z) 6 Cn CmA
2(mc−q) A2(q−mc+mcδ)

= Cn CmA
2mcδ, z ∈ Ω′.(4.5)

In view of (4.1), taking log and dividing by 2m on both sides and then
taking supremum over all holomorphic functions f on Ω satisfying (4.3),
we get:

ϕm(z) 6 (1− δ)ϕ(z) + cδ logA+ log(Cn Cm)
2m

, z ∈ Ω′.

The proof is complete. �

Now Theorem 1.2 in the Introduction follows from Theorem 4.1.
Proof of Theorem 1.2. — As repeatedly pointed out above, the ideal

sheaf I(mϕ) is generated as an OΩ-module by the Hilbert space HΩ(mϕ).
Now, using (4.1), the estimate for ϕm obtained in Theorem 4.1 implies
estimate (4.5) for every f ∈ HΩ(mϕ) with norm 1 (i.e. satisfying (4.3)):

|f(z)|2 6 Cn CmA
2mc δ e2m(1−δ)ϕ(z), z ∈ Ω′, m >

n+ 1
c δ

.

If f1, . . . , fp ∈ HΩ(mϕ) have norm 1, then |f1 . . . fp|2 e−2mp(1−δ)ϕ is
bounded and therefore integrable on Ω′, proving that f1, . . . , fp is a section
of I(mp(1− δ)ϕ) on Ω′. The proof is complete. �
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